block: Only the main loop can change AioContexts
[qemu/ar7.git] / hw / intc / arm_gic.c
blob77427a418815da464eec00221642d33c73832ff6
1 /*
2 * ARM Generic/Distributed Interrupt Controller
4 * Copyright (c) 2006-2007 CodeSourcery.
5 * Written by Paul Brook
7 * This code is licensed under the GPL.
8 */
10 /* This file contains implementation code for the RealView EB interrupt
11 * controller, MPCore distributed interrupt controller and ARMv7-M
12 * Nested Vectored Interrupt Controller.
13 * It is compiled in two ways:
14 * (1) as a standalone file to produce a sysbus device which is a GIC
15 * that can be used on the realview board and as one of the builtin
16 * private peripherals for the ARM MP CPUs (11MPCore, A9, etc)
17 * (2) by being directly #included into armv7m_nvic.c to produce the
18 * armv7m_nvic device.
21 #include "qemu/osdep.h"
22 #include "hw/sysbus.h"
23 #include "gic_internal.h"
24 #include "qapi/error.h"
25 #include "qom/cpu.h"
26 #include "qemu/log.h"
27 #include "qemu/module.h"
28 #include "trace.h"
29 #include "sysemu/kvm.h"
31 /* #define DEBUG_GIC */
33 #ifdef DEBUG_GIC
34 #define DEBUG_GIC_GATE 1
35 #else
36 #define DEBUG_GIC_GATE 0
37 #endif
39 #define DPRINTF(fmt, ...) do { \
40 if (DEBUG_GIC_GATE) { \
41 fprintf(stderr, "%s: " fmt, __func__, ## __VA_ARGS__); \
42 } \
43 } while (0)
45 static const uint8_t gic_id_11mpcore[] = {
46 0x00, 0x00, 0x00, 0x00, 0x90, 0x13, 0x04, 0x00, 0x0d, 0xf0, 0x05, 0xb1
49 static const uint8_t gic_id_gicv1[] = {
50 0x04, 0x00, 0x00, 0x00, 0x90, 0xb3, 0x1b, 0x00, 0x0d, 0xf0, 0x05, 0xb1
53 static const uint8_t gic_id_gicv2[] = {
54 0x04, 0x00, 0x00, 0x00, 0x90, 0xb4, 0x2b, 0x00, 0x0d, 0xf0, 0x05, 0xb1
57 static inline int gic_get_current_cpu(GICState *s)
59 if (s->num_cpu > 1) {
60 return current_cpu->cpu_index;
62 return 0;
65 static inline int gic_get_current_vcpu(GICState *s)
67 return gic_get_current_cpu(s) + GIC_NCPU;
70 /* Return true if this GIC config has interrupt groups, which is
71 * true if we're a GICv2, or a GICv1 with the security extensions.
73 static inline bool gic_has_groups(GICState *s)
75 return s->revision == 2 || s->security_extn;
78 static inline bool gic_cpu_ns_access(GICState *s, int cpu, MemTxAttrs attrs)
80 return !gic_is_vcpu(cpu) && s->security_extn && !attrs.secure;
83 static inline void gic_get_best_irq(GICState *s, int cpu,
84 int *best_irq, int *best_prio, int *group)
86 int irq;
87 int cm = 1 << cpu;
89 *best_irq = 1023;
90 *best_prio = 0x100;
92 for (irq = 0; irq < s->num_irq; irq++) {
93 if (GIC_DIST_TEST_ENABLED(irq, cm) && gic_test_pending(s, irq, cm) &&
94 (!GIC_DIST_TEST_ACTIVE(irq, cm)) &&
95 (irq < GIC_INTERNAL || GIC_DIST_TARGET(irq) & cm)) {
96 if (GIC_DIST_GET_PRIORITY(irq, cpu) < *best_prio) {
97 *best_prio = GIC_DIST_GET_PRIORITY(irq, cpu);
98 *best_irq = irq;
103 if (*best_irq < 1023) {
104 *group = GIC_DIST_TEST_GROUP(*best_irq, cm);
108 static inline void gic_get_best_virq(GICState *s, int cpu,
109 int *best_irq, int *best_prio, int *group)
111 int lr_idx = 0;
113 *best_irq = 1023;
114 *best_prio = 0x100;
116 for (lr_idx = 0; lr_idx < s->num_lrs; lr_idx++) {
117 uint32_t lr_entry = s->h_lr[lr_idx][cpu];
118 int state = GICH_LR_STATE(lr_entry);
120 if (state == GICH_LR_STATE_PENDING) {
121 int prio = GICH_LR_PRIORITY(lr_entry);
123 if (prio < *best_prio) {
124 *best_prio = prio;
125 *best_irq = GICH_LR_VIRT_ID(lr_entry);
126 *group = GICH_LR_GROUP(lr_entry);
132 /* Return true if IRQ signaling is enabled for the given cpu and at least one
133 * of the given groups:
134 * - in the non-virt case, the distributor must be enabled for one of the
135 * given groups
136 * - in the virt case, the virtual interface must be enabled.
137 * - in all cases, the (v)CPU interface must be enabled for one of the given
138 * groups.
140 static inline bool gic_irq_signaling_enabled(GICState *s, int cpu, bool virt,
141 int group_mask)
143 if (!virt && !(s->ctlr & group_mask)) {
144 return false;
147 if (virt && !(s->h_hcr[cpu] & R_GICH_HCR_EN_MASK)) {
148 return false;
151 if (!(s->cpu_ctlr[cpu] & group_mask)) {
152 return false;
155 return true;
158 /* TODO: Many places that call this routine could be optimized. */
159 /* Update interrupt status after enabled or pending bits have been changed. */
160 static inline void gic_update_internal(GICState *s, bool virt)
162 int best_irq;
163 int best_prio;
164 int irq_level, fiq_level;
165 int cpu, cpu_iface;
166 int group = 0;
167 qemu_irq *irq_lines = virt ? s->parent_virq : s->parent_irq;
168 qemu_irq *fiq_lines = virt ? s->parent_vfiq : s->parent_fiq;
170 for (cpu = 0; cpu < s->num_cpu; cpu++) {
171 cpu_iface = virt ? (cpu + GIC_NCPU) : cpu;
173 s->current_pending[cpu_iface] = 1023;
174 if (!gic_irq_signaling_enabled(s, cpu, virt,
175 GICD_CTLR_EN_GRP0 | GICD_CTLR_EN_GRP1)) {
176 qemu_irq_lower(irq_lines[cpu]);
177 qemu_irq_lower(fiq_lines[cpu]);
178 continue;
181 if (virt) {
182 gic_get_best_virq(s, cpu, &best_irq, &best_prio, &group);
183 } else {
184 gic_get_best_irq(s, cpu, &best_irq, &best_prio, &group);
187 if (best_irq != 1023) {
188 trace_gic_update_bestirq(virt ? "vcpu" : "cpu", cpu,
189 best_irq, best_prio,
190 s->priority_mask[cpu_iface],
191 s->running_priority[cpu_iface]);
194 irq_level = fiq_level = 0;
196 if (best_prio < s->priority_mask[cpu_iface]) {
197 s->current_pending[cpu_iface] = best_irq;
198 if (best_prio < s->running_priority[cpu_iface]) {
199 if (gic_irq_signaling_enabled(s, cpu, virt, 1 << group)) {
200 if (group == 0 &&
201 s->cpu_ctlr[cpu_iface] & GICC_CTLR_FIQ_EN) {
202 DPRINTF("Raised pending FIQ %d (cpu %d)\n",
203 best_irq, cpu_iface);
204 fiq_level = 1;
205 trace_gic_update_set_irq(cpu, virt ? "vfiq" : "fiq",
206 fiq_level);
207 } else {
208 DPRINTF("Raised pending IRQ %d (cpu %d)\n",
209 best_irq, cpu_iface);
210 irq_level = 1;
211 trace_gic_update_set_irq(cpu, virt ? "virq" : "irq",
212 irq_level);
218 qemu_set_irq(irq_lines[cpu], irq_level);
219 qemu_set_irq(fiq_lines[cpu], fiq_level);
223 static void gic_update(GICState *s)
225 gic_update_internal(s, false);
228 /* Return true if this LR is empty, i.e. the corresponding bit
229 * in ELRSR is set.
231 static inline bool gic_lr_entry_is_free(uint32_t entry)
233 return (GICH_LR_STATE(entry) == GICH_LR_STATE_INVALID)
234 && (GICH_LR_HW(entry) || !GICH_LR_EOI(entry));
237 /* Return true if this LR should trigger an EOI maintenance interrupt, i.e. the
238 * corrsponding bit in EISR is set.
240 static inline bool gic_lr_entry_is_eoi(uint32_t entry)
242 return (GICH_LR_STATE(entry) == GICH_LR_STATE_INVALID)
243 && !GICH_LR_HW(entry) && GICH_LR_EOI(entry);
246 static inline void gic_extract_lr_info(GICState *s, int cpu,
247 int *num_eoi, int *num_valid, int *num_pending)
249 int lr_idx;
251 *num_eoi = 0;
252 *num_valid = 0;
253 *num_pending = 0;
255 for (lr_idx = 0; lr_idx < s->num_lrs; lr_idx++) {
256 uint32_t *entry = &s->h_lr[lr_idx][cpu];
258 if (gic_lr_entry_is_eoi(*entry)) {
259 (*num_eoi)++;
262 if (GICH_LR_STATE(*entry) != GICH_LR_STATE_INVALID) {
263 (*num_valid)++;
266 if (GICH_LR_STATE(*entry) == GICH_LR_STATE_PENDING) {
267 (*num_pending)++;
272 static void gic_compute_misr(GICState *s, int cpu)
274 uint32_t value = 0;
275 int vcpu = cpu + GIC_NCPU;
277 int num_eoi, num_valid, num_pending;
279 gic_extract_lr_info(s, cpu, &num_eoi, &num_valid, &num_pending);
281 /* EOI */
282 if (num_eoi) {
283 value |= R_GICH_MISR_EOI_MASK;
286 /* U: true if only 0 or 1 LR entry is valid */
287 if ((s->h_hcr[cpu] & R_GICH_HCR_UIE_MASK) && (num_valid < 2)) {
288 value |= R_GICH_MISR_U_MASK;
291 /* LRENP: EOICount is not 0 */
292 if ((s->h_hcr[cpu] & R_GICH_HCR_LRENPIE_MASK) &&
293 ((s->h_hcr[cpu] & R_GICH_HCR_EOICount_MASK) != 0)) {
294 value |= R_GICH_MISR_LRENP_MASK;
297 /* NP: no pending interrupts */
298 if ((s->h_hcr[cpu] & R_GICH_HCR_NPIE_MASK) && (num_pending == 0)) {
299 value |= R_GICH_MISR_NP_MASK;
302 /* VGrp0E: group0 virq signaling enabled */
303 if ((s->h_hcr[cpu] & R_GICH_HCR_VGRP0EIE_MASK) &&
304 (s->cpu_ctlr[vcpu] & GICC_CTLR_EN_GRP0)) {
305 value |= R_GICH_MISR_VGrp0E_MASK;
308 /* VGrp0D: group0 virq signaling disabled */
309 if ((s->h_hcr[cpu] & R_GICH_HCR_VGRP0DIE_MASK) &&
310 !(s->cpu_ctlr[vcpu] & GICC_CTLR_EN_GRP0)) {
311 value |= R_GICH_MISR_VGrp0D_MASK;
314 /* VGrp1E: group1 virq signaling enabled */
315 if ((s->h_hcr[cpu] & R_GICH_HCR_VGRP1EIE_MASK) &&
316 (s->cpu_ctlr[vcpu] & GICC_CTLR_EN_GRP1)) {
317 value |= R_GICH_MISR_VGrp1E_MASK;
320 /* VGrp1D: group1 virq signaling disabled */
321 if ((s->h_hcr[cpu] & R_GICH_HCR_VGRP1DIE_MASK) &&
322 !(s->cpu_ctlr[vcpu] & GICC_CTLR_EN_GRP1)) {
323 value |= R_GICH_MISR_VGrp1D_MASK;
326 s->h_misr[cpu] = value;
329 static void gic_update_maintenance(GICState *s)
331 int cpu = 0;
332 int maint_level;
334 for (cpu = 0; cpu < s->num_cpu; cpu++) {
335 gic_compute_misr(s, cpu);
336 maint_level = (s->h_hcr[cpu] & R_GICH_HCR_EN_MASK) && s->h_misr[cpu];
338 trace_gic_update_maintenance_irq(cpu, maint_level);
339 qemu_set_irq(s->maintenance_irq[cpu], maint_level);
343 static void gic_update_virt(GICState *s)
345 gic_update_internal(s, true);
346 gic_update_maintenance(s);
349 static void gic_set_irq_11mpcore(GICState *s, int irq, int level,
350 int cm, int target)
352 if (level) {
353 GIC_DIST_SET_LEVEL(irq, cm);
354 if (GIC_DIST_TEST_EDGE_TRIGGER(irq) || GIC_DIST_TEST_ENABLED(irq, cm)) {
355 DPRINTF("Set %d pending mask %x\n", irq, target);
356 GIC_DIST_SET_PENDING(irq, target);
358 } else {
359 GIC_DIST_CLEAR_LEVEL(irq, cm);
363 static void gic_set_irq_generic(GICState *s, int irq, int level,
364 int cm, int target)
366 if (level) {
367 GIC_DIST_SET_LEVEL(irq, cm);
368 DPRINTF("Set %d pending mask %x\n", irq, target);
369 if (GIC_DIST_TEST_EDGE_TRIGGER(irq)) {
370 GIC_DIST_SET_PENDING(irq, target);
372 } else {
373 GIC_DIST_CLEAR_LEVEL(irq, cm);
377 /* Process a change in an external IRQ input. */
378 static void gic_set_irq(void *opaque, int irq, int level)
380 /* Meaning of the 'irq' parameter:
381 * [0..N-1] : external interrupts
382 * [N..N+31] : PPI (internal) interrupts for CPU 0
383 * [N+32..N+63] : PPI (internal interrupts for CPU 1
384 * ...
386 GICState *s = (GICState *)opaque;
387 int cm, target;
388 if (irq < (s->num_irq - GIC_INTERNAL)) {
389 /* The first external input line is internal interrupt 32. */
390 cm = ALL_CPU_MASK;
391 irq += GIC_INTERNAL;
392 target = GIC_DIST_TARGET(irq);
393 } else {
394 int cpu;
395 irq -= (s->num_irq - GIC_INTERNAL);
396 cpu = irq / GIC_INTERNAL;
397 irq %= GIC_INTERNAL;
398 cm = 1 << cpu;
399 target = cm;
402 assert(irq >= GIC_NR_SGIS);
404 if (level == GIC_DIST_TEST_LEVEL(irq, cm)) {
405 return;
408 if (s->revision == REV_11MPCORE) {
409 gic_set_irq_11mpcore(s, irq, level, cm, target);
410 } else {
411 gic_set_irq_generic(s, irq, level, cm, target);
413 trace_gic_set_irq(irq, level, cm, target);
415 gic_update(s);
418 static uint16_t gic_get_current_pending_irq(GICState *s, int cpu,
419 MemTxAttrs attrs)
421 uint16_t pending_irq = s->current_pending[cpu];
423 if (pending_irq < GIC_MAXIRQ && gic_has_groups(s)) {
424 int group = gic_test_group(s, pending_irq, cpu);
426 /* On a GIC without the security extensions, reading this register
427 * behaves in the same way as a secure access to a GIC with them.
429 bool secure = !gic_cpu_ns_access(s, cpu, attrs);
431 if (group == 0 && !secure) {
432 /* Group0 interrupts hidden from Non-secure access */
433 return 1023;
435 if (group == 1 && secure && !(s->cpu_ctlr[cpu] & GICC_CTLR_ACK_CTL)) {
436 /* Group1 interrupts only seen by Secure access if
437 * AckCtl bit set.
439 return 1022;
442 return pending_irq;
445 static int gic_get_group_priority(GICState *s, int cpu, int irq)
447 /* Return the group priority of the specified interrupt
448 * (which is the top bits of its priority, with the number
449 * of bits masked determined by the applicable binary point register).
451 int bpr;
452 uint32_t mask;
454 if (gic_has_groups(s) &&
455 !(s->cpu_ctlr[cpu] & GICC_CTLR_CBPR) &&
456 gic_test_group(s, irq, cpu)) {
457 bpr = s->abpr[cpu] - 1;
458 assert(bpr >= 0);
459 } else {
460 bpr = s->bpr[cpu];
463 /* a BPR of 0 means the group priority bits are [7:1];
464 * a BPR of 1 means they are [7:2], and so on down to
465 * a BPR of 7 meaning no group priority bits at all.
467 mask = ~0U << ((bpr & 7) + 1);
469 return gic_get_priority(s, irq, cpu) & mask;
472 static void gic_activate_irq(GICState *s, int cpu, int irq)
474 /* Set the appropriate Active Priority Register bit for this IRQ,
475 * and update the running priority.
477 int prio = gic_get_group_priority(s, cpu, irq);
478 int min_bpr = gic_is_vcpu(cpu) ? GIC_VIRT_MIN_BPR : GIC_MIN_BPR;
479 int preemption_level = prio >> (min_bpr + 1);
480 int regno = preemption_level / 32;
481 int bitno = preemption_level % 32;
482 uint32_t *papr = NULL;
484 if (gic_is_vcpu(cpu)) {
485 assert(regno == 0);
486 papr = &s->h_apr[gic_get_vcpu_real_id(cpu)];
487 } else if (gic_has_groups(s) && gic_test_group(s, irq, cpu)) {
488 papr = &s->nsapr[regno][cpu];
489 } else {
490 papr = &s->apr[regno][cpu];
493 *papr |= (1 << bitno);
495 s->running_priority[cpu] = prio;
496 gic_set_active(s, irq, cpu);
499 static int gic_get_prio_from_apr_bits(GICState *s, int cpu)
501 /* Recalculate the current running priority for this CPU based
502 * on the set bits in the Active Priority Registers.
504 int i;
506 if (gic_is_vcpu(cpu)) {
507 uint32_t apr = s->h_apr[gic_get_vcpu_real_id(cpu)];
508 if (apr) {
509 return ctz32(apr) << (GIC_VIRT_MIN_BPR + 1);
510 } else {
511 return 0x100;
515 for (i = 0; i < GIC_NR_APRS; i++) {
516 uint32_t apr = s->apr[i][cpu] | s->nsapr[i][cpu];
517 if (!apr) {
518 continue;
520 return (i * 32 + ctz32(apr)) << (GIC_MIN_BPR + 1);
522 return 0x100;
525 static void gic_drop_prio(GICState *s, int cpu, int group)
527 /* Drop the priority of the currently active interrupt in the
528 * specified group.
530 * Note that we can guarantee (because of the requirement to nest
531 * GICC_IAR reads [which activate an interrupt and raise priority]
532 * with GICC_EOIR writes [which drop the priority for the interrupt])
533 * that the interrupt we're being called for is the highest priority
534 * active interrupt, meaning that it has the lowest set bit in the
535 * APR registers.
537 * If the guest does not honour the ordering constraints then the
538 * behaviour of the GIC is UNPREDICTABLE, which for us means that
539 * the values of the APR registers might become incorrect and the
540 * running priority will be wrong, so interrupts that should preempt
541 * might not do so, and interrupts that should not preempt might do so.
543 if (gic_is_vcpu(cpu)) {
544 int rcpu = gic_get_vcpu_real_id(cpu);
546 if (s->h_apr[rcpu]) {
547 /* Clear lowest set bit */
548 s->h_apr[rcpu] &= s->h_apr[rcpu] - 1;
550 } else {
551 int i;
553 for (i = 0; i < GIC_NR_APRS; i++) {
554 uint32_t *papr = group ? &s->nsapr[i][cpu] : &s->apr[i][cpu];
555 if (!*papr) {
556 continue;
558 /* Clear lowest set bit */
559 *papr &= *papr - 1;
560 break;
564 s->running_priority[cpu] = gic_get_prio_from_apr_bits(s, cpu);
567 static inline uint32_t gic_clear_pending_sgi(GICState *s, int irq, int cpu)
569 int src;
570 uint32_t ret;
572 if (!gic_is_vcpu(cpu)) {
573 /* Lookup the source CPU for the SGI and clear this in the
574 * sgi_pending map. Return the src and clear the overall pending
575 * state on this CPU if the SGI is not pending from any CPUs.
577 assert(s->sgi_pending[irq][cpu] != 0);
578 src = ctz32(s->sgi_pending[irq][cpu]);
579 s->sgi_pending[irq][cpu] &= ~(1 << src);
580 if (s->sgi_pending[irq][cpu] == 0) {
581 gic_clear_pending(s, irq, cpu);
583 ret = irq | ((src & 0x7) << 10);
584 } else {
585 uint32_t *lr_entry = gic_get_lr_entry(s, irq, cpu);
586 src = GICH_LR_CPUID(*lr_entry);
588 gic_clear_pending(s, irq, cpu);
589 ret = irq | (src << 10);
592 return ret;
595 uint32_t gic_acknowledge_irq(GICState *s, int cpu, MemTxAttrs attrs)
597 int ret, irq;
599 /* gic_get_current_pending_irq() will return 1022 or 1023 appropriately
600 * for the case where this GIC supports grouping and the pending interrupt
601 * is in the wrong group.
603 irq = gic_get_current_pending_irq(s, cpu, attrs);
604 trace_gic_acknowledge_irq(gic_is_vcpu(cpu) ? "vcpu" : "cpu",
605 gic_get_vcpu_real_id(cpu), irq);
607 if (irq >= GIC_MAXIRQ) {
608 DPRINTF("ACK, no pending interrupt or it is hidden: %d\n", irq);
609 return irq;
612 if (gic_get_priority(s, irq, cpu) >= s->running_priority[cpu]) {
613 DPRINTF("ACK, pending interrupt (%d) has insufficient priority\n", irq);
614 return 1023;
617 gic_activate_irq(s, cpu, irq);
619 if (s->revision == REV_11MPCORE) {
620 /* Clear pending flags for both level and edge triggered interrupts.
621 * Level triggered IRQs will be reasserted once they become inactive.
623 gic_clear_pending(s, irq, cpu);
624 ret = irq;
625 } else {
626 if (irq < GIC_NR_SGIS) {
627 ret = gic_clear_pending_sgi(s, irq, cpu);
628 } else {
629 gic_clear_pending(s, irq, cpu);
630 ret = irq;
634 if (gic_is_vcpu(cpu)) {
635 gic_update_virt(s);
636 } else {
637 gic_update(s);
639 DPRINTF("ACK %d\n", irq);
640 return ret;
643 void gic_dist_set_priority(GICState *s, int cpu, int irq, uint8_t val,
644 MemTxAttrs attrs)
646 if (s->security_extn && !attrs.secure) {
647 if (!GIC_DIST_TEST_GROUP(irq, (1 << cpu))) {
648 return; /* Ignore Non-secure access of Group0 IRQ */
650 val = 0x80 | (val >> 1); /* Non-secure view */
653 if (irq < GIC_INTERNAL) {
654 s->priority1[irq][cpu] = val;
655 } else {
656 s->priority2[(irq) - GIC_INTERNAL] = val;
660 static uint32_t gic_dist_get_priority(GICState *s, int cpu, int irq,
661 MemTxAttrs attrs)
663 uint32_t prio = GIC_DIST_GET_PRIORITY(irq, cpu);
665 if (s->security_extn && !attrs.secure) {
666 if (!GIC_DIST_TEST_GROUP(irq, (1 << cpu))) {
667 return 0; /* Non-secure access cannot read priority of Group0 IRQ */
669 prio = (prio << 1) & 0xff; /* Non-secure view */
671 return prio;
674 static void gic_set_priority_mask(GICState *s, int cpu, uint8_t pmask,
675 MemTxAttrs attrs)
677 if (gic_cpu_ns_access(s, cpu, attrs)) {
678 if (s->priority_mask[cpu] & 0x80) {
679 /* Priority Mask in upper half */
680 pmask = 0x80 | (pmask >> 1);
681 } else {
682 /* Non-secure write ignored if priority mask is in lower half */
683 return;
686 s->priority_mask[cpu] = pmask;
689 static uint32_t gic_get_priority_mask(GICState *s, int cpu, MemTxAttrs attrs)
691 uint32_t pmask = s->priority_mask[cpu];
693 if (gic_cpu_ns_access(s, cpu, attrs)) {
694 if (pmask & 0x80) {
695 /* Priority Mask in upper half, return Non-secure view */
696 pmask = (pmask << 1) & 0xff;
697 } else {
698 /* Priority Mask in lower half, RAZ */
699 pmask = 0;
702 return pmask;
705 static uint32_t gic_get_cpu_control(GICState *s, int cpu, MemTxAttrs attrs)
707 uint32_t ret = s->cpu_ctlr[cpu];
709 if (gic_cpu_ns_access(s, cpu, attrs)) {
710 /* Construct the NS banked view of GICC_CTLR from the correct
711 * bits of the S banked view. We don't need to move the bypass
712 * control bits because we don't implement that (IMPDEF) part
713 * of the GIC architecture.
715 ret = (ret & (GICC_CTLR_EN_GRP1 | GICC_CTLR_EOIMODE_NS)) >> 1;
717 return ret;
720 static void gic_set_cpu_control(GICState *s, int cpu, uint32_t value,
721 MemTxAttrs attrs)
723 uint32_t mask;
725 if (gic_cpu_ns_access(s, cpu, attrs)) {
726 /* The NS view can only write certain bits in the register;
727 * the rest are unchanged
729 mask = GICC_CTLR_EN_GRP1;
730 if (s->revision == 2) {
731 mask |= GICC_CTLR_EOIMODE_NS;
733 s->cpu_ctlr[cpu] &= ~mask;
734 s->cpu_ctlr[cpu] |= (value << 1) & mask;
735 } else {
736 if (s->revision == 2) {
737 mask = s->security_extn ? GICC_CTLR_V2_S_MASK : GICC_CTLR_V2_MASK;
738 } else {
739 mask = s->security_extn ? GICC_CTLR_V1_S_MASK : GICC_CTLR_V1_MASK;
741 s->cpu_ctlr[cpu] = value & mask;
743 DPRINTF("CPU Interface %d: Group0 Interrupts %sabled, "
744 "Group1 Interrupts %sabled\n", cpu,
745 (s->cpu_ctlr[cpu] & GICC_CTLR_EN_GRP0) ? "En" : "Dis",
746 (s->cpu_ctlr[cpu] & GICC_CTLR_EN_GRP1) ? "En" : "Dis");
749 static uint8_t gic_get_running_priority(GICState *s, int cpu, MemTxAttrs attrs)
751 if ((s->revision != REV_11MPCORE) && (s->running_priority[cpu] > 0xff)) {
752 /* Idle priority */
753 return 0xff;
756 if (gic_cpu_ns_access(s, cpu, attrs)) {
757 if (s->running_priority[cpu] & 0x80) {
758 /* Running priority in upper half of range: return the Non-secure
759 * view of the priority.
761 return s->running_priority[cpu] << 1;
762 } else {
763 /* Running priority in lower half of range: RAZ */
764 return 0;
766 } else {
767 return s->running_priority[cpu];
771 /* Return true if we should split priority drop and interrupt deactivation,
772 * ie whether the relevant EOIMode bit is set.
774 static bool gic_eoi_split(GICState *s, int cpu, MemTxAttrs attrs)
776 if (s->revision != 2) {
777 /* Before GICv2 prio-drop and deactivate are not separable */
778 return false;
780 if (gic_cpu_ns_access(s, cpu, attrs)) {
781 return s->cpu_ctlr[cpu] & GICC_CTLR_EOIMODE_NS;
783 return s->cpu_ctlr[cpu] & GICC_CTLR_EOIMODE;
786 static void gic_deactivate_irq(GICState *s, int cpu, int irq, MemTxAttrs attrs)
788 int group;
790 if (irq >= GIC_MAXIRQ || (!gic_is_vcpu(cpu) && irq >= s->num_irq)) {
792 * This handles two cases:
793 * 1. If software writes the ID of a spurious interrupt [ie 1023]
794 * to the GICC_DIR, the GIC ignores that write.
795 * 2. If software writes the number of a non-existent interrupt
796 * this must be a subcase of "value written is not an active interrupt"
797 * and so this is UNPREDICTABLE. We choose to ignore it. For vCPUs,
798 * all IRQs potentially exist, so this limit does not apply.
800 return;
803 if (!gic_eoi_split(s, cpu, attrs)) {
804 /* This is UNPREDICTABLE; we choose to ignore it */
805 qemu_log_mask(LOG_GUEST_ERROR,
806 "gic_deactivate_irq: GICC_DIR write when EOIMode clear");
807 return;
810 if (gic_is_vcpu(cpu) && !gic_virq_is_valid(s, irq, cpu)) {
811 /* This vIRQ does not have an LR entry which is either active or
812 * pending and active. Increment EOICount and ignore the write.
814 int rcpu = gic_get_vcpu_real_id(cpu);
815 s->h_hcr[rcpu] += 1 << R_GICH_HCR_EOICount_SHIFT;
817 /* Update the virtual interface in case a maintenance interrupt should
818 * be raised.
820 gic_update_virt(s);
821 return;
824 group = gic_has_groups(s) && gic_test_group(s, irq, cpu);
826 if (gic_cpu_ns_access(s, cpu, attrs) && !group) {
827 DPRINTF("Non-secure DI for Group0 interrupt %d ignored\n", irq);
828 return;
831 gic_clear_active(s, irq, cpu);
834 static void gic_complete_irq(GICState *s, int cpu, int irq, MemTxAttrs attrs)
836 int cm = 1 << cpu;
837 int group;
839 DPRINTF("EOI %d\n", irq);
840 if (gic_is_vcpu(cpu)) {
841 /* The call to gic_prio_drop() will clear a bit in GICH_APR iff the
842 * running prio is < 0x100.
844 bool prio_drop = s->running_priority[cpu] < 0x100;
846 if (irq >= GIC_MAXIRQ) {
847 /* Ignore spurious interrupt */
848 return;
851 gic_drop_prio(s, cpu, 0);
853 if (!gic_eoi_split(s, cpu, attrs)) {
854 bool valid = gic_virq_is_valid(s, irq, cpu);
855 if (prio_drop && !valid) {
856 /* We are in a situation where:
857 * - V_CTRL.EOIMode is false (no EOI split),
858 * - The call to gic_drop_prio() cleared a bit in GICH_APR,
859 * - This vIRQ does not have an LR entry which is either
860 * active or pending and active.
861 * In that case, we must increment EOICount.
863 int rcpu = gic_get_vcpu_real_id(cpu);
864 s->h_hcr[rcpu] += 1 << R_GICH_HCR_EOICount_SHIFT;
865 } else if (valid) {
866 gic_clear_active(s, irq, cpu);
870 gic_update_virt(s);
871 return;
874 if (irq >= s->num_irq) {
875 /* This handles two cases:
876 * 1. If software writes the ID of a spurious interrupt [ie 1023]
877 * to the GICC_EOIR, the GIC ignores that write.
878 * 2. If software writes the number of a non-existent interrupt
879 * this must be a subcase of "value written does not match the last
880 * valid interrupt value read from the Interrupt Acknowledge
881 * register" and so this is UNPREDICTABLE. We choose to ignore it.
883 return;
885 if (s->running_priority[cpu] == 0x100) {
886 return; /* No active IRQ. */
889 if (s->revision == REV_11MPCORE) {
890 /* Mark level triggered interrupts as pending if they are still
891 raised. */
892 if (!GIC_DIST_TEST_EDGE_TRIGGER(irq) && GIC_DIST_TEST_ENABLED(irq, cm)
893 && GIC_DIST_TEST_LEVEL(irq, cm)
894 && (GIC_DIST_TARGET(irq) & cm) != 0) {
895 DPRINTF("Set %d pending mask %x\n", irq, cm);
896 GIC_DIST_SET_PENDING(irq, cm);
900 group = gic_has_groups(s) && gic_test_group(s, irq, cpu);
902 if (gic_cpu_ns_access(s, cpu, attrs) && !group) {
903 DPRINTF("Non-secure EOI for Group0 interrupt %d ignored\n", irq);
904 return;
907 /* Secure EOI with GICC_CTLR.AckCtl == 0 when the IRQ is a Group 1
908 * interrupt is UNPREDICTABLE. We choose to handle it as if AckCtl == 1,
909 * i.e. go ahead and complete the irq anyway.
912 gic_drop_prio(s, cpu, group);
914 /* In GICv2 the guest can choose to split priority-drop and deactivate */
915 if (!gic_eoi_split(s, cpu, attrs)) {
916 gic_clear_active(s, irq, cpu);
918 gic_update(s);
921 static uint32_t gic_dist_readb(void *opaque, hwaddr offset, MemTxAttrs attrs)
923 GICState *s = (GICState *)opaque;
924 uint32_t res;
925 int irq;
926 int i;
927 int cpu;
928 int cm;
929 int mask;
931 cpu = gic_get_current_cpu(s);
932 cm = 1 << cpu;
933 if (offset < 0x100) {
934 if (offset == 0) { /* GICD_CTLR */
935 if (s->security_extn && !attrs.secure) {
936 /* The NS bank of this register is just an alias of the
937 * EnableGrp1 bit in the S bank version.
939 return extract32(s->ctlr, 1, 1);
940 } else {
941 return s->ctlr;
944 if (offset == 4)
945 /* Interrupt Controller Type Register */
946 return ((s->num_irq / 32) - 1)
947 | ((s->num_cpu - 1) << 5)
948 | (s->security_extn << 10);
949 if (offset < 0x08)
950 return 0;
951 if (offset >= 0x80) {
952 /* Interrupt Group Registers: these RAZ/WI if this is an NS
953 * access to a GIC with the security extensions, or if the GIC
954 * doesn't have groups at all.
956 res = 0;
957 if (!(s->security_extn && !attrs.secure) && gic_has_groups(s)) {
958 /* Every byte offset holds 8 group status bits */
959 irq = (offset - 0x080) * 8;
960 if (irq >= s->num_irq) {
961 goto bad_reg;
963 for (i = 0; i < 8; i++) {
964 if (GIC_DIST_TEST_GROUP(irq + i, cm)) {
965 res |= (1 << i);
969 return res;
971 goto bad_reg;
972 } else if (offset < 0x200) {
973 /* Interrupt Set/Clear Enable. */
974 if (offset < 0x180)
975 irq = (offset - 0x100) * 8;
976 else
977 irq = (offset - 0x180) * 8;
978 if (irq >= s->num_irq)
979 goto bad_reg;
980 res = 0;
981 for (i = 0; i < 8; i++) {
982 if (s->security_extn && !attrs.secure &&
983 !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
984 continue; /* Ignore Non-secure access of Group0 IRQ */
987 if (GIC_DIST_TEST_ENABLED(irq + i, cm)) {
988 res |= (1 << i);
991 } else if (offset < 0x300) {
992 /* Interrupt Set/Clear Pending. */
993 if (offset < 0x280)
994 irq = (offset - 0x200) * 8;
995 else
996 irq = (offset - 0x280) * 8;
997 if (irq >= s->num_irq)
998 goto bad_reg;
999 res = 0;
1000 mask = (irq < GIC_INTERNAL) ? cm : ALL_CPU_MASK;
1001 for (i = 0; i < 8; i++) {
1002 if (s->security_extn && !attrs.secure &&
1003 !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
1004 continue; /* Ignore Non-secure access of Group0 IRQ */
1007 if (gic_test_pending(s, irq + i, mask)) {
1008 res |= (1 << i);
1011 } else if (offset < 0x400) {
1012 /* Interrupt Set/Clear Active. */
1013 if (offset < 0x380) {
1014 irq = (offset - 0x300) * 8;
1015 } else if (s->revision == 2) {
1016 irq = (offset - 0x380) * 8;
1017 } else {
1018 goto bad_reg;
1021 if (irq >= s->num_irq)
1022 goto bad_reg;
1023 res = 0;
1024 mask = (irq < GIC_INTERNAL) ? cm : ALL_CPU_MASK;
1025 for (i = 0; i < 8; i++) {
1026 if (s->security_extn && !attrs.secure &&
1027 !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
1028 continue; /* Ignore Non-secure access of Group0 IRQ */
1031 if (GIC_DIST_TEST_ACTIVE(irq + i, mask)) {
1032 res |= (1 << i);
1035 } else if (offset < 0x800) {
1036 /* Interrupt Priority. */
1037 irq = (offset - 0x400);
1038 if (irq >= s->num_irq)
1039 goto bad_reg;
1040 res = gic_dist_get_priority(s, cpu, irq, attrs);
1041 } else if (offset < 0xc00) {
1042 /* Interrupt CPU Target. */
1043 if (s->num_cpu == 1 && s->revision != REV_11MPCORE) {
1044 /* For uniprocessor GICs these RAZ/WI */
1045 res = 0;
1046 } else {
1047 irq = (offset - 0x800);
1048 if (irq >= s->num_irq) {
1049 goto bad_reg;
1051 if (irq < 29 && s->revision == REV_11MPCORE) {
1052 res = 0;
1053 } else if (irq < GIC_INTERNAL) {
1054 res = cm;
1055 } else {
1056 res = GIC_DIST_TARGET(irq);
1059 } else if (offset < 0xf00) {
1060 /* Interrupt Configuration. */
1061 irq = (offset - 0xc00) * 4;
1062 if (irq >= s->num_irq)
1063 goto bad_reg;
1064 res = 0;
1065 for (i = 0; i < 4; i++) {
1066 if (s->security_extn && !attrs.secure &&
1067 !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
1068 continue; /* Ignore Non-secure access of Group0 IRQ */
1071 if (GIC_DIST_TEST_MODEL(irq + i)) {
1072 res |= (1 << (i * 2));
1074 if (GIC_DIST_TEST_EDGE_TRIGGER(irq + i)) {
1075 res |= (2 << (i * 2));
1078 } else if (offset < 0xf10) {
1079 goto bad_reg;
1080 } else if (offset < 0xf30) {
1081 if (s->revision == REV_11MPCORE) {
1082 goto bad_reg;
1085 if (offset < 0xf20) {
1086 /* GICD_CPENDSGIRn */
1087 irq = (offset - 0xf10);
1088 } else {
1089 irq = (offset - 0xf20);
1090 /* GICD_SPENDSGIRn */
1093 if (s->security_extn && !attrs.secure &&
1094 !GIC_DIST_TEST_GROUP(irq, 1 << cpu)) {
1095 res = 0; /* Ignore Non-secure access of Group0 IRQ */
1096 } else {
1097 res = s->sgi_pending[irq][cpu];
1099 } else if (offset < 0xfd0) {
1100 goto bad_reg;
1101 } else if (offset < 0x1000) {
1102 if (offset & 3) {
1103 res = 0;
1104 } else {
1105 switch (s->revision) {
1106 case REV_11MPCORE:
1107 res = gic_id_11mpcore[(offset - 0xfd0) >> 2];
1108 break;
1109 case 1:
1110 res = gic_id_gicv1[(offset - 0xfd0) >> 2];
1111 break;
1112 case 2:
1113 res = gic_id_gicv2[(offset - 0xfd0) >> 2];
1114 break;
1115 default:
1116 res = 0;
1119 } else {
1120 g_assert_not_reached();
1122 return res;
1123 bad_reg:
1124 qemu_log_mask(LOG_GUEST_ERROR,
1125 "gic_dist_readb: Bad offset %x\n", (int)offset);
1126 return 0;
1129 static MemTxResult gic_dist_read(void *opaque, hwaddr offset, uint64_t *data,
1130 unsigned size, MemTxAttrs attrs)
1132 switch (size) {
1133 case 1:
1134 *data = gic_dist_readb(opaque, offset, attrs);
1135 break;
1136 case 2:
1137 *data = gic_dist_readb(opaque, offset, attrs);
1138 *data |= gic_dist_readb(opaque, offset + 1, attrs) << 8;
1139 break;
1140 case 4:
1141 *data = gic_dist_readb(opaque, offset, attrs);
1142 *data |= gic_dist_readb(opaque, offset + 1, attrs) << 8;
1143 *data |= gic_dist_readb(opaque, offset + 2, attrs) << 16;
1144 *data |= gic_dist_readb(opaque, offset + 3, attrs) << 24;
1145 break;
1146 default:
1147 return MEMTX_ERROR;
1150 trace_gic_dist_read(offset, size, *data);
1151 return MEMTX_OK;
1154 static void gic_dist_writeb(void *opaque, hwaddr offset,
1155 uint32_t value, MemTxAttrs attrs)
1157 GICState *s = (GICState *)opaque;
1158 int irq;
1159 int i;
1160 int cpu;
1162 cpu = gic_get_current_cpu(s);
1163 if (offset < 0x100) {
1164 if (offset == 0) {
1165 if (s->security_extn && !attrs.secure) {
1166 /* NS version is just an alias of the S version's bit 1 */
1167 s->ctlr = deposit32(s->ctlr, 1, 1, value);
1168 } else if (gic_has_groups(s)) {
1169 s->ctlr = value & (GICD_CTLR_EN_GRP0 | GICD_CTLR_EN_GRP1);
1170 } else {
1171 s->ctlr = value & GICD_CTLR_EN_GRP0;
1173 DPRINTF("Distributor: Group0 %sabled; Group 1 %sabled\n",
1174 s->ctlr & GICD_CTLR_EN_GRP0 ? "En" : "Dis",
1175 s->ctlr & GICD_CTLR_EN_GRP1 ? "En" : "Dis");
1176 } else if (offset < 4) {
1177 /* ignored. */
1178 } else if (offset >= 0x80) {
1179 /* Interrupt Group Registers: RAZ/WI for NS access to secure
1180 * GIC, or for GICs without groups.
1182 if (!(s->security_extn && !attrs.secure) && gic_has_groups(s)) {
1183 /* Every byte offset holds 8 group status bits */
1184 irq = (offset - 0x80) * 8;
1185 if (irq >= s->num_irq) {
1186 goto bad_reg;
1188 for (i = 0; i < 8; i++) {
1189 /* Group bits are banked for private interrupts */
1190 int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK;
1191 if (value & (1 << i)) {
1192 /* Group1 (Non-secure) */
1193 GIC_DIST_SET_GROUP(irq + i, cm);
1194 } else {
1195 /* Group0 (Secure) */
1196 GIC_DIST_CLEAR_GROUP(irq + i, cm);
1200 } else {
1201 goto bad_reg;
1203 } else if (offset < 0x180) {
1204 /* Interrupt Set Enable. */
1205 irq = (offset - 0x100) * 8;
1206 if (irq >= s->num_irq)
1207 goto bad_reg;
1208 if (irq < GIC_NR_SGIS) {
1209 value = 0xff;
1212 for (i = 0; i < 8; i++) {
1213 if (value & (1 << i)) {
1214 int mask =
1215 (irq < GIC_INTERNAL) ? (1 << cpu)
1216 : GIC_DIST_TARGET(irq + i);
1217 int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK;
1219 if (s->security_extn && !attrs.secure &&
1220 !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
1221 continue; /* Ignore Non-secure access of Group0 IRQ */
1224 if (!GIC_DIST_TEST_ENABLED(irq + i, cm)) {
1225 DPRINTF("Enabled IRQ %d\n", irq + i);
1226 trace_gic_enable_irq(irq + i);
1228 GIC_DIST_SET_ENABLED(irq + i, cm);
1229 /* If a raised level triggered IRQ enabled then mark
1230 is as pending. */
1231 if (GIC_DIST_TEST_LEVEL(irq + i, mask)
1232 && !GIC_DIST_TEST_EDGE_TRIGGER(irq + i)) {
1233 DPRINTF("Set %d pending mask %x\n", irq + i, mask);
1234 GIC_DIST_SET_PENDING(irq + i, mask);
1238 } else if (offset < 0x200) {
1239 /* Interrupt Clear Enable. */
1240 irq = (offset - 0x180) * 8;
1241 if (irq >= s->num_irq)
1242 goto bad_reg;
1243 if (irq < GIC_NR_SGIS) {
1244 value = 0;
1247 for (i = 0; i < 8; i++) {
1248 if (value & (1 << i)) {
1249 int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK;
1251 if (s->security_extn && !attrs.secure &&
1252 !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
1253 continue; /* Ignore Non-secure access of Group0 IRQ */
1256 if (GIC_DIST_TEST_ENABLED(irq + i, cm)) {
1257 DPRINTF("Disabled IRQ %d\n", irq + i);
1258 trace_gic_disable_irq(irq + i);
1260 GIC_DIST_CLEAR_ENABLED(irq + i, cm);
1263 } else if (offset < 0x280) {
1264 /* Interrupt Set Pending. */
1265 irq = (offset - 0x200) * 8;
1266 if (irq >= s->num_irq)
1267 goto bad_reg;
1268 if (irq < GIC_NR_SGIS) {
1269 value = 0;
1272 for (i = 0; i < 8; i++) {
1273 if (value & (1 << i)) {
1274 if (s->security_extn && !attrs.secure &&
1275 !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
1276 continue; /* Ignore Non-secure access of Group0 IRQ */
1279 GIC_DIST_SET_PENDING(irq + i, GIC_DIST_TARGET(irq + i));
1282 } else if (offset < 0x300) {
1283 /* Interrupt Clear Pending. */
1284 irq = (offset - 0x280) * 8;
1285 if (irq >= s->num_irq)
1286 goto bad_reg;
1287 if (irq < GIC_NR_SGIS) {
1288 value = 0;
1291 for (i = 0; i < 8; i++) {
1292 if (s->security_extn && !attrs.secure &&
1293 !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
1294 continue; /* Ignore Non-secure access of Group0 IRQ */
1297 /* ??? This currently clears the pending bit for all CPUs, even
1298 for per-CPU interrupts. It's unclear whether this is the
1299 corect behavior. */
1300 if (value & (1 << i)) {
1301 GIC_DIST_CLEAR_PENDING(irq + i, ALL_CPU_MASK);
1304 } else if (offset < 0x380) {
1305 /* Interrupt Set Active. */
1306 if (s->revision != 2) {
1307 goto bad_reg;
1310 irq = (offset - 0x300) * 8;
1311 if (irq >= s->num_irq) {
1312 goto bad_reg;
1315 /* This register is banked per-cpu for PPIs */
1316 int cm = irq < GIC_INTERNAL ? (1 << cpu) : ALL_CPU_MASK;
1318 for (i = 0; i < 8; i++) {
1319 if (s->security_extn && !attrs.secure &&
1320 !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
1321 continue; /* Ignore Non-secure access of Group0 IRQ */
1324 if (value & (1 << i)) {
1325 GIC_DIST_SET_ACTIVE(irq + i, cm);
1328 } else if (offset < 0x400) {
1329 /* Interrupt Clear Active. */
1330 if (s->revision != 2) {
1331 goto bad_reg;
1334 irq = (offset - 0x380) * 8;
1335 if (irq >= s->num_irq) {
1336 goto bad_reg;
1339 /* This register is banked per-cpu for PPIs */
1340 int cm = irq < GIC_INTERNAL ? (1 << cpu) : ALL_CPU_MASK;
1342 for (i = 0; i < 8; i++) {
1343 if (s->security_extn && !attrs.secure &&
1344 !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
1345 continue; /* Ignore Non-secure access of Group0 IRQ */
1348 if (value & (1 << i)) {
1349 GIC_DIST_CLEAR_ACTIVE(irq + i, cm);
1352 } else if (offset < 0x800) {
1353 /* Interrupt Priority. */
1354 irq = (offset - 0x400);
1355 if (irq >= s->num_irq)
1356 goto bad_reg;
1357 gic_dist_set_priority(s, cpu, irq, value, attrs);
1358 } else if (offset < 0xc00) {
1359 /* Interrupt CPU Target. RAZ/WI on uniprocessor GICs, with the
1360 * annoying exception of the 11MPCore's GIC.
1362 if (s->num_cpu != 1 || s->revision == REV_11MPCORE) {
1363 irq = (offset - 0x800);
1364 if (irq >= s->num_irq) {
1365 goto bad_reg;
1367 if (irq < 29 && s->revision == REV_11MPCORE) {
1368 value = 0;
1369 } else if (irq < GIC_INTERNAL) {
1370 value = ALL_CPU_MASK;
1372 s->irq_target[irq] = value & ALL_CPU_MASK;
1374 } else if (offset < 0xf00) {
1375 /* Interrupt Configuration. */
1376 irq = (offset - 0xc00) * 4;
1377 if (irq >= s->num_irq)
1378 goto bad_reg;
1379 if (irq < GIC_NR_SGIS)
1380 value |= 0xaa;
1381 for (i = 0; i < 4; i++) {
1382 if (s->security_extn && !attrs.secure &&
1383 !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
1384 continue; /* Ignore Non-secure access of Group0 IRQ */
1387 if (s->revision == REV_11MPCORE) {
1388 if (value & (1 << (i * 2))) {
1389 GIC_DIST_SET_MODEL(irq + i);
1390 } else {
1391 GIC_DIST_CLEAR_MODEL(irq + i);
1394 if (value & (2 << (i * 2))) {
1395 GIC_DIST_SET_EDGE_TRIGGER(irq + i);
1396 } else {
1397 GIC_DIST_CLEAR_EDGE_TRIGGER(irq + i);
1400 } else if (offset < 0xf10) {
1401 /* 0xf00 is only handled for 32-bit writes. */
1402 goto bad_reg;
1403 } else if (offset < 0xf20) {
1404 /* GICD_CPENDSGIRn */
1405 if (s->revision == REV_11MPCORE) {
1406 goto bad_reg;
1408 irq = (offset - 0xf10);
1410 if (!s->security_extn || attrs.secure ||
1411 GIC_DIST_TEST_GROUP(irq, 1 << cpu)) {
1412 s->sgi_pending[irq][cpu] &= ~value;
1413 if (s->sgi_pending[irq][cpu] == 0) {
1414 GIC_DIST_CLEAR_PENDING(irq, 1 << cpu);
1417 } else if (offset < 0xf30) {
1418 /* GICD_SPENDSGIRn */
1419 if (s->revision == REV_11MPCORE) {
1420 goto bad_reg;
1422 irq = (offset - 0xf20);
1424 if (!s->security_extn || attrs.secure ||
1425 GIC_DIST_TEST_GROUP(irq, 1 << cpu)) {
1426 GIC_DIST_SET_PENDING(irq, 1 << cpu);
1427 s->sgi_pending[irq][cpu] |= value;
1429 } else {
1430 goto bad_reg;
1432 gic_update(s);
1433 return;
1434 bad_reg:
1435 qemu_log_mask(LOG_GUEST_ERROR,
1436 "gic_dist_writeb: Bad offset %x\n", (int)offset);
1439 static void gic_dist_writew(void *opaque, hwaddr offset,
1440 uint32_t value, MemTxAttrs attrs)
1442 gic_dist_writeb(opaque, offset, value & 0xff, attrs);
1443 gic_dist_writeb(opaque, offset + 1, value >> 8, attrs);
1446 static void gic_dist_writel(void *opaque, hwaddr offset,
1447 uint32_t value, MemTxAttrs attrs)
1449 GICState *s = (GICState *)opaque;
1450 if (offset == 0xf00) {
1451 int cpu;
1452 int irq;
1453 int mask;
1454 int target_cpu;
1456 cpu = gic_get_current_cpu(s);
1457 irq = value & 0x3ff;
1458 switch ((value >> 24) & 3) {
1459 case 0:
1460 mask = (value >> 16) & ALL_CPU_MASK;
1461 break;
1462 case 1:
1463 mask = ALL_CPU_MASK ^ (1 << cpu);
1464 break;
1465 case 2:
1466 mask = 1 << cpu;
1467 break;
1468 default:
1469 DPRINTF("Bad Soft Int target filter\n");
1470 mask = ALL_CPU_MASK;
1471 break;
1473 GIC_DIST_SET_PENDING(irq, mask);
1474 target_cpu = ctz32(mask);
1475 while (target_cpu < GIC_NCPU) {
1476 s->sgi_pending[irq][target_cpu] |= (1 << cpu);
1477 mask &= ~(1 << target_cpu);
1478 target_cpu = ctz32(mask);
1480 gic_update(s);
1481 return;
1483 gic_dist_writew(opaque, offset, value & 0xffff, attrs);
1484 gic_dist_writew(opaque, offset + 2, value >> 16, attrs);
1487 static MemTxResult gic_dist_write(void *opaque, hwaddr offset, uint64_t data,
1488 unsigned size, MemTxAttrs attrs)
1490 trace_gic_dist_write(offset, size, data);
1492 switch (size) {
1493 case 1:
1494 gic_dist_writeb(opaque, offset, data, attrs);
1495 return MEMTX_OK;
1496 case 2:
1497 gic_dist_writew(opaque, offset, data, attrs);
1498 return MEMTX_OK;
1499 case 4:
1500 gic_dist_writel(opaque, offset, data, attrs);
1501 return MEMTX_OK;
1502 default:
1503 return MEMTX_ERROR;
1507 static inline uint32_t gic_apr_ns_view(GICState *s, int cpu, int regno)
1509 /* Return the Nonsecure view of GICC_APR<regno>. This is the
1510 * second half of GICC_NSAPR.
1512 switch (GIC_MIN_BPR) {
1513 case 0:
1514 if (regno < 2) {
1515 return s->nsapr[regno + 2][cpu];
1517 break;
1518 case 1:
1519 if (regno == 0) {
1520 return s->nsapr[regno + 1][cpu];
1522 break;
1523 case 2:
1524 if (regno == 0) {
1525 return extract32(s->nsapr[0][cpu], 16, 16);
1527 break;
1528 case 3:
1529 if (regno == 0) {
1530 return extract32(s->nsapr[0][cpu], 8, 8);
1532 break;
1533 default:
1534 g_assert_not_reached();
1536 return 0;
1539 static inline void gic_apr_write_ns_view(GICState *s, int cpu, int regno,
1540 uint32_t value)
1542 /* Write the Nonsecure view of GICC_APR<regno>. */
1543 switch (GIC_MIN_BPR) {
1544 case 0:
1545 if (regno < 2) {
1546 s->nsapr[regno + 2][cpu] = value;
1548 break;
1549 case 1:
1550 if (regno == 0) {
1551 s->nsapr[regno + 1][cpu] = value;
1553 break;
1554 case 2:
1555 if (regno == 0) {
1556 s->nsapr[0][cpu] = deposit32(s->nsapr[0][cpu], 16, 16, value);
1558 break;
1559 case 3:
1560 if (regno == 0) {
1561 s->nsapr[0][cpu] = deposit32(s->nsapr[0][cpu], 8, 8, value);
1563 break;
1564 default:
1565 g_assert_not_reached();
1569 static MemTxResult gic_cpu_read(GICState *s, int cpu, int offset,
1570 uint64_t *data, MemTxAttrs attrs)
1572 switch (offset) {
1573 case 0x00: /* Control */
1574 *data = gic_get_cpu_control(s, cpu, attrs);
1575 break;
1576 case 0x04: /* Priority mask */
1577 *data = gic_get_priority_mask(s, cpu, attrs);
1578 break;
1579 case 0x08: /* Binary Point */
1580 if (gic_cpu_ns_access(s, cpu, attrs)) {
1581 if (s->cpu_ctlr[cpu] & GICC_CTLR_CBPR) {
1582 /* NS view of BPR when CBPR is 1 */
1583 *data = MIN(s->bpr[cpu] + 1, 7);
1584 } else {
1585 /* BPR is banked. Non-secure copy stored in ABPR. */
1586 *data = s->abpr[cpu];
1588 } else {
1589 *data = s->bpr[cpu];
1591 break;
1592 case 0x0c: /* Acknowledge */
1593 *data = gic_acknowledge_irq(s, cpu, attrs);
1594 break;
1595 case 0x14: /* Running Priority */
1596 *data = gic_get_running_priority(s, cpu, attrs);
1597 break;
1598 case 0x18: /* Highest Pending Interrupt */
1599 *data = gic_get_current_pending_irq(s, cpu, attrs);
1600 break;
1601 case 0x1c: /* Aliased Binary Point */
1602 /* GIC v2, no security: ABPR
1603 * GIC v1, no security: not implemented (RAZ/WI)
1604 * With security extensions, secure access: ABPR (alias of NS BPR)
1605 * With security extensions, nonsecure access: RAZ/WI
1607 if (!gic_has_groups(s) || (gic_cpu_ns_access(s, cpu, attrs))) {
1608 *data = 0;
1609 } else {
1610 *data = s->abpr[cpu];
1612 break;
1613 case 0xd0: case 0xd4: case 0xd8: case 0xdc:
1615 int regno = (offset - 0xd0) / 4;
1616 int nr_aprs = gic_is_vcpu(cpu) ? GIC_VIRT_NR_APRS : GIC_NR_APRS;
1618 if (regno >= nr_aprs || s->revision != 2) {
1619 *data = 0;
1620 } else if (gic_is_vcpu(cpu)) {
1621 *data = s->h_apr[gic_get_vcpu_real_id(cpu)];
1622 } else if (gic_cpu_ns_access(s, cpu, attrs)) {
1623 /* NS view of GICC_APR<n> is the top half of GIC_NSAPR<n> */
1624 *data = gic_apr_ns_view(s, regno, cpu);
1625 } else {
1626 *data = s->apr[regno][cpu];
1628 break;
1630 case 0xe0: case 0xe4: case 0xe8: case 0xec:
1632 int regno = (offset - 0xe0) / 4;
1634 if (regno >= GIC_NR_APRS || s->revision != 2 || !gic_has_groups(s) ||
1635 gic_cpu_ns_access(s, cpu, attrs) || gic_is_vcpu(cpu)) {
1636 *data = 0;
1637 } else {
1638 *data = s->nsapr[regno][cpu];
1640 break;
1642 default:
1643 qemu_log_mask(LOG_GUEST_ERROR,
1644 "gic_cpu_read: Bad offset %x\n", (int)offset);
1645 *data = 0;
1646 break;
1649 trace_gic_cpu_read(gic_is_vcpu(cpu) ? "vcpu" : "cpu",
1650 gic_get_vcpu_real_id(cpu), offset, *data);
1651 return MEMTX_OK;
1654 static MemTxResult gic_cpu_write(GICState *s, int cpu, int offset,
1655 uint32_t value, MemTxAttrs attrs)
1657 trace_gic_cpu_write(gic_is_vcpu(cpu) ? "vcpu" : "cpu",
1658 gic_get_vcpu_real_id(cpu), offset, value);
1660 switch (offset) {
1661 case 0x00: /* Control */
1662 gic_set_cpu_control(s, cpu, value, attrs);
1663 break;
1664 case 0x04: /* Priority mask */
1665 gic_set_priority_mask(s, cpu, value, attrs);
1666 break;
1667 case 0x08: /* Binary Point */
1668 if (gic_cpu_ns_access(s, cpu, attrs)) {
1669 if (s->cpu_ctlr[cpu] & GICC_CTLR_CBPR) {
1670 /* WI when CBPR is 1 */
1671 return MEMTX_OK;
1672 } else {
1673 s->abpr[cpu] = MAX(value & 0x7, GIC_MIN_ABPR);
1675 } else {
1676 int min_bpr = gic_is_vcpu(cpu) ? GIC_VIRT_MIN_BPR : GIC_MIN_BPR;
1677 s->bpr[cpu] = MAX(value & 0x7, min_bpr);
1679 break;
1680 case 0x10: /* End Of Interrupt */
1681 gic_complete_irq(s, cpu, value & 0x3ff, attrs);
1682 return MEMTX_OK;
1683 case 0x1c: /* Aliased Binary Point */
1684 if (!gic_has_groups(s) || (gic_cpu_ns_access(s, cpu, attrs))) {
1685 /* unimplemented, or NS access: RAZ/WI */
1686 return MEMTX_OK;
1687 } else {
1688 s->abpr[cpu] = MAX(value & 0x7, GIC_MIN_ABPR);
1690 break;
1691 case 0xd0: case 0xd4: case 0xd8: case 0xdc:
1693 int regno = (offset - 0xd0) / 4;
1694 int nr_aprs = gic_is_vcpu(cpu) ? GIC_VIRT_NR_APRS : GIC_NR_APRS;
1696 if (regno >= nr_aprs || s->revision != 2) {
1697 return MEMTX_OK;
1699 if (gic_is_vcpu(cpu)) {
1700 s->h_apr[gic_get_vcpu_real_id(cpu)] = value;
1701 } else if (gic_cpu_ns_access(s, cpu, attrs)) {
1702 /* NS view of GICC_APR<n> is the top half of GIC_NSAPR<n> */
1703 gic_apr_write_ns_view(s, regno, cpu, value);
1704 } else {
1705 s->apr[regno][cpu] = value;
1707 break;
1709 case 0xe0: case 0xe4: case 0xe8: case 0xec:
1711 int regno = (offset - 0xe0) / 4;
1713 if (regno >= GIC_NR_APRS || s->revision != 2) {
1714 return MEMTX_OK;
1716 if (gic_is_vcpu(cpu)) {
1717 return MEMTX_OK;
1719 if (!gic_has_groups(s) || (gic_cpu_ns_access(s, cpu, attrs))) {
1720 return MEMTX_OK;
1722 s->nsapr[regno][cpu] = value;
1723 break;
1725 case 0x1000:
1726 /* GICC_DIR */
1727 gic_deactivate_irq(s, cpu, value & 0x3ff, attrs);
1728 break;
1729 default:
1730 qemu_log_mask(LOG_GUEST_ERROR,
1731 "gic_cpu_write: Bad offset %x\n", (int)offset);
1732 return MEMTX_OK;
1735 if (gic_is_vcpu(cpu)) {
1736 gic_update_virt(s);
1737 } else {
1738 gic_update(s);
1741 return MEMTX_OK;
1744 /* Wrappers to read/write the GIC CPU interface for the current CPU */
1745 static MemTxResult gic_thiscpu_read(void *opaque, hwaddr addr, uint64_t *data,
1746 unsigned size, MemTxAttrs attrs)
1748 GICState *s = (GICState *)opaque;
1749 return gic_cpu_read(s, gic_get_current_cpu(s), addr, data, attrs);
1752 static MemTxResult gic_thiscpu_write(void *opaque, hwaddr addr,
1753 uint64_t value, unsigned size,
1754 MemTxAttrs attrs)
1756 GICState *s = (GICState *)opaque;
1757 return gic_cpu_write(s, gic_get_current_cpu(s), addr, value, attrs);
1760 /* Wrappers to read/write the GIC CPU interface for a specific CPU.
1761 * These just decode the opaque pointer into GICState* + cpu id.
1763 static MemTxResult gic_do_cpu_read(void *opaque, hwaddr addr, uint64_t *data,
1764 unsigned size, MemTxAttrs attrs)
1766 GICState **backref = (GICState **)opaque;
1767 GICState *s = *backref;
1768 int id = (backref - s->backref);
1769 return gic_cpu_read(s, id, addr, data, attrs);
1772 static MemTxResult gic_do_cpu_write(void *opaque, hwaddr addr,
1773 uint64_t value, unsigned size,
1774 MemTxAttrs attrs)
1776 GICState **backref = (GICState **)opaque;
1777 GICState *s = *backref;
1778 int id = (backref - s->backref);
1779 return gic_cpu_write(s, id, addr, value, attrs);
1782 static MemTxResult gic_thisvcpu_read(void *opaque, hwaddr addr, uint64_t *data,
1783 unsigned size, MemTxAttrs attrs)
1785 GICState *s = (GICState *)opaque;
1787 return gic_cpu_read(s, gic_get_current_vcpu(s), addr, data, attrs);
1790 static MemTxResult gic_thisvcpu_write(void *opaque, hwaddr addr,
1791 uint64_t value, unsigned size,
1792 MemTxAttrs attrs)
1794 GICState *s = (GICState *)opaque;
1796 return gic_cpu_write(s, gic_get_current_vcpu(s), addr, value, attrs);
1799 static uint32_t gic_compute_eisr(GICState *s, int cpu, int lr_start)
1801 int lr_idx;
1802 uint32_t ret = 0;
1804 for (lr_idx = lr_start; lr_idx < s->num_lrs; lr_idx++) {
1805 uint32_t *entry = &s->h_lr[lr_idx][cpu];
1806 ret = deposit32(ret, lr_idx - lr_start, 1,
1807 gic_lr_entry_is_eoi(*entry));
1810 return ret;
1813 static uint32_t gic_compute_elrsr(GICState *s, int cpu, int lr_start)
1815 int lr_idx;
1816 uint32_t ret = 0;
1818 for (lr_idx = lr_start; lr_idx < s->num_lrs; lr_idx++) {
1819 uint32_t *entry = &s->h_lr[lr_idx][cpu];
1820 ret = deposit32(ret, lr_idx - lr_start, 1,
1821 gic_lr_entry_is_free(*entry));
1824 return ret;
1827 static void gic_vmcr_write(GICState *s, uint32_t value, MemTxAttrs attrs)
1829 int vcpu = gic_get_current_vcpu(s);
1830 uint32_t ctlr;
1831 uint32_t abpr;
1832 uint32_t bpr;
1833 uint32_t prio_mask;
1835 ctlr = FIELD_EX32(value, GICH_VMCR, VMCCtlr);
1836 abpr = FIELD_EX32(value, GICH_VMCR, VMABP);
1837 bpr = FIELD_EX32(value, GICH_VMCR, VMBP);
1838 prio_mask = FIELD_EX32(value, GICH_VMCR, VMPriMask) << 3;
1840 gic_set_cpu_control(s, vcpu, ctlr, attrs);
1841 s->abpr[vcpu] = MAX(abpr, GIC_VIRT_MIN_ABPR);
1842 s->bpr[vcpu] = MAX(bpr, GIC_VIRT_MIN_BPR);
1843 gic_set_priority_mask(s, vcpu, prio_mask, attrs);
1846 static MemTxResult gic_hyp_read(void *opaque, int cpu, hwaddr addr,
1847 uint64_t *data, MemTxAttrs attrs)
1849 GICState *s = ARM_GIC(opaque);
1850 int vcpu = cpu + GIC_NCPU;
1852 switch (addr) {
1853 case A_GICH_HCR: /* Hypervisor Control */
1854 *data = s->h_hcr[cpu];
1855 break;
1857 case A_GICH_VTR: /* VGIC Type */
1858 *data = FIELD_DP32(0, GICH_VTR, ListRegs, s->num_lrs - 1);
1859 *data = FIELD_DP32(*data, GICH_VTR, PREbits,
1860 GIC_VIRT_MAX_GROUP_PRIO_BITS - 1);
1861 *data = FIELD_DP32(*data, GICH_VTR, PRIbits,
1862 (7 - GIC_VIRT_MIN_BPR) - 1);
1863 break;
1865 case A_GICH_VMCR: /* Virtual Machine Control */
1866 *data = FIELD_DP32(0, GICH_VMCR, VMCCtlr,
1867 extract32(s->cpu_ctlr[vcpu], 0, 10));
1868 *data = FIELD_DP32(*data, GICH_VMCR, VMABP, s->abpr[vcpu]);
1869 *data = FIELD_DP32(*data, GICH_VMCR, VMBP, s->bpr[vcpu]);
1870 *data = FIELD_DP32(*data, GICH_VMCR, VMPriMask,
1871 extract32(s->priority_mask[vcpu], 3, 5));
1872 break;
1874 case A_GICH_MISR: /* Maintenance Interrupt Status */
1875 *data = s->h_misr[cpu];
1876 break;
1878 case A_GICH_EISR0: /* End of Interrupt Status 0 and 1 */
1879 case A_GICH_EISR1:
1880 *data = gic_compute_eisr(s, cpu, (addr - A_GICH_EISR0) * 8);
1881 break;
1883 case A_GICH_ELRSR0: /* Empty List Status 0 and 1 */
1884 case A_GICH_ELRSR1:
1885 *data = gic_compute_elrsr(s, cpu, (addr - A_GICH_ELRSR0) * 8);
1886 break;
1888 case A_GICH_APR: /* Active Priorities */
1889 *data = s->h_apr[cpu];
1890 break;
1892 case A_GICH_LR0 ... A_GICH_LR63: /* List Registers */
1894 int lr_idx = (addr - A_GICH_LR0) / 4;
1896 if (lr_idx > s->num_lrs) {
1897 *data = 0;
1898 } else {
1899 *data = s->h_lr[lr_idx][cpu];
1901 break;
1904 default:
1905 qemu_log_mask(LOG_GUEST_ERROR,
1906 "gic_hyp_read: Bad offset %" HWADDR_PRIx "\n", addr);
1907 return MEMTX_OK;
1910 trace_gic_hyp_read(addr, *data);
1911 return MEMTX_OK;
1914 static MemTxResult gic_hyp_write(void *opaque, int cpu, hwaddr addr,
1915 uint64_t value, MemTxAttrs attrs)
1917 GICState *s = ARM_GIC(opaque);
1918 int vcpu = cpu + GIC_NCPU;
1920 trace_gic_hyp_write(addr, value);
1922 switch (addr) {
1923 case A_GICH_HCR: /* Hypervisor Control */
1924 s->h_hcr[cpu] = value & GICH_HCR_MASK;
1925 break;
1927 case A_GICH_VMCR: /* Virtual Machine Control */
1928 gic_vmcr_write(s, value, attrs);
1929 break;
1931 case A_GICH_APR: /* Active Priorities */
1932 s->h_apr[cpu] = value;
1933 s->running_priority[vcpu] = gic_get_prio_from_apr_bits(s, vcpu);
1934 break;
1936 case A_GICH_LR0 ... A_GICH_LR63: /* List Registers */
1938 int lr_idx = (addr - A_GICH_LR0) / 4;
1940 if (lr_idx > s->num_lrs) {
1941 return MEMTX_OK;
1944 s->h_lr[lr_idx][cpu] = value & GICH_LR_MASK;
1945 trace_gic_lr_entry(cpu, lr_idx, s->h_lr[lr_idx][cpu]);
1946 break;
1949 default:
1950 qemu_log_mask(LOG_GUEST_ERROR,
1951 "gic_hyp_write: Bad offset %" HWADDR_PRIx "\n", addr);
1952 return MEMTX_OK;
1955 gic_update_virt(s);
1956 return MEMTX_OK;
1959 static MemTxResult gic_thiscpu_hyp_read(void *opaque, hwaddr addr, uint64_t *data,
1960 unsigned size, MemTxAttrs attrs)
1962 GICState *s = (GICState *)opaque;
1964 return gic_hyp_read(s, gic_get_current_cpu(s), addr, data, attrs);
1967 static MemTxResult gic_thiscpu_hyp_write(void *opaque, hwaddr addr,
1968 uint64_t value, unsigned size,
1969 MemTxAttrs attrs)
1971 GICState *s = (GICState *)opaque;
1973 return gic_hyp_write(s, gic_get_current_cpu(s), addr, value, attrs);
1976 static MemTxResult gic_do_hyp_read(void *opaque, hwaddr addr, uint64_t *data,
1977 unsigned size, MemTxAttrs attrs)
1979 GICState **backref = (GICState **)opaque;
1980 GICState *s = *backref;
1981 int id = (backref - s->backref);
1983 return gic_hyp_read(s, id, addr, data, attrs);
1986 static MemTxResult gic_do_hyp_write(void *opaque, hwaddr addr,
1987 uint64_t value, unsigned size,
1988 MemTxAttrs attrs)
1990 GICState **backref = (GICState **)opaque;
1991 GICState *s = *backref;
1992 int id = (backref - s->backref);
1994 return gic_hyp_write(s, id + GIC_NCPU, addr, value, attrs);
1998 static const MemoryRegionOps gic_ops[2] = {
2000 .read_with_attrs = gic_dist_read,
2001 .write_with_attrs = gic_dist_write,
2002 .endianness = DEVICE_NATIVE_ENDIAN,
2005 .read_with_attrs = gic_thiscpu_read,
2006 .write_with_attrs = gic_thiscpu_write,
2007 .endianness = DEVICE_NATIVE_ENDIAN,
2011 static const MemoryRegionOps gic_cpu_ops = {
2012 .read_with_attrs = gic_do_cpu_read,
2013 .write_with_attrs = gic_do_cpu_write,
2014 .endianness = DEVICE_NATIVE_ENDIAN,
2017 static const MemoryRegionOps gic_virt_ops[2] = {
2019 .read_with_attrs = gic_thiscpu_hyp_read,
2020 .write_with_attrs = gic_thiscpu_hyp_write,
2021 .endianness = DEVICE_NATIVE_ENDIAN,
2024 .read_with_attrs = gic_thisvcpu_read,
2025 .write_with_attrs = gic_thisvcpu_write,
2026 .endianness = DEVICE_NATIVE_ENDIAN,
2030 static const MemoryRegionOps gic_viface_ops = {
2031 .read_with_attrs = gic_do_hyp_read,
2032 .write_with_attrs = gic_do_hyp_write,
2033 .endianness = DEVICE_NATIVE_ENDIAN,
2036 static void arm_gic_realize(DeviceState *dev, Error **errp)
2038 /* Device instance realize function for the GIC sysbus device */
2039 int i;
2040 GICState *s = ARM_GIC(dev);
2041 SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
2042 ARMGICClass *agc = ARM_GIC_GET_CLASS(s);
2043 Error *local_err = NULL;
2045 agc->parent_realize(dev, &local_err);
2046 if (local_err) {
2047 error_propagate(errp, local_err);
2048 return;
2051 if (kvm_enabled() && !kvm_arm_supports_user_irq()) {
2052 error_setg(errp, "KVM with user space irqchip only works when the "
2053 "host kernel supports KVM_CAP_ARM_USER_IRQ");
2054 return;
2057 /* This creates distributor, main CPU interface (s->cpuiomem[0]) and if
2058 * enabled, virtualization extensions related interfaces (main virtual
2059 * interface (s->vifaceiomem[0]) and virtual CPU interface).
2061 gic_init_irqs_and_mmio(s, gic_set_irq, gic_ops, gic_virt_ops);
2063 /* Extra core-specific regions for the CPU interfaces. This is
2064 * necessary for "franken-GIC" implementations, for example on
2065 * Exynos 4.
2066 * NB that the memory region size of 0x100 applies for the 11MPCore
2067 * and also cores following the GIC v1 spec (ie A9).
2068 * GIC v2 defines a larger memory region (0x1000) so this will need
2069 * to be extended when we implement A15.
2071 for (i = 0; i < s->num_cpu; i++) {
2072 s->backref[i] = s;
2073 memory_region_init_io(&s->cpuiomem[i+1], OBJECT(s), &gic_cpu_ops,
2074 &s->backref[i], "gic_cpu", 0x100);
2075 sysbus_init_mmio(sbd, &s->cpuiomem[i+1]);
2078 /* Extra core-specific regions for virtual interfaces. This is required by
2079 * the GICv2 specification.
2081 if (s->virt_extn) {
2082 for (i = 0; i < s->num_cpu; i++) {
2083 memory_region_init_io(&s->vifaceiomem[i + 1], OBJECT(s),
2084 &gic_viface_ops, &s->backref[i],
2085 "gic_viface", 0x200);
2086 sysbus_init_mmio(sbd, &s->vifaceiomem[i + 1]);
2092 static void arm_gic_class_init(ObjectClass *klass, void *data)
2094 DeviceClass *dc = DEVICE_CLASS(klass);
2095 ARMGICClass *agc = ARM_GIC_CLASS(klass);
2097 device_class_set_parent_realize(dc, arm_gic_realize, &agc->parent_realize);
2100 static const TypeInfo arm_gic_info = {
2101 .name = TYPE_ARM_GIC,
2102 .parent = TYPE_ARM_GIC_COMMON,
2103 .instance_size = sizeof(GICState),
2104 .class_init = arm_gic_class_init,
2105 .class_size = sizeof(ARMGICClass),
2108 static void arm_gic_register_types(void)
2110 type_register_static(&arm_gic_info);
2113 type_init(arm_gic_register_types)