util/hbitmap: update orig_size on truncate
[qemu/ar7.git] / target / ppc / mem_helper.c
blob6f4ffa36611116803352aaddb39e8a607681b20d
1 /*
2 * PowerPC memory access emulation helpers for QEMU.
4 * Copyright (c) 2003-2007 Jocelyn Mayer
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #include "qemu/osdep.h"
20 #include "cpu.h"
21 #include "exec/exec-all.h"
22 #include "qemu/host-utils.h"
23 #include "exec/helper-proto.h"
24 #include "helper_regs.h"
25 #include "exec/cpu_ldst.h"
26 #include "tcg.h"
27 #include "internal.h"
28 #include "qemu/atomic128.h"
30 /* #define DEBUG_OP */
32 static inline bool needs_byteswap(const CPUPPCState *env)
34 #if defined(TARGET_WORDS_BIGENDIAN)
35 return msr_le;
36 #else
37 return !msr_le;
38 #endif
41 /*****************************************************************************/
42 /* Memory load and stores */
44 static inline target_ulong addr_add(CPUPPCState *env, target_ulong addr,
45 target_long arg)
47 #if defined(TARGET_PPC64)
48 if (!msr_is_64bit(env, env->msr)) {
49 return (uint32_t)(addr + arg);
50 } else
51 #endif
53 return addr + arg;
57 void helper_lmw(CPUPPCState *env, target_ulong addr, uint32_t reg)
59 for (; reg < 32; reg++) {
60 if (needs_byteswap(env)) {
61 env->gpr[reg] = bswap32(cpu_ldl_data_ra(env, addr, GETPC()));
62 } else {
63 env->gpr[reg] = cpu_ldl_data_ra(env, addr, GETPC());
65 addr = addr_add(env, addr, 4);
69 void helper_stmw(CPUPPCState *env, target_ulong addr, uint32_t reg)
71 for (; reg < 32; reg++) {
72 if (needs_byteswap(env)) {
73 cpu_stl_data_ra(env, addr, bswap32((uint32_t)env->gpr[reg]),
74 GETPC());
75 } else {
76 cpu_stl_data_ra(env, addr, (uint32_t)env->gpr[reg], GETPC());
78 addr = addr_add(env, addr, 4);
82 static void do_lsw(CPUPPCState *env, target_ulong addr, uint32_t nb,
83 uint32_t reg, uintptr_t raddr)
85 int sh;
87 for (; nb > 3; nb -= 4) {
88 env->gpr[reg] = cpu_ldl_data_ra(env, addr, raddr);
89 reg = (reg + 1) % 32;
90 addr = addr_add(env, addr, 4);
92 if (unlikely(nb > 0)) {
93 env->gpr[reg] = 0;
94 for (sh = 24; nb > 0; nb--, sh -= 8) {
95 env->gpr[reg] |= cpu_ldub_data_ra(env, addr, raddr) << sh;
96 addr = addr_add(env, addr, 1);
101 void helper_lsw(CPUPPCState *env, target_ulong addr, uint32_t nb, uint32_t reg)
103 do_lsw(env, addr, nb, reg, GETPC());
107 * PPC32 specification says we must generate an exception if rA is in
108 * the range of registers to be loaded. In an other hand, IBM says
109 * this is valid, but rA won't be loaded. For now, I'll follow the
110 * spec...
112 void helper_lswx(CPUPPCState *env, target_ulong addr, uint32_t reg,
113 uint32_t ra, uint32_t rb)
115 if (likely(xer_bc != 0)) {
116 int num_used_regs = DIV_ROUND_UP(xer_bc, 4);
117 if (unlikely((ra != 0 && lsw_reg_in_range(reg, num_used_regs, ra)) ||
118 lsw_reg_in_range(reg, num_used_regs, rb))) {
119 raise_exception_err_ra(env, POWERPC_EXCP_PROGRAM,
120 POWERPC_EXCP_INVAL |
121 POWERPC_EXCP_INVAL_LSWX, GETPC());
122 } else {
123 do_lsw(env, addr, xer_bc, reg, GETPC());
128 void helper_stsw(CPUPPCState *env, target_ulong addr, uint32_t nb,
129 uint32_t reg)
131 int sh;
133 for (; nb > 3; nb -= 4) {
134 cpu_stl_data_ra(env, addr, env->gpr[reg], GETPC());
135 reg = (reg + 1) % 32;
136 addr = addr_add(env, addr, 4);
138 if (unlikely(nb > 0)) {
139 for (sh = 24; nb > 0; nb--, sh -= 8) {
140 cpu_stb_data_ra(env, addr, (env->gpr[reg] >> sh) & 0xFF, GETPC());
141 addr = addr_add(env, addr, 1);
146 static void dcbz_common(CPUPPCState *env, target_ulong addr,
147 uint32_t opcode, bool epid, uintptr_t retaddr)
149 target_ulong mask, dcbz_size = env->dcache_line_size;
150 uint32_t i;
151 void *haddr;
152 int mmu_idx = epid ? PPC_TLB_EPID_STORE : env->dmmu_idx;
154 #if defined(TARGET_PPC64)
155 /* Check for dcbz vs dcbzl on 970 */
156 if (env->excp_model == POWERPC_EXCP_970 &&
157 !(opcode & 0x00200000) && ((env->spr[SPR_970_HID5] >> 7) & 0x3) == 1) {
158 dcbz_size = 32;
160 #endif
162 /* Align address */
163 mask = ~(dcbz_size - 1);
164 addr &= mask;
166 /* Check reservation */
167 if ((env->reserve_addr & mask) == (addr & mask)) {
168 env->reserve_addr = (target_ulong)-1ULL;
171 /* Try fast path translate */
172 haddr = tlb_vaddr_to_host(env, addr, MMU_DATA_STORE, mmu_idx);
173 if (haddr) {
174 memset(haddr, 0, dcbz_size);
175 } else {
176 /* Slow path */
177 for (i = 0; i < dcbz_size; i += 8) {
178 if (epid) {
179 #if !defined(CONFIG_USER_ONLY)
180 /* Does not make sense on USER_ONLY config */
181 cpu_stq_eps_ra(env, addr + i, 0, retaddr);
182 #endif
183 } else {
184 cpu_stq_data_ra(env, addr + i, 0, retaddr);
190 void helper_dcbz(CPUPPCState *env, target_ulong addr, uint32_t opcode)
192 dcbz_common(env, addr, opcode, false, GETPC());
195 void helper_dcbzep(CPUPPCState *env, target_ulong addr, uint32_t opcode)
197 dcbz_common(env, addr, opcode, true, GETPC());
200 void helper_icbi(CPUPPCState *env, target_ulong addr)
202 addr &= ~(env->dcache_line_size - 1);
204 * Invalidate one cache line :
205 * PowerPC specification says this is to be treated like a load
206 * (not a fetch) by the MMU. To be sure it will be so,
207 * do the load "by hand".
209 cpu_ldl_data_ra(env, addr, GETPC());
212 void helper_icbiep(CPUPPCState *env, target_ulong addr)
214 #if !defined(CONFIG_USER_ONLY)
215 /* See comments above */
216 addr &= ~(env->dcache_line_size - 1);
217 cpu_ldl_epl_ra(env, addr, GETPC());
218 #endif
221 /* XXX: to be tested */
222 target_ulong helper_lscbx(CPUPPCState *env, target_ulong addr, uint32_t reg,
223 uint32_t ra, uint32_t rb)
225 int i, c, d;
227 d = 24;
228 for (i = 0; i < xer_bc; i++) {
229 c = cpu_ldub_data_ra(env, addr, GETPC());
230 addr = addr_add(env, addr, 1);
231 /* ra (if not 0) and rb are never modified */
232 if (likely(reg != rb && (ra == 0 || reg != ra))) {
233 env->gpr[reg] = (env->gpr[reg] & ~(0xFF << d)) | (c << d);
235 if (unlikely(c == xer_cmp)) {
236 break;
238 if (likely(d != 0)) {
239 d -= 8;
240 } else {
241 d = 24;
242 reg++;
243 reg = reg & 0x1F;
246 return i;
249 #ifdef TARGET_PPC64
250 uint64_t helper_lq_le_parallel(CPUPPCState *env, target_ulong addr,
251 uint32_t opidx)
253 Int128 ret;
255 /* We will have raised EXCP_ATOMIC from the translator. */
256 assert(HAVE_ATOMIC128);
257 ret = helper_atomic_ldo_le_mmu(env, addr, opidx, GETPC());
258 env->retxh = int128_gethi(ret);
259 return int128_getlo(ret);
262 uint64_t helper_lq_be_parallel(CPUPPCState *env, target_ulong addr,
263 uint32_t opidx)
265 Int128 ret;
267 /* We will have raised EXCP_ATOMIC from the translator. */
268 assert(HAVE_ATOMIC128);
269 ret = helper_atomic_ldo_be_mmu(env, addr, opidx, GETPC());
270 env->retxh = int128_gethi(ret);
271 return int128_getlo(ret);
274 void helper_stq_le_parallel(CPUPPCState *env, target_ulong addr,
275 uint64_t lo, uint64_t hi, uint32_t opidx)
277 Int128 val;
279 /* We will have raised EXCP_ATOMIC from the translator. */
280 assert(HAVE_ATOMIC128);
281 val = int128_make128(lo, hi);
282 helper_atomic_sto_le_mmu(env, addr, val, opidx, GETPC());
285 void helper_stq_be_parallel(CPUPPCState *env, target_ulong addr,
286 uint64_t lo, uint64_t hi, uint32_t opidx)
288 Int128 val;
290 /* We will have raised EXCP_ATOMIC from the translator. */
291 assert(HAVE_ATOMIC128);
292 val = int128_make128(lo, hi);
293 helper_atomic_sto_be_mmu(env, addr, val, opidx, GETPC());
296 uint32_t helper_stqcx_le_parallel(CPUPPCState *env, target_ulong addr,
297 uint64_t new_lo, uint64_t new_hi,
298 uint32_t opidx)
300 bool success = false;
302 /* We will have raised EXCP_ATOMIC from the translator. */
303 assert(HAVE_CMPXCHG128);
305 if (likely(addr == env->reserve_addr)) {
306 Int128 oldv, cmpv, newv;
308 cmpv = int128_make128(env->reserve_val2, env->reserve_val);
309 newv = int128_make128(new_lo, new_hi);
310 oldv = helper_atomic_cmpxchgo_le_mmu(env, addr, cmpv, newv,
311 opidx, GETPC());
312 success = int128_eq(oldv, cmpv);
314 env->reserve_addr = -1;
315 return env->so + success * CRF_EQ_BIT;
318 uint32_t helper_stqcx_be_parallel(CPUPPCState *env, target_ulong addr,
319 uint64_t new_lo, uint64_t new_hi,
320 uint32_t opidx)
322 bool success = false;
324 /* We will have raised EXCP_ATOMIC from the translator. */
325 assert(HAVE_CMPXCHG128);
327 if (likely(addr == env->reserve_addr)) {
328 Int128 oldv, cmpv, newv;
330 cmpv = int128_make128(env->reserve_val2, env->reserve_val);
331 newv = int128_make128(new_lo, new_hi);
332 oldv = helper_atomic_cmpxchgo_be_mmu(env, addr, cmpv, newv,
333 opidx, GETPC());
334 success = int128_eq(oldv, cmpv);
336 env->reserve_addr = -1;
337 return env->so + success * CRF_EQ_BIT;
339 #endif
341 /*****************************************************************************/
342 /* Altivec extension helpers */
343 #if defined(HOST_WORDS_BIGENDIAN)
344 #define HI_IDX 0
345 #define LO_IDX 1
346 #else
347 #define HI_IDX 1
348 #define LO_IDX 0
349 #endif
352 * We use msr_le to determine index ordering in a vector. However,
353 * byteswapping is not simply controlled by msr_le. We also need to
354 * take into account endianness of the target. This is done for the
355 * little-endian PPC64 user-mode target.
358 #define LVE(name, access, swap, element) \
359 void helper_##name(CPUPPCState *env, ppc_avr_t *r, \
360 target_ulong addr) \
362 size_t n_elems = ARRAY_SIZE(r->element); \
363 int adjust = HI_IDX * (n_elems - 1); \
364 int sh = sizeof(r->element[0]) >> 1; \
365 int index = (addr & 0xf) >> sh; \
366 if (msr_le) { \
367 index = n_elems - index - 1; \
370 if (needs_byteswap(env)) { \
371 r->element[LO_IDX ? index : (adjust - index)] = \
372 swap(access(env, addr, GETPC())); \
373 } else { \
374 r->element[LO_IDX ? index : (adjust - index)] = \
375 access(env, addr, GETPC()); \
378 #define I(x) (x)
379 LVE(lvebx, cpu_ldub_data_ra, I, u8)
380 LVE(lvehx, cpu_lduw_data_ra, bswap16, u16)
381 LVE(lvewx, cpu_ldl_data_ra, bswap32, u32)
382 #undef I
383 #undef LVE
385 #define STVE(name, access, swap, element) \
386 void helper_##name(CPUPPCState *env, ppc_avr_t *r, \
387 target_ulong addr) \
389 size_t n_elems = ARRAY_SIZE(r->element); \
390 int adjust = HI_IDX * (n_elems - 1); \
391 int sh = sizeof(r->element[0]) >> 1; \
392 int index = (addr & 0xf) >> sh; \
393 if (msr_le) { \
394 index = n_elems - index - 1; \
397 if (needs_byteswap(env)) { \
398 access(env, addr, swap(r->element[LO_IDX ? index : \
399 (adjust - index)]), \
400 GETPC()); \
401 } else { \
402 access(env, addr, r->element[LO_IDX ? index : \
403 (adjust - index)], GETPC()); \
406 #define I(x) (x)
407 STVE(stvebx, cpu_stb_data_ra, I, u8)
408 STVE(stvehx, cpu_stw_data_ra, bswap16, u16)
409 STVE(stvewx, cpu_stl_data_ra, bswap32, u32)
410 #undef I
411 #undef LVE
413 #ifdef TARGET_PPC64
414 #define GET_NB(rb) ((rb >> 56) & 0xFF)
416 #define VSX_LXVL(name, lj) \
417 void helper_##name(CPUPPCState *env, target_ulong addr, \
418 ppc_vsr_t *xt, target_ulong rb) \
420 ppc_vsr_t t; \
421 uint64_t nb = GET_NB(rb); \
422 int i; \
424 t.s128 = int128_zero(); \
425 if (nb) { \
426 nb = (nb >= 16) ? 16 : nb; \
427 if (msr_le && !lj) { \
428 for (i = 16; i > 16 - nb; i--) { \
429 t.VsrB(i - 1) = cpu_ldub_data_ra(env, addr, GETPC()); \
430 addr = addr_add(env, addr, 1); \
432 } else { \
433 for (i = 0; i < nb; i++) { \
434 t.VsrB(i) = cpu_ldub_data_ra(env, addr, GETPC()); \
435 addr = addr_add(env, addr, 1); \
439 *xt = t; \
442 VSX_LXVL(lxvl, 0)
443 VSX_LXVL(lxvll, 1)
444 #undef VSX_LXVL
446 #define VSX_STXVL(name, lj) \
447 void helper_##name(CPUPPCState *env, target_ulong addr, \
448 ppc_vsr_t *xt, target_ulong rb) \
450 target_ulong nb = GET_NB(rb); \
451 int i; \
453 if (!nb) { \
454 return; \
457 nb = (nb >= 16) ? 16 : nb; \
458 if (msr_le && !lj) { \
459 for (i = 16; i > 16 - nb; i--) { \
460 cpu_stb_data_ra(env, addr, xt->VsrB(i - 1), GETPC()); \
461 addr = addr_add(env, addr, 1); \
463 } else { \
464 for (i = 0; i < nb; i++) { \
465 cpu_stb_data_ra(env, addr, xt->VsrB(i), GETPC()); \
466 addr = addr_add(env, addr, 1); \
471 VSX_STXVL(stxvl, 0)
472 VSX_STXVL(stxvll, 1)
473 #undef VSX_STXVL
474 #undef GET_NB
475 #endif /* TARGET_PPC64 */
477 #undef HI_IDX
478 #undef LO_IDX
480 void helper_tbegin(CPUPPCState *env)
483 * As a degenerate implementation, always fail tbegin. The reason
484 * given is "Nesting overflow". The "persistent" bit is set,
485 * providing a hint to the error handler to not retry. The TFIAR
486 * captures the address of the failure, which is this tbegin
487 * instruction. Instruction execution will continue with the next
488 * instruction in memory, which is precisely what we want.
491 env->spr[SPR_TEXASR] =
492 (1ULL << TEXASR_FAILURE_PERSISTENT) |
493 (1ULL << TEXASR_NESTING_OVERFLOW) |
494 (msr_hv << TEXASR_PRIVILEGE_HV) |
495 (msr_pr << TEXASR_PRIVILEGE_PR) |
496 (1ULL << TEXASR_FAILURE_SUMMARY) |
497 (1ULL << TEXASR_TFIAR_EXACT);
498 env->spr[SPR_TFIAR] = env->nip | (msr_hv << 1) | msr_pr;
499 env->spr[SPR_TFHAR] = env->nip + 4;
500 env->crf[0] = 0xB; /* 0b1010 = transaction failure */