numa: Clean up error reporting in parse_numa()
[qemu/ar7.git] / target / ppc / mem_helper.c
blob8f0d86d10471f79db04781c2f314cc8fa5e69ef7
1 /*
2 * PowerPC memory access emulation helpers for QEMU.
4 * Copyright (c) 2003-2007 Jocelyn Mayer
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #include "qemu/osdep.h"
20 #include "cpu.h"
21 #include "exec/exec-all.h"
22 #include "qemu/host-utils.h"
23 #include "exec/helper-proto.h"
24 #include "helper_regs.h"
25 #include "exec/cpu_ldst.h"
26 #include "tcg.h"
27 #include "internal.h"
29 //#define DEBUG_OP
31 static inline bool needs_byteswap(const CPUPPCState *env)
33 #if defined(TARGET_WORDS_BIGENDIAN)
34 return msr_le;
35 #else
36 return !msr_le;
37 #endif
40 /*****************************************************************************/
41 /* Memory load and stores */
43 static inline target_ulong addr_add(CPUPPCState *env, target_ulong addr,
44 target_long arg)
46 #if defined(TARGET_PPC64)
47 if (!msr_is_64bit(env, env->msr)) {
48 return (uint32_t)(addr + arg);
49 } else
50 #endif
52 return addr + arg;
56 void helper_lmw(CPUPPCState *env, target_ulong addr, uint32_t reg)
58 for (; reg < 32; reg++) {
59 if (needs_byteswap(env)) {
60 env->gpr[reg] = bswap32(cpu_ldl_data_ra(env, addr, GETPC()));
61 } else {
62 env->gpr[reg] = cpu_ldl_data_ra(env, addr, GETPC());
64 addr = addr_add(env, addr, 4);
68 void helper_stmw(CPUPPCState *env, target_ulong addr, uint32_t reg)
70 for (; reg < 32; reg++) {
71 if (needs_byteswap(env)) {
72 cpu_stl_data_ra(env, addr, bswap32((uint32_t)env->gpr[reg]),
73 GETPC());
74 } else {
75 cpu_stl_data_ra(env, addr, (uint32_t)env->gpr[reg], GETPC());
77 addr = addr_add(env, addr, 4);
81 static void do_lsw(CPUPPCState *env, target_ulong addr, uint32_t nb,
82 uint32_t reg, uintptr_t raddr)
84 int sh;
86 for (; nb > 3; nb -= 4) {
87 env->gpr[reg] = cpu_ldl_data_ra(env, addr, raddr);
88 reg = (reg + 1) % 32;
89 addr = addr_add(env, addr, 4);
91 if (unlikely(nb > 0)) {
92 env->gpr[reg] = 0;
93 for (sh = 24; nb > 0; nb--, sh -= 8) {
94 env->gpr[reg] |= cpu_ldub_data_ra(env, addr, raddr) << sh;
95 addr = addr_add(env, addr, 1);
100 void helper_lsw(CPUPPCState *env, target_ulong addr, uint32_t nb, uint32_t reg)
102 do_lsw(env, addr, nb, reg, GETPC());
105 /* PPC32 specification says we must generate an exception if
106 * rA is in the range of registers to be loaded.
107 * In an other hand, IBM says this is valid, but rA won't be loaded.
108 * For now, I'll follow the spec...
110 void helper_lswx(CPUPPCState *env, target_ulong addr, uint32_t reg,
111 uint32_t ra, uint32_t rb)
113 if (likely(xer_bc != 0)) {
114 int num_used_regs = DIV_ROUND_UP(xer_bc, 4);
115 if (unlikely((ra != 0 && lsw_reg_in_range(reg, num_used_regs, ra)) ||
116 lsw_reg_in_range(reg, num_used_regs, rb))) {
117 raise_exception_err_ra(env, POWERPC_EXCP_PROGRAM,
118 POWERPC_EXCP_INVAL |
119 POWERPC_EXCP_INVAL_LSWX, GETPC());
120 } else {
121 do_lsw(env, addr, xer_bc, reg, GETPC());
126 void helper_stsw(CPUPPCState *env, target_ulong addr, uint32_t nb,
127 uint32_t reg)
129 int sh;
131 for (; nb > 3; nb -= 4) {
132 cpu_stl_data_ra(env, addr, env->gpr[reg], GETPC());
133 reg = (reg + 1) % 32;
134 addr = addr_add(env, addr, 4);
136 if (unlikely(nb > 0)) {
137 for (sh = 24; nb > 0; nb--, sh -= 8) {
138 cpu_stb_data_ra(env, addr, (env->gpr[reg] >> sh) & 0xFF, GETPC());
139 addr = addr_add(env, addr, 1);
144 void helper_dcbz(CPUPPCState *env, target_ulong addr, uint32_t opcode)
146 target_ulong mask, dcbz_size = env->dcache_line_size;
147 uint32_t i;
148 void *haddr;
150 #if defined(TARGET_PPC64)
151 /* Check for dcbz vs dcbzl on 970 */
152 if (env->excp_model == POWERPC_EXCP_970 &&
153 !(opcode & 0x00200000) && ((env->spr[SPR_970_HID5] >> 7) & 0x3) == 1) {
154 dcbz_size = 32;
156 #endif
158 /* Align address */
159 mask = ~(dcbz_size - 1);
160 addr &= mask;
162 /* Check reservation */
163 if ((env->reserve_addr & mask) == (addr & mask)) {
164 env->reserve_addr = (target_ulong)-1ULL;
167 /* Try fast path translate */
168 haddr = tlb_vaddr_to_host(env, addr, MMU_DATA_STORE, env->dmmu_idx);
169 if (haddr) {
170 memset(haddr, 0, dcbz_size);
171 } else {
172 /* Slow path */
173 for (i = 0; i < dcbz_size; i += 8) {
174 cpu_stq_data_ra(env, addr + i, 0, GETPC());
179 void helper_icbi(CPUPPCState *env, target_ulong addr)
181 addr &= ~(env->dcache_line_size - 1);
182 /* Invalidate one cache line :
183 * PowerPC specification says this is to be treated like a load
184 * (not a fetch) by the MMU. To be sure it will be so,
185 * do the load "by hand".
187 cpu_ldl_data_ra(env, addr, GETPC());
190 /* XXX: to be tested */
191 target_ulong helper_lscbx(CPUPPCState *env, target_ulong addr, uint32_t reg,
192 uint32_t ra, uint32_t rb)
194 int i, c, d;
196 d = 24;
197 for (i = 0; i < xer_bc; i++) {
198 c = cpu_ldub_data_ra(env, addr, GETPC());
199 addr = addr_add(env, addr, 1);
200 /* ra (if not 0) and rb are never modified */
201 if (likely(reg != rb && (ra == 0 || reg != ra))) {
202 env->gpr[reg] = (env->gpr[reg] & ~(0xFF << d)) | (c << d);
204 if (unlikely(c == xer_cmp)) {
205 break;
207 if (likely(d != 0)) {
208 d -= 8;
209 } else {
210 d = 24;
211 reg++;
212 reg = reg & 0x1F;
215 return i;
218 #if defined(TARGET_PPC64) && defined(CONFIG_ATOMIC128)
219 uint64_t helper_lq_le_parallel(CPUPPCState *env, target_ulong addr,
220 uint32_t opidx)
222 Int128 ret = helper_atomic_ldo_le_mmu(env, addr, opidx, GETPC());
223 env->retxh = int128_gethi(ret);
224 return int128_getlo(ret);
227 uint64_t helper_lq_be_parallel(CPUPPCState *env, target_ulong addr,
228 uint32_t opidx)
230 Int128 ret = helper_atomic_ldo_be_mmu(env, addr, opidx, GETPC());
231 env->retxh = int128_gethi(ret);
232 return int128_getlo(ret);
235 void helper_stq_le_parallel(CPUPPCState *env, target_ulong addr,
236 uint64_t lo, uint64_t hi, uint32_t opidx)
238 Int128 val = int128_make128(lo, hi);
239 helper_atomic_sto_le_mmu(env, addr, val, opidx, GETPC());
242 void helper_stq_be_parallel(CPUPPCState *env, target_ulong addr,
243 uint64_t lo, uint64_t hi, uint32_t opidx)
245 Int128 val = int128_make128(lo, hi);
246 helper_atomic_sto_be_mmu(env, addr, val, opidx, GETPC());
249 uint32_t helper_stqcx_le_parallel(CPUPPCState *env, target_ulong addr,
250 uint64_t new_lo, uint64_t new_hi,
251 uint32_t opidx)
253 bool success = false;
255 if (likely(addr == env->reserve_addr)) {
256 Int128 oldv, cmpv, newv;
258 cmpv = int128_make128(env->reserve_val2, env->reserve_val);
259 newv = int128_make128(new_lo, new_hi);
260 oldv = helper_atomic_cmpxchgo_le_mmu(env, addr, cmpv, newv,
261 opidx, GETPC());
262 success = int128_eq(oldv, cmpv);
264 env->reserve_addr = -1;
265 return env->so + success * CRF_EQ_BIT;
268 uint32_t helper_stqcx_be_parallel(CPUPPCState *env, target_ulong addr,
269 uint64_t new_lo, uint64_t new_hi,
270 uint32_t opidx)
272 bool success = false;
274 if (likely(addr == env->reserve_addr)) {
275 Int128 oldv, cmpv, newv;
277 cmpv = int128_make128(env->reserve_val2, env->reserve_val);
278 newv = int128_make128(new_lo, new_hi);
279 oldv = helper_atomic_cmpxchgo_be_mmu(env, addr, cmpv, newv,
280 opidx, GETPC());
281 success = int128_eq(oldv, cmpv);
283 env->reserve_addr = -1;
284 return env->so + success * CRF_EQ_BIT;
286 #endif
288 /*****************************************************************************/
289 /* Altivec extension helpers */
290 #if defined(HOST_WORDS_BIGENDIAN)
291 #define HI_IDX 0
292 #define LO_IDX 1
293 #else
294 #define HI_IDX 1
295 #define LO_IDX 0
296 #endif
298 /* We use msr_le to determine index ordering in a vector. However,
299 byteswapping is not simply controlled by msr_le. We also need to take
300 into account endianness of the target. This is done for the little-endian
301 PPC64 user-mode target. */
303 #define LVE(name, access, swap, element) \
304 void helper_##name(CPUPPCState *env, ppc_avr_t *r, \
305 target_ulong addr) \
307 size_t n_elems = ARRAY_SIZE(r->element); \
308 int adjust = HI_IDX*(n_elems - 1); \
309 int sh = sizeof(r->element[0]) >> 1; \
310 int index = (addr & 0xf) >> sh; \
311 if (msr_le) { \
312 index = n_elems - index - 1; \
315 if (needs_byteswap(env)) { \
316 r->element[LO_IDX ? index : (adjust - index)] = \
317 swap(access(env, addr, GETPC())); \
318 } else { \
319 r->element[LO_IDX ? index : (adjust - index)] = \
320 access(env, addr, GETPC()); \
323 #define I(x) (x)
324 LVE(lvebx, cpu_ldub_data_ra, I, u8)
325 LVE(lvehx, cpu_lduw_data_ra, bswap16, u16)
326 LVE(lvewx, cpu_ldl_data_ra, bswap32, u32)
327 #undef I
328 #undef LVE
330 #define STVE(name, access, swap, element) \
331 void helper_##name(CPUPPCState *env, ppc_avr_t *r, \
332 target_ulong addr) \
334 size_t n_elems = ARRAY_SIZE(r->element); \
335 int adjust = HI_IDX * (n_elems - 1); \
336 int sh = sizeof(r->element[0]) >> 1; \
337 int index = (addr & 0xf) >> sh; \
338 if (msr_le) { \
339 index = n_elems - index - 1; \
342 if (needs_byteswap(env)) { \
343 access(env, addr, swap(r->element[LO_IDX ? index : \
344 (adjust - index)]), \
345 GETPC()); \
346 } else { \
347 access(env, addr, r->element[LO_IDX ? index : \
348 (adjust - index)], GETPC()); \
351 #define I(x) (x)
352 STVE(stvebx, cpu_stb_data_ra, I, u8)
353 STVE(stvehx, cpu_stw_data_ra, bswap16, u16)
354 STVE(stvewx, cpu_stl_data_ra, bswap32, u32)
355 #undef I
356 #undef LVE
358 #ifdef TARGET_PPC64
359 #define GET_NB(rb) ((rb >> 56) & 0xFF)
361 #define VSX_LXVL(name, lj) \
362 void helper_##name(CPUPPCState *env, target_ulong addr, \
363 target_ulong xt_num, target_ulong rb) \
365 int i; \
366 ppc_vsr_t xt; \
367 uint64_t nb = GET_NB(rb); \
369 xt.s128 = int128_zero(); \
370 if (nb) { \
371 nb = (nb >= 16) ? 16 : nb; \
372 if (msr_le && !lj) { \
373 for (i = 16; i > 16 - nb; i--) { \
374 xt.VsrB(i - 1) = cpu_ldub_data_ra(env, addr, GETPC()); \
375 addr = addr_add(env, addr, 1); \
377 } else { \
378 for (i = 0; i < nb; i++) { \
379 xt.VsrB(i) = cpu_ldub_data_ra(env, addr, GETPC()); \
380 addr = addr_add(env, addr, 1); \
384 putVSR(xt_num, &xt, env); \
387 VSX_LXVL(lxvl, 0)
388 VSX_LXVL(lxvll, 1)
389 #undef VSX_LXVL
391 #define VSX_STXVL(name, lj) \
392 void helper_##name(CPUPPCState *env, target_ulong addr, \
393 target_ulong xt_num, target_ulong rb) \
395 int i; \
396 ppc_vsr_t xt; \
397 target_ulong nb = GET_NB(rb); \
399 if (!nb) { \
400 return; \
402 getVSR(xt_num, &xt, env); \
403 nb = (nb >= 16) ? 16 : nb; \
404 if (msr_le && !lj) { \
405 for (i = 16; i > 16 - nb; i--) { \
406 cpu_stb_data_ra(env, addr, xt.VsrB(i - 1), GETPC()); \
407 addr = addr_add(env, addr, 1); \
409 } else { \
410 for (i = 0; i < nb; i++) { \
411 cpu_stb_data_ra(env, addr, xt.VsrB(i), GETPC()); \
412 addr = addr_add(env, addr, 1); \
417 VSX_STXVL(stxvl, 0)
418 VSX_STXVL(stxvll, 1)
419 #undef VSX_STXVL
420 #undef GET_NB
421 #endif /* TARGET_PPC64 */
423 #undef HI_IDX
424 #undef LO_IDX
426 void helper_tbegin(CPUPPCState *env)
428 /* As a degenerate implementation, always fail tbegin. The reason
429 * given is "Nesting overflow". The "persistent" bit is set,
430 * providing a hint to the error handler to not retry. The TFIAR
431 * captures the address of the failure, which is this tbegin
432 * instruction. Instruction execution will continue with the
433 * next instruction in memory, which is precisely what we want.
436 env->spr[SPR_TEXASR] =
437 (1ULL << TEXASR_FAILURE_PERSISTENT) |
438 (1ULL << TEXASR_NESTING_OVERFLOW) |
439 (msr_hv << TEXASR_PRIVILEGE_HV) |
440 (msr_pr << TEXASR_PRIVILEGE_PR) |
441 (1ULL << TEXASR_FAILURE_SUMMARY) |
442 (1ULL << TEXASR_TFIAR_EXACT);
443 env->spr[SPR_TFIAR] = env->nip | (msr_hv << 1) | msr_pr;
444 env->spr[SPR_TFHAR] = env->nip + 4;
445 env->crf[0] = 0xB; /* 0b1010 = transaction failure */