intel-iommu: only do page walk for MAP notifiers
[qemu/ar7.git] / hw / i386 / intel_iommu.c
blob38ccc741f9b2af2b9a867f38a1f15916edaec11b
1 /*
2 * QEMU emulation of an Intel IOMMU (VT-d)
3 * (DMA Remapping device)
5 * Copyright (C) 2013 Knut Omang, Oracle <knut.omang@oracle.com>
6 * Copyright (C) 2014 Le Tan, <tamlokveer@gmail.com>
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public License along
19 * with this program; if not, see <http://www.gnu.org/licenses/>.
22 #include "qemu/osdep.h"
23 #include "qemu/error-report.h"
24 #include "qapi/error.h"
25 #include "hw/sysbus.h"
26 #include "exec/address-spaces.h"
27 #include "intel_iommu_internal.h"
28 #include "hw/pci/pci.h"
29 #include "hw/pci/pci_bus.h"
30 #include "hw/i386/pc.h"
31 #include "hw/i386/apic-msidef.h"
32 #include "hw/boards.h"
33 #include "hw/i386/x86-iommu.h"
34 #include "hw/pci-host/q35.h"
35 #include "sysemu/kvm.h"
36 #include "hw/i386/apic_internal.h"
37 #include "kvm_i386.h"
38 #include "trace.h"
40 static void vtd_define_quad(IntelIOMMUState *s, hwaddr addr, uint64_t val,
41 uint64_t wmask, uint64_t w1cmask)
43 stq_le_p(&s->csr[addr], val);
44 stq_le_p(&s->wmask[addr], wmask);
45 stq_le_p(&s->w1cmask[addr], w1cmask);
48 static void vtd_define_quad_wo(IntelIOMMUState *s, hwaddr addr, uint64_t mask)
50 stq_le_p(&s->womask[addr], mask);
53 static void vtd_define_long(IntelIOMMUState *s, hwaddr addr, uint32_t val,
54 uint32_t wmask, uint32_t w1cmask)
56 stl_le_p(&s->csr[addr], val);
57 stl_le_p(&s->wmask[addr], wmask);
58 stl_le_p(&s->w1cmask[addr], w1cmask);
61 static void vtd_define_long_wo(IntelIOMMUState *s, hwaddr addr, uint32_t mask)
63 stl_le_p(&s->womask[addr], mask);
66 /* "External" get/set operations */
67 static void vtd_set_quad(IntelIOMMUState *s, hwaddr addr, uint64_t val)
69 uint64_t oldval = ldq_le_p(&s->csr[addr]);
70 uint64_t wmask = ldq_le_p(&s->wmask[addr]);
71 uint64_t w1cmask = ldq_le_p(&s->w1cmask[addr]);
72 stq_le_p(&s->csr[addr],
73 ((oldval & ~wmask) | (val & wmask)) & ~(w1cmask & val));
76 static void vtd_set_long(IntelIOMMUState *s, hwaddr addr, uint32_t val)
78 uint32_t oldval = ldl_le_p(&s->csr[addr]);
79 uint32_t wmask = ldl_le_p(&s->wmask[addr]);
80 uint32_t w1cmask = ldl_le_p(&s->w1cmask[addr]);
81 stl_le_p(&s->csr[addr],
82 ((oldval & ~wmask) | (val & wmask)) & ~(w1cmask & val));
85 static uint64_t vtd_get_quad(IntelIOMMUState *s, hwaddr addr)
87 uint64_t val = ldq_le_p(&s->csr[addr]);
88 uint64_t womask = ldq_le_p(&s->womask[addr]);
89 return val & ~womask;
92 static uint32_t vtd_get_long(IntelIOMMUState *s, hwaddr addr)
94 uint32_t val = ldl_le_p(&s->csr[addr]);
95 uint32_t womask = ldl_le_p(&s->womask[addr]);
96 return val & ~womask;
99 /* "Internal" get/set operations */
100 static uint64_t vtd_get_quad_raw(IntelIOMMUState *s, hwaddr addr)
102 return ldq_le_p(&s->csr[addr]);
105 static uint32_t vtd_get_long_raw(IntelIOMMUState *s, hwaddr addr)
107 return ldl_le_p(&s->csr[addr]);
110 static void vtd_set_quad_raw(IntelIOMMUState *s, hwaddr addr, uint64_t val)
112 stq_le_p(&s->csr[addr], val);
115 static uint32_t vtd_set_clear_mask_long(IntelIOMMUState *s, hwaddr addr,
116 uint32_t clear, uint32_t mask)
118 uint32_t new_val = (ldl_le_p(&s->csr[addr]) & ~clear) | mask;
119 stl_le_p(&s->csr[addr], new_val);
120 return new_val;
123 static uint64_t vtd_set_clear_mask_quad(IntelIOMMUState *s, hwaddr addr,
124 uint64_t clear, uint64_t mask)
126 uint64_t new_val = (ldq_le_p(&s->csr[addr]) & ~clear) | mask;
127 stq_le_p(&s->csr[addr], new_val);
128 return new_val;
131 static inline void vtd_iommu_lock(IntelIOMMUState *s)
133 qemu_mutex_lock(&s->iommu_lock);
136 static inline void vtd_iommu_unlock(IntelIOMMUState *s)
138 qemu_mutex_unlock(&s->iommu_lock);
141 /* Whether the address space needs to notify new mappings */
142 static inline gboolean vtd_as_has_map_notifier(VTDAddressSpace *as)
144 return as->notifier_flags & IOMMU_NOTIFIER_MAP;
147 /* GHashTable functions */
148 static gboolean vtd_uint64_equal(gconstpointer v1, gconstpointer v2)
150 return *((const uint64_t *)v1) == *((const uint64_t *)v2);
153 static guint vtd_uint64_hash(gconstpointer v)
155 return (guint)*(const uint64_t *)v;
158 static gboolean vtd_hash_remove_by_domain(gpointer key, gpointer value,
159 gpointer user_data)
161 VTDIOTLBEntry *entry = (VTDIOTLBEntry *)value;
162 uint16_t domain_id = *(uint16_t *)user_data;
163 return entry->domain_id == domain_id;
166 /* The shift of an addr for a certain level of paging structure */
167 static inline uint32_t vtd_slpt_level_shift(uint32_t level)
169 assert(level != 0);
170 return VTD_PAGE_SHIFT_4K + (level - 1) * VTD_SL_LEVEL_BITS;
173 static inline uint64_t vtd_slpt_level_page_mask(uint32_t level)
175 return ~((1ULL << vtd_slpt_level_shift(level)) - 1);
178 static gboolean vtd_hash_remove_by_page(gpointer key, gpointer value,
179 gpointer user_data)
181 VTDIOTLBEntry *entry = (VTDIOTLBEntry *)value;
182 VTDIOTLBPageInvInfo *info = (VTDIOTLBPageInvInfo *)user_data;
183 uint64_t gfn = (info->addr >> VTD_PAGE_SHIFT_4K) & info->mask;
184 uint64_t gfn_tlb = (info->addr & entry->mask) >> VTD_PAGE_SHIFT_4K;
185 return (entry->domain_id == info->domain_id) &&
186 (((entry->gfn & info->mask) == gfn) ||
187 (entry->gfn == gfn_tlb));
190 /* Reset all the gen of VTDAddressSpace to zero and set the gen of
191 * IntelIOMMUState to 1. Must be called with IOMMU lock held.
193 static void vtd_reset_context_cache_locked(IntelIOMMUState *s)
195 VTDAddressSpace *vtd_as;
196 VTDBus *vtd_bus;
197 GHashTableIter bus_it;
198 uint32_t devfn_it;
200 trace_vtd_context_cache_reset();
202 g_hash_table_iter_init(&bus_it, s->vtd_as_by_busptr);
204 while (g_hash_table_iter_next (&bus_it, NULL, (void**)&vtd_bus)) {
205 for (devfn_it = 0; devfn_it < PCI_DEVFN_MAX; ++devfn_it) {
206 vtd_as = vtd_bus->dev_as[devfn_it];
207 if (!vtd_as) {
208 continue;
210 vtd_as->context_cache_entry.context_cache_gen = 0;
213 s->context_cache_gen = 1;
216 /* Must be called with IOMMU lock held. */
217 static void vtd_reset_iotlb_locked(IntelIOMMUState *s)
219 assert(s->iotlb);
220 g_hash_table_remove_all(s->iotlb);
223 static void vtd_reset_iotlb(IntelIOMMUState *s)
225 vtd_iommu_lock(s);
226 vtd_reset_iotlb_locked(s);
227 vtd_iommu_unlock(s);
230 static uint64_t vtd_get_iotlb_key(uint64_t gfn, uint16_t source_id,
231 uint32_t level)
233 return gfn | ((uint64_t)(source_id) << VTD_IOTLB_SID_SHIFT) |
234 ((uint64_t)(level) << VTD_IOTLB_LVL_SHIFT);
237 static uint64_t vtd_get_iotlb_gfn(hwaddr addr, uint32_t level)
239 return (addr & vtd_slpt_level_page_mask(level)) >> VTD_PAGE_SHIFT_4K;
242 /* Must be called with IOMMU lock held */
243 static VTDIOTLBEntry *vtd_lookup_iotlb(IntelIOMMUState *s, uint16_t source_id,
244 hwaddr addr)
246 VTDIOTLBEntry *entry;
247 uint64_t key;
248 int level;
250 for (level = VTD_SL_PT_LEVEL; level < VTD_SL_PML4_LEVEL; level++) {
251 key = vtd_get_iotlb_key(vtd_get_iotlb_gfn(addr, level),
252 source_id, level);
253 entry = g_hash_table_lookup(s->iotlb, &key);
254 if (entry) {
255 goto out;
259 out:
260 return entry;
263 /* Must be with IOMMU lock held */
264 static void vtd_update_iotlb(IntelIOMMUState *s, uint16_t source_id,
265 uint16_t domain_id, hwaddr addr, uint64_t slpte,
266 uint8_t access_flags, uint32_t level)
268 VTDIOTLBEntry *entry = g_malloc(sizeof(*entry));
269 uint64_t *key = g_malloc(sizeof(*key));
270 uint64_t gfn = vtd_get_iotlb_gfn(addr, level);
272 trace_vtd_iotlb_page_update(source_id, addr, slpte, domain_id);
273 if (g_hash_table_size(s->iotlb) >= VTD_IOTLB_MAX_SIZE) {
274 trace_vtd_iotlb_reset("iotlb exceeds size limit");
275 vtd_reset_iotlb_locked(s);
278 entry->gfn = gfn;
279 entry->domain_id = domain_id;
280 entry->slpte = slpte;
281 entry->access_flags = access_flags;
282 entry->mask = vtd_slpt_level_page_mask(level);
283 *key = vtd_get_iotlb_key(gfn, source_id, level);
284 g_hash_table_replace(s->iotlb, key, entry);
287 /* Given the reg addr of both the message data and address, generate an
288 * interrupt via MSI.
290 static void vtd_generate_interrupt(IntelIOMMUState *s, hwaddr mesg_addr_reg,
291 hwaddr mesg_data_reg)
293 MSIMessage msi;
295 assert(mesg_data_reg < DMAR_REG_SIZE);
296 assert(mesg_addr_reg < DMAR_REG_SIZE);
298 msi.address = vtd_get_long_raw(s, mesg_addr_reg);
299 msi.data = vtd_get_long_raw(s, mesg_data_reg);
301 trace_vtd_irq_generate(msi.address, msi.data);
303 apic_get_class()->send_msi(&msi);
306 /* Generate a fault event to software via MSI if conditions are met.
307 * Notice that the value of FSTS_REG being passed to it should be the one
308 * before any update.
310 static void vtd_generate_fault_event(IntelIOMMUState *s, uint32_t pre_fsts)
312 if (pre_fsts & VTD_FSTS_PPF || pre_fsts & VTD_FSTS_PFO ||
313 pre_fsts & VTD_FSTS_IQE) {
314 trace_vtd_err("There are previous interrupt conditions "
315 "to be serviced by software, fault event "
316 "is not generated.");
317 return;
319 vtd_set_clear_mask_long(s, DMAR_FECTL_REG, 0, VTD_FECTL_IP);
320 if (vtd_get_long_raw(s, DMAR_FECTL_REG) & VTD_FECTL_IM) {
321 trace_vtd_err("Interrupt Mask set, irq is not generated.");
322 } else {
323 vtd_generate_interrupt(s, DMAR_FEADDR_REG, DMAR_FEDATA_REG);
324 vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
328 /* Check if the Fault (F) field of the Fault Recording Register referenced by
329 * @index is Set.
331 static bool vtd_is_frcd_set(IntelIOMMUState *s, uint16_t index)
333 /* Each reg is 128-bit */
334 hwaddr addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
335 addr += 8; /* Access the high 64-bit half */
337 assert(index < DMAR_FRCD_REG_NR);
339 return vtd_get_quad_raw(s, addr) & VTD_FRCD_F;
342 /* Update the PPF field of Fault Status Register.
343 * Should be called whenever change the F field of any fault recording
344 * registers.
346 static void vtd_update_fsts_ppf(IntelIOMMUState *s)
348 uint32_t i;
349 uint32_t ppf_mask = 0;
351 for (i = 0; i < DMAR_FRCD_REG_NR; i++) {
352 if (vtd_is_frcd_set(s, i)) {
353 ppf_mask = VTD_FSTS_PPF;
354 break;
357 vtd_set_clear_mask_long(s, DMAR_FSTS_REG, VTD_FSTS_PPF, ppf_mask);
358 trace_vtd_fsts_ppf(!!ppf_mask);
361 static void vtd_set_frcd_and_update_ppf(IntelIOMMUState *s, uint16_t index)
363 /* Each reg is 128-bit */
364 hwaddr addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
365 addr += 8; /* Access the high 64-bit half */
367 assert(index < DMAR_FRCD_REG_NR);
369 vtd_set_clear_mask_quad(s, addr, 0, VTD_FRCD_F);
370 vtd_update_fsts_ppf(s);
373 /* Must not update F field now, should be done later */
374 static void vtd_record_frcd(IntelIOMMUState *s, uint16_t index,
375 uint16_t source_id, hwaddr addr,
376 VTDFaultReason fault, bool is_write)
378 uint64_t hi = 0, lo;
379 hwaddr frcd_reg_addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
381 assert(index < DMAR_FRCD_REG_NR);
383 lo = VTD_FRCD_FI(addr);
384 hi = VTD_FRCD_SID(source_id) | VTD_FRCD_FR(fault);
385 if (!is_write) {
386 hi |= VTD_FRCD_T;
388 vtd_set_quad_raw(s, frcd_reg_addr, lo);
389 vtd_set_quad_raw(s, frcd_reg_addr + 8, hi);
391 trace_vtd_frr_new(index, hi, lo);
394 /* Try to collapse multiple pending faults from the same requester */
395 static bool vtd_try_collapse_fault(IntelIOMMUState *s, uint16_t source_id)
397 uint32_t i;
398 uint64_t frcd_reg;
399 hwaddr addr = DMAR_FRCD_REG_OFFSET + 8; /* The high 64-bit half */
401 for (i = 0; i < DMAR_FRCD_REG_NR; i++) {
402 frcd_reg = vtd_get_quad_raw(s, addr);
403 if ((frcd_reg & VTD_FRCD_F) &&
404 ((frcd_reg & VTD_FRCD_SID_MASK) == source_id)) {
405 return true;
407 addr += 16; /* 128-bit for each */
409 return false;
412 /* Log and report an DMAR (address translation) fault to software */
413 static void vtd_report_dmar_fault(IntelIOMMUState *s, uint16_t source_id,
414 hwaddr addr, VTDFaultReason fault,
415 bool is_write)
417 uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
419 assert(fault < VTD_FR_MAX);
421 if (fault == VTD_FR_RESERVED_ERR) {
422 /* This is not a normal fault reason case. Drop it. */
423 return;
426 trace_vtd_dmar_fault(source_id, fault, addr, is_write);
428 if (fsts_reg & VTD_FSTS_PFO) {
429 trace_vtd_err("New fault is not recorded due to "
430 "Primary Fault Overflow.");
431 return;
434 if (vtd_try_collapse_fault(s, source_id)) {
435 trace_vtd_err("New fault is not recorded due to "
436 "compression of faults.");
437 return;
440 if (vtd_is_frcd_set(s, s->next_frcd_reg)) {
441 trace_vtd_err("Next Fault Recording Reg is used, "
442 "new fault is not recorded, set PFO field.");
443 vtd_set_clear_mask_long(s, DMAR_FSTS_REG, 0, VTD_FSTS_PFO);
444 return;
447 vtd_record_frcd(s, s->next_frcd_reg, source_id, addr, fault, is_write);
449 if (fsts_reg & VTD_FSTS_PPF) {
450 trace_vtd_err("There are pending faults already, "
451 "fault event is not generated.");
452 vtd_set_frcd_and_update_ppf(s, s->next_frcd_reg);
453 s->next_frcd_reg++;
454 if (s->next_frcd_reg == DMAR_FRCD_REG_NR) {
455 s->next_frcd_reg = 0;
457 } else {
458 vtd_set_clear_mask_long(s, DMAR_FSTS_REG, VTD_FSTS_FRI_MASK,
459 VTD_FSTS_FRI(s->next_frcd_reg));
460 vtd_set_frcd_and_update_ppf(s, s->next_frcd_reg); /* Will set PPF */
461 s->next_frcd_reg++;
462 if (s->next_frcd_reg == DMAR_FRCD_REG_NR) {
463 s->next_frcd_reg = 0;
465 /* This case actually cause the PPF to be Set.
466 * So generate fault event (interrupt).
468 vtd_generate_fault_event(s, fsts_reg);
472 /* Handle Invalidation Queue Errors of queued invalidation interface error
473 * conditions.
475 static void vtd_handle_inv_queue_error(IntelIOMMUState *s)
477 uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
479 vtd_set_clear_mask_long(s, DMAR_FSTS_REG, 0, VTD_FSTS_IQE);
480 vtd_generate_fault_event(s, fsts_reg);
483 /* Set the IWC field and try to generate an invalidation completion interrupt */
484 static void vtd_generate_completion_event(IntelIOMMUState *s)
486 if (vtd_get_long_raw(s, DMAR_ICS_REG) & VTD_ICS_IWC) {
487 trace_vtd_inv_desc_wait_irq("One pending, skip current");
488 return;
490 vtd_set_clear_mask_long(s, DMAR_ICS_REG, 0, VTD_ICS_IWC);
491 vtd_set_clear_mask_long(s, DMAR_IECTL_REG, 0, VTD_IECTL_IP);
492 if (vtd_get_long_raw(s, DMAR_IECTL_REG) & VTD_IECTL_IM) {
493 trace_vtd_inv_desc_wait_irq("IM in IECTL_REG is set, "
494 "new event not generated");
495 return;
496 } else {
497 /* Generate the interrupt event */
498 trace_vtd_inv_desc_wait_irq("Generating complete event");
499 vtd_generate_interrupt(s, DMAR_IEADDR_REG, DMAR_IEDATA_REG);
500 vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
504 static inline bool vtd_root_entry_present(VTDRootEntry *root)
506 return root->val & VTD_ROOT_ENTRY_P;
509 static int vtd_get_root_entry(IntelIOMMUState *s, uint8_t index,
510 VTDRootEntry *re)
512 dma_addr_t addr;
514 addr = s->root + index * sizeof(*re);
515 if (dma_memory_read(&address_space_memory, addr, re, sizeof(*re))) {
516 trace_vtd_re_invalid(re->rsvd, re->val);
517 re->val = 0;
518 return -VTD_FR_ROOT_TABLE_INV;
520 re->val = le64_to_cpu(re->val);
521 return 0;
524 static inline bool vtd_ce_present(VTDContextEntry *context)
526 return context->lo & VTD_CONTEXT_ENTRY_P;
529 static int vtd_get_context_entry_from_root(VTDRootEntry *root, uint8_t index,
530 VTDContextEntry *ce)
532 dma_addr_t addr;
534 /* we have checked that root entry is present */
535 addr = (root->val & VTD_ROOT_ENTRY_CTP) + index * sizeof(*ce);
536 if (dma_memory_read(&address_space_memory, addr, ce, sizeof(*ce))) {
537 trace_vtd_re_invalid(root->rsvd, root->val);
538 return -VTD_FR_CONTEXT_TABLE_INV;
540 ce->lo = le64_to_cpu(ce->lo);
541 ce->hi = le64_to_cpu(ce->hi);
542 return 0;
545 static inline dma_addr_t vtd_ce_get_slpt_base(VTDContextEntry *ce)
547 return ce->lo & VTD_CONTEXT_ENTRY_SLPTPTR;
550 static inline uint64_t vtd_get_slpte_addr(uint64_t slpte, uint8_t aw)
552 return slpte & VTD_SL_PT_BASE_ADDR_MASK(aw);
555 /* Whether the pte indicates the address of the page frame */
556 static inline bool vtd_is_last_slpte(uint64_t slpte, uint32_t level)
558 return level == VTD_SL_PT_LEVEL || (slpte & VTD_SL_PT_PAGE_SIZE_MASK);
561 /* Get the content of a spte located in @base_addr[@index] */
562 static uint64_t vtd_get_slpte(dma_addr_t base_addr, uint32_t index)
564 uint64_t slpte;
566 assert(index < VTD_SL_PT_ENTRY_NR);
568 if (dma_memory_read(&address_space_memory,
569 base_addr + index * sizeof(slpte), &slpte,
570 sizeof(slpte))) {
571 slpte = (uint64_t)-1;
572 return slpte;
574 slpte = le64_to_cpu(slpte);
575 return slpte;
578 /* Given an iova and the level of paging structure, return the offset
579 * of current level.
581 static inline uint32_t vtd_iova_level_offset(uint64_t iova, uint32_t level)
583 return (iova >> vtd_slpt_level_shift(level)) &
584 ((1ULL << VTD_SL_LEVEL_BITS) - 1);
587 /* Check Capability Register to see if the @level of page-table is supported */
588 static inline bool vtd_is_level_supported(IntelIOMMUState *s, uint32_t level)
590 return VTD_CAP_SAGAW_MASK & s->cap &
591 (1ULL << (level - 2 + VTD_CAP_SAGAW_SHIFT));
594 /* Get the page-table level that hardware should use for the second-level
595 * page-table walk from the Address Width field of context-entry.
597 static inline uint32_t vtd_ce_get_level(VTDContextEntry *ce)
599 return 2 + (ce->hi & VTD_CONTEXT_ENTRY_AW);
602 static inline uint32_t vtd_ce_get_agaw(VTDContextEntry *ce)
604 return 30 + (ce->hi & VTD_CONTEXT_ENTRY_AW) * 9;
607 static inline uint32_t vtd_ce_get_type(VTDContextEntry *ce)
609 return ce->lo & VTD_CONTEXT_ENTRY_TT;
612 /* Return true if check passed, otherwise false */
613 static inline bool vtd_ce_type_check(X86IOMMUState *x86_iommu,
614 VTDContextEntry *ce)
616 switch (vtd_ce_get_type(ce)) {
617 case VTD_CONTEXT_TT_MULTI_LEVEL:
618 /* Always supported */
619 break;
620 case VTD_CONTEXT_TT_DEV_IOTLB:
621 if (!x86_iommu->dt_supported) {
622 return false;
624 break;
625 case VTD_CONTEXT_TT_PASS_THROUGH:
626 if (!x86_iommu->pt_supported) {
627 return false;
629 break;
630 default:
631 /* Unknwon type */
632 return false;
634 return true;
637 static inline uint64_t vtd_iova_limit(VTDContextEntry *ce, uint8_t aw)
639 uint32_t ce_agaw = vtd_ce_get_agaw(ce);
640 return 1ULL << MIN(ce_agaw, aw);
643 /* Return true if IOVA passes range check, otherwise false. */
644 static inline bool vtd_iova_range_check(uint64_t iova, VTDContextEntry *ce,
645 uint8_t aw)
648 * Check if @iova is above 2^X-1, where X is the minimum of MGAW
649 * in CAP_REG and AW in context-entry.
651 return !(iova & ~(vtd_iova_limit(ce, aw) - 1));
655 * Rsvd field masks for spte:
656 * Index [1] to [4] 4k pages
657 * Index [5] to [8] large pages
659 static uint64_t vtd_paging_entry_rsvd_field[9];
661 static bool vtd_slpte_nonzero_rsvd(uint64_t slpte, uint32_t level)
663 if (slpte & VTD_SL_PT_PAGE_SIZE_MASK) {
664 /* Maybe large page */
665 return slpte & vtd_paging_entry_rsvd_field[level + 4];
666 } else {
667 return slpte & vtd_paging_entry_rsvd_field[level];
671 /* Find the VTD address space associated with a given bus number */
672 static VTDBus *vtd_find_as_from_bus_num(IntelIOMMUState *s, uint8_t bus_num)
674 VTDBus *vtd_bus = s->vtd_as_by_bus_num[bus_num];
675 if (!vtd_bus) {
677 * Iterate over the registered buses to find the one which
678 * currently hold this bus number, and update the bus_num
679 * lookup table:
681 GHashTableIter iter;
683 g_hash_table_iter_init(&iter, s->vtd_as_by_busptr);
684 while (g_hash_table_iter_next(&iter, NULL, (void **)&vtd_bus)) {
685 if (pci_bus_num(vtd_bus->bus) == bus_num) {
686 s->vtd_as_by_bus_num[bus_num] = vtd_bus;
687 return vtd_bus;
691 return vtd_bus;
694 /* Given the @iova, get relevant @slptep. @slpte_level will be the last level
695 * of the translation, can be used for deciding the size of large page.
697 static int vtd_iova_to_slpte(VTDContextEntry *ce, uint64_t iova, bool is_write,
698 uint64_t *slptep, uint32_t *slpte_level,
699 bool *reads, bool *writes, uint8_t aw_bits)
701 dma_addr_t addr = vtd_ce_get_slpt_base(ce);
702 uint32_t level = vtd_ce_get_level(ce);
703 uint32_t offset;
704 uint64_t slpte;
705 uint64_t access_right_check;
707 if (!vtd_iova_range_check(iova, ce, aw_bits)) {
708 trace_vtd_err_dmar_iova_overflow(iova);
709 return -VTD_FR_ADDR_BEYOND_MGAW;
712 /* FIXME: what is the Atomics request here? */
713 access_right_check = is_write ? VTD_SL_W : VTD_SL_R;
715 while (true) {
716 offset = vtd_iova_level_offset(iova, level);
717 slpte = vtd_get_slpte(addr, offset);
719 if (slpte == (uint64_t)-1) {
720 trace_vtd_err_dmar_slpte_read_error(iova, level);
721 if (level == vtd_ce_get_level(ce)) {
722 /* Invalid programming of context-entry */
723 return -VTD_FR_CONTEXT_ENTRY_INV;
724 } else {
725 return -VTD_FR_PAGING_ENTRY_INV;
728 *reads = (*reads) && (slpte & VTD_SL_R);
729 *writes = (*writes) && (slpte & VTD_SL_W);
730 if (!(slpte & access_right_check)) {
731 trace_vtd_err_dmar_slpte_perm_error(iova, level, slpte, is_write);
732 return is_write ? -VTD_FR_WRITE : -VTD_FR_READ;
734 if (vtd_slpte_nonzero_rsvd(slpte, level)) {
735 trace_vtd_err_dmar_slpte_resv_error(iova, level, slpte);
736 return -VTD_FR_PAGING_ENTRY_RSVD;
739 if (vtd_is_last_slpte(slpte, level)) {
740 *slptep = slpte;
741 *slpte_level = level;
742 return 0;
744 addr = vtd_get_slpte_addr(slpte, aw_bits);
745 level--;
749 typedef int (*vtd_page_walk_hook)(IOMMUTLBEntry *entry, void *private);
751 static int vtd_page_walk_one(IOMMUTLBEntry *entry, int level,
752 vtd_page_walk_hook hook_fn, void *private)
754 assert(hook_fn);
755 trace_vtd_page_walk_one(level, entry->iova, entry->translated_addr,
756 entry->addr_mask, entry->perm);
757 return hook_fn(entry, private);
761 * vtd_page_walk_level - walk over specific level for IOVA range
763 * @addr: base GPA addr to start the walk
764 * @start: IOVA range start address
765 * @end: IOVA range end address (start <= addr < end)
766 * @hook_fn: hook func to be called when detected page
767 * @private: private data to be passed into hook func
768 * @read: whether parent level has read permission
769 * @write: whether parent level has write permission
770 * @notify_unmap: whether we should notify invalid entries
771 * @aw: maximum address width
773 static int vtd_page_walk_level(dma_addr_t addr, uint64_t start,
774 uint64_t end, vtd_page_walk_hook hook_fn,
775 void *private, uint32_t level, bool read,
776 bool write, bool notify_unmap, uint8_t aw)
778 bool read_cur, write_cur, entry_valid;
779 uint32_t offset;
780 uint64_t slpte;
781 uint64_t subpage_size, subpage_mask;
782 IOMMUTLBEntry entry;
783 uint64_t iova = start;
784 uint64_t iova_next;
785 int ret = 0;
787 trace_vtd_page_walk_level(addr, level, start, end);
789 subpage_size = 1ULL << vtd_slpt_level_shift(level);
790 subpage_mask = vtd_slpt_level_page_mask(level);
792 while (iova < end) {
793 iova_next = (iova & subpage_mask) + subpage_size;
795 offset = vtd_iova_level_offset(iova, level);
796 slpte = vtd_get_slpte(addr, offset);
798 if (slpte == (uint64_t)-1) {
799 trace_vtd_page_walk_skip_read(iova, iova_next);
800 goto next;
803 if (vtd_slpte_nonzero_rsvd(slpte, level)) {
804 trace_vtd_page_walk_skip_reserve(iova, iova_next);
805 goto next;
808 /* Permissions are stacked with parents' */
809 read_cur = read && (slpte & VTD_SL_R);
810 write_cur = write && (slpte & VTD_SL_W);
813 * As long as we have either read/write permission, this is a
814 * valid entry. The rule works for both page entries and page
815 * table entries.
817 entry_valid = read_cur | write_cur;
819 entry.target_as = &address_space_memory;
820 entry.iova = iova & subpage_mask;
821 entry.perm = IOMMU_ACCESS_FLAG(read_cur, write_cur);
822 entry.addr_mask = ~subpage_mask;
824 if (vtd_is_last_slpte(slpte, level)) {
825 /* NOTE: this is only meaningful if entry_valid == true */
826 entry.translated_addr = vtd_get_slpte_addr(slpte, aw);
827 if (!entry_valid && !notify_unmap) {
828 trace_vtd_page_walk_skip_perm(iova, iova_next);
829 goto next;
831 ret = vtd_page_walk_one(&entry, level, hook_fn, private);
832 if (ret < 0) {
833 return ret;
835 } else {
836 if (!entry_valid) {
837 if (notify_unmap) {
839 * The whole entry is invalid; unmap it all.
840 * Translated address is meaningless, zero it.
842 entry.translated_addr = 0x0;
843 ret = vtd_page_walk_one(&entry, level, hook_fn, private);
844 if (ret < 0) {
845 return ret;
847 } else {
848 trace_vtd_page_walk_skip_perm(iova, iova_next);
850 goto next;
852 ret = vtd_page_walk_level(vtd_get_slpte_addr(slpte, aw), iova,
853 MIN(iova_next, end), hook_fn, private,
854 level - 1, read_cur, write_cur,
855 notify_unmap, aw);
856 if (ret < 0) {
857 return ret;
861 next:
862 iova = iova_next;
865 return 0;
869 * vtd_page_walk - walk specific IOVA range, and call the hook
871 * @ce: context entry to walk upon
872 * @start: IOVA address to start the walk
873 * @end: IOVA range end address (start <= addr < end)
874 * @hook_fn: the hook that to be called for each detected area
875 * @private: private data for the hook function
876 * @aw: maximum address width
878 static int vtd_page_walk(VTDContextEntry *ce, uint64_t start, uint64_t end,
879 vtd_page_walk_hook hook_fn, void *private,
880 bool notify_unmap, uint8_t aw)
882 dma_addr_t addr = vtd_ce_get_slpt_base(ce);
883 uint32_t level = vtd_ce_get_level(ce);
885 if (!vtd_iova_range_check(start, ce, aw)) {
886 return -VTD_FR_ADDR_BEYOND_MGAW;
889 if (!vtd_iova_range_check(end, ce, aw)) {
890 /* Fix end so that it reaches the maximum */
891 end = vtd_iova_limit(ce, aw);
894 return vtd_page_walk_level(addr, start, end, hook_fn, private,
895 level, true, true, notify_unmap, aw);
898 /* Map a device to its corresponding domain (context-entry) */
899 static int vtd_dev_to_context_entry(IntelIOMMUState *s, uint8_t bus_num,
900 uint8_t devfn, VTDContextEntry *ce)
902 VTDRootEntry re;
903 int ret_fr;
904 X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
906 ret_fr = vtd_get_root_entry(s, bus_num, &re);
907 if (ret_fr) {
908 return ret_fr;
911 if (!vtd_root_entry_present(&re)) {
912 /* Not error - it's okay we don't have root entry. */
913 trace_vtd_re_not_present(bus_num);
914 return -VTD_FR_ROOT_ENTRY_P;
917 if (re.rsvd || (re.val & VTD_ROOT_ENTRY_RSVD(s->aw_bits))) {
918 trace_vtd_re_invalid(re.rsvd, re.val);
919 return -VTD_FR_ROOT_ENTRY_RSVD;
922 ret_fr = vtd_get_context_entry_from_root(&re, devfn, ce);
923 if (ret_fr) {
924 return ret_fr;
927 if (!vtd_ce_present(ce)) {
928 /* Not error - it's okay we don't have context entry. */
929 trace_vtd_ce_not_present(bus_num, devfn);
930 return -VTD_FR_CONTEXT_ENTRY_P;
933 if ((ce->hi & VTD_CONTEXT_ENTRY_RSVD_HI) ||
934 (ce->lo & VTD_CONTEXT_ENTRY_RSVD_LO(s->aw_bits))) {
935 trace_vtd_ce_invalid(ce->hi, ce->lo);
936 return -VTD_FR_CONTEXT_ENTRY_RSVD;
939 /* Check if the programming of context-entry is valid */
940 if (!vtd_is_level_supported(s, vtd_ce_get_level(ce))) {
941 trace_vtd_ce_invalid(ce->hi, ce->lo);
942 return -VTD_FR_CONTEXT_ENTRY_INV;
945 /* Do translation type check */
946 if (!vtd_ce_type_check(x86_iommu, ce)) {
947 trace_vtd_ce_invalid(ce->hi, ce->lo);
948 return -VTD_FR_CONTEXT_ENTRY_INV;
951 return 0;
955 * Fetch translation type for specific device. Returns <0 if error
956 * happens, otherwise return the shifted type to check against
957 * VTD_CONTEXT_TT_*.
959 static int vtd_dev_get_trans_type(VTDAddressSpace *as)
961 IntelIOMMUState *s;
962 VTDContextEntry ce;
963 int ret;
965 s = as->iommu_state;
967 ret = vtd_dev_to_context_entry(s, pci_bus_num(as->bus),
968 as->devfn, &ce);
969 if (ret) {
970 return ret;
973 return vtd_ce_get_type(&ce);
976 static bool vtd_dev_pt_enabled(VTDAddressSpace *as)
978 int ret;
980 assert(as);
982 ret = vtd_dev_get_trans_type(as);
983 if (ret < 0) {
985 * Possibly failed to parse the context entry for some reason
986 * (e.g., during init, or any guest configuration errors on
987 * context entries). We should assume PT not enabled for
988 * safety.
990 return false;
993 return ret == VTD_CONTEXT_TT_PASS_THROUGH;
996 /* Return whether the device is using IOMMU translation. */
997 static bool vtd_switch_address_space(VTDAddressSpace *as)
999 bool use_iommu;
1000 /* Whether we need to take the BQL on our own */
1001 bool take_bql = !qemu_mutex_iothread_locked();
1003 assert(as);
1005 use_iommu = as->iommu_state->dmar_enabled & !vtd_dev_pt_enabled(as);
1007 trace_vtd_switch_address_space(pci_bus_num(as->bus),
1008 VTD_PCI_SLOT(as->devfn),
1009 VTD_PCI_FUNC(as->devfn),
1010 use_iommu);
1013 * It's possible that we reach here without BQL, e.g., when called
1014 * from vtd_pt_enable_fast_path(). However the memory APIs need
1015 * it. We'd better make sure we have had it already, or, take it.
1017 if (take_bql) {
1018 qemu_mutex_lock_iothread();
1021 /* Turn off first then on the other */
1022 if (use_iommu) {
1023 memory_region_set_enabled(&as->sys_alias, false);
1024 memory_region_set_enabled(MEMORY_REGION(&as->iommu), true);
1025 } else {
1026 memory_region_set_enabled(MEMORY_REGION(&as->iommu), false);
1027 memory_region_set_enabled(&as->sys_alias, true);
1030 if (take_bql) {
1031 qemu_mutex_unlock_iothread();
1034 return use_iommu;
1037 static void vtd_switch_address_space_all(IntelIOMMUState *s)
1039 GHashTableIter iter;
1040 VTDBus *vtd_bus;
1041 int i;
1043 g_hash_table_iter_init(&iter, s->vtd_as_by_busptr);
1044 while (g_hash_table_iter_next(&iter, NULL, (void **)&vtd_bus)) {
1045 for (i = 0; i < PCI_DEVFN_MAX; i++) {
1046 if (!vtd_bus->dev_as[i]) {
1047 continue;
1049 vtd_switch_address_space(vtd_bus->dev_as[i]);
1054 static inline uint16_t vtd_make_source_id(uint8_t bus_num, uint8_t devfn)
1056 return ((bus_num & 0xffUL) << 8) | (devfn & 0xffUL);
1059 static const bool vtd_qualified_faults[] = {
1060 [VTD_FR_RESERVED] = false,
1061 [VTD_FR_ROOT_ENTRY_P] = false,
1062 [VTD_FR_CONTEXT_ENTRY_P] = true,
1063 [VTD_FR_CONTEXT_ENTRY_INV] = true,
1064 [VTD_FR_ADDR_BEYOND_MGAW] = true,
1065 [VTD_FR_WRITE] = true,
1066 [VTD_FR_READ] = true,
1067 [VTD_FR_PAGING_ENTRY_INV] = true,
1068 [VTD_FR_ROOT_TABLE_INV] = false,
1069 [VTD_FR_CONTEXT_TABLE_INV] = false,
1070 [VTD_FR_ROOT_ENTRY_RSVD] = false,
1071 [VTD_FR_PAGING_ENTRY_RSVD] = true,
1072 [VTD_FR_CONTEXT_ENTRY_TT] = true,
1073 [VTD_FR_RESERVED_ERR] = false,
1074 [VTD_FR_MAX] = false,
1077 /* To see if a fault condition is "qualified", which is reported to software
1078 * only if the FPD field in the context-entry used to process the faulting
1079 * request is 0.
1081 static inline bool vtd_is_qualified_fault(VTDFaultReason fault)
1083 return vtd_qualified_faults[fault];
1086 static inline bool vtd_is_interrupt_addr(hwaddr addr)
1088 return VTD_INTERRUPT_ADDR_FIRST <= addr && addr <= VTD_INTERRUPT_ADDR_LAST;
1091 static void vtd_pt_enable_fast_path(IntelIOMMUState *s, uint16_t source_id)
1093 VTDBus *vtd_bus;
1094 VTDAddressSpace *vtd_as;
1095 bool success = false;
1097 vtd_bus = vtd_find_as_from_bus_num(s, VTD_SID_TO_BUS(source_id));
1098 if (!vtd_bus) {
1099 goto out;
1102 vtd_as = vtd_bus->dev_as[VTD_SID_TO_DEVFN(source_id)];
1103 if (!vtd_as) {
1104 goto out;
1107 if (vtd_switch_address_space(vtd_as) == false) {
1108 /* We switched off IOMMU region successfully. */
1109 success = true;
1112 out:
1113 trace_vtd_pt_enable_fast_path(source_id, success);
1116 /* Map dev to context-entry then do a paging-structures walk to do a iommu
1117 * translation.
1119 * Called from RCU critical section.
1121 * @bus_num: The bus number
1122 * @devfn: The devfn, which is the combined of device and function number
1123 * @is_write: The access is a write operation
1124 * @entry: IOMMUTLBEntry that contain the addr to be translated and result
1126 * Returns true if translation is successful, otherwise false.
1128 static bool vtd_do_iommu_translate(VTDAddressSpace *vtd_as, PCIBus *bus,
1129 uint8_t devfn, hwaddr addr, bool is_write,
1130 IOMMUTLBEntry *entry)
1132 IntelIOMMUState *s = vtd_as->iommu_state;
1133 VTDContextEntry ce;
1134 uint8_t bus_num = pci_bus_num(bus);
1135 VTDContextCacheEntry *cc_entry;
1136 uint64_t slpte, page_mask;
1137 uint32_t level;
1138 uint16_t source_id = vtd_make_source_id(bus_num, devfn);
1139 int ret_fr;
1140 bool is_fpd_set = false;
1141 bool reads = true;
1142 bool writes = true;
1143 uint8_t access_flags;
1144 VTDIOTLBEntry *iotlb_entry;
1147 * We have standalone memory region for interrupt addresses, we
1148 * should never receive translation requests in this region.
1150 assert(!vtd_is_interrupt_addr(addr));
1152 vtd_iommu_lock(s);
1154 cc_entry = &vtd_as->context_cache_entry;
1156 /* Try to fetch slpte form IOTLB */
1157 iotlb_entry = vtd_lookup_iotlb(s, source_id, addr);
1158 if (iotlb_entry) {
1159 trace_vtd_iotlb_page_hit(source_id, addr, iotlb_entry->slpte,
1160 iotlb_entry->domain_id);
1161 slpte = iotlb_entry->slpte;
1162 access_flags = iotlb_entry->access_flags;
1163 page_mask = iotlb_entry->mask;
1164 goto out;
1167 /* Try to fetch context-entry from cache first */
1168 if (cc_entry->context_cache_gen == s->context_cache_gen) {
1169 trace_vtd_iotlb_cc_hit(bus_num, devfn, cc_entry->context_entry.hi,
1170 cc_entry->context_entry.lo,
1171 cc_entry->context_cache_gen);
1172 ce = cc_entry->context_entry;
1173 is_fpd_set = ce.lo & VTD_CONTEXT_ENTRY_FPD;
1174 } else {
1175 ret_fr = vtd_dev_to_context_entry(s, bus_num, devfn, &ce);
1176 is_fpd_set = ce.lo & VTD_CONTEXT_ENTRY_FPD;
1177 if (ret_fr) {
1178 ret_fr = -ret_fr;
1179 if (is_fpd_set && vtd_is_qualified_fault(ret_fr)) {
1180 trace_vtd_fault_disabled();
1181 } else {
1182 vtd_report_dmar_fault(s, source_id, addr, ret_fr, is_write);
1184 goto error;
1186 /* Update context-cache */
1187 trace_vtd_iotlb_cc_update(bus_num, devfn, ce.hi, ce.lo,
1188 cc_entry->context_cache_gen,
1189 s->context_cache_gen);
1190 cc_entry->context_entry = ce;
1191 cc_entry->context_cache_gen = s->context_cache_gen;
1195 * We don't need to translate for pass-through context entries.
1196 * Also, let's ignore IOTLB caching as well for PT devices.
1198 if (vtd_ce_get_type(&ce) == VTD_CONTEXT_TT_PASS_THROUGH) {
1199 entry->iova = addr & VTD_PAGE_MASK_4K;
1200 entry->translated_addr = entry->iova;
1201 entry->addr_mask = ~VTD_PAGE_MASK_4K;
1202 entry->perm = IOMMU_RW;
1203 trace_vtd_translate_pt(source_id, entry->iova);
1206 * When this happens, it means firstly caching-mode is not
1207 * enabled, and this is the first passthrough translation for
1208 * the device. Let's enable the fast path for passthrough.
1210 * When passthrough is disabled again for the device, we can
1211 * capture it via the context entry invalidation, then the
1212 * IOMMU region can be swapped back.
1214 vtd_pt_enable_fast_path(s, source_id);
1215 vtd_iommu_unlock(s);
1216 return true;
1219 ret_fr = vtd_iova_to_slpte(&ce, addr, is_write, &slpte, &level,
1220 &reads, &writes, s->aw_bits);
1221 if (ret_fr) {
1222 ret_fr = -ret_fr;
1223 if (is_fpd_set && vtd_is_qualified_fault(ret_fr)) {
1224 trace_vtd_fault_disabled();
1225 } else {
1226 vtd_report_dmar_fault(s, source_id, addr, ret_fr, is_write);
1228 goto error;
1231 page_mask = vtd_slpt_level_page_mask(level);
1232 access_flags = IOMMU_ACCESS_FLAG(reads, writes);
1233 vtd_update_iotlb(s, source_id, VTD_CONTEXT_ENTRY_DID(ce.hi), addr, slpte,
1234 access_flags, level);
1235 out:
1236 vtd_iommu_unlock(s);
1237 entry->iova = addr & page_mask;
1238 entry->translated_addr = vtd_get_slpte_addr(slpte, s->aw_bits) & page_mask;
1239 entry->addr_mask = ~page_mask;
1240 entry->perm = access_flags;
1241 return true;
1243 error:
1244 vtd_iommu_unlock(s);
1245 entry->iova = 0;
1246 entry->translated_addr = 0;
1247 entry->addr_mask = 0;
1248 entry->perm = IOMMU_NONE;
1249 return false;
1252 static void vtd_root_table_setup(IntelIOMMUState *s)
1254 s->root = vtd_get_quad_raw(s, DMAR_RTADDR_REG);
1255 s->root_extended = s->root & VTD_RTADDR_RTT;
1256 s->root &= VTD_RTADDR_ADDR_MASK(s->aw_bits);
1258 trace_vtd_reg_dmar_root(s->root, s->root_extended);
1261 static void vtd_iec_notify_all(IntelIOMMUState *s, bool global,
1262 uint32_t index, uint32_t mask)
1264 x86_iommu_iec_notify_all(X86_IOMMU_DEVICE(s), global, index, mask);
1267 static void vtd_interrupt_remap_table_setup(IntelIOMMUState *s)
1269 uint64_t value = 0;
1270 value = vtd_get_quad_raw(s, DMAR_IRTA_REG);
1271 s->intr_size = 1UL << ((value & VTD_IRTA_SIZE_MASK) + 1);
1272 s->intr_root = value & VTD_IRTA_ADDR_MASK(s->aw_bits);
1273 s->intr_eime = value & VTD_IRTA_EIME;
1275 /* Notify global invalidation */
1276 vtd_iec_notify_all(s, true, 0, 0);
1278 trace_vtd_reg_ir_root(s->intr_root, s->intr_size);
1281 static void vtd_iommu_replay_all(IntelIOMMUState *s)
1283 VTDAddressSpace *vtd_as;
1285 QLIST_FOREACH(vtd_as, &s->vtd_as_with_notifiers, next) {
1286 memory_region_iommu_replay_all(&vtd_as->iommu);
1290 static void vtd_context_global_invalidate(IntelIOMMUState *s)
1292 trace_vtd_inv_desc_cc_global();
1293 /* Protects context cache */
1294 vtd_iommu_lock(s);
1295 s->context_cache_gen++;
1296 if (s->context_cache_gen == VTD_CONTEXT_CACHE_GEN_MAX) {
1297 vtd_reset_context_cache_locked(s);
1299 vtd_iommu_unlock(s);
1300 vtd_switch_address_space_all(s);
1302 * From VT-d spec 6.5.2.1, a global context entry invalidation
1303 * should be followed by a IOTLB global invalidation, so we should
1304 * be safe even without this. Hoewever, let's replay the region as
1305 * well to be safer, and go back here when we need finer tunes for
1306 * VT-d emulation codes.
1308 vtd_iommu_replay_all(s);
1311 /* Do a context-cache device-selective invalidation.
1312 * @func_mask: FM field after shifting
1314 static void vtd_context_device_invalidate(IntelIOMMUState *s,
1315 uint16_t source_id,
1316 uint16_t func_mask)
1318 uint16_t mask;
1319 VTDBus *vtd_bus;
1320 VTDAddressSpace *vtd_as;
1321 uint8_t bus_n, devfn;
1322 uint16_t devfn_it;
1324 trace_vtd_inv_desc_cc_devices(source_id, func_mask);
1326 switch (func_mask & 3) {
1327 case 0:
1328 mask = 0; /* No bits in the SID field masked */
1329 break;
1330 case 1:
1331 mask = 4; /* Mask bit 2 in the SID field */
1332 break;
1333 case 2:
1334 mask = 6; /* Mask bit 2:1 in the SID field */
1335 break;
1336 case 3:
1337 mask = 7; /* Mask bit 2:0 in the SID field */
1338 break;
1340 mask = ~mask;
1342 bus_n = VTD_SID_TO_BUS(source_id);
1343 vtd_bus = vtd_find_as_from_bus_num(s, bus_n);
1344 if (vtd_bus) {
1345 devfn = VTD_SID_TO_DEVFN(source_id);
1346 for (devfn_it = 0; devfn_it < PCI_DEVFN_MAX; ++devfn_it) {
1347 vtd_as = vtd_bus->dev_as[devfn_it];
1348 if (vtd_as && ((devfn_it & mask) == (devfn & mask))) {
1349 trace_vtd_inv_desc_cc_device(bus_n, VTD_PCI_SLOT(devfn_it),
1350 VTD_PCI_FUNC(devfn_it));
1351 vtd_iommu_lock(s);
1352 vtd_as->context_cache_entry.context_cache_gen = 0;
1353 vtd_iommu_unlock(s);
1355 * Do switch address space when needed, in case if the
1356 * device passthrough bit is switched.
1358 vtd_switch_address_space(vtd_as);
1360 * So a device is moving out of (or moving into) a
1361 * domain, a replay() suites here to notify all the
1362 * IOMMU_NOTIFIER_MAP registers about this change.
1363 * This won't bring bad even if we have no such
1364 * notifier registered - the IOMMU notification
1365 * framework will skip MAP notifications if that
1366 * happened.
1368 memory_region_iommu_replay_all(&vtd_as->iommu);
1374 /* Context-cache invalidation
1375 * Returns the Context Actual Invalidation Granularity.
1376 * @val: the content of the CCMD_REG
1378 static uint64_t vtd_context_cache_invalidate(IntelIOMMUState *s, uint64_t val)
1380 uint64_t caig;
1381 uint64_t type = val & VTD_CCMD_CIRG_MASK;
1383 switch (type) {
1384 case VTD_CCMD_DOMAIN_INVL:
1385 /* Fall through */
1386 case VTD_CCMD_GLOBAL_INVL:
1387 caig = VTD_CCMD_GLOBAL_INVL_A;
1388 vtd_context_global_invalidate(s);
1389 break;
1391 case VTD_CCMD_DEVICE_INVL:
1392 caig = VTD_CCMD_DEVICE_INVL_A;
1393 vtd_context_device_invalidate(s, VTD_CCMD_SID(val), VTD_CCMD_FM(val));
1394 break;
1396 default:
1397 trace_vtd_err("Context cache invalidate type error.");
1398 caig = 0;
1400 return caig;
1403 static void vtd_iotlb_global_invalidate(IntelIOMMUState *s)
1405 trace_vtd_inv_desc_iotlb_global();
1406 vtd_reset_iotlb(s);
1407 vtd_iommu_replay_all(s);
1410 static void vtd_iotlb_domain_invalidate(IntelIOMMUState *s, uint16_t domain_id)
1412 VTDContextEntry ce;
1413 VTDAddressSpace *vtd_as;
1415 trace_vtd_inv_desc_iotlb_domain(domain_id);
1417 vtd_iommu_lock(s);
1418 g_hash_table_foreach_remove(s->iotlb, vtd_hash_remove_by_domain,
1419 &domain_id);
1420 vtd_iommu_unlock(s);
1422 QLIST_FOREACH(vtd_as, &s->vtd_as_with_notifiers, next) {
1423 if (!vtd_dev_to_context_entry(s, pci_bus_num(vtd_as->bus),
1424 vtd_as->devfn, &ce) &&
1425 domain_id == VTD_CONTEXT_ENTRY_DID(ce.hi)) {
1426 memory_region_iommu_replay_all(&vtd_as->iommu);
1431 static int vtd_page_invalidate_notify_hook(IOMMUTLBEntry *entry,
1432 void *private)
1434 memory_region_notify_iommu((IOMMUMemoryRegion *)private, *entry);
1435 return 0;
1438 static void vtd_iotlb_page_invalidate_notify(IntelIOMMUState *s,
1439 uint16_t domain_id, hwaddr addr,
1440 uint8_t am)
1442 VTDAddressSpace *vtd_as;
1443 VTDContextEntry ce;
1444 int ret;
1445 hwaddr size = (1 << am) * VTD_PAGE_SIZE;
1447 QLIST_FOREACH(vtd_as, &(s->vtd_as_with_notifiers), next) {
1448 ret = vtd_dev_to_context_entry(s, pci_bus_num(vtd_as->bus),
1449 vtd_as->devfn, &ce);
1450 if (!ret && domain_id == VTD_CONTEXT_ENTRY_DID(ce.hi)) {
1451 if (vtd_as_has_map_notifier(vtd_as)) {
1453 * As long as we have MAP notifications registered in
1454 * any of our IOMMU notifiers, we need to sync the
1455 * shadow page table.
1457 vtd_page_walk(&ce, addr, addr + size,
1458 vtd_page_invalidate_notify_hook,
1459 (void *)&vtd_as->iommu, true, s->aw_bits);
1460 } else {
1462 * For UNMAP-only notifiers, we don't need to walk the
1463 * page tables. We just deliver the PSI down to
1464 * invalidate caches.
1466 IOMMUTLBEntry entry = {
1467 .target_as = &address_space_memory,
1468 .iova = addr,
1469 .translated_addr = 0,
1470 .addr_mask = size - 1,
1471 .perm = IOMMU_NONE,
1473 memory_region_notify_iommu(&vtd_as->iommu, entry);
1479 static void vtd_iotlb_page_invalidate(IntelIOMMUState *s, uint16_t domain_id,
1480 hwaddr addr, uint8_t am)
1482 VTDIOTLBPageInvInfo info;
1484 trace_vtd_inv_desc_iotlb_pages(domain_id, addr, am);
1486 assert(am <= VTD_MAMV);
1487 info.domain_id = domain_id;
1488 info.addr = addr;
1489 info.mask = ~((1 << am) - 1);
1490 vtd_iommu_lock(s);
1491 g_hash_table_foreach_remove(s->iotlb, vtd_hash_remove_by_page, &info);
1492 vtd_iommu_unlock(s);
1493 vtd_iotlb_page_invalidate_notify(s, domain_id, addr, am);
1496 /* Flush IOTLB
1497 * Returns the IOTLB Actual Invalidation Granularity.
1498 * @val: the content of the IOTLB_REG
1500 static uint64_t vtd_iotlb_flush(IntelIOMMUState *s, uint64_t val)
1502 uint64_t iaig;
1503 uint64_t type = val & VTD_TLB_FLUSH_GRANU_MASK;
1504 uint16_t domain_id;
1505 hwaddr addr;
1506 uint8_t am;
1508 switch (type) {
1509 case VTD_TLB_GLOBAL_FLUSH:
1510 iaig = VTD_TLB_GLOBAL_FLUSH_A;
1511 vtd_iotlb_global_invalidate(s);
1512 break;
1514 case VTD_TLB_DSI_FLUSH:
1515 domain_id = VTD_TLB_DID(val);
1516 iaig = VTD_TLB_DSI_FLUSH_A;
1517 vtd_iotlb_domain_invalidate(s, domain_id);
1518 break;
1520 case VTD_TLB_PSI_FLUSH:
1521 domain_id = VTD_TLB_DID(val);
1522 addr = vtd_get_quad_raw(s, DMAR_IVA_REG);
1523 am = VTD_IVA_AM(addr);
1524 addr = VTD_IVA_ADDR(addr);
1525 if (am > VTD_MAMV) {
1526 trace_vtd_err("IOTLB PSI flush: address mask overflow.");
1527 iaig = 0;
1528 break;
1530 iaig = VTD_TLB_PSI_FLUSH_A;
1531 vtd_iotlb_page_invalidate(s, domain_id, addr, am);
1532 break;
1534 default:
1535 trace_vtd_err("IOTLB flush: invalid granularity.");
1536 iaig = 0;
1538 return iaig;
1541 static void vtd_fetch_inv_desc(IntelIOMMUState *s);
1543 static inline bool vtd_queued_inv_disable_check(IntelIOMMUState *s)
1545 return s->qi_enabled && (s->iq_tail == s->iq_head) &&
1546 (s->iq_last_desc_type == VTD_INV_DESC_WAIT);
1549 static void vtd_handle_gcmd_qie(IntelIOMMUState *s, bool en)
1551 uint64_t iqa_val = vtd_get_quad_raw(s, DMAR_IQA_REG);
1553 trace_vtd_inv_qi_enable(en);
1555 if (en) {
1556 s->iq = iqa_val & VTD_IQA_IQA_MASK(s->aw_bits);
1557 /* 2^(x+8) entries */
1558 s->iq_size = 1UL << ((iqa_val & VTD_IQA_QS) + 8);
1559 s->qi_enabled = true;
1560 trace_vtd_inv_qi_setup(s->iq, s->iq_size);
1561 /* Ok - report back to driver */
1562 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_QIES);
1564 if (s->iq_tail != 0) {
1566 * This is a spec violation but Windows guests are known to set up
1567 * Queued Invalidation this way so we allow the write and process
1568 * Invalidation Descriptors right away.
1570 trace_vtd_warn_invalid_qi_tail(s->iq_tail);
1571 if (!(vtd_get_long_raw(s, DMAR_FSTS_REG) & VTD_FSTS_IQE)) {
1572 vtd_fetch_inv_desc(s);
1575 } else {
1576 if (vtd_queued_inv_disable_check(s)) {
1577 /* disable Queued Invalidation */
1578 vtd_set_quad_raw(s, DMAR_IQH_REG, 0);
1579 s->iq_head = 0;
1580 s->qi_enabled = false;
1581 /* Ok - report back to driver */
1582 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_QIES, 0);
1583 } else {
1584 trace_vtd_err_qi_disable(s->iq_head, s->iq_tail, s->iq_last_desc_type);
1589 /* Set Root Table Pointer */
1590 static void vtd_handle_gcmd_srtp(IntelIOMMUState *s)
1592 vtd_root_table_setup(s);
1593 /* Ok - report back to driver */
1594 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_RTPS);
1597 /* Set Interrupt Remap Table Pointer */
1598 static void vtd_handle_gcmd_sirtp(IntelIOMMUState *s)
1600 vtd_interrupt_remap_table_setup(s);
1601 /* Ok - report back to driver */
1602 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_IRTPS);
1605 /* Handle Translation Enable/Disable */
1606 static void vtd_handle_gcmd_te(IntelIOMMUState *s, bool en)
1608 if (s->dmar_enabled == en) {
1609 return;
1612 trace_vtd_dmar_enable(en);
1614 if (en) {
1615 s->dmar_enabled = true;
1616 /* Ok - report back to driver */
1617 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_TES);
1618 } else {
1619 s->dmar_enabled = false;
1621 /* Clear the index of Fault Recording Register */
1622 s->next_frcd_reg = 0;
1623 /* Ok - report back to driver */
1624 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_TES, 0);
1627 vtd_switch_address_space_all(s);
1630 /* Handle Interrupt Remap Enable/Disable */
1631 static void vtd_handle_gcmd_ire(IntelIOMMUState *s, bool en)
1633 trace_vtd_ir_enable(en);
1635 if (en) {
1636 s->intr_enabled = true;
1637 /* Ok - report back to driver */
1638 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_IRES);
1639 } else {
1640 s->intr_enabled = false;
1641 /* Ok - report back to driver */
1642 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_IRES, 0);
1646 /* Handle write to Global Command Register */
1647 static void vtd_handle_gcmd_write(IntelIOMMUState *s)
1649 uint32_t status = vtd_get_long_raw(s, DMAR_GSTS_REG);
1650 uint32_t val = vtd_get_long_raw(s, DMAR_GCMD_REG);
1651 uint32_t changed = status ^ val;
1653 trace_vtd_reg_write_gcmd(status, val);
1654 if (changed & VTD_GCMD_TE) {
1655 /* Translation enable/disable */
1656 vtd_handle_gcmd_te(s, val & VTD_GCMD_TE);
1658 if (val & VTD_GCMD_SRTP) {
1659 /* Set/update the root-table pointer */
1660 vtd_handle_gcmd_srtp(s);
1662 if (changed & VTD_GCMD_QIE) {
1663 /* Queued Invalidation Enable */
1664 vtd_handle_gcmd_qie(s, val & VTD_GCMD_QIE);
1666 if (val & VTD_GCMD_SIRTP) {
1667 /* Set/update the interrupt remapping root-table pointer */
1668 vtd_handle_gcmd_sirtp(s);
1670 if (changed & VTD_GCMD_IRE) {
1671 /* Interrupt remap enable/disable */
1672 vtd_handle_gcmd_ire(s, val & VTD_GCMD_IRE);
1676 /* Handle write to Context Command Register */
1677 static void vtd_handle_ccmd_write(IntelIOMMUState *s)
1679 uint64_t ret;
1680 uint64_t val = vtd_get_quad_raw(s, DMAR_CCMD_REG);
1682 /* Context-cache invalidation request */
1683 if (val & VTD_CCMD_ICC) {
1684 if (s->qi_enabled) {
1685 trace_vtd_err("Queued Invalidation enabled, "
1686 "should not use register-based invalidation");
1687 return;
1689 ret = vtd_context_cache_invalidate(s, val);
1690 /* Invalidation completed. Change something to show */
1691 vtd_set_clear_mask_quad(s, DMAR_CCMD_REG, VTD_CCMD_ICC, 0ULL);
1692 ret = vtd_set_clear_mask_quad(s, DMAR_CCMD_REG, VTD_CCMD_CAIG_MASK,
1693 ret);
1697 /* Handle write to IOTLB Invalidation Register */
1698 static void vtd_handle_iotlb_write(IntelIOMMUState *s)
1700 uint64_t ret;
1701 uint64_t val = vtd_get_quad_raw(s, DMAR_IOTLB_REG);
1703 /* IOTLB invalidation request */
1704 if (val & VTD_TLB_IVT) {
1705 if (s->qi_enabled) {
1706 trace_vtd_err("Queued Invalidation enabled, "
1707 "should not use register-based invalidation.");
1708 return;
1710 ret = vtd_iotlb_flush(s, val);
1711 /* Invalidation completed. Change something to show */
1712 vtd_set_clear_mask_quad(s, DMAR_IOTLB_REG, VTD_TLB_IVT, 0ULL);
1713 ret = vtd_set_clear_mask_quad(s, DMAR_IOTLB_REG,
1714 VTD_TLB_FLUSH_GRANU_MASK_A, ret);
1718 /* Fetch an Invalidation Descriptor from the Invalidation Queue */
1719 static bool vtd_get_inv_desc(dma_addr_t base_addr, uint32_t offset,
1720 VTDInvDesc *inv_desc)
1722 dma_addr_t addr = base_addr + offset * sizeof(*inv_desc);
1723 if (dma_memory_read(&address_space_memory, addr, inv_desc,
1724 sizeof(*inv_desc))) {
1725 trace_vtd_err("Read INV DESC failed.");
1726 inv_desc->lo = 0;
1727 inv_desc->hi = 0;
1728 return false;
1730 inv_desc->lo = le64_to_cpu(inv_desc->lo);
1731 inv_desc->hi = le64_to_cpu(inv_desc->hi);
1732 return true;
1735 static bool vtd_process_wait_desc(IntelIOMMUState *s, VTDInvDesc *inv_desc)
1737 if ((inv_desc->hi & VTD_INV_DESC_WAIT_RSVD_HI) ||
1738 (inv_desc->lo & VTD_INV_DESC_WAIT_RSVD_LO)) {
1739 trace_vtd_inv_desc_wait_invalid(inv_desc->hi, inv_desc->lo);
1740 return false;
1742 if (inv_desc->lo & VTD_INV_DESC_WAIT_SW) {
1743 /* Status Write */
1744 uint32_t status_data = (uint32_t)(inv_desc->lo >>
1745 VTD_INV_DESC_WAIT_DATA_SHIFT);
1747 assert(!(inv_desc->lo & VTD_INV_DESC_WAIT_IF));
1749 /* FIXME: need to be masked with HAW? */
1750 dma_addr_t status_addr = inv_desc->hi;
1751 trace_vtd_inv_desc_wait_sw(status_addr, status_data);
1752 status_data = cpu_to_le32(status_data);
1753 if (dma_memory_write(&address_space_memory, status_addr, &status_data,
1754 sizeof(status_data))) {
1755 trace_vtd_inv_desc_wait_write_fail(inv_desc->hi, inv_desc->lo);
1756 return false;
1758 } else if (inv_desc->lo & VTD_INV_DESC_WAIT_IF) {
1759 /* Interrupt flag */
1760 vtd_generate_completion_event(s);
1761 } else {
1762 trace_vtd_inv_desc_wait_invalid(inv_desc->hi, inv_desc->lo);
1763 return false;
1765 return true;
1768 static bool vtd_process_context_cache_desc(IntelIOMMUState *s,
1769 VTDInvDesc *inv_desc)
1771 uint16_t sid, fmask;
1773 if ((inv_desc->lo & VTD_INV_DESC_CC_RSVD) || inv_desc->hi) {
1774 trace_vtd_inv_desc_cc_invalid(inv_desc->hi, inv_desc->lo);
1775 return false;
1777 switch (inv_desc->lo & VTD_INV_DESC_CC_G) {
1778 case VTD_INV_DESC_CC_DOMAIN:
1779 trace_vtd_inv_desc_cc_domain(
1780 (uint16_t)VTD_INV_DESC_CC_DID(inv_desc->lo));
1781 /* Fall through */
1782 case VTD_INV_DESC_CC_GLOBAL:
1783 vtd_context_global_invalidate(s);
1784 break;
1786 case VTD_INV_DESC_CC_DEVICE:
1787 sid = VTD_INV_DESC_CC_SID(inv_desc->lo);
1788 fmask = VTD_INV_DESC_CC_FM(inv_desc->lo);
1789 vtd_context_device_invalidate(s, sid, fmask);
1790 break;
1792 default:
1793 trace_vtd_inv_desc_cc_invalid(inv_desc->hi, inv_desc->lo);
1794 return false;
1796 return true;
1799 static bool vtd_process_iotlb_desc(IntelIOMMUState *s, VTDInvDesc *inv_desc)
1801 uint16_t domain_id;
1802 uint8_t am;
1803 hwaddr addr;
1805 if ((inv_desc->lo & VTD_INV_DESC_IOTLB_RSVD_LO) ||
1806 (inv_desc->hi & VTD_INV_DESC_IOTLB_RSVD_HI)) {
1807 trace_vtd_inv_desc_iotlb_invalid(inv_desc->hi, inv_desc->lo);
1808 return false;
1811 switch (inv_desc->lo & VTD_INV_DESC_IOTLB_G) {
1812 case VTD_INV_DESC_IOTLB_GLOBAL:
1813 vtd_iotlb_global_invalidate(s);
1814 break;
1816 case VTD_INV_DESC_IOTLB_DOMAIN:
1817 domain_id = VTD_INV_DESC_IOTLB_DID(inv_desc->lo);
1818 vtd_iotlb_domain_invalidate(s, domain_id);
1819 break;
1821 case VTD_INV_DESC_IOTLB_PAGE:
1822 domain_id = VTD_INV_DESC_IOTLB_DID(inv_desc->lo);
1823 addr = VTD_INV_DESC_IOTLB_ADDR(inv_desc->hi);
1824 am = VTD_INV_DESC_IOTLB_AM(inv_desc->hi);
1825 if (am > VTD_MAMV) {
1826 trace_vtd_inv_desc_iotlb_invalid(inv_desc->hi, inv_desc->lo);
1827 return false;
1829 vtd_iotlb_page_invalidate(s, domain_id, addr, am);
1830 break;
1832 default:
1833 trace_vtd_inv_desc_iotlb_invalid(inv_desc->hi, inv_desc->lo);
1834 return false;
1836 return true;
1839 static bool vtd_process_inv_iec_desc(IntelIOMMUState *s,
1840 VTDInvDesc *inv_desc)
1842 trace_vtd_inv_desc_iec(inv_desc->iec.granularity,
1843 inv_desc->iec.index,
1844 inv_desc->iec.index_mask);
1846 vtd_iec_notify_all(s, !inv_desc->iec.granularity,
1847 inv_desc->iec.index,
1848 inv_desc->iec.index_mask);
1849 return true;
1852 static bool vtd_process_device_iotlb_desc(IntelIOMMUState *s,
1853 VTDInvDesc *inv_desc)
1855 VTDAddressSpace *vtd_dev_as;
1856 IOMMUTLBEntry entry;
1857 struct VTDBus *vtd_bus;
1858 hwaddr addr;
1859 uint64_t sz;
1860 uint16_t sid;
1861 uint8_t devfn;
1862 bool size;
1863 uint8_t bus_num;
1865 addr = VTD_INV_DESC_DEVICE_IOTLB_ADDR(inv_desc->hi);
1866 sid = VTD_INV_DESC_DEVICE_IOTLB_SID(inv_desc->lo);
1867 devfn = sid & 0xff;
1868 bus_num = sid >> 8;
1869 size = VTD_INV_DESC_DEVICE_IOTLB_SIZE(inv_desc->hi);
1871 if ((inv_desc->lo & VTD_INV_DESC_DEVICE_IOTLB_RSVD_LO) ||
1872 (inv_desc->hi & VTD_INV_DESC_DEVICE_IOTLB_RSVD_HI)) {
1873 trace_vtd_inv_desc_iotlb_invalid(inv_desc->hi, inv_desc->lo);
1874 return false;
1877 vtd_bus = vtd_find_as_from_bus_num(s, bus_num);
1878 if (!vtd_bus) {
1879 goto done;
1882 vtd_dev_as = vtd_bus->dev_as[devfn];
1883 if (!vtd_dev_as) {
1884 goto done;
1887 /* According to ATS spec table 2.4:
1888 * S = 0, bits 15:12 = xxxx range size: 4K
1889 * S = 1, bits 15:12 = xxx0 range size: 8K
1890 * S = 1, bits 15:12 = xx01 range size: 16K
1891 * S = 1, bits 15:12 = x011 range size: 32K
1892 * S = 1, bits 15:12 = 0111 range size: 64K
1893 * ...
1895 if (size) {
1896 sz = (VTD_PAGE_SIZE * 2) << cto64(addr >> VTD_PAGE_SHIFT);
1897 addr &= ~(sz - 1);
1898 } else {
1899 sz = VTD_PAGE_SIZE;
1902 entry.target_as = &vtd_dev_as->as;
1903 entry.addr_mask = sz - 1;
1904 entry.iova = addr;
1905 entry.perm = IOMMU_NONE;
1906 entry.translated_addr = 0;
1907 memory_region_notify_iommu(&vtd_dev_as->iommu, entry);
1909 done:
1910 return true;
1913 static bool vtd_process_inv_desc(IntelIOMMUState *s)
1915 VTDInvDesc inv_desc;
1916 uint8_t desc_type;
1918 trace_vtd_inv_qi_head(s->iq_head);
1919 if (!vtd_get_inv_desc(s->iq, s->iq_head, &inv_desc)) {
1920 s->iq_last_desc_type = VTD_INV_DESC_NONE;
1921 return false;
1923 desc_type = inv_desc.lo & VTD_INV_DESC_TYPE;
1924 /* FIXME: should update at first or at last? */
1925 s->iq_last_desc_type = desc_type;
1927 switch (desc_type) {
1928 case VTD_INV_DESC_CC:
1929 trace_vtd_inv_desc("context-cache", inv_desc.hi, inv_desc.lo);
1930 if (!vtd_process_context_cache_desc(s, &inv_desc)) {
1931 return false;
1933 break;
1935 case VTD_INV_DESC_IOTLB:
1936 trace_vtd_inv_desc("iotlb", inv_desc.hi, inv_desc.lo);
1937 if (!vtd_process_iotlb_desc(s, &inv_desc)) {
1938 return false;
1940 break;
1942 case VTD_INV_DESC_WAIT:
1943 trace_vtd_inv_desc("wait", inv_desc.hi, inv_desc.lo);
1944 if (!vtd_process_wait_desc(s, &inv_desc)) {
1945 return false;
1947 break;
1949 case VTD_INV_DESC_IEC:
1950 trace_vtd_inv_desc("iec", inv_desc.hi, inv_desc.lo);
1951 if (!vtd_process_inv_iec_desc(s, &inv_desc)) {
1952 return false;
1954 break;
1956 case VTD_INV_DESC_DEVICE:
1957 trace_vtd_inv_desc("device", inv_desc.hi, inv_desc.lo);
1958 if (!vtd_process_device_iotlb_desc(s, &inv_desc)) {
1959 return false;
1961 break;
1963 default:
1964 trace_vtd_inv_desc_invalid(inv_desc.hi, inv_desc.lo);
1965 return false;
1967 s->iq_head++;
1968 if (s->iq_head == s->iq_size) {
1969 s->iq_head = 0;
1971 return true;
1974 /* Try to fetch and process more Invalidation Descriptors */
1975 static void vtd_fetch_inv_desc(IntelIOMMUState *s)
1977 trace_vtd_inv_qi_fetch();
1979 if (s->iq_tail >= s->iq_size) {
1980 /* Detects an invalid Tail pointer */
1981 trace_vtd_err_qi_tail(s->iq_tail, s->iq_size);
1982 vtd_handle_inv_queue_error(s);
1983 return;
1985 while (s->iq_head != s->iq_tail) {
1986 if (!vtd_process_inv_desc(s)) {
1987 /* Invalidation Queue Errors */
1988 vtd_handle_inv_queue_error(s);
1989 break;
1991 /* Must update the IQH_REG in time */
1992 vtd_set_quad_raw(s, DMAR_IQH_REG,
1993 (((uint64_t)(s->iq_head)) << VTD_IQH_QH_SHIFT) &
1994 VTD_IQH_QH_MASK);
1998 /* Handle write to Invalidation Queue Tail Register */
1999 static void vtd_handle_iqt_write(IntelIOMMUState *s)
2001 uint64_t val = vtd_get_quad_raw(s, DMAR_IQT_REG);
2003 s->iq_tail = VTD_IQT_QT(val);
2004 trace_vtd_inv_qi_tail(s->iq_tail);
2006 if (s->qi_enabled && !(vtd_get_long_raw(s, DMAR_FSTS_REG) & VTD_FSTS_IQE)) {
2007 /* Process Invalidation Queue here */
2008 vtd_fetch_inv_desc(s);
2012 static void vtd_handle_fsts_write(IntelIOMMUState *s)
2014 uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
2015 uint32_t fectl_reg = vtd_get_long_raw(s, DMAR_FECTL_REG);
2016 uint32_t status_fields = VTD_FSTS_PFO | VTD_FSTS_PPF | VTD_FSTS_IQE;
2018 if ((fectl_reg & VTD_FECTL_IP) && !(fsts_reg & status_fields)) {
2019 vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
2020 trace_vtd_fsts_clear_ip();
2022 /* FIXME: when IQE is Clear, should we try to fetch some Invalidation
2023 * Descriptors if there are any when Queued Invalidation is enabled?
2027 static void vtd_handle_fectl_write(IntelIOMMUState *s)
2029 uint32_t fectl_reg;
2030 /* FIXME: when software clears the IM field, check the IP field. But do we
2031 * need to compare the old value and the new value to conclude that
2032 * software clears the IM field? Or just check if the IM field is zero?
2034 fectl_reg = vtd_get_long_raw(s, DMAR_FECTL_REG);
2036 trace_vtd_reg_write_fectl(fectl_reg);
2038 if ((fectl_reg & VTD_FECTL_IP) && !(fectl_reg & VTD_FECTL_IM)) {
2039 vtd_generate_interrupt(s, DMAR_FEADDR_REG, DMAR_FEDATA_REG);
2040 vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
2044 static void vtd_handle_ics_write(IntelIOMMUState *s)
2046 uint32_t ics_reg = vtd_get_long_raw(s, DMAR_ICS_REG);
2047 uint32_t iectl_reg = vtd_get_long_raw(s, DMAR_IECTL_REG);
2049 if ((iectl_reg & VTD_IECTL_IP) && !(ics_reg & VTD_ICS_IWC)) {
2050 trace_vtd_reg_ics_clear_ip();
2051 vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
2055 static void vtd_handle_iectl_write(IntelIOMMUState *s)
2057 uint32_t iectl_reg;
2058 /* FIXME: when software clears the IM field, check the IP field. But do we
2059 * need to compare the old value and the new value to conclude that
2060 * software clears the IM field? Or just check if the IM field is zero?
2062 iectl_reg = vtd_get_long_raw(s, DMAR_IECTL_REG);
2064 trace_vtd_reg_write_iectl(iectl_reg);
2066 if ((iectl_reg & VTD_IECTL_IP) && !(iectl_reg & VTD_IECTL_IM)) {
2067 vtd_generate_interrupt(s, DMAR_IEADDR_REG, DMAR_IEDATA_REG);
2068 vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
2072 static uint64_t vtd_mem_read(void *opaque, hwaddr addr, unsigned size)
2074 IntelIOMMUState *s = opaque;
2075 uint64_t val;
2077 trace_vtd_reg_read(addr, size);
2079 if (addr + size > DMAR_REG_SIZE) {
2080 trace_vtd_err("Read MMIO over range.");
2081 return (uint64_t)-1;
2084 switch (addr) {
2085 /* Root Table Address Register, 64-bit */
2086 case DMAR_RTADDR_REG:
2087 if (size == 4) {
2088 val = s->root & ((1ULL << 32) - 1);
2089 } else {
2090 val = s->root;
2092 break;
2094 case DMAR_RTADDR_REG_HI:
2095 assert(size == 4);
2096 val = s->root >> 32;
2097 break;
2099 /* Invalidation Queue Address Register, 64-bit */
2100 case DMAR_IQA_REG:
2101 val = s->iq | (vtd_get_quad(s, DMAR_IQA_REG) & VTD_IQA_QS);
2102 if (size == 4) {
2103 val = val & ((1ULL << 32) - 1);
2105 break;
2107 case DMAR_IQA_REG_HI:
2108 assert(size == 4);
2109 val = s->iq >> 32;
2110 break;
2112 default:
2113 if (size == 4) {
2114 val = vtd_get_long(s, addr);
2115 } else {
2116 val = vtd_get_quad(s, addr);
2120 return val;
2123 static void vtd_mem_write(void *opaque, hwaddr addr,
2124 uint64_t val, unsigned size)
2126 IntelIOMMUState *s = opaque;
2128 trace_vtd_reg_write(addr, size, val);
2130 if (addr + size > DMAR_REG_SIZE) {
2131 trace_vtd_err("Write MMIO over range.");
2132 return;
2135 switch (addr) {
2136 /* Global Command Register, 32-bit */
2137 case DMAR_GCMD_REG:
2138 vtd_set_long(s, addr, val);
2139 vtd_handle_gcmd_write(s);
2140 break;
2142 /* Context Command Register, 64-bit */
2143 case DMAR_CCMD_REG:
2144 if (size == 4) {
2145 vtd_set_long(s, addr, val);
2146 } else {
2147 vtd_set_quad(s, addr, val);
2148 vtd_handle_ccmd_write(s);
2150 break;
2152 case DMAR_CCMD_REG_HI:
2153 assert(size == 4);
2154 vtd_set_long(s, addr, val);
2155 vtd_handle_ccmd_write(s);
2156 break;
2158 /* IOTLB Invalidation Register, 64-bit */
2159 case DMAR_IOTLB_REG:
2160 if (size == 4) {
2161 vtd_set_long(s, addr, val);
2162 } else {
2163 vtd_set_quad(s, addr, val);
2164 vtd_handle_iotlb_write(s);
2166 break;
2168 case DMAR_IOTLB_REG_HI:
2169 assert(size == 4);
2170 vtd_set_long(s, addr, val);
2171 vtd_handle_iotlb_write(s);
2172 break;
2174 /* Invalidate Address Register, 64-bit */
2175 case DMAR_IVA_REG:
2176 if (size == 4) {
2177 vtd_set_long(s, addr, val);
2178 } else {
2179 vtd_set_quad(s, addr, val);
2181 break;
2183 case DMAR_IVA_REG_HI:
2184 assert(size == 4);
2185 vtd_set_long(s, addr, val);
2186 break;
2188 /* Fault Status Register, 32-bit */
2189 case DMAR_FSTS_REG:
2190 assert(size == 4);
2191 vtd_set_long(s, addr, val);
2192 vtd_handle_fsts_write(s);
2193 break;
2195 /* Fault Event Control Register, 32-bit */
2196 case DMAR_FECTL_REG:
2197 assert(size == 4);
2198 vtd_set_long(s, addr, val);
2199 vtd_handle_fectl_write(s);
2200 break;
2202 /* Fault Event Data Register, 32-bit */
2203 case DMAR_FEDATA_REG:
2204 assert(size == 4);
2205 vtd_set_long(s, addr, val);
2206 break;
2208 /* Fault Event Address Register, 32-bit */
2209 case DMAR_FEADDR_REG:
2210 if (size == 4) {
2211 vtd_set_long(s, addr, val);
2212 } else {
2214 * While the register is 32-bit only, some guests (Xen...) write to
2215 * it with 64-bit.
2217 vtd_set_quad(s, addr, val);
2219 break;
2221 /* Fault Event Upper Address Register, 32-bit */
2222 case DMAR_FEUADDR_REG:
2223 assert(size == 4);
2224 vtd_set_long(s, addr, val);
2225 break;
2227 /* Protected Memory Enable Register, 32-bit */
2228 case DMAR_PMEN_REG:
2229 assert(size == 4);
2230 vtd_set_long(s, addr, val);
2231 break;
2233 /* Root Table Address Register, 64-bit */
2234 case DMAR_RTADDR_REG:
2235 if (size == 4) {
2236 vtd_set_long(s, addr, val);
2237 } else {
2238 vtd_set_quad(s, addr, val);
2240 break;
2242 case DMAR_RTADDR_REG_HI:
2243 assert(size == 4);
2244 vtd_set_long(s, addr, val);
2245 break;
2247 /* Invalidation Queue Tail Register, 64-bit */
2248 case DMAR_IQT_REG:
2249 if (size == 4) {
2250 vtd_set_long(s, addr, val);
2251 } else {
2252 vtd_set_quad(s, addr, val);
2254 vtd_handle_iqt_write(s);
2255 break;
2257 case DMAR_IQT_REG_HI:
2258 assert(size == 4);
2259 vtd_set_long(s, addr, val);
2260 /* 19:63 of IQT_REG is RsvdZ, do nothing here */
2261 break;
2263 /* Invalidation Queue Address Register, 64-bit */
2264 case DMAR_IQA_REG:
2265 if (size == 4) {
2266 vtd_set_long(s, addr, val);
2267 } else {
2268 vtd_set_quad(s, addr, val);
2270 break;
2272 case DMAR_IQA_REG_HI:
2273 assert(size == 4);
2274 vtd_set_long(s, addr, val);
2275 break;
2277 /* Invalidation Completion Status Register, 32-bit */
2278 case DMAR_ICS_REG:
2279 assert(size == 4);
2280 vtd_set_long(s, addr, val);
2281 vtd_handle_ics_write(s);
2282 break;
2284 /* Invalidation Event Control Register, 32-bit */
2285 case DMAR_IECTL_REG:
2286 assert(size == 4);
2287 vtd_set_long(s, addr, val);
2288 vtd_handle_iectl_write(s);
2289 break;
2291 /* Invalidation Event Data Register, 32-bit */
2292 case DMAR_IEDATA_REG:
2293 assert(size == 4);
2294 vtd_set_long(s, addr, val);
2295 break;
2297 /* Invalidation Event Address Register, 32-bit */
2298 case DMAR_IEADDR_REG:
2299 assert(size == 4);
2300 vtd_set_long(s, addr, val);
2301 break;
2303 /* Invalidation Event Upper Address Register, 32-bit */
2304 case DMAR_IEUADDR_REG:
2305 assert(size == 4);
2306 vtd_set_long(s, addr, val);
2307 break;
2309 /* Fault Recording Registers, 128-bit */
2310 case DMAR_FRCD_REG_0_0:
2311 if (size == 4) {
2312 vtd_set_long(s, addr, val);
2313 } else {
2314 vtd_set_quad(s, addr, val);
2316 break;
2318 case DMAR_FRCD_REG_0_1:
2319 assert(size == 4);
2320 vtd_set_long(s, addr, val);
2321 break;
2323 case DMAR_FRCD_REG_0_2:
2324 if (size == 4) {
2325 vtd_set_long(s, addr, val);
2326 } else {
2327 vtd_set_quad(s, addr, val);
2328 /* May clear bit 127 (Fault), update PPF */
2329 vtd_update_fsts_ppf(s);
2331 break;
2333 case DMAR_FRCD_REG_0_3:
2334 assert(size == 4);
2335 vtd_set_long(s, addr, val);
2336 /* May clear bit 127 (Fault), update PPF */
2337 vtd_update_fsts_ppf(s);
2338 break;
2340 case DMAR_IRTA_REG:
2341 if (size == 4) {
2342 vtd_set_long(s, addr, val);
2343 } else {
2344 vtd_set_quad(s, addr, val);
2346 break;
2348 case DMAR_IRTA_REG_HI:
2349 assert(size == 4);
2350 vtd_set_long(s, addr, val);
2351 break;
2353 default:
2354 if (size == 4) {
2355 vtd_set_long(s, addr, val);
2356 } else {
2357 vtd_set_quad(s, addr, val);
2362 static IOMMUTLBEntry vtd_iommu_translate(IOMMUMemoryRegion *iommu, hwaddr addr,
2363 IOMMUAccessFlags flag)
2365 VTDAddressSpace *vtd_as = container_of(iommu, VTDAddressSpace, iommu);
2366 IntelIOMMUState *s = vtd_as->iommu_state;
2367 IOMMUTLBEntry iotlb = {
2368 /* We'll fill in the rest later. */
2369 .target_as = &address_space_memory,
2371 bool success;
2373 if (likely(s->dmar_enabled)) {
2374 success = vtd_do_iommu_translate(vtd_as, vtd_as->bus, vtd_as->devfn,
2375 addr, flag & IOMMU_WO, &iotlb);
2376 } else {
2377 /* DMAR disabled, passthrough, use 4k-page*/
2378 iotlb.iova = addr & VTD_PAGE_MASK_4K;
2379 iotlb.translated_addr = addr & VTD_PAGE_MASK_4K;
2380 iotlb.addr_mask = ~VTD_PAGE_MASK_4K;
2381 iotlb.perm = IOMMU_RW;
2382 success = true;
2385 if (likely(success)) {
2386 trace_vtd_dmar_translate(pci_bus_num(vtd_as->bus),
2387 VTD_PCI_SLOT(vtd_as->devfn),
2388 VTD_PCI_FUNC(vtd_as->devfn),
2389 iotlb.iova, iotlb.translated_addr,
2390 iotlb.addr_mask);
2391 } else {
2392 trace_vtd_err_dmar_translate(pci_bus_num(vtd_as->bus),
2393 VTD_PCI_SLOT(vtd_as->devfn),
2394 VTD_PCI_FUNC(vtd_as->devfn),
2395 iotlb.iova);
2398 return iotlb;
2401 static void vtd_iommu_notify_flag_changed(IOMMUMemoryRegion *iommu,
2402 IOMMUNotifierFlag old,
2403 IOMMUNotifierFlag new)
2405 VTDAddressSpace *vtd_as = container_of(iommu, VTDAddressSpace, iommu);
2406 IntelIOMMUState *s = vtd_as->iommu_state;
2408 if (!s->caching_mode && new & IOMMU_NOTIFIER_MAP) {
2409 error_report("We need to set caching-mode=1 for intel-iommu to enable "
2410 "device assignment with IOMMU protection.");
2411 exit(1);
2414 /* Update per-address-space notifier flags */
2415 vtd_as->notifier_flags = new;
2417 if (old == IOMMU_NOTIFIER_NONE) {
2418 QLIST_INSERT_HEAD(&s->vtd_as_with_notifiers, vtd_as, next);
2419 } else if (new == IOMMU_NOTIFIER_NONE) {
2420 QLIST_REMOVE(vtd_as, next);
2424 static int vtd_post_load(void *opaque, int version_id)
2426 IntelIOMMUState *iommu = opaque;
2429 * Memory regions are dynamically turned on/off depending on
2430 * context entry configurations from the guest. After migration,
2431 * we need to make sure the memory regions are still correct.
2433 vtd_switch_address_space_all(iommu);
2435 return 0;
2438 static const VMStateDescription vtd_vmstate = {
2439 .name = "iommu-intel",
2440 .version_id = 1,
2441 .minimum_version_id = 1,
2442 .priority = MIG_PRI_IOMMU,
2443 .post_load = vtd_post_load,
2444 .fields = (VMStateField[]) {
2445 VMSTATE_UINT64(root, IntelIOMMUState),
2446 VMSTATE_UINT64(intr_root, IntelIOMMUState),
2447 VMSTATE_UINT64(iq, IntelIOMMUState),
2448 VMSTATE_UINT32(intr_size, IntelIOMMUState),
2449 VMSTATE_UINT16(iq_head, IntelIOMMUState),
2450 VMSTATE_UINT16(iq_tail, IntelIOMMUState),
2451 VMSTATE_UINT16(iq_size, IntelIOMMUState),
2452 VMSTATE_UINT16(next_frcd_reg, IntelIOMMUState),
2453 VMSTATE_UINT8_ARRAY(csr, IntelIOMMUState, DMAR_REG_SIZE),
2454 VMSTATE_UINT8(iq_last_desc_type, IntelIOMMUState),
2455 VMSTATE_BOOL(root_extended, IntelIOMMUState),
2456 VMSTATE_BOOL(dmar_enabled, IntelIOMMUState),
2457 VMSTATE_BOOL(qi_enabled, IntelIOMMUState),
2458 VMSTATE_BOOL(intr_enabled, IntelIOMMUState),
2459 VMSTATE_BOOL(intr_eime, IntelIOMMUState),
2460 VMSTATE_END_OF_LIST()
2464 static const MemoryRegionOps vtd_mem_ops = {
2465 .read = vtd_mem_read,
2466 .write = vtd_mem_write,
2467 .endianness = DEVICE_LITTLE_ENDIAN,
2468 .impl = {
2469 .min_access_size = 4,
2470 .max_access_size = 8,
2472 .valid = {
2473 .min_access_size = 4,
2474 .max_access_size = 8,
2478 static Property vtd_properties[] = {
2479 DEFINE_PROP_UINT32("version", IntelIOMMUState, version, 0),
2480 DEFINE_PROP_ON_OFF_AUTO("eim", IntelIOMMUState, intr_eim,
2481 ON_OFF_AUTO_AUTO),
2482 DEFINE_PROP_BOOL("x-buggy-eim", IntelIOMMUState, buggy_eim, false),
2483 DEFINE_PROP_UINT8("x-aw-bits", IntelIOMMUState, aw_bits,
2484 VTD_HOST_ADDRESS_WIDTH),
2485 DEFINE_PROP_BOOL("caching-mode", IntelIOMMUState, caching_mode, FALSE),
2486 DEFINE_PROP_END_OF_LIST(),
2489 /* Read IRTE entry with specific index */
2490 static int vtd_irte_get(IntelIOMMUState *iommu, uint16_t index,
2491 VTD_IR_TableEntry *entry, uint16_t sid)
2493 static const uint16_t vtd_svt_mask[VTD_SQ_MAX] = \
2494 {0xffff, 0xfffb, 0xfff9, 0xfff8};
2495 dma_addr_t addr = 0x00;
2496 uint16_t mask, source_id;
2497 uint8_t bus, bus_max, bus_min;
2499 addr = iommu->intr_root + index * sizeof(*entry);
2500 if (dma_memory_read(&address_space_memory, addr, entry,
2501 sizeof(*entry))) {
2502 trace_vtd_err("Memory read failed for IRTE.");
2503 return -VTD_FR_IR_ROOT_INVAL;
2506 trace_vtd_ir_irte_get(index, le64_to_cpu(entry->data[1]),
2507 le64_to_cpu(entry->data[0]));
2509 if (!entry->irte.present) {
2510 trace_vtd_err_irte(index, le64_to_cpu(entry->data[1]),
2511 le64_to_cpu(entry->data[0]));
2512 return -VTD_FR_IR_ENTRY_P;
2515 if (entry->irte.__reserved_0 || entry->irte.__reserved_1 ||
2516 entry->irte.__reserved_2) {
2517 trace_vtd_err_irte(index, le64_to_cpu(entry->data[1]),
2518 le64_to_cpu(entry->data[0]));
2519 return -VTD_FR_IR_IRTE_RSVD;
2522 if (sid != X86_IOMMU_SID_INVALID) {
2523 /* Validate IRTE SID */
2524 source_id = le32_to_cpu(entry->irte.source_id);
2525 switch (entry->irte.sid_vtype) {
2526 case VTD_SVT_NONE:
2527 break;
2529 case VTD_SVT_ALL:
2530 mask = vtd_svt_mask[entry->irte.sid_q];
2531 if ((source_id & mask) != (sid & mask)) {
2532 trace_vtd_err_irte_sid(index, sid, source_id);
2533 return -VTD_FR_IR_SID_ERR;
2535 break;
2537 case VTD_SVT_BUS:
2538 bus_max = source_id >> 8;
2539 bus_min = source_id & 0xff;
2540 bus = sid >> 8;
2541 if (bus > bus_max || bus < bus_min) {
2542 trace_vtd_err_irte_sid_bus(index, bus, bus_min, bus_max);
2543 return -VTD_FR_IR_SID_ERR;
2545 break;
2547 default:
2548 trace_vtd_err_irte_svt(index, entry->irte.sid_vtype);
2549 /* Take this as verification failure. */
2550 return -VTD_FR_IR_SID_ERR;
2551 break;
2555 return 0;
2558 /* Fetch IRQ information of specific IR index */
2559 static int vtd_remap_irq_get(IntelIOMMUState *iommu, uint16_t index,
2560 VTDIrq *irq, uint16_t sid)
2562 VTD_IR_TableEntry irte = {};
2563 int ret = 0;
2565 ret = vtd_irte_get(iommu, index, &irte, sid);
2566 if (ret) {
2567 return ret;
2570 irq->trigger_mode = irte.irte.trigger_mode;
2571 irq->vector = irte.irte.vector;
2572 irq->delivery_mode = irte.irte.delivery_mode;
2573 irq->dest = le32_to_cpu(irte.irte.dest_id);
2574 if (!iommu->intr_eime) {
2575 #define VTD_IR_APIC_DEST_MASK (0xff00ULL)
2576 #define VTD_IR_APIC_DEST_SHIFT (8)
2577 irq->dest = (irq->dest & VTD_IR_APIC_DEST_MASK) >>
2578 VTD_IR_APIC_DEST_SHIFT;
2580 irq->dest_mode = irte.irte.dest_mode;
2581 irq->redir_hint = irte.irte.redir_hint;
2583 trace_vtd_ir_remap(index, irq->trigger_mode, irq->vector,
2584 irq->delivery_mode, irq->dest, irq->dest_mode);
2586 return 0;
2589 /* Generate one MSI message from VTDIrq info */
2590 static void vtd_generate_msi_message(VTDIrq *irq, MSIMessage *msg_out)
2592 VTD_MSIMessage msg = {};
2594 /* Generate address bits */
2595 msg.dest_mode = irq->dest_mode;
2596 msg.redir_hint = irq->redir_hint;
2597 msg.dest = irq->dest;
2598 msg.__addr_hi = irq->dest & 0xffffff00;
2599 msg.__addr_head = cpu_to_le32(0xfee);
2600 /* Keep this from original MSI address bits */
2601 msg.__not_used = irq->msi_addr_last_bits;
2603 /* Generate data bits */
2604 msg.vector = irq->vector;
2605 msg.delivery_mode = irq->delivery_mode;
2606 msg.level = 1;
2607 msg.trigger_mode = irq->trigger_mode;
2609 msg_out->address = msg.msi_addr;
2610 msg_out->data = msg.msi_data;
2613 /* Interrupt remapping for MSI/MSI-X entry */
2614 static int vtd_interrupt_remap_msi(IntelIOMMUState *iommu,
2615 MSIMessage *origin,
2616 MSIMessage *translated,
2617 uint16_t sid)
2619 int ret = 0;
2620 VTD_IR_MSIAddress addr;
2621 uint16_t index;
2622 VTDIrq irq = {};
2624 assert(origin && translated);
2626 trace_vtd_ir_remap_msi_req(origin->address, origin->data);
2628 if (!iommu || !iommu->intr_enabled) {
2629 memcpy(translated, origin, sizeof(*origin));
2630 goto out;
2633 if (origin->address & VTD_MSI_ADDR_HI_MASK) {
2634 trace_vtd_err("MSI address high 32 bits non-zero when "
2635 "Interrupt Remapping enabled.");
2636 return -VTD_FR_IR_REQ_RSVD;
2639 addr.data = origin->address & VTD_MSI_ADDR_LO_MASK;
2640 if (addr.addr.__head != 0xfee) {
2641 trace_vtd_err("MSI addr low 32 bit invalid.");
2642 return -VTD_FR_IR_REQ_RSVD;
2645 /* This is compatible mode. */
2646 if (addr.addr.int_mode != VTD_IR_INT_FORMAT_REMAP) {
2647 memcpy(translated, origin, sizeof(*origin));
2648 goto out;
2651 index = addr.addr.index_h << 15 | le16_to_cpu(addr.addr.index_l);
2653 #define VTD_IR_MSI_DATA_SUBHANDLE (0x0000ffff)
2654 #define VTD_IR_MSI_DATA_RESERVED (0xffff0000)
2656 if (addr.addr.sub_valid) {
2657 /* See VT-d spec 5.1.2.2 and 5.1.3 on subhandle */
2658 index += origin->data & VTD_IR_MSI_DATA_SUBHANDLE;
2661 ret = vtd_remap_irq_get(iommu, index, &irq, sid);
2662 if (ret) {
2663 return ret;
2666 if (addr.addr.sub_valid) {
2667 trace_vtd_ir_remap_type("MSI");
2668 if (origin->data & VTD_IR_MSI_DATA_RESERVED) {
2669 trace_vtd_err_ir_msi_invalid(sid, origin->address, origin->data);
2670 return -VTD_FR_IR_REQ_RSVD;
2672 } else {
2673 uint8_t vector = origin->data & 0xff;
2674 uint8_t trigger_mode = (origin->data >> MSI_DATA_TRIGGER_SHIFT) & 0x1;
2676 trace_vtd_ir_remap_type("IOAPIC");
2677 /* IOAPIC entry vector should be aligned with IRTE vector
2678 * (see vt-d spec 5.1.5.1). */
2679 if (vector != irq.vector) {
2680 trace_vtd_warn_ir_vector(sid, index, vector, irq.vector);
2683 /* The Trigger Mode field must match the Trigger Mode in the IRTE.
2684 * (see vt-d spec 5.1.5.1). */
2685 if (trigger_mode != irq.trigger_mode) {
2686 trace_vtd_warn_ir_trigger(sid, index, trigger_mode,
2687 irq.trigger_mode);
2692 * We'd better keep the last two bits, assuming that guest OS
2693 * might modify it. Keep it does not hurt after all.
2695 irq.msi_addr_last_bits = addr.addr.__not_care;
2697 /* Translate VTDIrq to MSI message */
2698 vtd_generate_msi_message(&irq, translated);
2700 out:
2701 trace_vtd_ir_remap_msi(origin->address, origin->data,
2702 translated->address, translated->data);
2703 return 0;
2706 static int vtd_int_remap(X86IOMMUState *iommu, MSIMessage *src,
2707 MSIMessage *dst, uint16_t sid)
2709 return vtd_interrupt_remap_msi(INTEL_IOMMU_DEVICE(iommu),
2710 src, dst, sid);
2713 static MemTxResult vtd_mem_ir_read(void *opaque, hwaddr addr,
2714 uint64_t *data, unsigned size,
2715 MemTxAttrs attrs)
2717 return MEMTX_OK;
2720 static MemTxResult vtd_mem_ir_write(void *opaque, hwaddr addr,
2721 uint64_t value, unsigned size,
2722 MemTxAttrs attrs)
2724 int ret = 0;
2725 MSIMessage from = {}, to = {};
2726 uint16_t sid = X86_IOMMU_SID_INVALID;
2728 from.address = (uint64_t) addr + VTD_INTERRUPT_ADDR_FIRST;
2729 from.data = (uint32_t) value;
2731 if (!attrs.unspecified) {
2732 /* We have explicit Source ID */
2733 sid = attrs.requester_id;
2736 ret = vtd_interrupt_remap_msi(opaque, &from, &to, sid);
2737 if (ret) {
2738 /* TODO: report error */
2739 /* Drop this interrupt */
2740 return MEMTX_ERROR;
2743 apic_get_class()->send_msi(&to);
2745 return MEMTX_OK;
2748 static const MemoryRegionOps vtd_mem_ir_ops = {
2749 .read_with_attrs = vtd_mem_ir_read,
2750 .write_with_attrs = vtd_mem_ir_write,
2751 .endianness = DEVICE_LITTLE_ENDIAN,
2752 .impl = {
2753 .min_access_size = 4,
2754 .max_access_size = 4,
2756 .valid = {
2757 .min_access_size = 4,
2758 .max_access_size = 4,
2762 VTDAddressSpace *vtd_find_add_as(IntelIOMMUState *s, PCIBus *bus, int devfn)
2764 uintptr_t key = (uintptr_t)bus;
2765 VTDBus *vtd_bus = g_hash_table_lookup(s->vtd_as_by_busptr, &key);
2766 VTDAddressSpace *vtd_dev_as;
2767 char name[128];
2769 if (!vtd_bus) {
2770 uintptr_t *new_key = g_malloc(sizeof(*new_key));
2771 *new_key = (uintptr_t)bus;
2772 /* No corresponding free() */
2773 vtd_bus = g_malloc0(sizeof(VTDBus) + sizeof(VTDAddressSpace *) * \
2774 PCI_DEVFN_MAX);
2775 vtd_bus->bus = bus;
2776 g_hash_table_insert(s->vtd_as_by_busptr, new_key, vtd_bus);
2779 vtd_dev_as = vtd_bus->dev_as[devfn];
2781 if (!vtd_dev_as) {
2782 snprintf(name, sizeof(name), "intel_iommu_devfn_%d", devfn);
2783 vtd_bus->dev_as[devfn] = vtd_dev_as = g_malloc0(sizeof(VTDAddressSpace));
2785 vtd_dev_as->bus = bus;
2786 vtd_dev_as->devfn = (uint8_t)devfn;
2787 vtd_dev_as->iommu_state = s;
2788 vtd_dev_as->context_cache_entry.context_cache_gen = 0;
2791 * Memory region relationships looks like (Address range shows
2792 * only lower 32 bits to make it short in length...):
2794 * |-----------------+-------------------+----------|
2795 * | Name | Address range | Priority |
2796 * |-----------------+-------------------+----------+
2797 * | vtd_root | 00000000-ffffffff | 0 |
2798 * | intel_iommu | 00000000-ffffffff | 1 |
2799 * | vtd_sys_alias | 00000000-ffffffff | 1 |
2800 * | intel_iommu_ir | fee00000-feefffff | 64 |
2801 * |-----------------+-------------------+----------|
2803 * We enable/disable DMAR by switching enablement for
2804 * vtd_sys_alias and intel_iommu regions. IR region is always
2805 * enabled.
2807 memory_region_init_iommu(&vtd_dev_as->iommu, sizeof(vtd_dev_as->iommu),
2808 TYPE_INTEL_IOMMU_MEMORY_REGION, OBJECT(s),
2809 "intel_iommu_dmar",
2810 UINT64_MAX);
2811 memory_region_init_alias(&vtd_dev_as->sys_alias, OBJECT(s),
2812 "vtd_sys_alias", get_system_memory(),
2813 0, memory_region_size(get_system_memory()));
2814 memory_region_init_io(&vtd_dev_as->iommu_ir, OBJECT(s),
2815 &vtd_mem_ir_ops, s, "intel_iommu_ir",
2816 VTD_INTERRUPT_ADDR_SIZE);
2817 memory_region_init(&vtd_dev_as->root, OBJECT(s),
2818 "vtd_root", UINT64_MAX);
2819 memory_region_add_subregion_overlap(&vtd_dev_as->root,
2820 VTD_INTERRUPT_ADDR_FIRST,
2821 &vtd_dev_as->iommu_ir, 64);
2822 address_space_init(&vtd_dev_as->as, &vtd_dev_as->root, name);
2823 memory_region_add_subregion_overlap(&vtd_dev_as->root, 0,
2824 &vtd_dev_as->sys_alias, 1);
2825 memory_region_add_subregion_overlap(&vtd_dev_as->root, 0,
2826 MEMORY_REGION(&vtd_dev_as->iommu),
2828 vtd_switch_address_space(vtd_dev_as);
2830 return vtd_dev_as;
2833 /* Unmap the whole range in the notifier's scope. */
2834 static void vtd_address_space_unmap(VTDAddressSpace *as, IOMMUNotifier *n)
2836 IOMMUTLBEntry entry;
2837 hwaddr size;
2838 hwaddr start = n->start;
2839 hwaddr end = n->end;
2840 IntelIOMMUState *s = as->iommu_state;
2843 * Note: all the codes in this function has a assumption that IOVA
2844 * bits are no more than VTD_MGAW bits (which is restricted by
2845 * VT-d spec), otherwise we need to consider overflow of 64 bits.
2848 if (end > VTD_ADDRESS_SIZE(s->aw_bits)) {
2850 * Don't need to unmap regions that is bigger than the whole
2851 * VT-d supported address space size
2853 end = VTD_ADDRESS_SIZE(s->aw_bits);
2856 assert(start <= end);
2857 size = end - start;
2859 if (ctpop64(size) != 1) {
2861 * This size cannot format a correct mask. Let's enlarge it to
2862 * suite the minimum available mask.
2864 int n = 64 - clz64(size);
2865 if (n > s->aw_bits) {
2866 /* should not happen, but in case it happens, limit it */
2867 n = s->aw_bits;
2869 size = 1ULL << n;
2872 entry.target_as = &address_space_memory;
2873 /* Adjust iova for the size */
2874 entry.iova = n->start & ~(size - 1);
2875 /* This field is meaningless for unmap */
2876 entry.translated_addr = 0;
2877 entry.perm = IOMMU_NONE;
2878 entry.addr_mask = size - 1;
2880 trace_vtd_as_unmap_whole(pci_bus_num(as->bus),
2881 VTD_PCI_SLOT(as->devfn),
2882 VTD_PCI_FUNC(as->devfn),
2883 entry.iova, size);
2885 memory_region_notify_one(n, &entry);
2888 static void vtd_address_space_unmap_all(IntelIOMMUState *s)
2890 VTDAddressSpace *vtd_as;
2891 IOMMUNotifier *n;
2893 QLIST_FOREACH(vtd_as, &s->vtd_as_with_notifiers, next) {
2894 IOMMU_NOTIFIER_FOREACH(n, &vtd_as->iommu) {
2895 vtd_address_space_unmap(vtd_as, n);
2900 static int vtd_replay_hook(IOMMUTLBEntry *entry, void *private)
2902 memory_region_notify_one((IOMMUNotifier *)private, entry);
2903 return 0;
2906 static void vtd_iommu_replay(IOMMUMemoryRegion *iommu_mr, IOMMUNotifier *n)
2908 VTDAddressSpace *vtd_as = container_of(iommu_mr, VTDAddressSpace, iommu);
2909 IntelIOMMUState *s = vtd_as->iommu_state;
2910 uint8_t bus_n = pci_bus_num(vtd_as->bus);
2911 VTDContextEntry ce;
2914 * The replay can be triggered by either a invalidation or a newly
2915 * created entry. No matter what, we release existing mappings
2916 * (it means flushing caches for UNMAP-only registers).
2918 vtd_address_space_unmap(vtd_as, n);
2920 if (vtd_dev_to_context_entry(s, bus_n, vtd_as->devfn, &ce) == 0) {
2921 trace_vtd_replay_ce_valid(bus_n, PCI_SLOT(vtd_as->devfn),
2922 PCI_FUNC(vtd_as->devfn),
2923 VTD_CONTEXT_ENTRY_DID(ce.hi),
2924 ce.hi, ce.lo);
2925 if (vtd_as_has_map_notifier(vtd_as)) {
2926 /* This is required only for MAP typed notifiers */
2927 vtd_page_walk(&ce, 0, ~0ULL, vtd_replay_hook, (void *)n, false,
2928 s->aw_bits);
2930 } else {
2931 trace_vtd_replay_ce_invalid(bus_n, PCI_SLOT(vtd_as->devfn),
2932 PCI_FUNC(vtd_as->devfn));
2935 return;
2938 /* Do the initialization. It will also be called when reset, so pay
2939 * attention when adding new initialization stuff.
2941 static void vtd_init(IntelIOMMUState *s)
2943 X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
2945 memset(s->csr, 0, DMAR_REG_SIZE);
2946 memset(s->wmask, 0, DMAR_REG_SIZE);
2947 memset(s->w1cmask, 0, DMAR_REG_SIZE);
2948 memset(s->womask, 0, DMAR_REG_SIZE);
2950 s->root = 0;
2951 s->root_extended = false;
2952 s->dmar_enabled = false;
2953 s->iq_head = 0;
2954 s->iq_tail = 0;
2955 s->iq = 0;
2956 s->iq_size = 0;
2957 s->qi_enabled = false;
2958 s->iq_last_desc_type = VTD_INV_DESC_NONE;
2959 s->next_frcd_reg = 0;
2960 s->cap = VTD_CAP_FRO | VTD_CAP_NFR | VTD_CAP_ND |
2961 VTD_CAP_MAMV | VTD_CAP_PSI | VTD_CAP_SLLPS |
2962 VTD_CAP_SAGAW_39bit | VTD_CAP_MGAW(s->aw_bits);
2963 if (s->aw_bits == VTD_HOST_AW_48BIT) {
2964 s->cap |= VTD_CAP_SAGAW_48bit;
2966 s->ecap = VTD_ECAP_QI | VTD_ECAP_IRO;
2969 * Rsvd field masks for spte
2971 vtd_paging_entry_rsvd_field[0] = ~0ULL;
2972 vtd_paging_entry_rsvd_field[1] = VTD_SPTE_PAGE_L1_RSVD_MASK(s->aw_bits);
2973 vtd_paging_entry_rsvd_field[2] = VTD_SPTE_PAGE_L2_RSVD_MASK(s->aw_bits);
2974 vtd_paging_entry_rsvd_field[3] = VTD_SPTE_PAGE_L3_RSVD_MASK(s->aw_bits);
2975 vtd_paging_entry_rsvd_field[4] = VTD_SPTE_PAGE_L4_RSVD_MASK(s->aw_bits);
2976 vtd_paging_entry_rsvd_field[5] = VTD_SPTE_LPAGE_L1_RSVD_MASK(s->aw_bits);
2977 vtd_paging_entry_rsvd_field[6] = VTD_SPTE_LPAGE_L2_RSVD_MASK(s->aw_bits);
2978 vtd_paging_entry_rsvd_field[7] = VTD_SPTE_LPAGE_L3_RSVD_MASK(s->aw_bits);
2979 vtd_paging_entry_rsvd_field[8] = VTD_SPTE_LPAGE_L4_RSVD_MASK(s->aw_bits);
2981 if (x86_iommu->intr_supported) {
2982 s->ecap |= VTD_ECAP_IR | VTD_ECAP_MHMV;
2983 if (s->intr_eim == ON_OFF_AUTO_ON) {
2984 s->ecap |= VTD_ECAP_EIM;
2986 assert(s->intr_eim != ON_OFF_AUTO_AUTO);
2989 if (x86_iommu->dt_supported) {
2990 s->ecap |= VTD_ECAP_DT;
2993 if (x86_iommu->pt_supported) {
2994 s->ecap |= VTD_ECAP_PT;
2997 if (s->caching_mode) {
2998 s->cap |= VTD_CAP_CM;
3001 vtd_iommu_lock(s);
3002 vtd_reset_context_cache_locked(s);
3003 vtd_reset_iotlb_locked(s);
3004 vtd_iommu_unlock(s);
3006 /* Define registers with default values and bit semantics */
3007 vtd_define_long(s, DMAR_VER_REG, 0x10UL, 0, 0);
3008 vtd_define_quad(s, DMAR_CAP_REG, s->cap, 0, 0);
3009 vtd_define_quad(s, DMAR_ECAP_REG, s->ecap, 0, 0);
3010 vtd_define_long(s, DMAR_GCMD_REG, 0, 0xff800000UL, 0);
3011 vtd_define_long_wo(s, DMAR_GCMD_REG, 0xff800000UL);
3012 vtd_define_long(s, DMAR_GSTS_REG, 0, 0, 0);
3013 vtd_define_quad(s, DMAR_RTADDR_REG, 0, 0xfffffffffffff000ULL, 0);
3014 vtd_define_quad(s, DMAR_CCMD_REG, 0, 0xe0000003ffffffffULL, 0);
3015 vtd_define_quad_wo(s, DMAR_CCMD_REG, 0x3ffff0000ULL);
3017 /* Advanced Fault Logging not supported */
3018 vtd_define_long(s, DMAR_FSTS_REG, 0, 0, 0x11UL);
3019 vtd_define_long(s, DMAR_FECTL_REG, 0x80000000UL, 0x80000000UL, 0);
3020 vtd_define_long(s, DMAR_FEDATA_REG, 0, 0x0000ffffUL, 0);
3021 vtd_define_long(s, DMAR_FEADDR_REG, 0, 0xfffffffcUL, 0);
3023 /* Treated as RsvdZ when EIM in ECAP_REG is not supported
3024 * vtd_define_long(s, DMAR_FEUADDR_REG, 0, 0xffffffffUL, 0);
3026 vtd_define_long(s, DMAR_FEUADDR_REG, 0, 0, 0);
3028 /* Treated as RO for implementations that PLMR and PHMR fields reported
3029 * as Clear in the CAP_REG.
3030 * vtd_define_long(s, DMAR_PMEN_REG, 0, 0x80000000UL, 0);
3032 vtd_define_long(s, DMAR_PMEN_REG, 0, 0, 0);
3034 vtd_define_quad(s, DMAR_IQH_REG, 0, 0, 0);
3035 vtd_define_quad(s, DMAR_IQT_REG, 0, 0x7fff0ULL, 0);
3036 vtd_define_quad(s, DMAR_IQA_REG, 0, 0xfffffffffffff007ULL, 0);
3037 vtd_define_long(s, DMAR_ICS_REG, 0, 0, 0x1UL);
3038 vtd_define_long(s, DMAR_IECTL_REG, 0x80000000UL, 0x80000000UL, 0);
3039 vtd_define_long(s, DMAR_IEDATA_REG, 0, 0xffffffffUL, 0);
3040 vtd_define_long(s, DMAR_IEADDR_REG, 0, 0xfffffffcUL, 0);
3041 /* Treadted as RsvdZ when EIM in ECAP_REG is not supported */
3042 vtd_define_long(s, DMAR_IEUADDR_REG, 0, 0, 0);
3044 /* IOTLB registers */
3045 vtd_define_quad(s, DMAR_IOTLB_REG, 0, 0Xb003ffff00000000ULL, 0);
3046 vtd_define_quad(s, DMAR_IVA_REG, 0, 0xfffffffffffff07fULL, 0);
3047 vtd_define_quad_wo(s, DMAR_IVA_REG, 0xfffffffffffff07fULL);
3049 /* Fault Recording Registers, 128-bit */
3050 vtd_define_quad(s, DMAR_FRCD_REG_0_0, 0, 0, 0);
3051 vtd_define_quad(s, DMAR_FRCD_REG_0_2, 0, 0, 0x8000000000000000ULL);
3054 * Interrupt remapping registers.
3056 vtd_define_quad(s, DMAR_IRTA_REG, 0, 0xfffffffffffff80fULL, 0);
3059 /* Should not reset address_spaces when reset because devices will still use
3060 * the address space they got at first (won't ask the bus again).
3062 static void vtd_reset(DeviceState *dev)
3064 IntelIOMMUState *s = INTEL_IOMMU_DEVICE(dev);
3066 vtd_init(s);
3069 * When device reset, throw away all mappings and external caches
3071 vtd_address_space_unmap_all(s);
3074 static AddressSpace *vtd_host_dma_iommu(PCIBus *bus, void *opaque, int devfn)
3076 IntelIOMMUState *s = opaque;
3077 VTDAddressSpace *vtd_as;
3079 assert(0 <= devfn && devfn < PCI_DEVFN_MAX);
3081 vtd_as = vtd_find_add_as(s, bus, devfn);
3082 return &vtd_as->as;
3085 static bool vtd_decide_config(IntelIOMMUState *s, Error **errp)
3087 X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
3089 /* Currently Intel IOMMU IR only support "kernel-irqchip={off|split}" */
3090 if (x86_iommu->intr_supported && kvm_irqchip_in_kernel() &&
3091 !kvm_irqchip_is_split()) {
3092 error_setg(errp, "Intel Interrupt Remapping cannot work with "
3093 "kernel-irqchip=on, please use 'split|off'.");
3094 return false;
3096 if (s->intr_eim == ON_OFF_AUTO_ON && !x86_iommu->intr_supported) {
3097 error_setg(errp, "eim=on cannot be selected without intremap=on");
3098 return false;
3101 if (s->intr_eim == ON_OFF_AUTO_AUTO) {
3102 s->intr_eim = (kvm_irqchip_in_kernel() || s->buggy_eim)
3103 && x86_iommu->intr_supported ?
3104 ON_OFF_AUTO_ON : ON_OFF_AUTO_OFF;
3106 if (s->intr_eim == ON_OFF_AUTO_ON && !s->buggy_eim) {
3107 if (!kvm_irqchip_in_kernel()) {
3108 error_setg(errp, "eim=on requires accel=kvm,kernel-irqchip=split");
3109 return false;
3111 if (!kvm_enable_x2apic()) {
3112 error_setg(errp, "eim=on requires support on the KVM side"
3113 "(X2APIC_API, first shipped in v4.7)");
3114 return false;
3118 /* Currently only address widths supported are 39 and 48 bits */
3119 if ((s->aw_bits != VTD_HOST_AW_39BIT) &&
3120 (s->aw_bits != VTD_HOST_AW_48BIT)) {
3121 error_setg(errp, "Supported values for x-aw-bits are: %d, %d",
3122 VTD_HOST_AW_39BIT, VTD_HOST_AW_48BIT);
3123 return false;
3126 return true;
3129 static void vtd_realize(DeviceState *dev, Error **errp)
3131 MachineState *ms = MACHINE(qdev_get_machine());
3132 PCMachineState *pcms = PC_MACHINE(ms);
3133 PCIBus *bus = pcms->bus;
3134 IntelIOMMUState *s = INTEL_IOMMU_DEVICE(dev);
3135 X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(dev);
3137 x86_iommu->type = TYPE_INTEL;
3139 if (!vtd_decide_config(s, errp)) {
3140 return;
3143 QLIST_INIT(&s->vtd_as_with_notifiers);
3144 qemu_mutex_init(&s->iommu_lock);
3145 memset(s->vtd_as_by_bus_num, 0, sizeof(s->vtd_as_by_bus_num));
3146 memory_region_init_io(&s->csrmem, OBJECT(s), &vtd_mem_ops, s,
3147 "intel_iommu", DMAR_REG_SIZE);
3148 sysbus_init_mmio(SYS_BUS_DEVICE(s), &s->csrmem);
3149 /* No corresponding destroy */
3150 s->iotlb = g_hash_table_new_full(vtd_uint64_hash, vtd_uint64_equal,
3151 g_free, g_free);
3152 s->vtd_as_by_busptr = g_hash_table_new_full(vtd_uint64_hash, vtd_uint64_equal,
3153 g_free, g_free);
3154 vtd_init(s);
3155 sysbus_mmio_map(SYS_BUS_DEVICE(s), 0, Q35_HOST_BRIDGE_IOMMU_ADDR);
3156 pci_setup_iommu(bus, vtd_host_dma_iommu, dev);
3157 /* Pseudo address space under root PCI bus. */
3158 pcms->ioapic_as = vtd_host_dma_iommu(bus, s, Q35_PSEUDO_DEVFN_IOAPIC);
3161 static void vtd_class_init(ObjectClass *klass, void *data)
3163 DeviceClass *dc = DEVICE_CLASS(klass);
3164 X86IOMMUClass *x86_class = X86_IOMMU_CLASS(klass);
3166 dc->reset = vtd_reset;
3167 dc->vmsd = &vtd_vmstate;
3168 dc->props = vtd_properties;
3169 dc->hotpluggable = false;
3170 x86_class->realize = vtd_realize;
3171 x86_class->int_remap = vtd_int_remap;
3172 /* Supported by the pc-q35-* machine types */
3173 dc->user_creatable = true;
3176 static const TypeInfo vtd_info = {
3177 .name = TYPE_INTEL_IOMMU_DEVICE,
3178 .parent = TYPE_X86_IOMMU_DEVICE,
3179 .instance_size = sizeof(IntelIOMMUState),
3180 .class_init = vtd_class_init,
3183 static void vtd_iommu_memory_region_class_init(ObjectClass *klass,
3184 void *data)
3186 IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_CLASS(klass);
3188 imrc->translate = vtd_iommu_translate;
3189 imrc->notify_flag_changed = vtd_iommu_notify_flag_changed;
3190 imrc->replay = vtd_iommu_replay;
3193 static const TypeInfo vtd_iommu_memory_region_info = {
3194 .parent = TYPE_IOMMU_MEMORY_REGION,
3195 .name = TYPE_INTEL_IOMMU_MEMORY_REGION,
3196 .class_init = vtd_iommu_memory_region_class_init,
3199 static void vtd_register_types(void)
3201 type_register_static(&vtd_info);
3202 type_register_static(&vtd_iommu_memory_region_info);
3205 type_init(vtd_register_types)