2 * i.MX Fast Ethernet Controller emulation.
4 * Copyright (c) 2013 Jean-Christophe Dubois. <jcd@tribudubois.net>
6 * Based on Coldfire Fast Ethernet Controller emulation.
8 * Copyright (c) 2007 CodeSourcery.
10 * This program is free software; you can redistribute it and/or modify it
11 * under the terms of the GNU General Public License as published by the
12 * Free Software Foundation; either version 2 of the License, or
13 * (at your option) any later version.
15 * This program is distributed in the hope that it will be useful, but WITHOUT
16 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
20 * You should have received a copy of the GNU General Public License along
21 * with this program; if not, see <http://www.gnu.org/licenses/>.
24 #include "qemu/osdep.h"
25 #include "hw/net/imx_fec.h"
26 #include "sysemu/dma.h"
28 #include "net/checksum.h"
35 #define DEBUG_IMX_FEC 0
38 #define FEC_PRINTF(fmt, args...) \
40 if (DEBUG_IMX_FEC) { \
41 fprintf(stderr, "[%s]%s: " fmt , TYPE_IMX_FEC, \
47 #define DEBUG_IMX_PHY 0
50 #define PHY_PRINTF(fmt, args...) \
52 if (DEBUG_IMX_PHY) { \
53 fprintf(stderr, "[%s.phy]%s: " fmt , TYPE_IMX_FEC, \
58 #define IMX_MAX_DESC 1024
60 static const char *imx_default_reg_name(IMXFECState
*s
, uint32_t index
)
63 sprintf(tmp
, "index %d", index
);
67 static const char *imx_fec_reg_name(IMXFECState
*s
, uint32_t index
)
74 case ENET_MIIGSK_CFGR
:
79 return imx_default_reg_name(s
, index
);
83 static const char *imx_enet_reg_name(IMXFECState
*s
, uint32_t index
)
141 return imx_default_reg_name(s
, index
);
145 static const char *imx_eth_reg_name(IMXFECState
*s
, uint32_t index
)
192 return imx_fec_reg_name(s
, index
);
194 return imx_enet_reg_name(s
, index
);
200 * Versions of this device with more than one TX descriptor save the
201 * 2nd and 3rd descriptors in a subsection, to maintain migration
202 * compatibility with previous versions of the device that only
203 * supported a single descriptor.
205 static bool imx_eth_is_multi_tx_ring(void *opaque
)
207 IMXFECState
*s
= IMX_FEC(opaque
);
209 return s
->tx_ring_num
> 1;
212 static const VMStateDescription vmstate_imx_eth_txdescs
= {
213 .name
= "imx.fec/txdescs",
215 .minimum_version_id
= 1,
216 .needed
= imx_eth_is_multi_tx_ring
,
217 .fields
= (VMStateField
[]) {
218 VMSTATE_UINT32(tx_descriptor
[1], IMXFECState
),
219 VMSTATE_UINT32(tx_descriptor
[2], IMXFECState
),
220 VMSTATE_END_OF_LIST()
224 static const VMStateDescription vmstate_imx_eth
= {
225 .name
= TYPE_IMX_FEC
,
227 .minimum_version_id
= 2,
228 .fields
= (VMStateField
[]) {
229 VMSTATE_UINT32_ARRAY(regs
, IMXFECState
, ENET_MAX
),
230 VMSTATE_UINT32(rx_descriptor
, IMXFECState
),
231 VMSTATE_UINT32(tx_descriptor
[0], IMXFECState
),
232 VMSTATE_UINT32(phy_status
, IMXFECState
),
233 VMSTATE_UINT32(phy_control
, IMXFECState
),
234 VMSTATE_UINT32(phy_advertise
, IMXFECState
),
235 VMSTATE_UINT32(phy_int
, IMXFECState
),
236 VMSTATE_UINT32(phy_int_mask
, IMXFECState
),
237 VMSTATE_END_OF_LIST()
239 .subsections
= (const VMStateDescription
* []) {
240 &vmstate_imx_eth_txdescs
,
245 #define PHY_INT_ENERGYON (1 << 7)
246 #define PHY_INT_AUTONEG_COMPLETE (1 << 6)
247 #define PHY_INT_FAULT (1 << 5)
248 #define PHY_INT_DOWN (1 << 4)
249 #define PHY_INT_AUTONEG_LP (1 << 3)
250 #define PHY_INT_PARFAULT (1 << 2)
251 #define PHY_INT_AUTONEG_PAGE (1 << 1)
253 static void imx_eth_update(IMXFECState
*s
);
256 * The MII phy could raise a GPIO to the processor which in turn
257 * could be handled as an interrpt by the OS.
258 * For now we don't handle any GPIO/interrupt line, so the OS will
259 * have to poll for the PHY status.
261 static void phy_update_irq(IMXFECState
*s
)
266 static void phy_update_link(IMXFECState
*s
)
268 /* Autonegotiation status mirrors link status. */
269 if (qemu_get_queue(s
->nic
)->link_down
) {
270 PHY_PRINTF("link is down\n");
271 s
->phy_status
&= ~0x0024;
272 s
->phy_int
|= PHY_INT_DOWN
;
274 PHY_PRINTF("link is up\n");
275 s
->phy_status
|= 0x0024;
276 s
->phy_int
|= PHY_INT_ENERGYON
;
277 s
->phy_int
|= PHY_INT_AUTONEG_COMPLETE
;
282 static void imx_eth_set_link(NetClientState
*nc
)
284 phy_update_link(IMX_FEC(qemu_get_nic_opaque(nc
)));
287 static void phy_reset(IMXFECState
*s
)
289 s
->phy_status
= 0x7809;
290 s
->phy_control
= 0x3000;
291 s
->phy_advertise
= 0x01e1;
297 static uint32_t do_phy_read(IMXFECState
*s
, int reg
)
302 /* we only advertise one phy */
307 case 0: /* Basic Control */
308 val
= s
->phy_control
;
310 case 1: /* Basic Status */
319 case 4: /* Auto-neg advertisement */
320 val
= s
->phy_advertise
;
322 case 5: /* Auto-neg Link Partner Ability */
325 case 6: /* Auto-neg Expansion */
328 case 29: /* Interrupt source. */
333 case 30: /* Interrupt mask */
334 val
= s
->phy_int_mask
;
340 qemu_log_mask(LOG_UNIMP
, "[%s.phy]%s: reg %d not implemented\n",
341 TYPE_IMX_FEC
, __func__
, reg
);
345 qemu_log_mask(LOG_GUEST_ERROR
, "[%s.phy]%s: Bad address at offset %d\n",
346 TYPE_IMX_FEC
, __func__
, reg
);
351 PHY_PRINTF("read 0x%04x @ %d\n", val
, reg
);
356 static void do_phy_write(IMXFECState
*s
, int reg
, uint32_t val
)
358 PHY_PRINTF("write 0x%04x @ %d\n", val
, reg
);
361 /* we only advertise one phy */
366 case 0: /* Basic Control */
370 s
->phy_control
= val
& 0x7980;
371 /* Complete autonegotiation immediately. */
373 s
->phy_status
|= 0x0020;
377 case 4: /* Auto-neg advertisement */
378 s
->phy_advertise
= (val
& 0x2d7f) | 0x80;
380 case 30: /* Interrupt mask */
381 s
->phy_int_mask
= val
& 0xff;
388 qemu_log_mask(LOG_UNIMP
, "[%s.phy)%s: reg %d not implemented\n",
389 TYPE_IMX_FEC
, __func__
, reg
);
392 qemu_log_mask(LOG_GUEST_ERROR
, "[%s.phy]%s: Bad address at offset %d\n",
393 TYPE_IMX_FEC
, __func__
, reg
);
398 static void imx_fec_read_bd(IMXFECBufDesc
*bd
, dma_addr_t addr
)
400 dma_memory_read(&address_space_memory
, addr
, bd
, sizeof(*bd
));
403 static void imx_fec_write_bd(IMXFECBufDesc
*bd
, dma_addr_t addr
)
405 dma_memory_write(&address_space_memory
, addr
, bd
, sizeof(*bd
));
408 static void imx_enet_read_bd(IMXENETBufDesc
*bd
, dma_addr_t addr
)
410 dma_memory_read(&address_space_memory
, addr
, bd
, sizeof(*bd
));
413 static void imx_enet_write_bd(IMXENETBufDesc
*bd
, dma_addr_t addr
)
415 dma_memory_write(&address_space_memory
, addr
, bd
, sizeof(*bd
));
418 static void imx_eth_update(IMXFECState
*s
)
421 * Previous versions of qemu had the ENET_INT_MAC and ENET_INT_TS_TIMER
422 * interrupts swapped. This worked with older versions of Linux (4.14
423 * and older) since Linux associated both interrupt lines with Ethernet
424 * MAC interrupts. Specifically,
425 * - Linux 4.15 and later have separate interrupt handlers for the MAC and
426 * timer interrupts. Those versions of Linux fail with versions of QEMU
427 * with swapped interrupt assignments.
428 * - In linux 4.14, both interrupt lines were registered with the Ethernet
429 * MAC interrupt handler. As a result, all versions of qemu happen to
430 * work, though that is accidental.
431 * - In Linux 4.9 and older, the timer interrupt was registered directly
432 * with the Ethernet MAC interrupt handler. The MAC interrupt was
433 * redirected to a GPIO interrupt to work around erratum ERR006687.
434 * This was implemented using the SOC's IOMUX block. In qemu, this GPIO
435 * interrupt never fired since IOMUX is currently not supported in qemu.
436 * Linux instead received MAC interrupts on the timer interrupt.
437 * As a result, qemu versions with the swapped interrupt assignment work,
438 * albeit accidentally, but qemu versions with the correct interrupt
441 * To ensure that all versions of Linux work, generate ENET_INT_MAC
442 * interrrupts on both interrupt lines. This should be changed if and when
443 * qemu supports IOMUX.
445 if (s
->regs
[ENET_EIR
] & s
->regs
[ENET_EIMR
] &
446 (ENET_INT_MAC
| ENET_INT_TS_TIMER
)) {
447 qemu_set_irq(s
->irq
[1], 1);
449 qemu_set_irq(s
->irq
[1], 0);
452 if (s
->regs
[ENET_EIR
] & s
->regs
[ENET_EIMR
] & ENET_INT_MAC
) {
453 qemu_set_irq(s
->irq
[0], 1);
455 qemu_set_irq(s
->irq
[0], 0);
459 static void imx_fec_do_tx(IMXFECState
*s
)
461 int frame_size
= 0, descnt
= 0;
462 uint8_t *ptr
= s
->frame
;
463 uint32_t addr
= s
->tx_descriptor
[0];
465 while (descnt
++ < IMX_MAX_DESC
) {
469 imx_fec_read_bd(&bd
, addr
);
470 FEC_PRINTF("tx_bd %x flags %04x len %d data %08x\n",
471 addr
, bd
.flags
, bd
.length
, bd
.data
);
472 if ((bd
.flags
& ENET_BD_R
) == 0) {
473 /* Run out of descriptors to transmit. */
474 FEC_PRINTF("tx_bd ran out of descriptors to transmit\n");
478 if (frame_size
+ len
> ENET_MAX_FRAME_SIZE
) {
479 len
= ENET_MAX_FRAME_SIZE
- frame_size
;
480 s
->regs
[ENET_EIR
] |= ENET_INT_BABT
;
482 dma_memory_read(&address_space_memory
, bd
.data
, ptr
, len
);
485 if (bd
.flags
& ENET_BD_L
) {
486 /* Last buffer in frame. */
487 qemu_send_packet(qemu_get_queue(s
->nic
), s
->frame
, frame_size
);
490 s
->regs
[ENET_EIR
] |= ENET_INT_TXF
;
492 s
->regs
[ENET_EIR
] |= ENET_INT_TXB
;
493 bd
.flags
&= ~ENET_BD_R
;
494 /* Write back the modified descriptor. */
495 imx_fec_write_bd(&bd
, addr
);
496 /* Advance to the next descriptor. */
497 if ((bd
.flags
& ENET_BD_W
) != 0) {
498 addr
= s
->regs
[ENET_TDSR
];
504 s
->tx_descriptor
[0] = addr
;
509 static void imx_enet_do_tx(IMXFECState
*s
, uint32_t index
)
511 int frame_size
= 0, descnt
= 0;
513 uint8_t *ptr
= s
->frame
;
514 uint32_t addr
, int_txb
, int_txf
, tdsr
;
520 int_txb
= ENET_INT_TXB
;
521 int_txf
= ENET_INT_TXF
;
526 int_txb
= ENET_INT_TXB1
;
527 int_txf
= ENET_INT_TXF1
;
532 int_txb
= ENET_INT_TXB2
;
533 int_txf
= ENET_INT_TXF2
;
537 qemu_log_mask(LOG_GUEST_ERROR
,
538 "%s: bogus value for index %x\n",
544 addr
= s
->tx_descriptor
[ring
];
546 while (descnt
++ < IMX_MAX_DESC
) {
550 imx_enet_read_bd(&bd
, addr
);
551 FEC_PRINTF("tx_bd %x flags %04x len %d data %08x option %04x "
552 "status %04x\n", addr
, bd
.flags
, bd
.length
, bd
.data
,
553 bd
.option
, bd
.status
);
554 if ((bd
.flags
& ENET_BD_R
) == 0) {
555 /* Run out of descriptors to transmit. */
559 if (frame_size
+ len
> ENET_MAX_FRAME_SIZE
) {
560 len
= ENET_MAX_FRAME_SIZE
- frame_size
;
561 s
->regs
[ENET_EIR
] |= ENET_INT_BABT
;
563 dma_memory_read(&address_space_memory
, bd
.data
, ptr
, len
);
566 if (bd
.flags
& ENET_BD_L
) {
567 if (bd
.option
& ENET_BD_PINS
) {
568 struct ip_header
*ip_hd
= PKT_GET_IP_HDR(s
->frame
);
569 if (IP_HEADER_VERSION(ip_hd
) == 4) {
570 net_checksum_calculate(s
->frame
, frame_size
);
573 if (bd
.option
& ENET_BD_IINS
) {
574 struct ip_header
*ip_hd
= PKT_GET_IP_HDR(s
->frame
);
575 /* We compute checksum only for IPv4 frames */
576 if (IP_HEADER_VERSION(ip_hd
) == 4) {
579 csum
= net_raw_checksum((uint8_t *)ip_hd
, sizeof(*ip_hd
));
580 ip_hd
->ip_sum
= cpu_to_be16(csum
);
583 /* Last buffer in frame. */
585 qemu_send_packet(qemu_get_queue(s
->nic
), s
->frame
, frame_size
);
589 if (bd
.option
& ENET_BD_TX_INT
) {
590 s
->regs
[ENET_EIR
] |= int_txf
;
593 if (bd
.option
& ENET_BD_TX_INT
) {
594 s
->regs
[ENET_EIR
] |= int_txb
;
596 bd
.flags
&= ~ENET_BD_R
;
597 /* Write back the modified descriptor. */
598 imx_enet_write_bd(&bd
, addr
);
599 /* Advance to the next descriptor. */
600 if ((bd
.flags
& ENET_BD_W
) != 0) {
601 addr
= s
->regs
[tdsr
];
607 s
->tx_descriptor
[ring
] = addr
;
612 static void imx_eth_do_tx(IMXFECState
*s
, uint32_t index
)
614 if (!s
->is_fec
&& (s
->regs
[ENET_ECR
] & ENET_ECR_EN1588
)) {
615 imx_enet_do_tx(s
, index
);
621 static void imx_eth_enable_rx(IMXFECState
*s
, bool flush
)
625 imx_fec_read_bd(&bd
, s
->rx_descriptor
);
627 s
->regs
[ENET_RDAR
] = (bd
.flags
& ENET_BD_E
) ? ENET_RDAR_RDAR
: 0;
629 if (!s
->regs
[ENET_RDAR
]) {
630 FEC_PRINTF("RX buffer full\n");
632 qemu_flush_queued_packets(qemu_get_queue(s
->nic
));
636 static void imx_eth_reset(DeviceState
*d
)
638 IMXFECState
*s
= IMX_FEC(d
);
640 /* Reset the Device */
641 memset(s
->regs
, 0, sizeof(s
->regs
));
642 s
->regs
[ENET_ECR
] = 0xf0000000;
643 s
->regs
[ENET_MIBC
] = 0xc0000000;
644 s
->regs
[ENET_RCR
] = 0x05ee0001;
645 s
->regs
[ENET_OPD
] = 0x00010000;
647 s
->regs
[ENET_PALR
] = (s
->conf
.macaddr
.a
[0] << 24)
648 | (s
->conf
.macaddr
.a
[1] << 16)
649 | (s
->conf
.macaddr
.a
[2] << 8)
650 | s
->conf
.macaddr
.a
[3];
651 s
->regs
[ENET_PAUR
] = (s
->conf
.macaddr
.a
[4] << 24)
652 | (s
->conf
.macaddr
.a
[5] << 16)
656 s
->regs
[ENET_FRBR
] = 0x00000600;
657 s
->regs
[ENET_FRSR
] = 0x00000500;
658 s
->regs
[ENET_MIIGSK_ENR
] = 0x00000006;
660 s
->regs
[ENET_RAEM
] = 0x00000004;
661 s
->regs
[ENET_RAFL
] = 0x00000004;
662 s
->regs
[ENET_TAEM
] = 0x00000004;
663 s
->regs
[ENET_TAFL
] = 0x00000008;
664 s
->regs
[ENET_TIPG
] = 0x0000000c;
665 s
->regs
[ENET_FTRL
] = 0x000007ff;
666 s
->regs
[ENET_ATPER
] = 0x3b9aca00;
669 s
->rx_descriptor
= 0;
670 memset(s
->tx_descriptor
, 0, sizeof(s
->tx_descriptor
));
672 /* We also reset the PHY */
676 static uint32_t imx_default_read(IMXFECState
*s
, uint32_t index
)
678 qemu_log_mask(LOG_GUEST_ERROR
, "[%s]%s: Bad register at offset 0x%"
679 PRIx32
"\n", TYPE_IMX_FEC
, __func__
, index
* 4);
683 static uint32_t imx_fec_read(IMXFECState
*s
, uint32_t index
)
688 case ENET_MIIGSK_CFGR
:
689 case ENET_MIIGSK_ENR
:
690 return s
->regs
[index
];
692 return imx_default_read(s
, index
);
696 static uint32_t imx_enet_read(IMXFECState
*s
, uint32_t index
)
726 return s
->regs
[index
];
728 return imx_default_read(s
, index
);
732 static uint64_t imx_eth_read(void *opaque
, hwaddr offset
, unsigned size
)
735 IMXFECState
*s
= IMX_FEC(opaque
);
736 uint32_t index
= offset
>> 2;
760 value
= s
->regs
[index
];
764 value
= imx_fec_read(s
, index
);
766 value
= imx_enet_read(s
, index
);
771 FEC_PRINTF("reg[%s] => 0x%" PRIx32
"\n", imx_eth_reg_name(s
, index
),
777 static void imx_default_write(IMXFECState
*s
, uint32_t index
, uint32_t value
)
779 qemu_log_mask(LOG_GUEST_ERROR
, "[%s]%s: Bad address at offset 0x%"
780 PRIx32
"\n", TYPE_IMX_FEC
, __func__
, index
* 4);
784 static void imx_fec_write(IMXFECState
*s
, uint32_t index
, uint32_t value
)
788 /* FRBR is read only */
789 qemu_log_mask(LOG_GUEST_ERROR
, "[%s]%s: Register FRBR is read only\n",
790 TYPE_IMX_FEC
, __func__
);
793 s
->regs
[index
] = (value
& 0x000003fc) | 0x00000400;
795 case ENET_MIIGSK_CFGR
:
796 s
->regs
[index
] = value
& 0x00000053;
798 case ENET_MIIGSK_ENR
:
799 s
->regs
[index
] = (value
& 0x00000002) ? 0x00000006 : 0;
802 imx_default_write(s
, index
, value
);
807 static void imx_enet_write(IMXFECState
*s
, uint32_t index
, uint32_t value
)
817 s
->regs
[index
] = value
& 0x000001ff;
820 s
->regs
[index
] = value
& 0x0000001f;
823 s
->regs
[index
] = value
& 0x00003fff;
826 s
->regs
[index
] = value
& 0x00000019;
829 s
->regs
[index
] = value
& 0x000000C7;
832 s
->regs
[index
] = value
& 0x00002a9d;
837 s
->regs
[index
] = value
;
840 /* ATSTMP is read only */
841 qemu_log_mask(LOG_GUEST_ERROR
, "[%s]%s: Register ATSTMP is read only\n",
842 TYPE_IMX_FEC
, __func__
);
845 s
->regs
[index
] = value
& 0x7fffffff;
848 s
->regs
[index
] = value
& 0x00007f7f;
851 /* implement clear timer flag */
852 value
= value
& 0x0000000f;
858 value
= value
& 0x000000fd;
864 s
->regs
[index
] = value
;
867 imx_default_write(s
, index
, value
);
872 static void imx_eth_write(void *opaque
, hwaddr offset
, uint64_t value
,
875 IMXFECState
*s
= IMX_FEC(opaque
);
876 const bool single_tx_ring
= !imx_eth_is_multi_tx_ring(s
);
877 uint32_t index
= offset
>> 2;
879 FEC_PRINTF("reg[%s] <= 0x%" PRIx32
"\n", imx_eth_reg_name(s
, index
),
884 s
->regs
[index
] &= ~value
;
887 s
->regs
[index
] = value
;
890 if (s
->regs
[ENET_ECR
] & ENET_ECR_ETHEREN
) {
891 if (!s
->regs
[index
]) {
892 imx_eth_enable_rx(s
, true);
898 case ENET_TDAR1
: /* FALLTHROUGH */
899 case ENET_TDAR2
: /* FALLTHROUGH */
900 if (unlikely(single_tx_ring
)) {
901 qemu_log_mask(LOG_GUEST_ERROR
,
902 "[%s]%s: trying to access TDAR2 or TDAR1\n",
903 TYPE_IMX_FEC
, __func__
);
906 case ENET_TDAR
: /* FALLTHROUGH */
907 if (s
->regs
[ENET_ECR
] & ENET_ECR_ETHEREN
) {
908 s
->regs
[index
] = ENET_TDAR_TDAR
;
909 imx_eth_do_tx(s
, index
);
914 if (value
& ENET_ECR_RESET
) {
915 return imx_eth_reset(DEVICE(s
));
917 s
->regs
[index
] = value
;
918 if ((s
->regs
[index
] & ENET_ECR_ETHEREN
) == 0) {
919 s
->regs
[ENET_RDAR
] = 0;
920 s
->rx_descriptor
= s
->regs
[ENET_RDSR
];
921 s
->regs
[ENET_TDAR
] = 0;
922 s
->regs
[ENET_TDAR1
] = 0;
923 s
->regs
[ENET_TDAR2
] = 0;
924 s
->tx_descriptor
[0] = s
->regs
[ENET_TDSR
];
925 s
->tx_descriptor
[1] = s
->regs
[ENET_TDSR1
];
926 s
->tx_descriptor
[2] = s
->regs
[ENET_TDSR2
];
930 s
->regs
[index
] = value
;
931 if (extract32(value
, 29, 1)) {
932 /* This is a read operation */
933 s
->regs
[ENET_MMFR
] = deposit32(s
->regs
[ENET_MMFR
], 0, 16,
938 /* This a write operation */
939 do_phy_write(s
, extract32(value
, 18, 10), extract32(value
, 0, 16));
941 /* raise the interrupt as the PHY operation is done */
942 s
->regs
[ENET_EIR
] |= ENET_INT_MII
;
945 s
->regs
[index
] = value
& 0xfe;
948 /* TODO: Implement MIB. */
949 s
->regs
[index
] = (value
& 0x80000000) ? 0xc0000000 : 0;
952 s
->regs
[index
] = value
& 0x07ff003f;
953 /* TODO: Implement LOOP mode. */
956 /* We transmit immediately, so raise GRA immediately. */
957 s
->regs
[index
] = value
;
959 s
->regs
[ENET_EIR
] |= ENET_INT_GRA
;
963 s
->regs
[index
] = value
;
964 s
->conf
.macaddr
.a
[0] = value
>> 24;
965 s
->conf
.macaddr
.a
[1] = value
>> 16;
966 s
->conf
.macaddr
.a
[2] = value
>> 8;
967 s
->conf
.macaddr
.a
[3] = value
;
970 s
->regs
[index
] = (value
| 0x0000ffff) & 0xffff8808;
971 s
->conf
.macaddr
.a
[4] = value
>> 24;
972 s
->conf
.macaddr
.a
[5] = value
>> 16;
975 s
->regs
[index
] = (value
& 0x0000ffff) | 0x00010000;
981 /* TODO: implement MAC hash filtering. */
985 s
->regs
[index
] = value
& 0x3;
987 s
->regs
[index
] = value
& 0x13f;
992 s
->regs
[index
] = value
& ~3;
994 s
->regs
[index
] = value
& ~7;
996 s
->rx_descriptor
= s
->regs
[index
];
1000 s
->regs
[index
] = value
& ~3;
1002 s
->regs
[index
] = value
& ~7;
1004 s
->tx_descriptor
[0] = s
->regs
[index
];
1007 if (unlikely(single_tx_ring
)) {
1008 qemu_log_mask(LOG_GUEST_ERROR
,
1009 "[%s]%s: trying to access TDSR1\n",
1010 TYPE_IMX_FEC
, __func__
);
1014 s
->regs
[index
] = value
& ~7;
1015 s
->tx_descriptor
[1] = s
->regs
[index
];
1018 if (unlikely(single_tx_ring
)) {
1019 qemu_log_mask(LOG_GUEST_ERROR
,
1020 "[%s]%s: trying to access TDSR2\n",
1021 TYPE_IMX_FEC
, __func__
);
1025 s
->regs
[index
] = value
& ~7;
1026 s
->tx_descriptor
[2] = s
->regs
[index
];
1029 s
->regs
[index
] = value
& 0x00003ff0;
1033 imx_fec_write(s
, index
, value
);
1035 imx_enet_write(s
, index
, value
);
1043 static int imx_eth_can_receive(NetClientState
*nc
)
1045 IMXFECState
*s
= IMX_FEC(qemu_get_nic_opaque(nc
));
1049 return !!s
->regs
[ENET_RDAR
];
1052 static ssize_t
imx_fec_receive(NetClientState
*nc
, const uint8_t *buf
,
1055 IMXFECState
*s
= IMX_FEC(qemu_get_nic_opaque(nc
));
1062 unsigned int buf_len
;
1065 FEC_PRINTF("len %d\n", (int)size
);
1067 if (!s
->regs
[ENET_RDAR
]) {
1068 qemu_log_mask(LOG_GUEST_ERROR
, "[%s]%s: Unexpected packet\n",
1069 TYPE_IMX_FEC
, __func__
);
1073 /* 4 bytes for the CRC. */
1075 crc
= cpu_to_be32(crc32(~0, buf
, size
));
1076 crc_ptr
= (uint8_t *) &crc
;
1078 /* Huge frames are truncated. */
1079 if (size
> ENET_MAX_FRAME_SIZE
) {
1080 size
= ENET_MAX_FRAME_SIZE
;
1081 flags
|= ENET_BD_TR
| ENET_BD_LG
;
1084 /* Frames larger than the user limit just set error flags. */
1085 if (size
> (s
->regs
[ENET_RCR
] >> 16)) {
1086 flags
|= ENET_BD_LG
;
1089 addr
= s
->rx_descriptor
;
1091 imx_fec_read_bd(&bd
, addr
);
1092 if ((bd
.flags
& ENET_BD_E
) == 0) {
1093 /* No descriptors available. Bail out. */
1095 * FIXME: This is wrong. We should probably either
1096 * save the remainder for when more RX buffers are
1097 * available, or flag an error.
1099 qemu_log_mask(LOG_GUEST_ERROR
, "[%s]%s: Lost end of frame\n",
1100 TYPE_IMX_FEC
, __func__
);
1103 buf_len
= (size
<= s
->regs
[ENET_MRBR
]) ? size
: s
->regs
[ENET_MRBR
];
1104 bd
.length
= buf_len
;
1107 FEC_PRINTF("rx_bd 0x%x length %d\n", addr
, bd
.length
);
1109 /* The last 4 bytes are the CRC. */
1111 buf_len
+= size
- 4;
1114 dma_memory_write(&address_space_memory
, buf_addr
, buf
, buf_len
);
1117 dma_memory_write(&address_space_memory
, buf_addr
+ buf_len
,
1119 crc_ptr
+= 4 - size
;
1121 bd
.flags
&= ~ENET_BD_E
;
1123 /* Last buffer in frame. */
1124 bd
.flags
|= flags
| ENET_BD_L
;
1125 FEC_PRINTF("rx frame flags %04x\n", bd
.flags
);
1126 s
->regs
[ENET_EIR
] |= ENET_INT_RXF
;
1128 s
->regs
[ENET_EIR
] |= ENET_INT_RXB
;
1130 imx_fec_write_bd(&bd
, addr
);
1131 /* Advance to the next descriptor. */
1132 if ((bd
.flags
& ENET_BD_W
) != 0) {
1133 addr
= s
->regs
[ENET_RDSR
];
1138 s
->rx_descriptor
= addr
;
1139 imx_eth_enable_rx(s
, false);
1144 static ssize_t
imx_enet_receive(NetClientState
*nc
, const uint8_t *buf
,
1147 IMXFECState
*s
= IMX_FEC(qemu_get_nic_opaque(nc
));
1154 unsigned int buf_len
;
1156 bool shift16
= s
->regs
[ENET_RACC
] & ENET_RACC_SHIFT16
;
1158 FEC_PRINTF("len %d\n", (int)size
);
1160 if (!s
->regs
[ENET_RDAR
]) {
1161 qemu_log_mask(LOG_GUEST_ERROR
, "[%s]%s: Unexpected packet\n",
1162 TYPE_IMX_FEC
, __func__
);
1166 /* 4 bytes for the CRC. */
1168 crc
= cpu_to_be32(crc32(~0, buf
, size
));
1169 crc_ptr
= (uint8_t *) &crc
;
1175 /* Huge frames are truncated. */
1176 if (size
> s
->regs
[ENET_FTRL
]) {
1177 size
= s
->regs
[ENET_FTRL
];
1178 flags
|= ENET_BD_TR
| ENET_BD_LG
;
1181 /* Frames larger than the user limit just set error flags. */
1182 if (size
> (s
->regs
[ENET_RCR
] >> 16)) {
1183 flags
|= ENET_BD_LG
;
1186 addr
= s
->rx_descriptor
;
1188 imx_enet_read_bd(&bd
, addr
);
1189 if ((bd
.flags
& ENET_BD_E
) == 0) {
1190 /* No descriptors available. Bail out. */
1192 * FIXME: This is wrong. We should probably either
1193 * save the remainder for when more RX buffers are
1194 * available, or flag an error.
1196 qemu_log_mask(LOG_GUEST_ERROR
, "[%s]%s: Lost end of frame\n",
1197 TYPE_IMX_FEC
, __func__
);
1200 buf_len
= MIN(size
, s
->regs
[ENET_MRBR
]);
1201 bd
.length
= buf_len
;
1204 FEC_PRINTF("rx_bd 0x%x length %d\n", addr
, bd
.length
);
1206 /* The last 4 bytes are the CRC. */
1208 buf_len
+= size
- 4;
1214 * If SHIFT16 bit of ENETx_RACC register is set we need to
1215 * align the payload to 4-byte boundary.
1217 const uint8_t zeros
[2] = { 0 };
1219 dma_memory_write(&address_space_memory
, buf_addr
,
1220 zeros
, sizeof(zeros
));
1222 buf_addr
+= sizeof(zeros
);
1223 buf_len
-= sizeof(zeros
);
1225 /* We only do this once per Ethernet frame */
1229 dma_memory_write(&address_space_memory
, buf_addr
, buf
, buf_len
);
1232 dma_memory_write(&address_space_memory
, buf_addr
+ buf_len
,
1234 crc_ptr
+= 4 - size
;
1236 bd
.flags
&= ~ENET_BD_E
;
1238 /* Last buffer in frame. */
1239 bd
.flags
|= flags
| ENET_BD_L
;
1240 FEC_PRINTF("rx frame flags %04x\n", bd
.flags
);
1241 if (bd
.option
& ENET_BD_RX_INT
) {
1242 s
->regs
[ENET_EIR
] |= ENET_INT_RXF
;
1245 if (bd
.option
& ENET_BD_RX_INT
) {
1246 s
->regs
[ENET_EIR
] |= ENET_INT_RXB
;
1249 imx_enet_write_bd(&bd
, addr
);
1250 /* Advance to the next descriptor. */
1251 if ((bd
.flags
& ENET_BD_W
) != 0) {
1252 addr
= s
->regs
[ENET_RDSR
];
1257 s
->rx_descriptor
= addr
;
1258 imx_eth_enable_rx(s
, false);
1263 static ssize_t
imx_eth_receive(NetClientState
*nc
, const uint8_t *buf
,
1266 IMXFECState
*s
= IMX_FEC(qemu_get_nic_opaque(nc
));
1268 if (!s
->is_fec
&& (s
->regs
[ENET_ECR
] & ENET_ECR_EN1588
)) {
1269 return imx_enet_receive(nc
, buf
, len
);
1271 return imx_fec_receive(nc
, buf
, len
);
1275 static const MemoryRegionOps imx_eth_ops
= {
1276 .read
= imx_eth_read
,
1277 .write
= imx_eth_write
,
1278 .valid
.min_access_size
= 4,
1279 .valid
.max_access_size
= 4,
1280 .endianness
= DEVICE_NATIVE_ENDIAN
,
1283 static void imx_eth_cleanup(NetClientState
*nc
)
1285 IMXFECState
*s
= IMX_FEC(qemu_get_nic_opaque(nc
));
1290 static NetClientInfo imx_eth_net_info
= {
1291 .type
= NET_CLIENT_DRIVER_NIC
,
1292 .size
= sizeof(NICState
),
1293 .can_receive
= imx_eth_can_receive
,
1294 .receive
= imx_eth_receive
,
1295 .cleanup
= imx_eth_cleanup
,
1296 .link_status_changed
= imx_eth_set_link
,
1300 static void imx_eth_realize(DeviceState
*dev
, Error
**errp
)
1302 IMXFECState
*s
= IMX_FEC(dev
);
1303 SysBusDevice
*sbd
= SYS_BUS_DEVICE(dev
);
1305 memory_region_init_io(&s
->iomem
, OBJECT(dev
), &imx_eth_ops
, s
,
1306 TYPE_IMX_FEC
, FSL_IMX25_FEC_SIZE
);
1307 sysbus_init_mmio(sbd
, &s
->iomem
);
1308 sysbus_init_irq(sbd
, &s
->irq
[0]);
1309 sysbus_init_irq(sbd
, &s
->irq
[1]);
1311 qemu_macaddr_default_if_unset(&s
->conf
.macaddr
);
1313 s
->nic
= qemu_new_nic(&imx_eth_net_info
, &s
->conf
,
1314 object_get_typename(OBJECT(dev
)),
1315 DEVICE(dev
)->id
, s
);
1317 qemu_format_nic_info_str(qemu_get_queue(s
->nic
), s
->conf
.macaddr
.a
);
1320 static Property imx_eth_properties
[] = {
1321 DEFINE_NIC_PROPERTIES(IMXFECState
, conf
),
1322 DEFINE_PROP_UINT32("tx-ring-num", IMXFECState
, tx_ring_num
, 1),
1323 DEFINE_PROP_END_OF_LIST(),
1326 static void imx_eth_class_init(ObjectClass
*klass
, void *data
)
1328 DeviceClass
*dc
= DEVICE_CLASS(klass
);
1330 dc
->vmsd
= &vmstate_imx_eth
;
1331 dc
->reset
= imx_eth_reset
;
1332 dc
->props
= imx_eth_properties
;
1333 dc
->realize
= imx_eth_realize
;
1334 dc
->desc
= "i.MX FEC/ENET Ethernet Controller";
1337 static void imx_fec_init(Object
*obj
)
1339 IMXFECState
*s
= IMX_FEC(obj
);
1344 static void imx_enet_init(Object
*obj
)
1346 IMXFECState
*s
= IMX_FEC(obj
);
1351 static const TypeInfo imx_fec_info
= {
1352 .name
= TYPE_IMX_FEC
,
1353 .parent
= TYPE_SYS_BUS_DEVICE
,
1354 .instance_size
= sizeof(IMXFECState
),
1355 .instance_init
= imx_fec_init
,
1356 .class_init
= imx_eth_class_init
,
1359 static const TypeInfo imx_enet_info
= {
1360 .name
= TYPE_IMX_ENET
,
1361 .parent
= TYPE_IMX_FEC
,
1362 .instance_init
= imx_enet_init
,
1365 static void imx_eth_register_types(void)
1367 type_register_static(&imx_fec_info
);
1368 type_register_static(&imx_enet_info
);
1371 type_init(imx_eth_register_types
)