qemu-nbd: Avoid strtol open-coding
[qemu/ar7.git] / hw / net / ne2000.c
blob037afc8052abce68880c94bff440e4853e2d5e75
1 /*
2 * QEMU NE2000 emulation
4 * Copyright (c) 2003-2004 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
24 #include "qemu/osdep.h"
25 #include "hw/pci/pci.h"
26 #include "net/eth.h"
27 #include "ne2000.h"
28 #include "sysemu/sysemu.h"
29 #include "trace.h"
31 /* debug NE2000 card */
32 //#define DEBUG_NE2000
34 #define MAX_ETH_FRAME_SIZE 1514
36 #define E8390_CMD 0x00 /* The command register (for all pages) */
37 /* Page 0 register offsets. */
38 #define EN0_CLDALO 0x01 /* Low byte of current local dma addr RD */
39 #define EN0_STARTPG 0x01 /* Starting page of ring bfr WR */
40 #define EN0_CLDAHI 0x02 /* High byte of current local dma addr RD */
41 #define EN0_STOPPG 0x02 /* Ending page +1 of ring bfr WR */
42 #define EN0_BOUNDARY 0x03 /* Boundary page of ring bfr RD WR */
43 #define EN0_TSR 0x04 /* Transmit status reg RD */
44 #define EN0_TPSR 0x04 /* Transmit starting page WR */
45 #define EN0_NCR 0x05 /* Number of collision reg RD */
46 #define EN0_TCNTLO 0x05 /* Low byte of tx byte count WR */
47 #define EN0_FIFO 0x06 /* FIFO RD */
48 #define EN0_TCNTHI 0x06 /* High byte of tx byte count WR */
49 #define EN0_ISR 0x07 /* Interrupt status reg RD WR */
50 #define EN0_CRDALO 0x08 /* low byte of current remote dma address RD */
51 #define EN0_RSARLO 0x08 /* Remote start address reg 0 */
52 #define EN0_CRDAHI 0x09 /* high byte, current remote dma address RD */
53 #define EN0_RSARHI 0x09 /* Remote start address reg 1 */
54 #define EN0_RCNTLO 0x0a /* Remote byte count reg WR */
55 #define EN0_RTL8029ID0 0x0a /* Realtek ID byte #1 RD */
56 #define EN0_RCNTHI 0x0b /* Remote byte count reg WR */
57 #define EN0_RTL8029ID1 0x0b /* Realtek ID byte #2 RD */
58 #define EN0_RSR 0x0c /* rx status reg RD */
59 #define EN0_RXCR 0x0c /* RX configuration reg WR */
60 #define EN0_TXCR 0x0d /* TX configuration reg WR */
61 #define EN0_COUNTER0 0x0d /* Rcv alignment error counter RD */
62 #define EN0_DCFG 0x0e /* Data configuration reg WR */
63 #define EN0_COUNTER1 0x0e /* Rcv CRC error counter RD */
64 #define EN0_IMR 0x0f /* Interrupt mask reg WR */
65 #define EN0_COUNTER2 0x0f /* Rcv missed frame error counter RD */
67 #define EN1_PHYS 0x11
68 #define EN1_CURPAG 0x17
69 #define EN1_MULT 0x18
71 #define EN2_STARTPG 0x21 /* Starting page of ring bfr RD */
72 #define EN2_STOPPG 0x22 /* Ending page +1 of ring bfr RD */
74 #define EN3_CONFIG0 0x33
75 #define EN3_CONFIG1 0x34
76 #define EN3_CONFIG2 0x35
77 #define EN3_CONFIG3 0x36
79 /* Register accessed at EN_CMD, the 8390 base addr. */
80 #define E8390_STOP 0x01 /* Stop and reset the chip */
81 #define E8390_START 0x02 /* Start the chip, clear reset */
82 #define E8390_TRANS 0x04 /* Transmit a frame */
83 #define E8390_RREAD 0x08 /* Remote read */
84 #define E8390_RWRITE 0x10 /* Remote write */
85 #define E8390_NODMA 0x20 /* Remote DMA */
86 #define E8390_PAGE0 0x00 /* Select page chip registers */
87 #define E8390_PAGE1 0x40 /* using the two high-order bits */
88 #define E8390_PAGE2 0x80 /* Page 3 is invalid. */
90 /* Bits in EN0_ISR - Interrupt status register */
91 #define ENISR_RX 0x01 /* Receiver, no error */
92 #define ENISR_TX 0x02 /* Transmitter, no error */
93 #define ENISR_RX_ERR 0x04 /* Receiver, with error */
94 #define ENISR_TX_ERR 0x08 /* Transmitter, with error */
95 #define ENISR_OVER 0x10 /* Receiver overwrote the ring */
96 #define ENISR_COUNTERS 0x20 /* Counters need emptying */
97 #define ENISR_RDC 0x40 /* remote dma complete */
98 #define ENISR_RESET 0x80 /* Reset completed */
99 #define ENISR_ALL 0x3f /* Interrupts we will enable */
101 /* Bits in received packet status byte and EN0_RSR*/
102 #define ENRSR_RXOK 0x01 /* Received a good packet */
103 #define ENRSR_CRC 0x02 /* CRC error */
104 #define ENRSR_FAE 0x04 /* frame alignment error */
105 #define ENRSR_FO 0x08 /* FIFO overrun */
106 #define ENRSR_MPA 0x10 /* missed pkt */
107 #define ENRSR_PHY 0x20 /* physical/multicast address */
108 #define ENRSR_DIS 0x40 /* receiver disable. set in monitor mode */
109 #define ENRSR_DEF 0x80 /* deferring */
111 /* Transmitted packet status, EN0_TSR. */
112 #define ENTSR_PTX 0x01 /* Packet transmitted without error */
113 #define ENTSR_ND 0x02 /* The transmit wasn't deferred. */
114 #define ENTSR_COL 0x04 /* The transmit collided at least once. */
115 #define ENTSR_ABT 0x08 /* The transmit collided 16 times, and was deferred. */
116 #define ENTSR_CRS 0x10 /* The carrier sense was lost. */
117 #define ENTSR_FU 0x20 /* A "FIFO underrun" occurred during transmit. */
118 #define ENTSR_CDH 0x40 /* The collision detect "heartbeat" signal was lost. */
119 #define ENTSR_OWC 0x80 /* There was an out-of-window collision. */
121 typedef struct PCINE2000State {
122 PCIDevice dev;
123 NE2000State ne2000;
124 } PCINE2000State;
126 void ne2000_reset(NE2000State *s)
128 int i;
130 s->isr = ENISR_RESET;
131 memcpy(s->mem, &s->c.macaddr, 6);
132 s->mem[14] = 0x57;
133 s->mem[15] = 0x57;
135 /* duplicate prom data */
136 for(i = 15;i >= 0; i--) {
137 s->mem[2 * i] = s->mem[i];
138 s->mem[2 * i + 1] = s->mem[i];
142 static void ne2000_update_irq(NE2000State *s)
144 int isr;
145 isr = (s->isr & s->imr) & 0x7f;
146 #if defined(DEBUG_NE2000)
147 printf("NE2000: Set IRQ to %d (%02x %02x)\n",
148 isr ? 1 : 0, s->isr, s->imr);
149 #endif
150 qemu_set_irq(s->irq, (isr != 0));
153 static int ne2000_buffer_full(NE2000State *s)
155 int avail, index, boundary;
157 if (s->stop <= s->start) {
158 return 1;
161 index = s->curpag << 8;
162 boundary = s->boundary << 8;
163 if (index < boundary)
164 avail = boundary - index;
165 else
166 avail = (s->stop - s->start) - (index - boundary);
167 if (avail < (MAX_ETH_FRAME_SIZE + 4))
168 return 1;
169 return 0;
172 #define MIN_BUF_SIZE 60
174 ssize_t ne2000_receive(NetClientState *nc, const uint8_t *buf, size_t size_)
176 NE2000State *s = qemu_get_nic_opaque(nc);
177 size_t size = size_;
178 uint8_t *p;
179 unsigned int total_len, next, avail, len, index, mcast_idx;
180 uint8_t buf1[60];
181 static const uint8_t broadcast_macaddr[6] =
182 { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
184 #if defined(DEBUG_NE2000)
185 printf("NE2000: received len=%zu\n", size);
186 #endif
188 if (s->cmd & E8390_STOP || ne2000_buffer_full(s))
189 return -1;
191 /* XXX: check this */
192 if (s->rxcr & 0x10) {
193 /* promiscuous: receive all */
194 } else {
195 if (!memcmp(buf, broadcast_macaddr, 6)) {
196 /* broadcast address */
197 if (!(s->rxcr & 0x04))
198 return size;
199 } else if (buf[0] & 0x01) {
200 /* multicast */
201 if (!(s->rxcr & 0x08))
202 return size;
203 mcast_idx = net_crc32(buf, ETH_ALEN) >> 26;
204 if (!(s->mult[mcast_idx >> 3] & (1 << (mcast_idx & 7))))
205 return size;
206 } else if (s->mem[0] == buf[0] &&
207 s->mem[2] == buf[1] &&
208 s->mem[4] == buf[2] &&
209 s->mem[6] == buf[3] &&
210 s->mem[8] == buf[4] &&
211 s->mem[10] == buf[5]) {
212 /* match */
213 } else {
214 return size;
219 /* if too small buffer, then expand it */
220 if (size < MIN_BUF_SIZE) {
221 memcpy(buf1, buf, size);
222 memset(buf1 + size, 0, MIN_BUF_SIZE - size);
223 buf = buf1;
224 size = MIN_BUF_SIZE;
227 index = s->curpag << 8;
228 if (index >= NE2000_PMEM_END) {
229 index = s->start;
231 /* 4 bytes for header */
232 total_len = size + 4;
233 /* address for next packet (4 bytes for CRC) */
234 next = index + ((total_len + 4 + 255) & ~0xff);
235 if (next >= s->stop)
236 next -= (s->stop - s->start);
237 /* prepare packet header */
238 p = s->mem + index;
239 s->rsr = ENRSR_RXOK; /* receive status */
240 /* XXX: check this */
241 if (buf[0] & 0x01)
242 s->rsr |= ENRSR_PHY;
243 p[0] = s->rsr;
244 p[1] = next >> 8;
245 p[2] = total_len;
246 p[3] = total_len >> 8;
247 index += 4;
249 /* write packet data */
250 while (size > 0) {
251 if (index <= s->stop)
252 avail = s->stop - index;
253 else
254 break;
255 len = size;
256 if (len > avail)
257 len = avail;
258 memcpy(s->mem + index, buf, len);
259 buf += len;
260 index += len;
261 if (index == s->stop)
262 index = s->start;
263 size -= len;
265 s->curpag = next >> 8;
267 /* now we can signal we have received something */
268 s->isr |= ENISR_RX;
269 ne2000_update_irq(s);
271 return size_;
274 static void ne2000_ioport_write(void *opaque, uint32_t addr, uint32_t val)
276 NE2000State *s = opaque;
277 int offset, page, index;
279 addr &= 0xf;
280 trace_ne2000_ioport_write(addr, val);
281 if (addr == E8390_CMD) {
282 /* control register */
283 s->cmd = val;
284 if (!(val & E8390_STOP)) { /* START bit makes no sense on RTL8029... */
285 s->isr &= ~ENISR_RESET;
286 /* test specific case: zero length transfer */
287 if ((val & (E8390_RREAD | E8390_RWRITE)) &&
288 s->rcnt == 0) {
289 s->isr |= ENISR_RDC;
290 ne2000_update_irq(s);
292 if (val & E8390_TRANS) {
293 index = (s->tpsr << 8);
294 /* XXX: next 2 lines are a hack to make netware 3.11 work */
295 if (index >= NE2000_PMEM_END)
296 index -= NE2000_PMEM_SIZE;
297 /* fail safe: check range on the transmitted length */
298 if (index + s->tcnt <= NE2000_PMEM_END) {
299 qemu_send_packet(qemu_get_queue(s->nic), s->mem + index,
300 s->tcnt);
302 /* signal end of transfer */
303 s->tsr = ENTSR_PTX;
304 s->isr |= ENISR_TX;
305 s->cmd &= ~E8390_TRANS;
306 ne2000_update_irq(s);
309 } else {
310 page = s->cmd >> 6;
311 offset = addr | (page << 4);
312 switch(offset) {
313 case EN0_STARTPG:
314 if (val << 8 <= NE2000_PMEM_END) {
315 s->start = val << 8;
317 break;
318 case EN0_STOPPG:
319 if (val << 8 <= NE2000_PMEM_END) {
320 s->stop = val << 8;
322 break;
323 case EN0_BOUNDARY:
324 if (val << 8 < NE2000_PMEM_END) {
325 s->boundary = val;
327 break;
328 case EN0_IMR:
329 s->imr = val;
330 ne2000_update_irq(s);
331 break;
332 case EN0_TPSR:
333 s->tpsr = val;
334 break;
335 case EN0_TCNTLO:
336 s->tcnt = (s->tcnt & 0xff00) | val;
337 break;
338 case EN0_TCNTHI:
339 s->tcnt = (s->tcnt & 0x00ff) | (val << 8);
340 break;
341 case EN0_RSARLO:
342 s->rsar = (s->rsar & 0xff00) | val;
343 break;
344 case EN0_RSARHI:
345 s->rsar = (s->rsar & 0x00ff) | (val << 8);
346 break;
347 case EN0_RCNTLO:
348 s->rcnt = (s->rcnt & 0xff00) | val;
349 break;
350 case EN0_RCNTHI:
351 s->rcnt = (s->rcnt & 0x00ff) | (val << 8);
352 break;
353 case EN0_RXCR:
354 s->rxcr = val;
355 break;
356 case EN0_DCFG:
357 s->dcfg = val;
358 break;
359 case EN0_ISR:
360 s->isr &= ~(val & 0x7f);
361 ne2000_update_irq(s);
362 break;
363 case EN1_PHYS ... EN1_PHYS + 5:
364 s->phys[offset - EN1_PHYS] = val;
365 break;
366 case EN1_CURPAG:
367 if (val << 8 < NE2000_PMEM_END) {
368 s->curpag = val;
370 break;
371 case EN1_MULT ... EN1_MULT + 7:
372 s->mult[offset - EN1_MULT] = val;
373 break;
378 static uint32_t ne2000_ioport_read(void *opaque, uint32_t addr)
380 NE2000State *s = opaque;
381 int offset, page, ret;
383 addr &= 0xf;
384 if (addr == E8390_CMD) {
385 ret = s->cmd;
386 } else {
387 page = s->cmd >> 6;
388 offset = addr | (page << 4);
389 switch(offset) {
390 case EN0_TSR:
391 ret = s->tsr;
392 break;
393 case EN0_BOUNDARY:
394 ret = s->boundary;
395 break;
396 case EN0_ISR:
397 ret = s->isr;
398 break;
399 case EN0_RSARLO:
400 ret = s->rsar & 0x00ff;
401 break;
402 case EN0_RSARHI:
403 ret = s->rsar >> 8;
404 break;
405 case EN1_PHYS ... EN1_PHYS + 5:
406 ret = s->phys[offset - EN1_PHYS];
407 break;
408 case EN1_CURPAG:
409 ret = s->curpag;
410 break;
411 case EN1_MULT ... EN1_MULT + 7:
412 ret = s->mult[offset - EN1_MULT];
413 break;
414 case EN0_RSR:
415 ret = s->rsr;
416 break;
417 case EN2_STARTPG:
418 ret = s->start >> 8;
419 break;
420 case EN2_STOPPG:
421 ret = s->stop >> 8;
422 break;
423 case EN0_RTL8029ID0:
424 ret = 0x50;
425 break;
426 case EN0_RTL8029ID1:
427 ret = 0x43;
428 break;
429 case EN3_CONFIG0:
430 ret = 0; /* 10baseT media */
431 break;
432 case EN3_CONFIG2:
433 ret = 0x40; /* 10baseT active */
434 break;
435 case EN3_CONFIG3:
436 ret = 0x40; /* Full duplex */
437 break;
438 default:
439 ret = 0x00;
440 break;
443 trace_ne2000_ioport_read(addr, ret);
444 return ret;
447 static inline void ne2000_mem_writeb(NE2000State *s, uint32_t addr,
448 uint32_t val)
450 if (addr < 32 ||
451 (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
452 s->mem[addr] = val;
456 static inline void ne2000_mem_writew(NE2000State *s, uint32_t addr,
457 uint32_t val)
459 addr &= ~1; /* XXX: check exact behaviour if not even */
460 if (addr < 32 ||
461 (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
462 *(uint16_t *)(s->mem + addr) = cpu_to_le16(val);
466 static inline void ne2000_mem_writel(NE2000State *s, uint32_t addr,
467 uint32_t val)
469 addr &= ~1; /* XXX: check exact behaviour if not even */
470 if (addr < 32
471 || (addr >= NE2000_PMEM_START
472 && addr + sizeof(uint32_t) <= NE2000_MEM_SIZE)) {
473 stl_le_p(s->mem + addr, val);
477 static inline uint32_t ne2000_mem_readb(NE2000State *s, uint32_t addr)
479 if (addr < 32 ||
480 (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
481 return s->mem[addr];
482 } else {
483 return 0xff;
487 static inline uint32_t ne2000_mem_readw(NE2000State *s, uint32_t addr)
489 addr &= ~1; /* XXX: check exact behaviour if not even */
490 if (addr < 32 ||
491 (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
492 return le16_to_cpu(*(uint16_t *)(s->mem + addr));
493 } else {
494 return 0xffff;
498 static inline uint32_t ne2000_mem_readl(NE2000State *s, uint32_t addr)
500 addr &= ~1; /* XXX: check exact behaviour if not even */
501 if (addr < 32
502 || (addr >= NE2000_PMEM_START
503 && addr + sizeof(uint32_t) <= NE2000_MEM_SIZE)) {
504 return ldl_le_p(s->mem + addr);
505 } else {
506 return 0xffffffff;
510 static inline void ne2000_dma_update(NE2000State *s, int len)
512 s->rsar += len;
513 /* wrap */
514 /* XXX: check what to do if rsar > stop */
515 if (s->rsar == s->stop)
516 s->rsar = s->start;
518 if (s->rcnt <= len) {
519 s->rcnt = 0;
520 /* signal end of transfer */
521 s->isr |= ENISR_RDC;
522 ne2000_update_irq(s);
523 } else {
524 s->rcnt -= len;
528 static void ne2000_asic_ioport_write(void *opaque, uint32_t addr, uint32_t val)
530 NE2000State *s = opaque;
532 #ifdef DEBUG_NE2000
533 printf("NE2000: asic write val=0x%04x\n", val);
534 #endif
535 if (s->rcnt == 0)
536 return;
537 if (s->dcfg & 0x01) {
538 /* 16 bit access */
539 ne2000_mem_writew(s, s->rsar, val);
540 ne2000_dma_update(s, 2);
541 } else {
542 /* 8 bit access */
543 ne2000_mem_writeb(s, s->rsar, val);
544 ne2000_dma_update(s, 1);
548 static uint32_t ne2000_asic_ioport_read(void *opaque, uint32_t addr)
550 NE2000State *s = opaque;
551 int ret;
553 if (s->dcfg & 0x01) {
554 /* 16 bit access */
555 ret = ne2000_mem_readw(s, s->rsar);
556 ne2000_dma_update(s, 2);
557 } else {
558 /* 8 bit access */
559 ret = ne2000_mem_readb(s, s->rsar);
560 ne2000_dma_update(s, 1);
562 #ifdef DEBUG_NE2000
563 printf("NE2000: asic read val=0x%04x\n", ret);
564 #endif
565 return ret;
568 static void ne2000_asic_ioport_writel(void *opaque, uint32_t addr, uint32_t val)
570 NE2000State *s = opaque;
572 #ifdef DEBUG_NE2000
573 printf("NE2000: asic writel val=0x%04x\n", val);
574 #endif
575 if (s->rcnt == 0)
576 return;
577 /* 32 bit access */
578 ne2000_mem_writel(s, s->rsar, val);
579 ne2000_dma_update(s, 4);
582 static uint32_t ne2000_asic_ioport_readl(void *opaque, uint32_t addr)
584 NE2000State *s = opaque;
585 int ret;
587 /* 32 bit access */
588 ret = ne2000_mem_readl(s, s->rsar);
589 ne2000_dma_update(s, 4);
590 #ifdef DEBUG_NE2000
591 printf("NE2000: asic readl val=0x%04x\n", ret);
592 #endif
593 return ret;
596 static void ne2000_reset_ioport_write(void *opaque, uint32_t addr, uint32_t val)
598 /* nothing to do (end of reset pulse) */
601 static uint32_t ne2000_reset_ioport_read(void *opaque, uint32_t addr)
603 NE2000State *s = opaque;
604 ne2000_reset(s);
605 return 0;
608 static int ne2000_post_load(void* opaque, int version_id)
610 NE2000State* s = opaque;
612 if (version_id < 2) {
613 s->rxcr = 0x0c;
615 return 0;
618 const VMStateDescription vmstate_ne2000 = {
619 .name = "ne2000",
620 .version_id = 2,
621 .minimum_version_id = 0,
622 .post_load = ne2000_post_load,
623 .fields = (VMStateField[]) {
624 VMSTATE_UINT8_V(rxcr, NE2000State, 2),
625 VMSTATE_UINT8(cmd, NE2000State),
626 VMSTATE_UINT32(start, NE2000State),
627 VMSTATE_UINT32(stop, NE2000State),
628 VMSTATE_UINT8(boundary, NE2000State),
629 VMSTATE_UINT8(tsr, NE2000State),
630 VMSTATE_UINT8(tpsr, NE2000State),
631 VMSTATE_UINT16(tcnt, NE2000State),
632 VMSTATE_UINT16(rcnt, NE2000State),
633 VMSTATE_UINT32(rsar, NE2000State),
634 VMSTATE_UINT8(rsr, NE2000State),
635 VMSTATE_UINT8(isr, NE2000State),
636 VMSTATE_UINT8(dcfg, NE2000State),
637 VMSTATE_UINT8(imr, NE2000State),
638 VMSTATE_BUFFER(phys, NE2000State),
639 VMSTATE_UINT8(curpag, NE2000State),
640 VMSTATE_BUFFER(mult, NE2000State),
641 VMSTATE_UNUSED(4), /* was irq */
642 VMSTATE_BUFFER(mem, NE2000State),
643 VMSTATE_END_OF_LIST()
647 static const VMStateDescription vmstate_pci_ne2000 = {
648 .name = "ne2000",
649 .version_id = 3,
650 .minimum_version_id = 3,
651 .fields = (VMStateField[]) {
652 VMSTATE_PCI_DEVICE(dev, PCINE2000State),
653 VMSTATE_STRUCT(ne2000, PCINE2000State, 0, vmstate_ne2000, NE2000State),
654 VMSTATE_END_OF_LIST()
658 static uint64_t ne2000_read(void *opaque, hwaddr addr,
659 unsigned size)
661 NE2000State *s = opaque;
662 uint64_t val;
664 if (addr < 0x10 && size == 1) {
665 val = ne2000_ioport_read(s, addr);
666 } else if (addr == 0x10) {
667 if (size <= 2) {
668 val = ne2000_asic_ioport_read(s, addr);
669 } else {
670 val = ne2000_asic_ioport_readl(s, addr);
672 } else if (addr == 0x1f && size == 1) {
673 val = ne2000_reset_ioport_read(s, addr);
674 } else {
675 val = ((uint64_t)1 << (size * 8)) - 1;
677 trace_ne2000_read(addr, val);
679 return val;
682 static void ne2000_write(void *opaque, hwaddr addr,
683 uint64_t data, unsigned size)
685 NE2000State *s = opaque;
687 trace_ne2000_write(addr, data);
688 if (addr < 0x10 && size == 1) {
689 ne2000_ioport_write(s, addr, data);
690 } else if (addr == 0x10) {
691 if (size <= 2) {
692 ne2000_asic_ioport_write(s, addr, data);
693 } else {
694 ne2000_asic_ioport_writel(s, addr, data);
696 } else if (addr == 0x1f && size == 1) {
697 ne2000_reset_ioport_write(s, addr, data);
701 static const MemoryRegionOps ne2000_ops = {
702 .read = ne2000_read,
703 .write = ne2000_write,
704 .endianness = DEVICE_LITTLE_ENDIAN,
707 /***********************************************************/
708 /* PCI NE2000 definitions */
710 void ne2000_setup_io(NE2000State *s, DeviceState *dev, unsigned size)
712 memory_region_init_io(&s->io, OBJECT(dev), &ne2000_ops, s, "ne2000", size);
715 static NetClientInfo net_ne2000_info = {
716 .type = NET_CLIENT_DRIVER_NIC,
717 .size = sizeof(NICState),
718 .receive = ne2000_receive,
721 static void pci_ne2000_realize(PCIDevice *pci_dev, Error **errp)
723 PCINE2000State *d = DO_UPCAST(PCINE2000State, dev, pci_dev);
724 NE2000State *s;
725 uint8_t *pci_conf;
727 pci_conf = d->dev.config;
728 pci_conf[PCI_INTERRUPT_PIN] = 1; /* interrupt pin A */
730 s = &d->ne2000;
731 ne2000_setup_io(s, DEVICE(pci_dev), 0x100);
732 pci_register_bar(&d->dev, 0, PCI_BASE_ADDRESS_SPACE_IO, &s->io);
733 s->irq = pci_allocate_irq(&d->dev);
735 qemu_macaddr_default_if_unset(&s->c.macaddr);
736 ne2000_reset(s);
738 s->nic = qemu_new_nic(&net_ne2000_info, &s->c,
739 object_get_typename(OBJECT(pci_dev)), pci_dev->qdev.id, s);
740 qemu_format_nic_info_str(qemu_get_queue(s->nic), s->c.macaddr.a);
743 static void pci_ne2000_exit(PCIDevice *pci_dev)
745 PCINE2000State *d = DO_UPCAST(PCINE2000State, dev, pci_dev);
746 NE2000State *s = &d->ne2000;
748 qemu_del_nic(s->nic);
749 qemu_free_irq(s->irq);
752 static void ne2000_instance_init(Object *obj)
754 PCIDevice *pci_dev = PCI_DEVICE(obj);
755 PCINE2000State *d = DO_UPCAST(PCINE2000State, dev, pci_dev);
756 NE2000State *s = &d->ne2000;
758 device_add_bootindex_property(obj, &s->c.bootindex,
759 "bootindex", "/ethernet-phy@0",
760 &pci_dev->qdev, NULL);
763 static Property ne2000_properties[] = {
764 DEFINE_NIC_PROPERTIES(PCINE2000State, ne2000.c),
765 DEFINE_PROP_END_OF_LIST(),
768 static void ne2000_class_init(ObjectClass *klass, void *data)
770 DeviceClass *dc = DEVICE_CLASS(klass);
771 PCIDeviceClass *k = PCI_DEVICE_CLASS(klass);
773 k->realize = pci_ne2000_realize;
774 k->exit = pci_ne2000_exit;
775 k->romfile = "efi-ne2k_pci.rom",
776 k->vendor_id = PCI_VENDOR_ID_REALTEK;
777 k->device_id = PCI_DEVICE_ID_REALTEK_8029;
778 k->class_id = PCI_CLASS_NETWORK_ETHERNET;
779 dc->vmsd = &vmstate_pci_ne2000;
780 dc->props = ne2000_properties;
781 set_bit(DEVICE_CATEGORY_NETWORK, dc->categories);
784 static const TypeInfo ne2000_info = {
785 .name = "ne2k_pci",
786 .parent = TYPE_PCI_DEVICE,
787 .instance_size = sizeof(PCINE2000State),
788 .class_init = ne2000_class_init,
789 .instance_init = ne2000_instance_init,
790 .interfaces = (InterfaceInfo[]) {
791 { INTERFACE_CONVENTIONAL_PCI_DEVICE },
792 { },
796 static void ne2000_register_types(void)
798 type_register_static(&ne2000_info);
801 type_init(ne2000_register_types)