hw/arm/virt-acpi-build: don't save VirtGuestInfo on AcpiBuildState
[qemu/ar7.git] / hw / block / m25p80.c
blobe3c1166ea6e3928b40127ccaa4e6901a6becfcbc
1 /*
2 * ST M25P80 emulator. Emulate all SPI flash devices based on the m25p80 command
3 * set. Known devices table current as of Jun/2012 and taken from linux.
4 * See drivers/mtd/devices/m25p80.c.
6 * Copyright (C) 2011 Edgar E. Iglesias <edgar.iglesias@gmail.com>
7 * Copyright (C) 2012 Peter A. G. Crosthwaite <peter.crosthwaite@petalogix.com>
8 * Copyright (C) 2012 PetaLogix
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License as
12 * published by the Free Software Foundation; either version 2 or
13 * (at your option) a later version of the License.
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
20 * You should have received a copy of the GNU General Public License along
21 * with this program; if not, see <http://www.gnu.org/licenses/>.
24 #include "qemu/osdep.h"
25 #include "hw/hw.h"
26 #include "sysemu/block-backend.h"
27 #include "sysemu/blockdev.h"
28 #include "hw/ssi/ssi.h"
29 #include "qemu/bitops.h"
30 #include "qemu/log.h"
31 #include "qapi/error.h"
33 #ifndef M25P80_ERR_DEBUG
34 #define M25P80_ERR_DEBUG 0
35 #endif
37 #define DB_PRINT_L(level, ...) do { \
38 if (M25P80_ERR_DEBUG > (level)) { \
39 fprintf(stderr, ": %s: ", __func__); \
40 fprintf(stderr, ## __VA_ARGS__); \
41 } \
42 } while (0);
44 /* Fields for FlashPartInfo->flags */
46 /* erase capabilities */
47 #define ER_4K 1
48 #define ER_32K 2
49 /* set to allow the page program command to write 0s back to 1. Useful for
50 * modelling EEPROM with SPI flash command set
52 #define EEPROM 0x100
54 /* 16 MiB max in 3 byte address mode */
55 #define MAX_3BYTES_SIZE 0x1000000
57 #define SPI_NOR_MAX_ID_LEN 6
59 typedef struct FlashPartInfo {
60 const char *part_name;
62 * This array stores the ID bytes.
63 * The first three bytes are the JEDIC ID.
64 * JEDEC ID zero means "no ID" (mostly older chips).
66 uint8_t id[SPI_NOR_MAX_ID_LEN];
67 uint8_t id_len;
68 /* there is confusion between manufacturers as to what a sector is. In this
69 * device model, a "sector" is the size that is erased by the ERASE_SECTOR
70 * command (opcode 0xd8).
72 uint32_t sector_size;
73 uint32_t n_sectors;
74 uint32_t page_size;
75 uint16_t flags;
76 } FlashPartInfo;
78 /* adapted from linux */
79 /* Used when the "_ext_id" is two bytes at most */
80 #define INFO(_part_name, _jedec_id, _ext_id, _sector_size, _n_sectors, _flags)\
81 .part_name = _part_name,\
82 .id = {\
83 ((_jedec_id) >> 16) & 0xff,\
84 ((_jedec_id) >> 8) & 0xff,\
85 (_jedec_id) & 0xff,\
86 ((_ext_id) >> 8) & 0xff,\
87 (_ext_id) & 0xff,\
88 },\
89 .id_len = (!(_jedec_id) ? 0 : (3 + ((_ext_id) ? 2 : 0))),\
90 .sector_size = (_sector_size),\
91 .n_sectors = (_n_sectors),\
92 .page_size = 256,\
93 .flags = (_flags),
95 #define INFO6(_part_name, _jedec_id, _ext_id, _sector_size, _n_sectors, _flags)\
96 .part_name = _part_name,\
97 .id = {\
98 ((_jedec_id) >> 16) & 0xff,\
99 ((_jedec_id) >> 8) & 0xff,\
100 (_jedec_id) & 0xff,\
101 ((_ext_id) >> 16) & 0xff,\
102 ((_ext_id) >> 8) & 0xff,\
103 (_ext_id) & 0xff,\
105 .id_len = 6,\
106 .sector_size = (_sector_size),\
107 .n_sectors = (_n_sectors),\
108 .page_size = 256,\
109 .flags = (_flags),\
111 #define JEDEC_NUMONYX 0x20
112 #define JEDEC_WINBOND 0xEF
113 #define JEDEC_SPANSION 0x01
115 /* Numonyx (Micron) Configuration register macros */
116 #define VCFG_DUMMY 0x1
117 #define VCFG_WRAP_SEQUENTIAL 0x2
118 #define NVCFG_XIP_MODE_DISABLED (7 << 9)
119 #define NVCFG_XIP_MODE_MASK (7 << 9)
120 #define VCFG_XIP_MODE_ENABLED (1 << 3)
121 #define CFG_DUMMY_CLK_LEN 4
122 #define NVCFG_DUMMY_CLK_POS 12
123 #define VCFG_DUMMY_CLK_POS 4
124 #define EVCFG_OUT_DRIVER_STRENGHT_DEF 7
125 #define EVCFG_VPP_ACCELERATOR (1 << 3)
126 #define EVCFG_RESET_HOLD_ENABLED (1 << 4)
127 #define NVCFG_DUAL_IO_MASK (1 << 2)
128 #define EVCFG_DUAL_IO_ENABLED (1 << 6)
129 #define NVCFG_QUAD_IO_MASK (1 << 3)
130 #define EVCFG_QUAD_IO_ENABLED (1 << 7)
131 #define NVCFG_4BYTE_ADDR_MASK (1 << 0)
132 #define NVCFG_LOWER_SEGMENT_MASK (1 << 1)
134 /* Numonyx (Micron) Flag Status Register macros */
135 #define FSR_4BYTE_ADDR_MODE_ENABLED 0x1
136 #define FSR_FLASH_READY (1 << 7)
138 /* Spansion configuration registers macros. */
139 #define SPANSION_QUAD_CFG_POS 0
140 #define SPANSION_QUAD_CFG_LEN 1
141 #define SPANSION_DUMMY_CLK_POS 0
142 #define SPANSION_DUMMY_CLK_LEN 4
143 #define SPANSION_ADDR_LEN_POS 7
144 #define SPANSION_ADDR_LEN_LEN 1
147 * Spansion read mode command length in bytes,
148 * the mode is currently not supported.
151 #define SPANSION_CONTINUOUS_READ_MODE_CMD_LEN 1
152 #define WINBOND_CONTINUOUS_READ_MODE_CMD_LEN 1
154 static const FlashPartInfo known_devices[] = {
155 /* Atmel -- some are (confusingly) marketed as "DataFlash" */
156 { INFO("at25fs010", 0x1f6601, 0, 32 << 10, 4, ER_4K) },
157 { INFO("at25fs040", 0x1f6604, 0, 64 << 10, 8, ER_4K) },
159 { INFO("at25df041a", 0x1f4401, 0, 64 << 10, 8, ER_4K) },
160 { INFO("at25df321a", 0x1f4701, 0, 64 << 10, 64, ER_4K) },
161 { INFO("at25df641", 0x1f4800, 0, 64 << 10, 128, ER_4K) },
163 { INFO("at26f004", 0x1f0400, 0, 64 << 10, 8, ER_4K) },
164 { INFO("at26df081a", 0x1f4501, 0, 64 << 10, 16, ER_4K) },
165 { INFO("at26df161a", 0x1f4601, 0, 64 << 10, 32, ER_4K) },
166 { INFO("at26df321", 0x1f4700, 0, 64 << 10, 64, ER_4K) },
168 { INFO("at45db081d", 0x1f2500, 0, 64 << 10, 16, ER_4K) },
170 /* Atmel EEPROMS - it is assumed, that don't care bit in command
171 * is set to 0. Block protection is not supported.
173 { INFO("at25128a-nonjedec", 0x0, 0, 1, 131072, EEPROM) },
174 { INFO("at25256a-nonjedec", 0x0, 0, 1, 262144, EEPROM) },
176 /* EON -- en25xxx */
177 { INFO("en25f32", 0x1c3116, 0, 64 << 10, 64, ER_4K) },
178 { INFO("en25p32", 0x1c2016, 0, 64 << 10, 64, 0) },
179 { INFO("en25q32b", 0x1c3016, 0, 64 << 10, 64, 0) },
180 { INFO("en25p64", 0x1c2017, 0, 64 << 10, 128, 0) },
181 { INFO("en25q64", 0x1c3017, 0, 64 << 10, 128, ER_4K) },
183 /* GigaDevice */
184 { INFO("gd25q32", 0xc84016, 0, 64 << 10, 64, ER_4K) },
185 { INFO("gd25q64", 0xc84017, 0, 64 << 10, 128, ER_4K) },
187 /* Intel/Numonyx -- xxxs33b */
188 { INFO("160s33b", 0x898911, 0, 64 << 10, 32, 0) },
189 { INFO("320s33b", 0x898912, 0, 64 << 10, 64, 0) },
190 { INFO("640s33b", 0x898913, 0, 64 << 10, 128, 0) },
191 { INFO("n25q064", 0x20ba17, 0, 64 << 10, 128, 0) },
193 /* Macronix */
194 { INFO("mx25l2005a", 0xc22012, 0, 64 << 10, 4, ER_4K) },
195 { INFO("mx25l4005a", 0xc22013, 0, 64 << 10, 8, ER_4K) },
196 { INFO("mx25l8005", 0xc22014, 0, 64 << 10, 16, 0) },
197 { INFO("mx25l1606e", 0xc22015, 0, 64 << 10, 32, ER_4K) },
198 { INFO("mx25l3205d", 0xc22016, 0, 64 << 10, 64, 0) },
199 { INFO("mx25l6405d", 0xc22017, 0, 64 << 10, 128, 0) },
200 { INFO("mx25l12805d", 0xc22018, 0, 64 << 10, 256, 0) },
201 { INFO("mx25l12855e", 0xc22618, 0, 64 << 10, 256, 0) },
202 { INFO("mx25l25635e", 0xc22019, 0, 64 << 10, 512, 0) },
203 { INFO("mx25l25655e", 0xc22619, 0, 64 << 10, 512, 0) },
204 { INFO("mx66u51235f", 0xc2253a, 0, 64 << 10, 1024, ER_4K | ER_32K) },
205 { INFO("mx66u1g45g", 0xc2253b, 0, 64 << 10, 2048, ER_4K | ER_32K) },
206 { INFO("mx66l1g45g", 0xc2201b, 0, 64 << 10, 2048, ER_4K | ER_32K) },
208 /* Micron */
209 { INFO("n25q032a11", 0x20bb16, 0, 64 << 10, 64, ER_4K) },
210 { INFO("n25q032a13", 0x20ba16, 0, 64 << 10, 64, ER_4K) },
211 { INFO("n25q064a11", 0x20bb17, 0, 64 << 10, 128, ER_4K) },
212 { INFO("n25q064a13", 0x20ba17, 0, 64 << 10, 128, ER_4K) },
213 { INFO("n25q128a11", 0x20bb18, 0, 64 << 10, 256, ER_4K) },
214 { INFO("n25q128a13", 0x20ba18, 0, 64 << 10, 256, ER_4K) },
215 { INFO("n25q256a11", 0x20bb19, 0, 64 << 10, 512, ER_4K) },
216 { INFO("n25q256a13", 0x20ba19, 0, 64 << 10, 512, ER_4K) },
217 { INFO("n25q128", 0x20ba18, 0, 64 << 10, 256, 0) },
218 { INFO("n25q256a", 0x20ba19, 0, 64 << 10, 512, ER_4K) },
219 { INFO("n25q512a", 0x20ba20, 0, 64 << 10, 1024, ER_4K) },
220 { INFO("mt25ql01g", 0x20ba21, 0, 64 << 10, 2048, ER_4K) },
221 { INFO("mt25qu01g", 0x20bb21, 0, 64 << 10, 2048, ER_4K) },
223 /* Spansion -- single (large) sector size only, at least
224 * for the chips listed here (without boot sectors).
226 { INFO("s25sl032p", 0x010215, 0x4d00, 64 << 10, 64, ER_4K) },
227 { INFO("s25sl064p", 0x010216, 0x4d00, 64 << 10, 128, ER_4K) },
228 { INFO("s25fl256s0", 0x010219, 0x4d00, 256 << 10, 128, 0) },
229 { INFO("s25fl256s1", 0x010219, 0x4d01, 64 << 10, 512, 0) },
230 { INFO6("s25fl512s", 0x010220, 0x4d0080, 256 << 10, 256, 0) },
231 { INFO6("s70fl01gs", 0x010221, 0x4d0080, 256 << 10, 512, 0) },
232 { INFO("s25sl12800", 0x012018, 0x0300, 256 << 10, 64, 0) },
233 { INFO("s25sl12801", 0x012018, 0x0301, 64 << 10, 256, 0) },
234 { INFO("s25fl129p0", 0x012018, 0x4d00, 256 << 10, 64, 0) },
235 { INFO("s25fl129p1", 0x012018, 0x4d01, 64 << 10, 256, 0) },
236 { INFO("s25sl004a", 0x010212, 0, 64 << 10, 8, 0) },
237 { INFO("s25sl008a", 0x010213, 0, 64 << 10, 16, 0) },
238 { INFO("s25sl016a", 0x010214, 0, 64 << 10, 32, 0) },
239 { INFO("s25sl032a", 0x010215, 0, 64 << 10, 64, 0) },
240 { INFO("s25sl064a", 0x010216, 0, 64 << 10, 128, 0) },
241 { INFO("s25fl016k", 0xef4015, 0, 64 << 10, 32, ER_4K | ER_32K) },
242 { INFO("s25fl064k", 0xef4017, 0, 64 << 10, 128, ER_4K | ER_32K) },
244 /* Spansion -- boot sectors support */
245 { INFO6("s25fs512s", 0x010220, 0x4d0081, 256 << 10, 256, 0) },
246 { INFO6("s70fs01gs", 0x010221, 0x4d0081, 256 << 10, 512, 0) },
248 /* SST -- large erase sizes are "overlays", "sectors" are 4<< 10 */
249 { INFO("sst25vf040b", 0xbf258d, 0, 64 << 10, 8, ER_4K) },
250 { INFO("sst25vf080b", 0xbf258e, 0, 64 << 10, 16, ER_4K) },
251 { INFO("sst25vf016b", 0xbf2541, 0, 64 << 10, 32, ER_4K) },
252 { INFO("sst25vf032b", 0xbf254a, 0, 64 << 10, 64, ER_4K) },
253 { INFO("sst25wf512", 0xbf2501, 0, 64 << 10, 1, ER_4K) },
254 { INFO("sst25wf010", 0xbf2502, 0, 64 << 10, 2, ER_4K) },
255 { INFO("sst25wf020", 0xbf2503, 0, 64 << 10, 4, ER_4K) },
256 { INFO("sst25wf040", 0xbf2504, 0, 64 << 10, 8, ER_4K) },
257 { INFO("sst25wf080", 0xbf2505, 0, 64 << 10, 16, ER_4K) },
259 /* ST Microelectronics -- newer production may have feature updates */
260 { INFO("m25p05", 0x202010, 0, 32 << 10, 2, 0) },
261 { INFO("m25p10", 0x202011, 0, 32 << 10, 4, 0) },
262 { INFO("m25p20", 0x202012, 0, 64 << 10, 4, 0) },
263 { INFO("m25p40", 0x202013, 0, 64 << 10, 8, 0) },
264 { INFO("m25p80", 0x202014, 0, 64 << 10, 16, 0) },
265 { INFO("m25p16", 0x202015, 0, 64 << 10, 32, 0) },
266 { INFO("m25p32", 0x202016, 0, 64 << 10, 64, 0) },
267 { INFO("m25p64", 0x202017, 0, 64 << 10, 128, 0) },
268 { INFO("m25p128", 0x202018, 0, 256 << 10, 64, 0) },
269 { INFO("n25q032", 0x20ba16, 0, 64 << 10, 64, 0) },
271 { INFO("m45pe10", 0x204011, 0, 64 << 10, 2, 0) },
272 { INFO("m45pe80", 0x204014, 0, 64 << 10, 16, 0) },
273 { INFO("m45pe16", 0x204015, 0, 64 << 10, 32, 0) },
275 { INFO("m25pe20", 0x208012, 0, 64 << 10, 4, 0) },
276 { INFO("m25pe80", 0x208014, 0, 64 << 10, 16, 0) },
277 { INFO("m25pe16", 0x208015, 0, 64 << 10, 32, ER_4K) },
279 { INFO("m25px32", 0x207116, 0, 64 << 10, 64, ER_4K) },
280 { INFO("m25px32-s0", 0x207316, 0, 64 << 10, 64, ER_4K) },
281 { INFO("m25px32-s1", 0x206316, 0, 64 << 10, 64, ER_4K) },
282 { INFO("m25px64", 0x207117, 0, 64 << 10, 128, 0) },
284 /* Winbond -- w25x "blocks" are 64k, "sectors" are 4KiB */
285 { INFO("w25x10", 0xef3011, 0, 64 << 10, 2, ER_4K) },
286 { INFO("w25x20", 0xef3012, 0, 64 << 10, 4, ER_4K) },
287 { INFO("w25x40", 0xef3013, 0, 64 << 10, 8, ER_4K) },
288 { INFO("w25x80", 0xef3014, 0, 64 << 10, 16, ER_4K) },
289 { INFO("w25x16", 0xef3015, 0, 64 << 10, 32, ER_4K) },
290 { INFO("w25x32", 0xef3016, 0, 64 << 10, 64, ER_4K) },
291 { INFO("w25q32", 0xef4016, 0, 64 << 10, 64, ER_4K) },
292 { INFO("w25q32dw", 0xef6016, 0, 64 << 10, 64, ER_4K) },
293 { INFO("w25x64", 0xef3017, 0, 64 << 10, 128, ER_4K) },
294 { INFO("w25q64", 0xef4017, 0, 64 << 10, 128, ER_4K) },
295 { INFO("w25q80", 0xef5014, 0, 64 << 10, 16, ER_4K) },
296 { INFO("w25q80bl", 0xef4014, 0, 64 << 10, 16, ER_4K) },
297 { INFO("w25q256", 0xef4019, 0, 64 << 10, 512, ER_4K) },
300 typedef enum {
301 NOP = 0,
302 WRSR = 0x1,
303 WRDI = 0x4,
304 RDSR = 0x5,
305 WREN = 0x6,
306 JEDEC_READ = 0x9f,
307 BULK_ERASE = 0xc7,
308 READ_FSR = 0x70,
309 RDCR = 0x15,
311 READ = 0x03,
312 READ4 = 0x13,
313 FAST_READ = 0x0b,
314 FAST_READ4 = 0x0c,
315 DOR = 0x3b,
316 DOR4 = 0x3c,
317 QOR = 0x6b,
318 QOR4 = 0x6c,
319 DIOR = 0xbb,
320 DIOR4 = 0xbc,
321 QIOR = 0xeb,
322 QIOR4 = 0xec,
324 PP = 0x02,
325 PP4 = 0x12,
326 PP4_4 = 0x3e,
327 DPP = 0xa2,
328 QPP = 0x32,
330 ERASE_4K = 0x20,
331 ERASE4_4K = 0x21,
332 ERASE_32K = 0x52,
333 ERASE4_32K = 0x5c,
334 ERASE_SECTOR = 0xd8,
335 ERASE4_SECTOR = 0xdc,
337 EN_4BYTE_ADDR = 0xB7,
338 EX_4BYTE_ADDR = 0xE9,
340 EXTEND_ADDR_READ = 0xC8,
341 EXTEND_ADDR_WRITE = 0xC5,
343 RESET_ENABLE = 0x66,
344 RESET_MEMORY = 0x99,
347 * Micron: 0x35 - enable QPI
348 * Spansion: 0x35 - read control register
350 RDCR_EQIO = 0x35,
351 RSTQIO = 0xf5,
353 RNVCR = 0xB5,
354 WNVCR = 0xB1,
356 RVCR = 0x85,
357 WVCR = 0x81,
359 REVCR = 0x65,
360 WEVCR = 0x61,
361 } FlashCMD;
363 typedef enum {
364 STATE_IDLE,
365 STATE_PAGE_PROGRAM,
366 STATE_READ,
367 STATE_COLLECTING_DATA,
368 STATE_COLLECTING_VAR_LEN_DATA,
369 STATE_READING_DATA,
370 } CMDState;
372 typedef enum {
373 MAN_SPANSION,
374 MAN_MACRONIX,
375 MAN_NUMONYX,
376 MAN_WINBOND,
377 MAN_GENERIC,
378 } Manufacturer;
380 typedef struct Flash {
381 SSISlave parent_obj;
383 BlockBackend *blk;
385 uint8_t *storage;
386 uint32_t size;
387 int page_size;
389 uint8_t state;
390 uint8_t data[16];
391 uint32_t len;
392 uint32_t pos;
393 uint8_t needed_bytes;
394 uint8_t cmd_in_progress;
395 uint32_t cur_addr;
396 uint32_t nonvolatile_cfg;
397 /* Configuration register for Macronix */
398 uint32_t volatile_cfg;
399 uint32_t enh_volatile_cfg;
400 /* Spansion cfg registers. */
401 uint8_t spansion_cr1nv;
402 uint8_t spansion_cr2nv;
403 uint8_t spansion_cr3nv;
404 uint8_t spansion_cr4nv;
405 uint8_t spansion_cr1v;
406 uint8_t spansion_cr2v;
407 uint8_t spansion_cr3v;
408 uint8_t spansion_cr4v;
409 bool write_enable;
410 bool four_bytes_address_mode;
411 bool reset_enable;
412 bool quad_enable;
413 uint8_t ear;
415 int64_t dirty_page;
417 const FlashPartInfo *pi;
419 } Flash;
421 typedef struct M25P80Class {
422 SSISlaveClass parent_class;
423 FlashPartInfo *pi;
424 } M25P80Class;
426 #define TYPE_M25P80 "m25p80-generic"
427 #define M25P80(obj) \
428 OBJECT_CHECK(Flash, (obj), TYPE_M25P80)
429 #define M25P80_CLASS(klass) \
430 OBJECT_CLASS_CHECK(M25P80Class, (klass), TYPE_M25P80)
431 #define M25P80_GET_CLASS(obj) \
432 OBJECT_GET_CLASS(M25P80Class, (obj), TYPE_M25P80)
434 static inline Manufacturer get_man(Flash *s)
436 switch (s->pi->id[0]) {
437 case 0x20:
438 return MAN_NUMONYX;
439 case 0xEF:
440 return MAN_WINBOND;
441 case 0x01:
442 return MAN_SPANSION;
443 case 0xC2:
444 return MAN_MACRONIX;
445 default:
446 return MAN_GENERIC;
450 static void blk_sync_complete(void *opaque, int ret)
452 QEMUIOVector *iov = opaque;
454 qemu_iovec_destroy(iov);
455 g_free(iov);
457 /* do nothing. Masters do not directly interact with the backing store,
458 * only the working copy so no mutexing required.
462 static void flash_sync_page(Flash *s, int page)
464 QEMUIOVector *iov;
466 if (!s->blk || blk_is_read_only(s->blk)) {
467 return;
470 iov = g_new(QEMUIOVector, 1);
471 qemu_iovec_init(iov, 1);
472 qemu_iovec_add(iov, s->storage + page * s->pi->page_size,
473 s->pi->page_size);
474 blk_aio_pwritev(s->blk, page * s->pi->page_size, iov, 0,
475 blk_sync_complete, iov);
478 static inline void flash_sync_area(Flash *s, int64_t off, int64_t len)
480 QEMUIOVector *iov;
482 if (!s->blk || blk_is_read_only(s->blk)) {
483 return;
486 assert(!(len % BDRV_SECTOR_SIZE));
487 iov = g_new(QEMUIOVector, 1);
488 qemu_iovec_init(iov, 1);
489 qemu_iovec_add(iov, s->storage + off, len);
490 blk_aio_pwritev(s->blk, off, iov, 0, blk_sync_complete, iov);
493 static void flash_erase(Flash *s, int offset, FlashCMD cmd)
495 uint32_t len;
496 uint8_t capa_to_assert = 0;
498 switch (cmd) {
499 case ERASE_4K:
500 case ERASE4_4K:
501 len = 4 << 10;
502 capa_to_assert = ER_4K;
503 break;
504 case ERASE_32K:
505 case ERASE4_32K:
506 len = 32 << 10;
507 capa_to_assert = ER_32K;
508 break;
509 case ERASE_SECTOR:
510 case ERASE4_SECTOR:
511 len = s->pi->sector_size;
512 break;
513 case BULK_ERASE:
514 len = s->size;
515 break;
516 default:
517 abort();
520 DB_PRINT_L(0, "offset = %#x, len = %d\n", offset, len);
521 if ((s->pi->flags & capa_to_assert) != capa_to_assert) {
522 qemu_log_mask(LOG_GUEST_ERROR, "M25P80: %d erase size not supported by"
523 " device\n", len);
526 if (!s->write_enable) {
527 qemu_log_mask(LOG_GUEST_ERROR, "M25P80: erase with write protect!\n");
528 return;
530 memset(s->storage + offset, 0xff, len);
531 flash_sync_area(s, offset, len);
534 static inline void flash_sync_dirty(Flash *s, int64_t newpage)
536 if (s->dirty_page >= 0 && s->dirty_page != newpage) {
537 flash_sync_page(s, s->dirty_page);
538 s->dirty_page = newpage;
542 static inline
543 void flash_write8(Flash *s, uint32_t addr, uint8_t data)
545 uint32_t page = addr / s->pi->page_size;
546 uint8_t prev = s->storage[s->cur_addr];
548 if (!s->write_enable) {
549 qemu_log_mask(LOG_GUEST_ERROR, "M25P80: write with write protect!\n");
552 if ((prev ^ data) & data) {
553 DB_PRINT_L(1, "programming zero to one! addr=%" PRIx32 " %" PRIx8
554 " -> %" PRIx8 "\n", addr, prev, data);
557 if (s->pi->flags & EEPROM) {
558 s->storage[s->cur_addr] = data;
559 } else {
560 s->storage[s->cur_addr] &= data;
563 flash_sync_dirty(s, page);
564 s->dirty_page = page;
567 static inline int get_addr_length(Flash *s)
569 /* check if eeprom is in use */
570 if (s->pi->flags == EEPROM) {
571 return 2;
574 switch (s->cmd_in_progress) {
575 case PP4:
576 case PP4_4:
577 case READ4:
578 case QIOR4:
579 case ERASE4_4K:
580 case ERASE4_32K:
581 case ERASE4_SECTOR:
582 case FAST_READ4:
583 case DOR4:
584 case QOR4:
585 case DIOR4:
586 return 4;
587 default:
588 return s->four_bytes_address_mode ? 4 : 3;
592 static void complete_collecting_data(Flash *s)
594 int i, n;
596 n = get_addr_length(s);
597 s->cur_addr = (n == 3 ? s->ear : 0);
598 for (i = 0; i < n; ++i) {
599 s->cur_addr <<= 8;
600 s->cur_addr |= s->data[i];
603 s->cur_addr &= s->size - 1;
605 s->state = STATE_IDLE;
607 switch (s->cmd_in_progress) {
608 case DPP:
609 case QPP:
610 case PP:
611 case PP4:
612 case PP4_4:
613 s->state = STATE_PAGE_PROGRAM;
614 break;
615 case READ:
616 case READ4:
617 case FAST_READ:
618 case FAST_READ4:
619 case DOR:
620 case DOR4:
621 case QOR:
622 case QOR4:
623 case DIOR:
624 case DIOR4:
625 case QIOR:
626 case QIOR4:
627 s->state = STATE_READ;
628 break;
629 case ERASE_4K:
630 case ERASE4_4K:
631 case ERASE_32K:
632 case ERASE4_32K:
633 case ERASE_SECTOR:
634 case ERASE4_SECTOR:
635 flash_erase(s, s->cur_addr, s->cmd_in_progress);
636 break;
637 case WRSR:
638 switch (get_man(s)) {
639 case MAN_SPANSION:
640 s->quad_enable = !!(s->data[1] & 0x02);
641 break;
642 case MAN_MACRONIX:
643 s->quad_enable = extract32(s->data[0], 6, 1);
644 if (s->len > 1) {
645 s->four_bytes_address_mode = extract32(s->data[1], 5, 1);
647 break;
648 default:
649 break;
651 if (s->write_enable) {
652 s->write_enable = false;
654 break;
655 case EXTEND_ADDR_WRITE:
656 s->ear = s->data[0];
657 break;
658 case WNVCR:
659 s->nonvolatile_cfg = s->data[0] | (s->data[1] << 8);
660 break;
661 case WVCR:
662 s->volatile_cfg = s->data[0];
663 break;
664 case WEVCR:
665 s->enh_volatile_cfg = s->data[0];
666 break;
667 default:
668 break;
672 static void reset_memory(Flash *s)
674 s->cmd_in_progress = NOP;
675 s->cur_addr = 0;
676 s->ear = 0;
677 s->four_bytes_address_mode = false;
678 s->len = 0;
679 s->needed_bytes = 0;
680 s->pos = 0;
681 s->state = STATE_IDLE;
682 s->write_enable = false;
683 s->reset_enable = false;
684 s->quad_enable = false;
686 switch (get_man(s)) {
687 case MAN_NUMONYX:
688 s->volatile_cfg = 0;
689 s->volatile_cfg |= VCFG_DUMMY;
690 s->volatile_cfg |= VCFG_WRAP_SEQUENTIAL;
691 if ((s->nonvolatile_cfg & NVCFG_XIP_MODE_MASK)
692 != NVCFG_XIP_MODE_DISABLED) {
693 s->volatile_cfg |= VCFG_XIP_MODE_ENABLED;
695 s->volatile_cfg |= deposit32(s->volatile_cfg,
696 VCFG_DUMMY_CLK_POS,
697 CFG_DUMMY_CLK_LEN,
698 extract32(s->nonvolatile_cfg,
699 NVCFG_DUMMY_CLK_POS,
700 CFG_DUMMY_CLK_LEN)
703 s->enh_volatile_cfg = 0;
704 s->enh_volatile_cfg |= EVCFG_OUT_DRIVER_STRENGHT_DEF;
705 s->enh_volatile_cfg |= EVCFG_VPP_ACCELERATOR;
706 s->enh_volatile_cfg |= EVCFG_RESET_HOLD_ENABLED;
707 if (s->nonvolatile_cfg & NVCFG_DUAL_IO_MASK) {
708 s->enh_volatile_cfg |= EVCFG_DUAL_IO_ENABLED;
710 if (s->nonvolatile_cfg & NVCFG_QUAD_IO_MASK) {
711 s->enh_volatile_cfg |= EVCFG_QUAD_IO_ENABLED;
713 if (!(s->nonvolatile_cfg & NVCFG_4BYTE_ADDR_MASK)) {
714 s->four_bytes_address_mode = true;
716 if (!(s->nonvolatile_cfg & NVCFG_LOWER_SEGMENT_MASK)) {
717 s->ear = s->size / MAX_3BYTES_SIZE - 1;
719 break;
720 case MAN_MACRONIX:
721 s->volatile_cfg = 0x7;
722 break;
723 case MAN_SPANSION:
724 s->spansion_cr1v = s->spansion_cr1nv;
725 s->spansion_cr2v = s->spansion_cr2nv;
726 s->spansion_cr3v = s->spansion_cr3nv;
727 s->spansion_cr4v = s->spansion_cr4nv;
728 s->quad_enable = extract32(s->spansion_cr1v,
729 SPANSION_QUAD_CFG_POS,
730 SPANSION_QUAD_CFG_LEN
732 s->four_bytes_address_mode = extract32(s->spansion_cr2v,
733 SPANSION_ADDR_LEN_POS,
734 SPANSION_ADDR_LEN_LEN
736 break;
737 default:
738 break;
741 DB_PRINT_L(0, "Reset done.\n");
744 static void decode_fast_read_cmd(Flash *s)
746 s->needed_bytes = get_addr_length(s);
747 switch (get_man(s)) {
748 /* Dummy cycles - modeled with bytes writes instead of bits */
749 case MAN_WINBOND:
750 s->needed_bytes += 8;
751 break;
752 case MAN_NUMONYX:
753 s->needed_bytes += extract32(s->volatile_cfg, 4, 4);
754 break;
755 case MAN_MACRONIX:
756 if (extract32(s->volatile_cfg, 6, 2) == 1) {
757 s->needed_bytes += 6;
758 } else {
759 s->needed_bytes += 8;
761 break;
762 case MAN_SPANSION:
763 s->needed_bytes += extract32(s->spansion_cr2v,
764 SPANSION_DUMMY_CLK_POS,
765 SPANSION_DUMMY_CLK_LEN
767 break;
768 default:
769 break;
771 s->pos = 0;
772 s->len = 0;
773 s->state = STATE_COLLECTING_DATA;
776 static void decode_dio_read_cmd(Flash *s)
778 s->needed_bytes = get_addr_length(s);
779 /* Dummy cycles modeled with bytes writes instead of bits */
780 switch (get_man(s)) {
781 case MAN_WINBOND:
782 s->needed_bytes += WINBOND_CONTINUOUS_READ_MODE_CMD_LEN;
783 break;
784 case MAN_SPANSION:
785 s->needed_bytes += SPANSION_CONTINUOUS_READ_MODE_CMD_LEN;
786 s->needed_bytes += extract32(s->spansion_cr2v,
787 SPANSION_DUMMY_CLK_POS,
788 SPANSION_DUMMY_CLK_LEN
790 break;
791 case MAN_NUMONYX:
792 s->needed_bytes += extract32(s->volatile_cfg, 4, 4);
793 break;
794 case MAN_MACRONIX:
795 switch (extract32(s->volatile_cfg, 6, 2)) {
796 case 1:
797 s->needed_bytes += 6;
798 break;
799 case 2:
800 s->needed_bytes += 8;
801 break;
802 default:
803 s->needed_bytes += 4;
804 break;
806 break;
807 default:
808 break;
810 s->pos = 0;
811 s->len = 0;
812 s->state = STATE_COLLECTING_DATA;
815 static void decode_qio_read_cmd(Flash *s)
817 s->needed_bytes = get_addr_length(s);
818 /* Dummy cycles modeled with bytes writes instead of bits */
819 switch (get_man(s)) {
820 case MAN_WINBOND:
821 s->needed_bytes += WINBOND_CONTINUOUS_READ_MODE_CMD_LEN;
822 s->needed_bytes += 4;
823 break;
824 case MAN_SPANSION:
825 s->needed_bytes += SPANSION_CONTINUOUS_READ_MODE_CMD_LEN;
826 s->needed_bytes += extract32(s->spansion_cr2v,
827 SPANSION_DUMMY_CLK_POS,
828 SPANSION_DUMMY_CLK_LEN
830 break;
831 case MAN_NUMONYX:
832 s->needed_bytes += extract32(s->volatile_cfg, 4, 4);
833 break;
834 case MAN_MACRONIX:
835 switch (extract32(s->volatile_cfg, 6, 2)) {
836 case 1:
837 s->needed_bytes += 4;
838 break;
839 case 2:
840 s->needed_bytes += 8;
841 break;
842 default:
843 s->needed_bytes += 6;
844 break;
846 break;
847 default:
848 break;
850 s->pos = 0;
851 s->len = 0;
852 s->state = STATE_COLLECTING_DATA;
855 static void decode_new_cmd(Flash *s, uint32_t value)
857 s->cmd_in_progress = value;
858 int i;
859 DB_PRINT_L(0, "decoded new command:%x\n", value);
861 if (value != RESET_MEMORY) {
862 s->reset_enable = false;
865 switch (value) {
867 case ERASE_4K:
868 case ERASE4_4K:
869 case ERASE_32K:
870 case ERASE4_32K:
871 case ERASE_SECTOR:
872 case ERASE4_SECTOR:
873 case READ:
874 case READ4:
875 case DPP:
876 case QPP:
877 case PP:
878 case PP4:
879 case PP4_4:
880 s->needed_bytes = get_addr_length(s);
881 s->pos = 0;
882 s->len = 0;
883 s->state = STATE_COLLECTING_DATA;
884 break;
886 case FAST_READ:
887 case FAST_READ4:
888 case DOR:
889 case DOR4:
890 case QOR:
891 case QOR4:
892 decode_fast_read_cmd(s);
893 break;
895 case DIOR:
896 case DIOR4:
897 decode_dio_read_cmd(s);
898 break;
900 case QIOR:
901 case QIOR4:
902 decode_qio_read_cmd(s);
903 break;
905 case WRSR:
906 if (s->write_enable) {
907 switch (get_man(s)) {
908 case MAN_SPANSION:
909 s->needed_bytes = 2;
910 s->state = STATE_COLLECTING_DATA;
911 break;
912 case MAN_MACRONIX:
913 s->needed_bytes = 2;
914 s->state = STATE_COLLECTING_VAR_LEN_DATA;
915 break;
916 default:
917 s->needed_bytes = 1;
918 s->state = STATE_COLLECTING_DATA;
920 s->pos = 0;
922 break;
924 case WRDI:
925 s->write_enable = false;
926 break;
927 case WREN:
928 s->write_enable = true;
929 break;
931 case RDSR:
932 s->data[0] = (!!s->write_enable) << 1;
933 if (get_man(s) == MAN_MACRONIX) {
934 s->data[0] |= (!!s->quad_enable) << 6;
936 s->pos = 0;
937 s->len = 1;
938 s->state = STATE_READING_DATA;
939 break;
941 case READ_FSR:
942 s->data[0] = FSR_FLASH_READY;
943 if (s->four_bytes_address_mode) {
944 s->data[0] |= FSR_4BYTE_ADDR_MODE_ENABLED;
946 s->pos = 0;
947 s->len = 1;
948 s->state = STATE_READING_DATA;
949 break;
951 case JEDEC_READ:
952 DB_PRINT_L(0, "populated jedec code\n");
953 for (i = 0; i < s->pi->id_len; i++) {
954 s->data[i] = s->pi->id[i];
957 s->len = s->pi->id_len;
958 s->pos = 0;
959 s->state = STATE_READING_DATA;
960 break;
962 case RDCR:
963 s->data[0] = s->volatile_cfg & 0xFF;
964 s->data[0] |= (!!s->four_bytes_address_mode) << 5;
965 s->pos = 0;
966 s->len = 1;
967 s->state = STATE_READING_DATA;
968 break;
970 case BULK_ERASE:
971 if (s->write_enable) {
972 DB_PRINT_L(0, "chip erase\n");
973 flash_erase(s, 0, BULK_ERASE);
974 } else {
975 qemu_log_mask(LOG_GUEST_ERROR, "M25P80: chip erase with write "
976 "protect!\n");
978 break;
979 case NOP:
980 break;
981 case EN_4BYTE_ADDR:
982 s->four_bytes_address_mode = true;
983 break;
984 case EX_4BYTE_ADDR:
985 s->four_bytes_address_mode = false;
986 break;
987 case EXTEND_ADDR_READ:
988 s->data[0] = s->ear;
989 s->pos = 0;
990 s->len = 1;
991 s->state = STATE_READING_DATA;
992 break;
993 case EXTEND_ADDR_WRITE:
994 if (s->write_enable) {
995 s->needed_bytes = 1;
996 s->pos = 0;
997 s->len = 0;
998 s->state = STATE_COLLECTING_DATA;
1000 break;
1001 case RNVCR:
1002 s->data[0] = s->nonvolatile_cfg & 0xFF;
1003 s->data[1] = (s->nonvolatile_cfg >> 8) & 0xFF;
1004 s->pos = 0;
1005 s->len = 2;
1006 s->state = STATE_READING_DATA;
1007 break;
1008 case WNVCR:
1009 if (s->write_enable && get_man(s) == MAN_NUMONYX) {
1010 s->needed_bytes = 2;
1011 s->pos = 0;
1012 s->len = 0;
1013 s->state = STATE_COLLECTING_DATA;
1015 break;
1016 case RVCR:
1017 s->data[0] = s->volatile_cfg & 0xFF;
1018 s->pos = 0;
1019 s->len = 1;
1020 s->state = STATE_READING_DATA;
1021 break;
1022 case WVCR:
1023 if (s->write_enable) {
1024 s->needed_bytes = 1;
1025 s->pos = 0;
1026 s->len = 0;
1027 s->state = STATE_COLLECTING_DATA;
1029 break;
1030 case REVCR:
1031 s->data[0] = s->enh_volatile_cfg & 0xFF;
1032 s->pos = 0;
1033 s->len = 1;
1034 s->state = STATE_READING_DATA;
1035 break;
1036 case WEVCR:
1037 if (s->write_enable) {
1038 s->needed_bytes = 1;
1039 s->pos = 0;
1040 s->len = 0;
1041 s->state = STATE_COLLECTING_DATA;
1043 break;
1044 case RESET_ENABLE:
1045 s->reset_enable = true;
1046 break;
1047 case RESET_MEMORY:
1048 if (s->reset_enable) {
1049 reset_memory(s);
1051 break;
1052 case RDCR_EQIO:
1053 switch (get_man(s)) {
1054 case MAN_SPANSION:
1055 s->data[0] = (!!s->quad_enable) << 1;
1056 s->pos = 0;
1057 s->len = 1;
1058 s->state = STATE_READING_DATA;
1059 break;
1060 case MAN_MACRONIX:
1061 s->quad_enable = true;
1062 break;
1063 default:
1064 break;
1066 break;
1067 case RSTQIO:
1068 s->quad_enable = false;
1069 break;
1070 default:
1071 qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Unknown cmd %x\n", value);
1072 break;
1076 static int m25p80_cs(SSISlave *ss, bool select)
1078 Flash *s = M25P80(ss);
1080 if (select) {
1081 if (s->state == STATE_COLLECTING_VAR_LEN_DATA) {
1082 complete_collecting_data(s);
1084 s->len = 0;
1085 s->pos = 0;
1086 s->state = STATE_IDLE;
1087 flash_sync_dirty(s, -1);
1090 DB_PRINT_L(0, "%sselect\n", select ? "de" : "");
1092 return 0;
1095 static uint32_t m25p80_transfer8(SSISlave *ss, uint32_t tx)
1097 Flash *s = M25P80(ss);
1098 uint32_t r = 0;
1100 switch (s->state) {
1102 case STATE_PAGE_PROGRAM:
1103 DB_PRINT_L(1, "page program cur_addr=%#" PRIx32 " data=%" PRIx8 "\n",
1104 s->cur_addr, (uint8_t)tx);
1105 flash_write8(s, s->cur_addr, (uint8_t)tx);
1106 s->cur_addr = (s->cur_addr + 1) & (s->size - 1);
1107 break;
1109 case STATE_READ:
1110 r = s->storage[s->cur_addr];
1111 DB_PRINT_L(1, "READ 0x%" PRIx32 "=%" PRIx8 "\n", s->cur_addr,
1112 (uint8_t)r);
1113 s->cur_addr = (s->cur_addr + 1) & (s->size - 1);
1114 break;
1116 case STATE_COLLECTING_DATA:
1117 case STATE_COLLECTING_VAR_LEN_DATA:
1118 s->data[s->len] = (uint8_t)tx;
1119 s->len++;
1121 if (s->len == s->needed_bytes) {
1122 complete_collecting_data(s);
1124 break;
1126 case STATE_READING_DATA:
1127 r = s->data[s->pos];
1128 s->pos++;
1129 if (s->pos == s->len) {
1130 s->pos = 0;
1131 s->state = STATE_IDLE;
1133 break;
1135 default:
1136 case STATE_IDLE:
1137 decode_new_cmd(s, (uint8_t)tx);
1138 break;
1141 return r;
1144 static void m25p80_realize(SSISlave *ss, Error **errp)
1146 Flash *s = M25P80(ss);
1147 M25P80Class *mc = M25P80_GET_CLASS(s);
1149 s->pi = mc->pi;
1151 s->size = s->pi->sector_size * s->pi->n_sectors;
1152 s->dirty_page = -1;
1154 if (s->blk) {
1155 DB_PRINT_L(0, "Binding to IF_MTD drive\n");
1156 s->storage = blk_blockalign(s->blk, s->size);
1158 if (blk_pread(s->blk, 0, s->storage, s->size) != s->size) {
1159 error_setg(errp, "failed to read the initial flash content");
1160 return;
1162 } else {
1163 DB_PRINT_L(0, "No BDRV - binding to RAM\n");
1164 s->storage = blk_blockalign(NULL, s->size);
1165 memset(s->storage, 0xFF, s->size);
1169 static void m25p80_reset(DeviceState *d)
1171 Flash *s = M25P80(d);
1173 reset_memory(s);
1176 static void m25p80_pre_save(void *opaque)
1178 flash_sync_dirty((Flash *)opaque, -1);
1181 static Property m25p80_properties[] = {
1182 /* This is default value for Micron flash */
1183 DEFINE_PROP_UINT32("nonvolatile-cfg", Flash, nonvolatile_cfg, 0x8FFF),
1184 DEFINE_PROP_UINT8("spansion-cr1nv", Flash, spansion_cr1nv, 0x0),
1185 DEFINE_PROP_UINT8("spansion-cr2nv", Flash, spansion_cr2nv, 0x8),
1186 DEFINE_PROP_UINT8("spansion-cr3nv", Flash, spansion_cr3nv, 0x2),
1187 DEFINE_PROP_UINT8("spansion-cr4nv", Flash, spansion_cr4nv, 0x10),
1188 DEFINE_PROP_DRIVE("drive", Flash, blk),
1189 DEFINE_PROP_END_OF_LIST(),
1192 static const VMStateDescription vmstate_m25p80 = {
1193 .name = "m25p80",
1194 .version_id = 0,
1195 .minimum_version_id = 0,
1196 .pre_save = m25p80_pre_save,
1197 .fields = (VMStateField[]) {
1198 VMSTATE_UINT8(state, Flash),
1199 VMSTATE_UINT8_ARRAY(data, Flash, 16),
1200 VMSTATE_UINT32(len, Flash),
1201 VMSTATE_UINT32(pos, Flash),
1202 VMSTATE_UINT8(needed_bytes, Flash),
1203 VMSTATE_UINT8(cmd_in_progress, Flash),
1204 VMSTATE_UINT32(cur_addr, Flash),
1205 VMSTATE_BOOL(write_enable, Flash),
1206 VMSTATE_BOOL(reset_enable, Flash),
1207 VMSTATE_UINT8(ear, Flash),
1208 VMSTATE_BOOL(four_bytes_address_mode, Flash),
1209 VMSTATE_UINT32(nonvolatile_cfg, Flash),
1210 VMSTATE_UINT32(volatile_cfg, Flash),
1211 VMSTATE_UINT32(enh_volatile_cfg, Flash),
1212 VMSTATE_BOOL(quad_enable, Flash),
1213 VMSTATE_UINT8(spansion_cr1nv, Flash),
1214 VMSTATE_UINT8(spansion_cr2nv, Flash),
1215 VMSTATE_UINT8(spansion_cr3nv, Flash),
1216 VMSTATE_UINT8(spansion_cr4nv, Flash),
1217 VMSTATE_END_OF_LIST()
1221 static void m25p80_class_init(ObjectClass *klass, void *data)
1223 DeviceClass *dc = DEVICE_CLASS(klass);
1224 SSISlaveClass *k = SSI_SLAVE_CLASS(klass);
1225 M25P80Class *mc = M25P80_CLASS(klass);
1227 k->realize = m25p80_realize;
1228 k->transfer = m25p80_transfer8;
1229 k->set_cs = m25p80_cs;
1230 k->cs_polarity = SSI_CS_LOW;
1231 dc->vmsd = &vmstate_m25p80;
1232 dc->props = m25p80_properties;
1233 dc->reset = m25p80_reset;
1234 mc->pi = data;
1237 static const TypeInfo m25p80_info = {
1238 .name = TYPE_M25P80,
1239 .parent = TYPE_SSI_SLAVE,
1240 .instance_size = sizeof(Flash),
1241 .class_size = sizeof(M25P80Class),
1242 .abstract = true,
1245 static void m25p80_register_types(void)
1247 int i;
1249 type_register_static(&m25p80_info);
1250 for (i = 0; i < ARRAY_SIZE(known_devices); ++i) {
1251 TypeInfo ti = {
1252 .name = known_devices[i].part_name,
1253 .parent = TYPE_M25P80,
1254 .class_init = m25p80_class_init,
1255 .class_data = (void *)&known_devices[i],
1257 type_register(&ti);
1261 type_init(m25p80_register_types)