2 * Declarations for cpu physical memory functions
4 * Copyright 2011 Red Hat, Inc. and/or its affiliates
7 * Avi Kivity <avi@redhat.com>
9 * This work is licensed under the terms of the GNU GPL, version 2 or
10 * later. See the COPYING file in the top-level directory.
15 * This header is for use by exec.c and memory.c ONLY. Do not include it.
16 * The functions declared here will be removed soon.
22 #ifndef CONFIG_USER_ONLY
23 #include "hw/xen/xen.h"
27 struct MemoryRegion
*mr
;
30 ram_addr_t used_length
;
31 ram_addr_t max_length
;
32 void (*resized
)(const char*, uint64_t length
, void *host
);
34 /* Protected by iothread lock. */
36 /* RCU-enabled, writes protected by the ramlist lock */
37 QLIST_ENTRY(RAMBlock
) next
;
41 static inline bool offset_in_ramblock(RAMBlock
*b
, ram_addr_t offset
)
43 return (b
&& b
->host
&& offset
< b
->used_length
) ? true : false;
46 static inline void *ramblock_ptr(RAMBlock
*block
, ram_addr_t offset
)
48 assert(offset_in_ramblock(block
, offset
));
49 return (char *)block
->host
+ offset
;
52 /* The dirty memory bitmap is split into fixed-size blocks to allow growth
53 * under RCU. The bitmap for a block can be accessed as follows:
57 * DirtyMemoryBlocks *blocks =
58 * atomic_rcu_read(&ram_list.dirty_memory[DIRTY_MEMORY_MIGRATION]);
60 * ram_addr_t idx = (addr >> TARGET_PAGE_BITS) / DIRTY_MEMORY_BLOCK_SIZE;
61 * unsigned long *block = blocks.blocks[idx];
62 * ...access block bitmap...
66 * Remember to check for the end of the block when accessing a range of
67 * addresses. Move on to the next block if you reach the end.
69 * Organization into blocks allows dirty memory to grow (but not shrink) under
70 * RCU. When adding new RAMBlocks requires the dirty memory to grow, a new
71 * DirtyMemoryBlocks array is allocated with pointers to existing blocks kept
72 * the same. Other threads can safely access existing blocks while dirty
73 * memory is being grown. When no threads are using the old DirtyMemoryBlocks
74 * anymore it is freed by RCU (but the underlying blocks stay because they are
75 * pointed to from the new DirtyMemoryBlocks).
77 #define DIRTY_MEMORY_BLOCK_SIZE ((ram_addr_t)256 * 1024 * 8)
80 unsigned long *blocks
[];
83 typedef struct RAMList
{
86 /* RCU-enabled, writes protected by the ramlist lock. */
87 QLIST_HEAD(, RAMBlock
) blocks
;
88 DirtyMemoryBlocks
*dirty_memory
[DIRTY_MEMORY_NUM
];
91 extern RAMList ram_list
;
93 ram_addr_t
last_ram_offset(void);
94 void qemu_mutex_lock_ramlist(void);
95 void qemu_mutex_unlock_ramlist(void);
97 RAMBlock
*qemu_ram_alloc_from_file(ram_addr_t size
, MemoryRegion
*mr
,
98 bool share
, const char *mem_path
,
100 RAMBlock
*qemu_ram_alloc_from_ptr(ram_addr_t size
, void *host
,
101 MemoryRegion
*mr
, Error
**errp
);
102 RAMBlock
*qemu_ram_alloc(ram_addr_t size
, MemoryRegion
*mr
, Error
**errp
);
103 RAMBlock
*qemu_ram_alloc_resizeable(ram_addr_t size
, ram_addr_t max_size
,
104 void (*resized
)(const char*,
107 MemoryRegion
*mr
, Error
**errp
);
108 void qemu_ram_free(RAMBlock
*block
);
110 int qemu_ram_resize(RAMBlock
*block
, ram_addr_t newsize
, Error
**errp
);
112 #define DIRTY_CLIENTS_ALL ((1 << DIRTY_MEMORY_NUM) - 1)
113 #define DIRTY_CLIENTS_NOCODE (DIRTY_CLIENTS_ALL & ~(1 << DIRTY_MEMORY_CODE))
115 static inline bool cpu_physical_memory_get_dirty(ram_addr_t start
,
119 DirtyMemoryBlocks
*blocks
;
120 unsigned long end
, page
;
121 unsigned long idx
, offset
, base
;
124 assert(client
< DIRTY_MEMORY_NUM
);
126 end
= TARGET_PAGE_ALIGN(start
+ length
) >> TARGET_PAGE_BITS
;
127 page
= start
>> TARGET_PAGE_BITS
;
131 blocks
= atomic_rcu_read(&ram_list
.dirty_memory
[client
]);
133 idx
= page
/ DIRTY_MEMORY_BLOCK_SIZE
;
134 offset
= page
% DIRTY_MEMORY_BLOCK_SIZE
;
135 base
= page
- offset
;
137 unsigned long next
= MIN(end
, base
+ DIRTY_MEMORY_BLOCK_SIZE
);
138 unsigned long num
= next
- base
;
139 unsigned long found
= find_next_bit(blocks
->blocks
[idx
], num
, offset
);
148 base
+= DIRTY_MEMORY_BLOCK_SIZE
;
156 static inline bool cpu_physical_memory_all_dirty(ram_addr_t start
,
160 DirtyMemoryBlocks
*blocks
;
161 unsigned long end
, page
;
162 unsigned long idx
, offset
, base
;
165 assert(client
< DIRTY_MEMORY_NUM
);
167 end
= TARGET_PAGE_ALIGN(start
+ length
) >> TARGET_PAGE_BITS
;
168 page
= start
>> TARGET_PAGE_BITS
;
172 blocks
= atomic_rcu_read(&ram_list
.dirty_memory
[client
]);
174 idx
= page
/ DIRTY_MEMORY_BLOCK_SIZE
;
175 offset
= page
% DIRTY_MEMORY_BLOCK_SIZE
;
176 base
= page
- offset
;
178 unsigned long next
= MIN(end
, base
+ DIRTY_MEMORY_BLOCK_SIZE
);
179 unsigned long num
= next
- base
;
180 unsigned long found
= find_next_zero_bit(blocks
->blocks
[idx
], num
, offset
);
189 base
+= DIRTY_MEMORY_BLOCK_SIZE
;
197 static inline bool cpu_physical_memory_get_dirty_flag(ram_addr_t addr
,
200 return cpu_physical_memory_get_dirty(addr
, 1, client
);
203 static inline bool cpu_physical_memory_is_clean(ram_addr_t addr
)
205 bool vga
= cpu_physical_memory_get_dirty_flag(addr
, DIRTY_MEMORY_VGA
);
206 bool code
= cpu_physical_memory_get_dirty_flag(addr
, DIRTY_MEMORY_CODE
);
208 cpu_physical_memory_get_dirty_flag(addr
, DIRTY_MEMORY_MIGRATION
);
209 return !(vga
&& code
&& migration
);
212 static inline uint8_t cpu_physical_memory_range_includes_clean(ram_addr_t start
,
218 if (mask
& (1 << DIRTY_MEMORY_VGA
) &&
219 !cpu_physical_memory_all_dirty(start
, length
, DIRTY_MEMORY_VGA
)) {
220 ret
|= (1 << DIRTY_MEMORY_VGA
);
222 if (mask
& (1 << DIRTY_MEMORY_CODE
) &&
223 !cpu_physical_memory_all_dirty(start
, length
, DIRTY_MEMORY_CODE
)) {
224 ret
|= (1 << DIRTY_MEMORY_CODE
);
226 if (mask
& (1 << DIRTY_MEMORY_MIGRATION
) &&
227 !cpu_physical_memory_all_dirty(start
, length
, DIRTY_MEMORY_MIGRATION
)) {
228 ret
|= (1 << DIRTY_MEMORY_MIGRATION
);
233 static inline void cpu_physical_memory_set_dirty_flag(ram_addr_t addr
,
236 unsigned long page
, idx
, offset
;
237 DirtyMemoryBlocks
*blocks
;
239 assert(client
< DIRTY_MEMORY_NUM
);
241 page
= addr
>> TARGET_PAGE_BITS
;
242 idx
= page
/ DIRTY_MEMORY_BLOCK_SIZE
;
243 offset
= page
% DIRTY_MEMORY_BLOCK_SIZE
;
247 blocks
= atomic_rcu_read(&ram_list
.dirty_memory
[client
]);
249 set_bit_atomic(offset
, blocks
->blocks
[idx
]);
254 static inline void cpu_physical_memory_set_dirty_range(ram_addr_t start
,
258 DirtyMemoryBlocks
*blocks
[DIRTY_MEMORY_NUM
];
259 unsigned long end
, page
;
260 unsigned long idx
, offset
, base
;
263 if (!mask
&& !xen_enabled()) {
267 end
= TARGET_PAGE_ALIGN(start
+ length
) >> TARGET_PAGE_BITS
;
268 page
= start
>> TARGET_PAGE_BITS
;
272 for (i
= 0; i
< DIRTY_MEMORY_NUM
; i
++) {
273 blocks
[i
] = atomic_rcu_read(&ram_list
.dirty_memory
[i
]);
276 idx
= page
/ DIRTY_MEMORY_BLOCK_SIZE
;
277 offset
= page
% DIRTY_MEMORY_BLOCK_SIZE
;
278 base
= page
- offset
;
280 unsigned long next
= MIN(end
, base
+ DIRTY_MEMORY_BLOCK_SIZE
);
282 if (likely(mask
& (1 << DIRTY_MEMORY_MIGRATION
))) {
283 bitmap_set_atomic(blocks
[DIRTY_MEMORY_MIGRATION
]->blocks
[idx
],
284 offset
, next
- page
);
286 if (unlikely(mask
& (1 << DIRTY_MEMORY_VGA
))) {
287 bitmap_set_atomic(blocks
[DIRTY_MEMORY_VGA
]->blocks
[idx
],
288 offset
, next
- page
);
290 if (unlikely(mask
& (1 << DIRTY_MEMORY_CODE
))) {
291 bitmap_set_atomic(blocks
[DIRTY_MEMORY_CODE
]->blocks
[idx
],
292 offset
, next
- page
);
298 base
+= DIRTY_MEMORY_BLOCK_SIZE
;
303 xen_modified_memory(start
, length
);
307 static inline void cpu_physical_memory_set_dirty_lebitmap(unsigned long *bitmap
,
312 unsigned long page_number
, c
;
315 unsigned long len
= (pages
+ HOST_LONG_BITS
- 1) / HOST_LONG_BITS
;
316 unsigned long hpratio
= getpagesize() / TARGET_PAGE_SIZE
;
317 unsigned long page
= BIT_WORD(start
>> TARGET_PAGE_BITS
);
319 /* start address is aligned at the start of a word? */
320 if ((((page
* BITS_PER_LONG
) << TARGET_PAGE_BITS
) == start
) &&
322 unsigned long **blocks
[DIRTY_MEMORY_NUM
];
324 unsigned long offset
;
326 long nr
= BITS_TO_LONGS(pages
);
328 idx
= (start
>> TARGET_PAGE_BITS
) / DIRTY_MEMORY_BLOCK_SIZE
;
329 offset
= BIT_WORD((start
>> TARGET_PAGE_BITS
) %
330 DIRTY_MEMORY_BLOCK_SIZE
);
334 for (i
= 0; i
< DIRTY_MEMORY_NUM
; i
++) {
335 blocks
[i
] = atomic_rcu_read(&ram_list
.dirty_memory
[i
])->blocks
;
338 for (k
= 0; k
< nr
; k
++) {
340 unsigned long temp
= leul_to_cpu(bitmap
[k
]);
342 atomic_or(&blocks
[DIRTY_MEMORY_MIGRATION
][idx
][offset
], temp
);
343 atomic_or(&blocks
[DIRTY_MEMORY_VGA
][idx
][offset
], temp
);
345 atomic_or(&blocks
[DIRTY_MEMORY_CODE
][idx
][offset
], temp
);
349 if (++offset
>= BITS_TO_LONGS(DIRTY_MEMORY_BLOCK_SIZE
)) {
357 xen_modified_memory(start
, pages
<< TARGET_PAGE_BITS
);
359 uint8_t clients
= tcg_enabled() ? DIRTY_CLIENTS_ALL
: DIRTY_CLIENTS_NOCODE
;
361 * bitmap-traveling is faster than memory-traveling (for addr...)
362 * especially when most of the memory is not dirty.
364 for (i
= 0; i
< len
; i
++) {
365 if (bitmap
[i
] != 0) {
366 c
= leul_to_cpu(bitmap
[i
]);
370 page_number
= (i
* HOST_LONG_BITS
+ j
) * hpratio
;
371 addr
= page_number
* TARGET_PAGE_SIZE
;
372 ram_addr
= start
+ addr
;
373 cpu_physical_memory_set_dirty_range(ram_addr
,
374 TARGET_PAGE_SIZE
* hpratio
, clients
);
380 #endif /* not _WIN32 */
382 bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start
,
386 static inline void cpu_physical_memory_clear_dirty_range(ram_addr_t start
,
389 cpu_physical_memory_test_and_clear_dirty(start
, length
, DIRTY_MEMORY_MIGRATION
);
390 cpu_physical_memory_test_and_clear_dirty(start
, length
, DIRTY_MEMORY_VGA
);
391 cpu_physical_memory_test_and_clear_dirty(start
, length
, DIRTY_MEMORY_CODE
);
396 uint64_t cpu_physical_memory_sync_dirty_bitmap(unsigned long *dest
,
401 unsigned long page
= BIT_WORD(start
>> TARGET_PAGE_BITS
);
402 uint64_t num_dirty
= 0;
404 /* start address is aligned at the start of a word? */
405 if (((page
* BITS_PER_LONG
) << TARGET_PAGE_BITS
) == start
) {
407 int nr
= BITS_TO_LONGS(length
>> TARGET_PAGE_BITS
);
408 unsigned long * const *src
;
409 unsigned long idx
= (page
* BITS_PER_LONG
) / DIRTY_MEMORY_BLOCK_SIZE
;
410 unsigned long offset
= BIT_WORD((page
* BITS_PER_LONG
) %
411 DIRTY_MEMORY_BLOCK_SIZE
);
415 src
= atomic_rcu_read(
416 &ram_list
.dirty_memory
[DIRTY_MEMORY_MIGRATION
])->blocks
;
418 for (k
= page
; k
< page
+ nr
; k
++) {
419 if (src
[idx
][offset
]) {
420 unsigned long bits
= atomic_xchg(&src
[idx
][offset
], 0);
421 unsigned long new_dirty
;
422 new_dirty
= ~dest
[k
];
425 num_dirty
+= ctpopl(new_dirty
);
428 if (++offset
>= BITS_TO_LONGS(DIRTY_MEMORY_BLOCK_SIZE
)) {
436 for (addr
= 0; addr
< length
; addr
+= TARGET_PAGE_SIZE
) {
437 if (cpu_physical_memory_test_and_clear_dirty(
440 DIRTY_MEMORY_MIGRATION
)) {
441 long k
= (start
+ addr
) >> TARGET_PAGE_BITS
;
442 if (!test_and_set_bit(k
, dest
)) {
452 void migration_bitmap_extend(ram_addr_t old
, ram_addr_t
new);