qemu-nbd: Avoid strtol open-coding
[qemu/ar7.git] / hw / i386 / pc.c
blob73d688f8423962f1b1e3e85a41634d6983e6badf
1 /*
2 * QEMU PC System Emulator
4 * Copyright (c) 2003-2004 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
25 #include "qemu/osdep.h"
26 #include "qemu/units.h"
27 #include "hw/hw.h"
28 #include "hw/i386/pc.h"
29 #include "hw/char/serial.h"
30 #include "hw/char/parallel.h"
31 #include "hw/i386/apic.h"
32 #include "hw/i386/topology.h"
33 #include "sysemu/cpus.h"
34 #include "hw/block/fdc.h"
35 #include "hw/ide.h"
36 #include "hw/pci/pci.h"
37 #include "hw/pci/pci_bus.h"
38 #include "hw/nvram/fw_cfg.h"
39 #include "hw/timer/hpet.h"
40 #include "hw/firmware/smbios.h"
41 #include "hw/loader.h"
42 #include "elf.h"
43 #include "multiboot.h"
44 #include "hw/timer/mc146818rtc.h"
45 #include "hw/dma/i8257.h"
46 #include "hw/timer/i8254.h"
47 #include "hw/input/i8042.h"
48 #include "hw/audio/pcspk.h"
49 #include "hw/pci/msi.h"
50 #include "hw/sysbus.h"
51 #include "sysemu/sysemu.h"
52 #include "sysemu/numa.h"
53 #include "sysemu/kvm.h"
54 #include "sysemu/qtest.h"
55 #include "kvm_i386.h"
56 #include "hw/xen/xen.h"
57 #include "ui/qemu-spice.h"
58 #include "exec/memory.h"
59 #include "exec/address-spaces.h"
60 #include "sysemu/arch_init.h"
61 #include "qemu/bitmap.h"
62 #include "qemu/config-file.h"
63 #include "qemu/error-report.h"
64 #include "qemu/option.h"
65 #include "hw/acpi/acpi.h"
66 #include "hw/acpi/cpu_hotplug.h"
67 #include "hw/boards.h"
68 #include "acpi-build.h"
69 #include "hw/mem/pc-dimm.h"
70 #include "qapi/error.h"
71 #include "qapi/qapi-visit-common.h"
72 #include "qapi/visitor.h"
73 #include "qom/cpu.h"
74 #include "hw/nmi.h"
75 #include "hw/usb.h"
76 #include "hw/i386/intel_iommu.h"
77 #include "hw/net/ne2000-isa.h"
79 /* debug PC/ISA interrupts */
80 //#define DEBUG_IRQ
82 #ifdef DEBUG_IRQ
83 #define DPRINTF(fmt, ...) \
84 do { printf("CPUIRQ: " fmt , ## __VA_ARGS__); } while (0)
85 #else
86 #define DPRINTF(fmt, ...)
87 #endif
89 #define FW_CFG_ACPI_TABLES (FW_CFG_ARCH_LOCAL + 0)
90 #define FW_CFG_SMBIOS_ENTRIES (FW_CFG_ARCH_LOCAL + 1)
91 #define FW_CFG_IRQ0_OVERRIDE (FW_CFG_ARCH_LOCAL + 2)
92 #define FW_CFG_E820_TABLE (FW_CFG_ARCH_LOCAL + 3)
93 #define FW_CFG_HPET (FW_CFG_ARCH_LOCAL + 4)
95 #define E820_NR_ENTRIES 16
97 struct e820_entry {
98 uint64_t address;
99 uint64_t length;
100 uint32_t type;
101 } QEMU_PACKED __attribute((__aligned__(4)));
103 struct e820_table {
104 uint32_t count;
105 struct e820_entry entry[E820_NR_ENTRIES];
106 } QEMU_PACKED __attribute((__aligned__(4)));
108 static struct e820_table e820_reserve;
109 static struct e820_entry *e820_table;
110 static unsigned e820_entries;
111 struct hpet_fw_config hpet_cfg = {.count = UINT8_MAX};
113 GlobalProperty pc_compat_3_1[] = {
114 { "intel-iommu", "dma-drain", "off" },
115 { "Opteron_G3" "-" TYPE_X86_CPU, "rdtscp", "off" },
116 { "Opteron_G4" "-" TYPE_X86_CPU, "rdtscp", "off" },
117 { "Opteron_G5" "-" TYPE_X86_CPU, "rdtscp", "off" },
118 { "Skylake-Client" "-" TYPE_X86_CPU, "mpx", "on" },
119 { "Skylake-Client-IBRS" "-" TYPE_X86_CPU, "mpx", "on" },
120 { "Skylake-Server" "-" TYPE_X86_CPU, "mpx", "on" },
121 { "Skylake-Server-IBRS" "-" TYPE_X86_CPU, "mpx", "on" },
122 { "Cascadelake-Server" "-" TYPE_X86_CPU, "mpx", "on" },
123 { "Icelake-Client" "-" TYPE_X86_CPU, "mpx", "on" },
124 { "Icelake-Server" "-" TYPE_X86_CPU, "mpx", "on" },
126 const size_t pc_compat_3_1_len = G_N_ELEMENTS(pc_compat_3_1);
128 GlobalProperty pc_compat_3_0[] = {
129 { TYPE_X86_CPU, "x-hv-synic-kvm-only", "on" },
130 { "Skylake-Server" "-" TYPE_X86_CPU, "pku", "off" },
131 { "Skylake-Server-IBRS" "-" TYPE_X86_CPU, "pku", "off" },
133 const size_t pc_compat_3_0_len = G_N_ELEMENTS(pc_compat_3_0);
135 GlobalProperty pc_compat_2_12[] = {
136 { TYPE_X86_CPU, "legacy-cache", "on" },
137 { TYPE_X86_CPU, "topoext", "off" },
138 { "EPYC-" TYPE_X86_CPU, "xlevel", "0x8000000a" },
139 { "EPYC-IBPB-" TYPE_X86_CPU, "xlevel", "0x8000000a" },
141 const size_t pc_compat_2_12_len = G_N_ELEMENTS(pc_compat_2_12);
143 GlobalProperty pc_compat_2_11[] = {
144 { TYPE_X86_CPU, "x-migrate-smi-count", "off" },
145 { "Skylake-Server" "-" TYPE_X86_CPU, "clflushopt", "off" },
147 const size_t pc_compat_2_11_len = G_N_ELEMENTS(pc_compat_2_11);
149 GlobalProperty pc_compat_2_10[] = {
150 { TYPE_X86_CPU, "x-hv-max-vps", "0x40" },
151 { "i440FX-pcihost", "x-pci-hole64-fix", "off" },
152 { "q35-pcihost", "x-pci-hole64-fix", "off" },
154 const size_t pc_compat_2_10_len = G_N_ELEMENTS(pc_compat_2_10);
156 GlobalProperty pc_compat_2_9[] = {
157 { "mch", "extended-tseg-mbytes", "0" },
159 const size_t pc_compat_2_9_len = G_N_ELEMENTS(pc_compat_2_9);
161 GlobalProperty pc_compat_2_8[] = {
162 { TYPE_X86_CPU, "tcg-cpuid", "off" },
163 { "kvmclock", "x-mach-use-reliable-get-clock", "off" },
164 { "ICH9-LPC", "x-smi-broadcast", "off" },
165 { TYPE_X86_CPU, "vmware-cpuid-freq", "off" },
166 { "Haswell-" TYPE_X86_CPU, "stepping", "1" },
168 const size_t pc_compat_2_8_len = G_N_ELEMENTS(pc_compat_2_8);
170 GlobalProperty pc_compat_2_7[] = {
171 { TYPE_X86_CPU, "l3-cache", "off" },
172 { TYPE_X86_CPU, "full-cpuid-auto-level", "off" },
173 { "Opteron_G3" "-" TYPE_X86_CPU, "family", "15" },
174 { "Opteron_G3" "-" TYPE_X86_CPU, "model", "6" },
175 { "Opteron_G3" "-" TYPE_X86_CPU, "stepping", "1" },
176 { "isa-pcspk", "migrate", "off" },
178 const size_t pc_compat_2_7_len = G_N_ELEMENTS(pc_compat_2_7);
180 GlobalProperty pc_compat_2_6[] = {
181 { TYPE_X86_CPU, "cpuid-0xb", "off" },
182 { "vmxnet3", "romfile", "" },
183 { TYPE_X86_CPU, "fill-mtrr-mask", "off" },
184 { "apic-common", "legacy-instance-id", "on", }
186 const size_t pc_compat_2_6_len = G_N_ELEMENTS(pc_compat_2_6);
188 GlobalProperty pc_compat_2_5[] = {};
189 const size_t pc_compat_2_5_len = G_N_ELEMENTS(pc_compat_2_5);
191 GlobalProperty pc_compat_2_4[] = {
192 PC_CPU_MODEL_IDS("2.4.0")
193 { "Haswell-" TYPE_X86_CPU, "abm", "off" },
194 { "Haswell-noTSX-" TYPE_X86_CPU, "abm", "off" },
195 { "Broadwell-" TYPE_X86_CPU, "abm", "off" },
196 { "Broadwell-noTSX-" TYPE_X86_CPU, "abm", "off" },
197 { "host" "-" TYPE_X86_CPU, "host-cache-info", "on" },
198 { TYPE_X86_CPU, "check", "off" },
199 { "qemu64" "-" TYPE_X86_CPU, "sse4a", "on" },
200 { "qemu64" "-" TYPE_X86_CPU, "abm", "on" },
201 { "qemu64" "-" TYPE_X86_CPU, "popcnt", "on" },
202 { "qemu32" "-" TYPE_X86_CPU, "popcnt", "on" },
203 { "Opteron_G2" "-" TYPE_X86_CPU, "rdtscp", "on" },
204 { "Opteron_G3" "-" TYPE_X86_CPU, "rdtscp", "on" },
205 { "Opteron_G4" "-" TYPE_X86_CPU, "rdtscp", "on" },
206 { "Opteron_G5" "-" TYPE_X86_CPU, "rdtscp", "on", }
208 const size_t pc_compat_2_4_len = G_N_ELEMENTS(pc_compat_2_4);
210 GlobalProperty pc_compat_2_3[] = {
211 PC_CPU_MODEL_IDS("2.3.0")
212 { TYPE_X86_CPU, "arat", "off" },
213 { "qemu64" "-" TYPE_X86_CPU, "min-level", "4" },
214 { "kvm64" "-" TYPE_X86_CPU, "min-level", "5" },
215 { "pentium3" "-" TYPE_X86_CPU, "min-level", "2" },
216 { "n270" "-" TYPE_X86_CPU, "min-level", "5" },
217 { "Conroe" "-" TYPE_X86_CPU, "min-level", "4" },
218 { "Penryn" "-" TYPE_X86_CPU, "min-level", "4" },
219 { "Nehalem" "-" TYPE_X86_CPU, "min-level", "4" },
220 { "n270" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" },
221 { "Penryn" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" },
222 { "Conroe" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" },
223 { "Nehalem" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" },
224 { "Westmere" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" },
225 { "SandyBridge" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" },
226 { "IvyBridge" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" },
227 { "Haswell" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" },
228 { "Haswell-noTSX" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" },
229 { "Broadwell" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" },
230 { "Broadwell-noTSX" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" },
231 { TYPE_X86_CPU, "kvm-no-smi-migration", "on" },
233 const size_t pc_compat_2_3_len = G_N_ELEMENTS(pc_compat_2_3);
235 GlobalProperty pc_compat_2_2[] = {
236 PC_CPU_MODEL_IDS("2.2.0")
237 { "kvm64" "-" TYPE_X86_CPU, "vme", "off" },
238 { "kvm32" "-" TYPE_X86_CPU, "vme", "off" },
239 { "Conroe" "-" TYPE_X86_CPU, "vme", "off" },
240 { "Penryn" "-" TYPE_X86_CPU, "vme", "off" },
241 { "Nehalem" "-" TYPE_X86_CPU, "vme", "off" },
242 { "Westmere" "-" TYPE_X86_CPU, "vme", "off" },
243 { "SandyBridge" "-" TYPE_X86_CPU, "vme", "off" },
244 { "Haswell" "-" TYPE_X86_CPU, "vme", "off" },
245 { "Broadwell" "-" TYPE_X86_CPU, "vme", "off" },
246 { "Opteron_G1" "-" TYPE_X86_CPU, "vme", "off" },
247 { "Opteron_G2" "-" TYPE_X86_CPU, "vme", "off" },
248 { "Opteron_G3" "-" TYPE_X86_CPU, "vme", "off" },
249 { "Opteron_G4" "-" TYPE_X86_CPU, "vme", "off" },
250 { "Opteron_G5" "-" TYPE_X86_CPU, "vme", "off" },
251 { "Haswell" "-" TYPE_X86_CPU, "f16c", "off" },
252 { "Haswell" "-" TYPE_X86_CPU, "rdrand", "off" },
253 { "Broadwell" "-" TYPE_X86_CPU, "f16c", "off" },
254 { "Broadwell" "-" TYPE_X86_CPU, "rdrand", "off" },
256 const size_t pc_compat_2_2_len = G_N_ELEMENTS(pc_compat_2_2);
258 GlobalProperty pc_compat_2_1[] = {
259 PC_CPU_MODEL_IDS("2.1.0")
260 { "coreduo" "-" TYPE_X86_CPU, "vmx", "on" },
261 { "core2duo" "-" TYPE_X86_CPU, "vmx", "on" },
263 const size_t pc_compat_2_1_len = G_N_ELEMENTS(pc_compat_2_1);
265 GlobalProperty pc_compat_2_0[] = {
266 PC_CPU_MODEL_IDS("2.0.0")
267 { "virtio-scsi-pci", "any_layout", "off" },
268 { "PIIX4_PM", "memory-hotplug-support", "off" },
269 { "apic", "version", "0x11" },
270 { "nec-usb-xhci", "superspeed-ports-first", "off" },
271 { "nec-usb-xhci", "force-pcie-endcap", "on" },
272 { "pci-serial", "prog_if", "0" },
273 { "pci-serial-2x", "prog_if", "0" },
274 { "pci-serial-4x", "prog_if", "0" },
275 { "virtio-net-pci", "guest_announce", "off" },
276 { "ICH9-LPC", "memory-hotplug-support", "off" },
277 { "xio3130-downstream", COMPAT_PROP_PCP, "off" },
278 { "ioh3420", COMPAT_PROP_PCP, "off" },
280 const size_t pc_compat_2_0_len = G_N_ELEMENTS(pc_compat_2_0);
282 GlobalProperty pc_compat_1_7[] = {
283 PC_CPU_MODEL_IDS("1.7.0")
284 { TYPE_USB_DEVICE, "msos-desc", "no" },
285 { "PIIX4_PM", "acpi-pci-hotplug-with-bridge-support", "off" },
286 { "hpet", HPET_INTCAP, "4" },
288 const size_t pc_compat_1_7_len = G_N_ELEMENTS(pc_compat_1_7);
290 GlobalProperty pc_compat_1_6[] = {
291 PC_CPU_MODEL_IDS("1.6.0")
292 { "e1000", "mitigation", "off" },
293 { "qemu64-" TYPE_X86_CPU, "model", "2" },
294 { "qemu32-" TYPE_X86_CPU, "model", "3" },
295 { "i440FX-pcihost", "short_root_bus", "1" },
296 { "q35-pcihost", "short_root_bus", "1" },
298 const size_t pc_compat_1_6_len = G_N_ELEMENTS(pc_compat_1_6);
300 GlobalProperty pc_compat_1_5[] = {
301 PC_CPU_MODEL_IDS("1.5.0")
302 { "Conroe-" TYPE_X86_CPU, "model", "2" },
303 { "Conroe-" TYPE_X86_CPU, "min-level", "2" },
304 { "Penryn-" TYPE_X86_CPU, "model", "2" },
305 { "Penryn-" TYPE_X86_CPU, "min-level", "2" },
306 { "Nehalem-" TYPE_X86_CPU, "model", "2" },
307 { "Nehalem-" TYPE_X86_CPU, "min-level", "2" },
308 { "virtio-net-pci", "any_layout", "off" },
309 { TYPE_X86_CPU, "pmu", "on" },
310 { "i440FX-pcihost", "short_root_bus", "0" },
311 { "q35-pcihost", "short_root_bus", "0" },
313 const size_t pc_compat_1_5_len = G_N_ELEMENTS(pc_compat_1_5);
315 GlobalProperty pc_compat_1_4[] = {
316 PC_CPU_MODEL_IDS("1.4.0")
317 { "scsi-hd", "discard_granularity", "0" },
318 { "scsi-cd", "discard_granularity", "0" },
319 { "scsi-disk", "discard_granularity", "0" },
320 { "ide-hd", "discard_granularity", "0" },
321 { "ide-cd", "discard_granularity", "0" },
322 { "ide-drive", "discard_granularity", "0" },
323 { "virtio-blk-pci", "discard_granularity", "0" },
324 /* DEV_NVECTORS_UNSPECIFIED as a uint32_t string: */
325 { "virtio-serial-pci", "vectors", "0xFFFFFFFF" },
326 { "virtio-net-pci", "ctrl_guest_offloads", "off" },
327 { "e1000", "romfile", "pxe-e1000.rom" },
328 { "ne2k_pci", "romfile", "pxe-ne2k_pci.rom" },
329 { "pcnet", "romfile", "pxe-pcnet.rom" },
330 { "rtl8139", "romfile", "pxe-rtl8139.rom" },
331 { "virtio-net-pci", "romfile", "pxe-virtio.rom" },
332 { "486-" TYPE_X86_CPU, "model", "0" },
333 { "n270" "-" TYPE_X86_CPU, "movbe", "off" },
334 { "Westmere" "-" TYPE_X86_CPU, "pclmulqdq", "off" },
336 const size_t pc_compat_1_4_len = G_N_ELEMENTS(pc_compat_1_4);
338 void gsi_handler(void *opaque, int n, int level)
340 GSIState *s = opaque;
342 DPRINTF("pc: %s GSI %d\n", level ? "raising" : "lowering", n);
343 if (n < ISA_NUM_IRQS) {
344 qemu_set_irq(s->i8259_irq[n], level);
346 qemu_set_irq(s->ioapic_irq[n], level);
349 static void ioport80_write(void *opaque, hwaddr addr, uint64_t data,
350 unsigned size)
354 static uint64_t ioport80_read(void *opaque, hwaddr addr, unsigned size)
356 return 0xffffffffffffffffULL;
359 /* MSDOS compatibility mode FPU exception support */
360 static qemu_irq ferr_irq;
362 void pc_register_ferr_irq(qemu_irq irq)
364 ferr_irq = irq;
367 /* XXX: add IGNNE support */
368 void cpu_set_ferr(CPUX86State *s)
370 qemu_irq_raise(ferr_irq);
373 static void ioportF0_write(void *opaque, hwaddr addr, uint64_t data,
374 unsigned size)
376 qemu_irq_lower(ferr_irq);
379 static uint64_t ioportF0_read(void *opaque, hwaddr addr, unsigned size)
381 return 0xffffffffffffffffULL;
384 /* TSC handling */
385 uint64_t cpu_get_tsc(CPUX86State *env)
387 return cpu_get_ticks();
390 /* IRQ handling */
391 int cpu_get_pic_interrupt(CPUX86State *env)
393 X86CPU *cpu = x86_env_get_cpu(env);
394 int intno;
396 if (!kvm_irqchip_in_kernel()) {
397 intno = apic_get_interrupt(cpu->apic_state);
398 if (intno >= 0) {
399 return intno;
401 /* read the irq from the PIC */
402 if (!apic_accept_pic_intr(cpu->apic_state)) {
403 return -1;
407 intno = pic_read_irq(isa_pic);
408 return intno;
411 static void pic_irq_request(void *opaque, int irq, int level)
413 CPUState *cs = first_cpu;
414 X86CPU *cpu = X86_CPU(cs);
416 DPRINTF("pic_irqs: %s irq %d\n", level? "raise" : "lower", irq);
417 if (cpu->apic_state && !kvm_irqchip_in_kernel()) {
418 CPU_FOREACH(cs) {
419 cpu = X86_CPU(cs);
420 if (apic_accept_pic_intr(cpu->apic_state)) {
421 apic_deliver_pic_intr(cpu->apic_state, level);
424 } else {
425 if (level) {
426 cpu_interrupt(cs, CPU_INTERRUPT_HARD);
427 } else {
428 cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
433 /* PC cmos mappings */
435 #define REG_EQUIPMENT_BYTE 0x14
437 int cmos_get_fd_drive_type(FloppyDriveType fd0)
439 int val;
441 switch (fd0) {
442 case FLOPPY_DRIVE_TYPE_144:
443 /* 1.44 Mb 3"5 drive */
444 val = 4;
445 break;
446 case FLOPPY_DRIVE_TYPE_288:
447 /* 2.88 Mb 3"5 drive */
448 val = 5;
449 break;
450 case FLOPPY_DRIVE_TYPE_120:
451 /* 1.2 Mb 5"5 drive */
452 val = 2;
453 break;
454 case FLOPPY_DRIVE_TYPE_NONE:
455 default:
456 val = 0;
457 break;
459 return val;
462 static void cmos_init_hd(ISADevice *s, int type_ofs, int info_ofs,
463 int16_t cylinders, int8_t heads, int8_t sectors)
465 rtc_set_memory(s, type_ofs, 47);
466 rtc_set_memory(s, info_ofs, cylinders);
467 rtc_set_memory(s, info_ofs + 1, cylinders >> 8);
468 rtc_set_memory(s, info_ofs + 2, heads);
469 rtc_set_memory(s, info_ofs + 3, 0xff);
470 rtc_set_memory(s, info_ofs + 4, 0xff);
471 rtc_set_memory(s, info_ofs + 5, 0xc0 | ((heads > 8) << 3));
472 rtc_set_memory(s, info_ofs + 6, cylinders);
473 rtc_set_memory(s, info_ofs + 7, cylinders >> 8);
474 rtc_set_memory(s, info_ofs + 8, sectors);
477 /* convert boot_device letter to something recognizable by the bios */
478 static int boot_device2nibble(char boot_device)
480 switch(boot_device) {
481 case 'a':
482 case 'b':
483 return 0x01; /* floppy boot */
484 case 'c':
485 return 0x02; /* hard drive boot */
486 case 'd':
487 return 0x03; /* CD-ROM boot */
488 case 'n':
489 return 0x04; /* Network boot */
491 return 0;
494 static void set_boot_dev(ISADevice *s, const char *boot_device, Error **errp)
496 #define PC_MAX_BOOT_DEVICES 3
497 int nbds, bds[3] = { 0, };
498 int i;
500 nbds = strlen(boot_device);
501 if (nbds > PC_MAX_BOOT_DEVICES) {
502 error_setg(errp, "Too many boot devices for PC");
503 return;
505 for (i = 0; i < nbds; i++) {
506 bds[i] = boot_device2nibble(boot_device[i]);
507 if (bds[i] == 0) {
508 error_setg(errp, "Invalid boot device for PC: '%c'",
509 boot_device[i]);
510 return;
513 rtc_set_memory(s, 0x3d, (bds[1] << 4) | bds[0]);
514 rtc_set_memory(s, 0x38, (bds[2] << 4) | (fd_bootchk ? 0x0 : 0x1));
517 static void pc_boot_set(void *opaque, const char *boot_device, Error **errp)
519 set_boot_dev(opaque, boot_device, errp);
522 static void pc_cmos_init_floppy(ISADevice *rtc_state, ISADevice *floppy)
524 int val, nb, i;
525 FloppyDriveType fd_type[2] = { FLOPPY_DRIVE_TYPE_NONE,
526 FLOPPY_DRIVE_TYPE_NONE };
528 /* floppy type */
529 if (floppy) {
530 for (i = 0; i < 2; i++) {
531 fd_type[i] = isa_fdc_get_drive_type(floppy, i);
534 val = (cmos_get_fd_drive_type(fd_type[0]) << 4) |
535 cmos_get_fd_drive_type(fd_type[1]);
536 rtc_set_memory(rtc_state, 0x10, val);
538 val = rtc_get_memory(rtc_state, REG_EQUIPMENT_BYTE);
539 nb = 0;
540 if (fd_type[0] != FLOPPY_DRIVE_TYPE_NONE) {
541 nb++;
543 if (fd_type[1] != FLOPPY_DRIVE_TYPE_NONE) {
544 nb++;
546 switch (nb) {
547 case 0:
548 break;
549 case 1:
550 val |= 0x01; /* 1 drive, ready for boot */
551 break;
552 case 2:
553 val |= 0x41; /* 2 drives, ready for boot */
554 break;
556 rtc_set_memory(rtc_state, REG_EQUIPMENT_BYTE, val);
559 typedef struct pc_cmos_init_late_arg {
560 ISADevice *rtc_state;
561 BusState *idebus[2];
562 } pc_cmos_init_late_arg;
564 typedef struct check_fdc_state {
565 ISADevice *floppy;
566 bool multiple;
567 } CheckFdcState;
569 static int check_fdc(Object *obj, void *opaque)
571 CheckFdcState *state = opaque;
572 Object *fdc;
573 uint32_t iobase;
574 Error *local_err = NULL;
576 fdc = object_dynamic_cast(obj, TYPE_ISA_FDC);
577 if (!fdc) {
578 return 0;
581 iobase = object_property_get_uint(obj, "iobase", &local_err);
582 if (local_err || iobase != 0x3f0) {
583 error_free(local_err);
584 return 0;
587 if (state->floppy) {
588 state->multiple = true;
589 } else {
590 state->floppy = ISA_DEVICE(obj);
592 return 0;
595 static const char * const fdc_container_path[] = {
596 "/unattached", "/peripheral", "/peripheral-anon"
600 * Locate the FDC at IO address 0x3f0, in order to configure the CMOS registers
601 * and ACPI objects.
603 ISADevice *pc_find_fdc0(void)
605 int i;
606 Object *container;
607 CheckFdcState state = { 0 };
609 for (i = 0; i < ARRAY_SIZE(fdc_container_path); i++) {
610 container = container_get(qdev_get_machine(), fdc_container_path[i]);
611 object_child_foreach(container, check_fdc, &state);
614 if (state.multiple) {
615 warn_report("multiple floppy disk controllers with "
616 "iobase=0x3f0 have been found");
617 error_printf("the one being picked for CMOS setup might not reflect "
618 "your intent");
621 return state.floppy;
624 static void pc_cmos_init_late(void *opaque)
626 pc_cmos_init_late_arg *arg = opaque;
627 ISADevice *s = arg->rtc_state;
628 int16_t cylinders;
629 int8_t heads, sectors;
630 int val;
631 int i, trans;
633 val = 0;
634 if (arg->idebus[0] && ide_get_geometry(arg->idebus[0], 0,
635 &cylinders, &heads, &sectors) >= 0) {
636 cmos_init_hd(s, 0x19, 0x1b, cylinders, heads, sectors);
637 val |= 0xf0;
639 if (arg->idebus[0] && ide_get_geometry(arg->idebus[0], 1,
640 &cylinders, &heads, &sectors) >= 0) {
641 cmos_init_hd(s, 0x1a, 0x24, cylinders, heads, sectors);
642 val |= 0x0f;
644 rtc_set_memory(s, 0x12, val);
646 val = 0;
647 for (i = 0; i < 4; i++) {
648 /* NOTE: ide_get_geometry() returns the physical
649 geometry. It is always such that: 1 <= sects <= 63, 1
650 <= heads <= 16, 1 <= cylinders <= 16383. The BIOS
651 geometry can be different if a translation is done. */
652 if (arg->idebus[i / 2] &&
653 ide_get_geometry(arg->idebus[i / 2], i % 2,
654 &cylinders, &heads, &sectors) >= 0) {
655 trans = ide_get_bios_chs_trans(arg->idebus[i / 2], i % 2) - 1;
656 assert((trans & ~3) == 0);
657 val |= trans << (i * 2);
660 rtc_set_memory(s, 0x39, val);
662 pc_cmos_init_floppy(s, pc_find_fdc0());
664 qemu_unregister_reset(pc_cmos_init_late, opaque);
667 void pc_cmos_init(PCMachineState *pcms,
668 BusState *idebus0, BusState *idebus1,
669 ISADevice *s)
671 int val;
672 static pc_cmos_init_late_arg arg;
674 /* various important CMOS locations needed by PC/Bochs bios */
676 /* memory size */
677 /* base memory (first MiB) */
678 val = MIN(pcms->below_4g_mem_size / KiB, 640);
679 rtc_set_memory(s, 0x15, val);
680 rtc_set_memory(s, 0x16, val >> 8);
681 /* extended memory (next 64MiB) */
682 if (pcms->below_4g_mem_size > 1 * MiB) {
683 val = (pcms->below_4g_mem_size - 1 * MiB) / KiB;
684 } else {
685 val = 0;
687 if (val > 65535)
688 val = 65535;
689 rtc_set_memory(s, 0x17, val);
690 rtc_set_memory(s, 0x18, val >> 8);
691 rtc_set_memory(s, 0x30, val);
692 rtc_set_memory(s, 0x31, val >> 8);
693 /* memory between 16MiB and 4GiB */
694 if (pcms->below_4g_mem_size > 16 * MiB) {
695 val = (pcms->below_4g_mem_size - 16 * MiB) / (64 * KiB);
696 } else {
697 val = 0;
699 if (val > 65535)
700 val = 65535;
701 rtc_set_memory(s, 0x34, val);
702 rtc_set_memory(s, 0x35, val >> 8);
703 /* memory above 4GiB */
704 val = pcms->above_4g_mem_size / 65536;
705 rtc_set_memory(s, 0x5b, val);
706 rtc_set_memory(s, 0x5c, val >> 8);
707 rtc_set_memory(s, 0x5d, val >> 16);
709 object_property_add_link(OBJECT(pcms), "rtc_state",
710 TYPE_ISA_DEVICE,
711 (Object **)&pcms->rtc,
712 object_property_allow_set_link,
713 OBJ_PROP_LINK_STRONG, &error_abort);
714 object_property_set_link(OBJECT(pcms), OBJECT(s),
715 "rtc_state", &error_abort);
717 set_boot_dev(s, MACHINE(pcms)->boot_order, &error_fatal);
719 val = 0;
720 val |= 0x02; /* FPU is there */
721 val |= 0x04; /* PS/2 mouse installed */
722 rtc_set_memory(s, REG_EQUIPMENT_BYTE, val);
724 /* hard drives and FDC */
725 arg.rtc_state = s;
726 arg.idebus[0] = idebus0;
727 arg.idebus[1] = idebus1;
728 qemu_register_reset(pc_cmos_init_late, &arg);
731 #define TYPE_PORT92 "port92"
732 #define PORT92(obj) OBJECT_CHECK(Port92State, (obj), TYPE_PORT92)
734 /* port 92 stuff: could be split off */
735 typedef struct Port92State {
736 ISADevice parent_obj;
738 MemoryRegion io;
739 uint8_t outport;
740 qemu_irq a20_out;
741 } Port92State;
743 static void port92_write(void *opaque, hwaddr addr, uint64_t val,
744 unsigned size)
746 Port92State *s = opaque;
747 int oldval = s->outport;
749 DPRINTF("port92: write 0x%02" PRIx64 "\n", val);
750 s->outport = val;
751 qemu_set_irq(s->a20_out, (val >> 1) & 1);
752 if ((val & 1) && !(oldval & 1)) {
753 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
757 static uint64_t port92_read(void *opaque, hwaddr addr,
758 unsigned size)
760 Port92State *s = opaque;
761 uint32_t ret;
763 ret = s->outport;
764 DPRINTF("port92: read 0x%02x\n", ret);
765 return ret;
768 static void port92_init(ISADevice *dev, qemu_irq a20_out)
770 qdev_connect_gpio_out_named(DEVICE(dev), PORT92_A20_LINE, 0, a20_out);
773 static const VMStateDescription vmstate_port92_isa = {
774 .name = "port92",
775 .version_id = 1,
776 .minimum_version_id = 1,
777 .fields = (VMStateField[]) {
778 VMSTATE_UINT8(outport, Port92State),
779 VMSTATE_END_OF_LIST()
783 static void port92_reset(DeviceState *d)
785 Port92State *s = PORT92(d);
787 s->outport &= ~1;
790 static const MemoryRegionOps port92_ops = {
791 .read = port92_read,
792 .write = port92_write,
793 .impl = {
794 .min_access_size = 1,
795 .max_access_size = 1,
797 .endianness = DEVICE_LITTLE_ENDIAN,
800 static void port92_initfn(Object *obj)
802 Port92State *s = PORT92(obj);
804 memory_region_init_io(&s->io, OBJECT(s), &port92_ops, s, "port92", 1);
806 s->outport = 0;
808 qdev_init_gpio_out_named(DEVICE(obj), &s->a20_out, PORT92_A20_LINE, 1);
811 static void port92_realizefn(DeviceState *dev, Error **errp)
813 ISADevice *isadev = ISA_DEVICE(dev);
814 Port92State *s = PORT92(dev);
816 isa_register_ioport(isadev, &s->io, 0x92);
819 static void port92_class_initfn(ObjectClass *klass, void *data)
821 DeviceClass *dc = DEVICE_CLASS(klass);
823 dc->realize = port92_realizefn;
824 dc->reset = port92_reset;
825 dc->vmsd = &vmstate_port92_isa;
827 * Reason: unlike ordinary ISA devices, this one needs additional
828 * wiring: its A20 output line needs to be wired up by
829 * port92_init().
831 dc->user_creatable = false;
834 static const TypeInfo port92_info = {
835 .name = TYPE_PORT92,
836 .parent = TYPE_ISA_DEVICE,
837 .instance_size = sizeof(Port92State),
838 .instance_init = port92_initfn,
839 .class_init = port92_class_initfn,
842 static void port92_register_types(void)
844 type_register_static(&port92_info);
847 type_init(port92_register_types)
849 static void handle_a20_line_change(void *opaque, int irq, int level)
851 X86CPU *cpu = opaque;
853 /* XXX: send to all CPUs ? */
854 /* XXX: add logic to handle multiple A20 line sources */
855 x86_cpu_set_a20(cpu, level);
858 int e820_add_entry(uint64_t address, uint64_t length, uint32_t type)
860 int index = le32_to_cpu(e820_reserve.count);
861 struct e820_entry *entry;
863 if (type != E820_RAM) {
864 /* old FW_CFG_E820_TABLE entry -- reservations only */
865 if (index >= E820_NR_ENTRIES) {
866 return -EBUSY;
868 entry = &e820_reserve.entry[index++];
870 entry->address = cpu_to_le64(address);
871 entry->length = cpu_to_le64(length);
872 entry->type = cpu_to_le32(type);
874 e820_reserve.count = cpu_to_le32(index);
877 /* new "etc/e820" file -- include ram too */
878 e820_table = g_renew(struct e820_entry, e820_table, e820_entries + 1);
879 e820_table[e820_entries].address = cpu_to_le64(address);
880 e820_table[e820_entries].length = cpu_to_le64(length);
881 e820_table[e820_entries].type = cpu_to_le32(type);
882 e820_entries++;
884 return e820_entries;
887 int e820_get_num_entries(void)
889 return e820_entries;
892 bool e820_get_entry(int idx, uint32_t type, uint64_t *address, uint64_t *length)
894 if (idx < e820_entries && e820_table[idx].type == cpu_to_le32(type)) {
895 *address = le64_to_cpu(e820_table[idx].address);
896 *length = le64_to_cpu(e820_table[idx].length);
897 return true;
899 return false;
902 /* Enables contiguous-apic-ID mode, for compatibility */
903 static bool compat_apic_id_mode;
905 void enable_compat_apic_id_mode(void)
907 compat_apic_id_mode = true;
910 /* Calculates initial APIC ID for a specific CPU index
912 * Currently we need to be able to calculate the APIC ID from the CPU index
913 * alone (without requiring a CPU object), as the QEMU<->Seabios interfaces have
914 * no concept of "CPU index", and the NUMA tables on fw_cfg need the APIC ID of
915 * all CPUs up to max_cpus.
917 static uint32_t x86_cpu_apic_id_from_index(unsigned int cpu_index)
919 uint32_t correct_id;
920 static bool warned;
922 correct_id = x86_apicid_from_cpu_idx(smp_cores, smp_threads, cpu_index);
923 if (compat_apic_id_mode) {
924 if (cpu_index != correct_id && !warned && !qtest_enabled()) {
925 error_report("APIC IDs set in compatibility mode, "
926 "CPU topology won't match the configuration");
927 warned = true;
929 return cpu_index;
930 } else {
931 return correct_id;
935 static void pc_build_smbios(PCMachineState *pcms)
937 uint8_t *smbios_tables, *smbios_anchor;
938 size_t smbios_tables_len, smbios_anchor_len;
939 struct smbios_phys_mem_area *mem_array;
940 unsigned i, array_count;
941 MachineState *ms = MACHINE(pcms);
942 X86CPU *cpu = X86_CPU(ms->possible_cpus->cpus[0].cpu);
944 /* tell smbios about cpuid version and features */
945 smbios_set_cpuid(cpu->env.cpuid_version, cpu->env.features[FEAT_1_EDX]);
947 smbios_tables = smbios_get_table_legacy(&smbios_tables_len);
948 if (smbios_tables) {
949 fw_cfg_add_bytes(pcms->fw_cfg, FW_CFG_SMBIOS_ENTRIES,
950 smbios_tables, smbios_tables_len);
953 /* build the array of physical mem area from e820 table */
954 mem_array = g_malloc0(sizeof(*mem_array) * e820_get_num_entries());
955 for (i = 0, array_count = 0; i < e820_get_num_entries(); i++) {
956 uint64_t addr, len;
958 if (e820_get_entry(i, E820_RAM, &addr, &len)) {
959 mem_array[array_count].address = addr;
960 mem_array[array_count].length = len;
961 array_count++;
964 smbios_get_tables(mem_array, array_count,
965 &smbios_tables, &smbios_tables_len,
966 &smbios_anchor, &smbios_anchor_len);
967 g_free(mem_array);
969 if (smbios_anchor) {
970 fw_cfg_add_file(pcms->fw_cfg, "etc/smbios/smbios-tables",
971 smbios_tables, smbios_tables_len);
972 fw_cfg_add_file(pcms->fw_cfg, "etc/smbios/smbios-anchor",
973 smbios_anchor, smbios_anchor_len);
977 static FWCfgState *bochs_bios_init(AddressSpace *as, PCMachineState *pcms)
979 FWCfgState *fw_cfg;
980 uint64_t *numa_fw_cfg;
981 int i;
982 const CPUArchIdList *cpus;
983 MachineClass *mc = MACHINE_GET_CLASS(pcms);
985 fw_cfg = fw_cfg_init_io_dma(FW_CFG_IO_BASE, FW_CFG_IO_BASE + 4, as);
986 fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus);
988 /* FW_CFG_MAX_CPUS is a bit confusing/problematic on x86:
990 * For machine types prior to 1.8, SeaBIOS needs FW_CFG_MAX_CPUS for
991 * building MPTable, ACPI MADT, ACPI CPU hotplug and ACPI SRAT table,
992 * that tables are based on xAPIC ID and QEMU<->SeaBIOS interface
993 * for CPU hotplug also uses APIC ID and not "CPU index".
994 * This means that FW_CFG_MAX_CPUS is not the "maximum number of CPUs",
995 * but the "limit to the APIC ID values SeaBIOS may see".
997 * So for compatibility reasons with old BIOSes we are stuck with
998 * "etc/max-cpus" actually being apic_id_limit
1000 fw_cfg_add_i16(fw_cfg, FW_CFG_MAX_CPUS, (uint16_t)pcms->apic_id_limit);
1001 fw_cfg_add_i64(fw_cfg, FW_CFG_RAM_SIZE, (uint64_t)ram_size);
1002 fw_cfg_add_bytes(fw_cfg, FW_CFG_ACPI_TABLES,
1003 acpi_tables, acpi_tables_len);
1004 fw_cfg_add_i32(fw_cfg, FW_CFG_IRQ0_OVERRIDE, kvm_allows_irq0_override());
1006 fw_cfg_add_bytes(fw_cfg, FW_CFG_E820_TABLE,
1007 &e820_reserve, sizeof(e820_reserve));
1008 fw_cfg_add_file(fw_cfg, "etc/e820", e820_table,
1009 sizeof(struct e820_entry) * e820_entries);
1011 fw_cfg_add_bytes(fw_cfg, FW_CFG_HPET, &hpet_cfg, sizeof(hpet_cfg));
1012 /* allocate memory for the NUMA channel: one (64bit) word for the number
1013 * of nodes, one word for each VCPU->node and one word for each node to
1014 * hold the amount of memory.
1016 numa_fw_cfg = g_new0(uint64_t, 1 + pcms->apic_id_limit + nb_numa_nodes);
1017 numa_fw_cfg[0] = cpu_to_le64(nb_numa_nodes);
1018 cpus = mc->possible_cpu_arch_ids(MACHINE(pcms));
1019 for (i = 0; i < cpus->len; i++) {
1020 unsigned int apic_id = cpus->cpus[i].arch_id;
1021 assert(apic_id < pcms->apic_id_limit);
1022 numa_fw_cfg[apic_id + 1] = cpu_to_le64(cpus->cpus[i].props.node_id);
1024 for (i = 0; i < nb_numa_nodes; i++) {
1025 numa_fw_cfg[pcms->apic_id_limit + 1 + i] =
1026 cpu_to_le64(numa_info[i].node_mem);
1028 fw_cfg_add_bytes(fw_cfg, FW_CFG_NUMA, numa_fw_cfg,
1029 (1 + pcms->apic_id_limit + nb_numa_nodes) *
1030 sizeof(*numa_fw_cfg));
1032 return fw_cfg;
1035 static long get_file_size(FILE *f)
1037 long where, size;
1039 /* XXX: on Unix systems, using fstat() probably makes more sense */
1041 where = ftell(f);
1042 fseek(f, 0, SEEK_END);
1043 size = ftell(f);
1044 fseek(f, where, SEEK_SET);
1046 return size;
1049 /* setup_data types */
1050 #define SETUP_NONE 0
1051 #define SETUP_E820_EXT 1
1052 #define SETUP_DTB 2
1053 #define SETUP_PCI 3
1054 #define SETUP_EFI 4
1056 struct setup_data {
1057 uint64_t next;
1058 uint32_t type;
1059 uint32_t len;
1060 uint8_t data[0];
1061 } __attribute__((packed));
1063 static void load_linux(PCMachineState *pcms,
1064 FWCfgState *fw_cfg)
1066 uint16_t protocol;
1067 int setup_size, kernel_size, cmdline_size;
1068 int dtb_size, setup_data_offset;
1069 uint32_t initrd_max;
1070 uint8_t header[8192], *setup, *kernel;
1071 hwaddr real_addr, prot_addr, cmdline_addr, initrd_addr = 0;
1072 FILE *f;
1073 char *vmode;
1074 MachineState *machine = MACHINE(pcms);
1075 PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
1076 struct setup_data *setup_data;
1077 const char *kernel_filename = machine->kernel_filename;
1078 const char *initrd_filename = machine->initrd_filename;
1079 const char *dtb_filename = machine->dtb;
1080 const char *kernel_cmdline = machine->kernel_cmdline;
1082 /* Align to 16 bytes as a paranoia measure */
1083 cmdline_size = (strlen(kernel_cmdline)+16) & ~15;
1085 /* load the kernel header */
1086 f = fopen(kernel_filename, "rb");
1087 if (!f || !(kernel_size = get_file_size(f)) ||
1088 fread(header, 1, MIN(ARRAY_SIZE(header), kernel_size), f) !=
1089 MIN(ARRAY_SIZE(header), kernel_size)) {
1090 fprintf(stderr, "qemu: could not load kernel '%s': %s\n",
1091 kernel_filename, strerror(errno));
1092 exit(1);
1095 /* kernel protocol version */
1096 #if 0
1097 fprintf(stderr, "header magic: %#x\n", ldl_p(header+0x202));
1098 #endif
1099 if (ldl_p(header+0x202) == 0x53726448) {
1100 protocol = lduw_p(header+0x206);
1101 } else {
1102 /* This looks like a multiboot kernel. If it is, let's stop
1103 treating it like a Linux kernel. */
1104 if (load_multiboot(fw_cfg, f, kernel_filename, initrd_filename,
1105 kernel_cmdline, kernel_size, header)) {
1106 return;
1108 protocol = 0;
1111 if (protocol < 0x200 || !(header[0x211] & 0x01)) {
1112 /* Low kernel */
1113 real_addr = 0x90000;
1114 cmdline_addr = 0x9a000 - cmdline_size;
1115 prot_addr = 0x10000;
1116 } else if (protocol < 0x202) {
1117 /* High but ancient kernel */
1118 real_addr = 0x90000;
1119 cmdline_addr = 0x9a000 - cmdline_size;
1120 prot_addr = 0x100000;
1121 } else {
1122 /* High and recent kernel */
1123 real_addr = 0x10000;
1124 cmdline_addr = 0x20000;
1125 prot_addr = 0x100000;
1128 #if 0
1129 fprintf(stderr,
1130 "qemu: real_addr = 0x" TARGET_FMT_plx "\n"
1131 "qemu: cmdline_addr = 0x" TARGET_FMT_plx "\n"
1132 "qemu: prot_addr = 0x" TARGET_FMT_plx "\n",
1133 real_addr,
1134 cmdline_addr,
1135 prot_addr);
1136 #endif
1138 /* highest address for loading the initrd */
1139 if (protocol >= 0x203) {
1140 initrd_max = ldl_p(header+0x22c);
1141 } else {
1142 initrd_max = 0x37ffffff;
1145 if (initrd_max >= pcms->below_4g_mem_size - pcmc->acpi_data_size) {
1146 initrd_max = pcms->below_4g_mem_size - pcmc->acpi_data_size - 1;
1149 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_ADDR, cmdline_addr);
1150 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, strlen(kernel_cmdline)+1);
1151 fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline);
1153 if (protocol >= 0x202) {
1154 stl_p(header+0x228, cmdline_addr);
1155 } else {
1156 stw_p(header+0x20, 0xA33F);
1157 stw_p(header+0x22, cmdline_addr-real_addr);
1160 /* handle vga= parameter */
1161 vmode = strstr(kernel_cmdline, "vga=");
1162 if (vmode) {
1163 unsigned int video_mode;
1164 /* skip "vga=" */
1165 vmode += 4;
1166 if (!strncmp(vmode, "normal", 6)) {
1167 video_mode = 0xffff;
1168 } else if (!strncmp(vmode, "ext", 3)) {
1169 video_mode = 0xfffe;
1170 } else if (!strncmp(vmode, "ask", 3)) {
1171 video_mode = 0xfffd;
1172 } else {
1173 video_mode = strtol(vmode, NULL, 0);
1175 stw_p(header+0x1fa, video_mode);
1178 /* loader type */
1179 /* High nybble = B reserved for QEMU; low nybble is revision number.
1180 If this code is substantially changed, you may want to consider
1181 incrementing the revision. */
1182 if (protocol >= 0x200) {
1183 header[0x210] = 0xB0;
1185 /* heap */
1186 if (protocol >= 0x201) {
1187 header[0x211] |= 0x80; /* CAN_USE_HEAP */
1188 stw_p(header+0x224, cmdline_addr-real_addr-0x200);
1191 /* load initrd */
1192 if (initrd_filename) {
1193 gsize initrd_size;
1194 gchar *initrd_data;
1195 GError *gerr = NULL;
1197 if (protocol < 0x200) {
1198 fprintf(stderr, "qemu: linux kernel too old to load a ram disk\n");
1199 exit(1);
1202 if (!g_file_get_contents(initrd_filename, &initrd_data,
1203 &initrd_size, &gerr)) {
1204 fprintf(stderr, "qemu: error reading initrd %s: %s\n",
1205 initrd_filename, gerr->message);
1206 exit(1);
1208 if (initrd_size >= initrd_max) {
1209 fprintf(stderr, "qemu: initrd is too large, cannot support."
1210 "(max: %"PRIu32", need %"PRId64")\n",
1211 initrd_max, (uint64_t)initrd_size);
1212 exit(1);
1215 initrd_addr = (initrd_max-initrd_size) & ~4095;
1217 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr);
1218 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
1219 fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data, initrd_size);
1221 stl_p(header+0x218, initrd_addr);
1222 stl_p(header+0x21c, initrd_size);
1225 /* load kernel and setup */
1226 setup_size = header[0x1f1];
1227 if (setup_size == 0) {
1228 setup_size = 4;
1230 setup_size = (setup_size+1)*512;
1231 if (setup_size > kernel_size) {
1232 fprintf(stderr, "qemu: invalid kernel header\n");
1233 exit(1);
1235 kernel_size -= setup_size;
1237 setup = g_malloc(setup_size);
1238 kernel = g_malloc(kernel_size);
1239 fseek(f, 0, SEEK_SET);
1240 if (fread(setup, 1, setup_size, f) != setup_size) {
1241 fprintf(stderr, "fread() failed\n");
1242 exit(1);
1244 if (fread(kernel, 1, kernel_size, f) != kernel_size) {
1245 fprintf(stderr, "fread() failed\n");
1246 exit(1);
1248 fclose(f);
1250 /* append dtb to kernel */
1251 if (dtb_filename) {
1252 if (protocol < 0x209) {
1253 fprintf(stderr, "qemu: Linux kernel too old to load a dtb\n");
1254 exit(1);
1257 dtb_size = get_image_size(dtb_filename);
1258 if (dtb_size <= 0) {
1259 fprintf(stderr, "qemu: error reading dtb %s: %s\n",
1260 dtb_filename, strerror(errno));
1261 exit(1);
1264 setup_data_offset = QEMU_ALIGN_UP(kernel_size, 16);
1265 kernel_size = setup_data_offset + sizeof(struct setup_data) + dtb_size;
1266 kernel = g_realloc(kernel, kernel_size);
1268 stq_p(header+0x250, prot_addr + setup_data_offset);
1270 setup_data = (struct setup_data *)(kernel + setup_data_offset);
1271 setup_data->next = 0;
1272 setup_data->type = cpu_to_le32(SETUP_DTB);
1273 setup_data->len = cpu_to_le32(dtb_size);
1275 load_image_size(dtb_filename, setup_data->data, dtb_size);
1278 memcpy(setup, header, MIN(sizeof(header), setup_size));
1280 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, prot_addr);
1281 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size);
1282 fw_cfg_add_bytes(fw_cfg, FW_CFG_KERNEL_DATA, kernel, kernel_size);
1284 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_ADDR, real_addr);
1285 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, setup_size);
1286 fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA, setup, setup_size);
1288 option_rom[nb_option_roms].bootindex = 0;
1289 option_rom[nb_option_roms].name = "linuxboot.bin";
1290 if (pcmc->linuxboot_dma_enabled && fw_cfg_dma_enabled(fw_cfg)) {
1291 option_rom[nb_option_roms].name = "linuxboot_dma.bin";
1293 nb_option_roms++;
1296 #define NE2000_NB_MAX 6
1298 static const int ne2000_io[NE2000_NB_MAX] = { 0x300, 0x320, 0x340, 0x360,
1299 0x280, 0x380 };
1300 static const int ne2000_irq[NE2000_NB_MAX] = { 9, 10, 11, 3, 4, 5 };
1302 void pc_init_ne2k_isa(ISABus *bus, NICInfo *nd)
1304 static int nb_ne2k = 0;
1306 if (nb_ne2k == NE2000_NB_MAX)
1307 return;
1308 isa_ne2000_init(bus, ne2000_io[nb_ne2k],
1309 ne2000_irq[nb_ne2k], nd);
1310 nb_ne2k++;
1313 DeviceState *cpu_get_current_apic(void)
1315 if (current_cpu) {
1316 X86CPU *cpu = X86_CPU(current_cpu);
1317 return cpu->apic_state;
1318 } else {
1319 return NULL;
1323 void pc_acpi_smi_interrupt(void *opaque, int irq, int level)
1325 X86CPU *cpu = opaque;
1327 if (level) {
1328 cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
1332 static void pc_new_cpu(const char *typename, int64_t apic_id, Error **errp)
1334 Object *cpu = NULL;
1335 Error *local_err = NULL;
1337 cpu = object_new(typename);
1339 object_property_set_uint(cpu, apic_id, "apic-id", &local_err);
1340 object_property_set_bool(cpu, true, "realized", &local_err);
1342 object_unref(cpu);
1343 error_propagate(errp, local_err);
1346 void pc_hot_add_cpu(const int64_t id, Error **errp)
1348 MachineState *ms = MACHINE(qdev_get_machine());
1349 int64_t apic_id = x86_cpu_apic_id_from_index(id);
1350 Error *local_err = NULL;
1352 if (id < 0) {
1353 error_setg(errp, "Invalid CPU id: %" PRIi64, id);
1354 return;
1357 if (apic_id >= ACPI_CPU_HOTPLUG_ID_LIMIT) {
1358 error_setg(errp, "Unable to add CPU: %" PRIi64
1359 ", resulting APIC ID (%" PRIi64 ") is too large",
1360 id, apic_id);
1361 return;
1364 pc_new_cpu(ms->cpu_type, apic_id, &local_err);
1365 if (local_err) {
1366 error_propagate(errp, local_err);
1367 return;
1371 void pc_cpus_init(PCMachineState *pcms)
1373 int i;
1374 const CPUArchIdList *possible_cpus;
1375 MachineState *ms = MACHINE(pcms);
1376 MachineClass *mc = MACHINE_GET_CLASS(pcms);
1378 /* Calculates the limit to CPU APIC ID values
1380 * Limit for the APIC ID value, so that all
1381 * CPU APIC IDs are < pcms->apic_id_limit.
1383 * This is used for FW_CFG_MAX_CPUS. See comments on bochs_bios_init().
1385 pcms->apic_id_limit = x86_cpu_apic_id_from_index(max_cpus - 1) + 1;
1386 possible_cpus = mc->possible_cpu_arch_ids(ms);
1387 for (i = 0; i < smp_cpus; i++) {
1388 pc_new_cpu(possible_cpus->cpus[i].type, possible_cpus->cpus[i].arch_id,
1389 &error_fatal);
1393 static void pc_build_feature_control_file(PCMachineState *pcms)
1395 MachineState *ms = MACHINE(pcms);
1396 X86CPU *cpu = X86_CPU(ms->possible_cpus->cpus[0].cpu);
1397 CPUX86State *env = &cpu->env;
1398 uint32_t unused, ecx, edx;
1399 uint64_t feature_control_bits = 0;
1400 uint64_t *val;
1402 cpu_x86_cpuid(env, 1, 0, &unused, &unused, &ecx, &edx);
1403 if (ecx & CPUID_EXT_VMX) {
1404 feature_control_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
1407 if ((edx & (CPUID_EXT2_MCE | CPUID_EXT2_MCA)) ==
1408 (CPUID_EXT2_MCE | CPUID_EXT2_MCA) &&
1409 (env->mcg_cap & MCG_LMCE_P)) {
1410 feature_control_bits |= FEATURE_CONTROL_LMCE;
1413 if (!feature_control_bits) {
1414 return;
1417 val = g_malloc(sizeof(*val));
1418 *val = cpu_to_le64(feature_control_bits | FEATURE_CONTROL_LOCKED);
1419 fw_cfg_add_file(pcms->fw_cfg, "etc/msr_feature_control", val, sizeof(*val));
1422 static void rtc_set_cpus_count(ISADevice *rtc, uint16_t cpus_count)
1424 if (cpus_count > 0xff) {
1425 /* If the number of CPUs can't be represented in 8 bits, the
1426 * BIOS must use "FW_CFG_NB_CPUS". Set RTC field to 0 just
1427 * to make old BIOSes fail more predictably.
1429 rtc_set_memory(rtc, 0x5f, 0);
1430 } else {
1431 rtc_set_memory(rtc, 0x5f, cpus_count - 1);
1435 static
1436 void pc_machine_done(Notifier *notifier, void *data)
1438 PCMachineState *pcms = container_of(notifier,
1439 PCMachineState, machine_done);
1440 PCIBus *bus = pcms->bus;
1442 /* set the number of CPUs */
1443 rtc_set_cpus_count(pcms->rtc, pcms->boot_cpus);
1445 if (bus) {
1446 int extra_hosts = 0;
1448 QLIST_FOREACH(bus, &bus->child, sibling) {
1449 /* look for expander root buses */
1450 if (pci_bus_is_root(bus)) {
1451 extra_hosts++;
1454 if (extra_hosts && pcms->fw_cfg) {
1455 uint64_t *val = g_malloc(sizeof(*val));
1456 *val = cpu_to_le64(extra_hosts);
1457 fw_cfg_add_file(pcms->fw_cfg,
1458 "etc/extra-pci-roots", val, sizeof(*val));
1462 acpi_setup();
1463 if (pcms->fw_cfg) {
1464 pc_build_smbios(pcms);
1465 pc_build_feature_control_file(pcms);
1466 /* update FW_CFG_NB_CPUS to account for -device added CPUs */
1467 fw_cfg_modify_i16(pcms->fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus);
1470 if (pcms->apic_id_limit > 255 && !xen_enabled()) {
1471 IntelIOMMUState *iommu = INTEL_IOMMU_DEVICE(x86_iommu_get_default());
1473 if (!iommu || !x86_iommu_ir_supported(X86_IOMMU_DEVICE(iommu)) ||
1474 iommu->intr_eim != ON_OFF_AUTO_ON) {
1475 error_report("current -smp configuration requires "
1476 "Extended Interrupt Mode enabled. "
1477 "You can add an IOMMU using: "
1478 "-device intel-iommu,intremap=on,eim=on");
1479 exit(EXIT_FAILURE);
1484 void pc_guest_info_init(PCMachineState *pcms)
1486 int i;
1488 pcms->apic_xrupt_override = kvm_allows_irq0_override();
1489 pcms->numa_nodes = nb_numa_nodes;
1490 pcms->node_mem = g_malloc0(pcms->numa_nodes *
1491 sizeof *pcms->node_mem);
1492 for (i = 0; i < nb_numa_nodes; i++) {
1493 pcms->node_mem[i] = numa_info[i].node_mem;
1496 pcms->machine_done.notify = pc_machine_done;
1497 qemu_add_machine_init_done_notifier(&pcms->machine_done);
1500 /* setup pci memory address space mapping into system address space */
1501 void pc_pci_as_mapping_init(Object *owner, MemoryRegion *system_memory,
1502 MemoryRegion *pci_address_space)
1504 /* Set to lower priority than RAM */
1505 memory_region_add_subregion_overlap(system_memory, 0x0,
1506 pci_address_space, -1);
1509 void pc_acpi_init(const char *default_dsdt)
1511 char *filename;
1513 if (acpi_tables != NULL) {
1514 /* manually set via -acpitable, leave it alone */
1515 return;
1518 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, default_dsdt);
1519 if (filename == NULL) {
1520 warn_report("failed to find %s", default_dsdt);
1521 } else {
1522 QemuOpts *opts = qemu_opts_create(qemu_find_opts("acpi"), NULL, 0,
1523 &error_abort);
1524 Error *err = NULL;
1526 qemu_opt_set(opts, "file", filename, &error_abort);
1528 acpi_table_add_builtin(opts, &err);
1529 if (err) {
1530 warn_reportf_err(err, "failed to load %s: ", filename);
1532 g_free(filename);
1536 void xen_load_linux(PCMachineState *pcms)
1538 int i;
1539 FWCfgState *fw_cfg;
1541 assert(MACHINE(pcms)->kernel_filename != NULL);
1543 fw_cfg = fw_cfg_init_io(FW_CFG_IO_BASE);
1544 fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus);
1545 rom_set_fw(fw_cfg);
1547 load_linux(pcms, fw_cfg);
1548 for (i = 0; i < nb_option_roms; i++) {
1549 assert(!strcmp(option_rom[i].name, "linuxboot.bin") ||
1550 !strcmp(option_rom[i].name, "linuxboot_dma.bin") ||
1551 !strcmp(option_rom[i].name, "multiboot.bin"));
1552 rom_add_option(option_rom[i].name, option_rom[i].bootindex);
1554 pcms->fw_cfg = fw_cfg;
1557 void pc_memory_init(PCMachineState *pcms,
1558 MemoryRegion *system_memory,
1559 MemoryRegion *rom_memory,
1560 MemoryRegion **ram_memory)
1562 int linux_boot, i;
1563 MemoryRegion *ram, *option_rom_mr;
1564 MemoryRegion *ram_below_4g, *ram_above_4g;
1565 FWCfgState *fw_cfg;
1566 MachineState *machine = MACHINE(pcms);
1567 PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
1569 assert(machine->ram_size == pcms->below_4g_mem_size +
1570 pcms->above_4g_mem_size);
1572 linux_boot = (machine->kernel_filename != NULL);
1574 /* Allocate RAM. We allocate it as a single memory region and use
1575 * aliases to address portions of it, mostly for backwards compatibility
1576 * with older qemus that used qemu_ram_alloc().
1578 ram = g_malloc(sizeof(*ram));
1579 memory_region_allocate_system_memory(ram, NULL, "pc.ram",
1580 machine->ram_size);
1581 *ram_memory = ram;
1582 ram_below_4g = g_malloc(sizeof(*ram_below_4g));
1583 memory_region_init_alias(ram_below_4g, NULL, "ram-below-4g", ram,
1584 0, pcms->below_4g_mem_size);
1585 memory_region_add_subregion(system_memory, 0, ram_below_4g);
1586 e820_add_entry(0, pcms->below_4g_mem_size, E820_RAM);
1587 if (pcms->above_4g_mem_size > 0) {
1588 ram_above_4g = g_malloc(sizeof(*ram_above_4g));
1589 memory_region_init_alias(ram_above_4g, NULL, "ram-above-4g", ram,
1590 pcms->below_4g_mem_size,
1591 pcms->above_4g_mem_size);
1592 memory_region_add_subregion(system_memory, 0x100000000ULL,
1593 ram_above_4g);
1594 e820_add_entry(0x100000000ULL, pcms->above_4g_mem_size, E820_RAM);
1597 if (!pcmc->has_reserved_memory &&
1598 (machine->ram_slots ||
1599 (machine->maxram_size > machine->ram_size))) {
1600 MachineClass *mc = MACHINE_GET_CLASS(machine);
1602 error_report("\"-memory 'slots|maxmem'\" is not supported by: %s",
1603 mc->name);
1604 exit(EXIT_FAILURE);
1607 /* always allocate the device memory information */
1608 machine->device_memory = g_malloc0(sizeof(*machine->device_memory));
1610 /* initialize device memory address space */
1611 if (pcmc->has_reserved_memory &&
1612 (machine->ram_size < machine->maxram_size)) {
1613 ram_addr_t device_mem_size = machine->maxram_size - machine->ram_size;
1615 if (machine->ram_slots > ACPI_MAX_RAM_SLOTS) {
1616 error_report("unsupported amount of memory slots: %"PRIu64,
1617 machine->ram_slots);
1618 exit(EXIT_FAILURE);
1621 if (QEMU_ALIGN_UP(machine->maxram_size,
1622 TARGET_PAGE_SIZE) != machine->maxram_size) {
1623 error_report("maximum memory size must by aligned to multiple of "
1624 "%d bytes", TARGET_PAGE_SIZE);
1625 exit(EXIT_FAILURE);
1628 machine->device_memory->base =
1629 ROUND_UP(0x100000000ULL + pcms->above_4g_mem_size, 1 * GiB);
1631 if (pcmc->enforce_aligned_dimm) {
1632 /* size device region assuming 1G page max alignment per slot */
1633 device_mem_size += (1 * GiB) * machine->ram_slots;
1636 if ((machine->device_memory->base + device_mem_size) <
1637 device_mem_size) {
1638 error_report("unsupported amount of maximum memory: " RAM_ADDR_FMT,
1639 machine->maxram_size);
1640 exit(EXIT_FAILURE);
1643 memory_region_init(&machine->device_memory->mr, OBJECT(pcms),
1644 "device-memory", device_mem_size);
1645 memory_region_add_subregion(system_memory, machine->device_memory->base,
1646 &machine->device_memory->mr);
1649 /* Initialize PC system firmware */
1650 pc_system_firmware_init(rom_memory, !pcmc->pci_enabled);
1652 option_rom_mr = g_malloc(sizeof(*option_rom_mr));
1653 memory_region_init_ram(option_rom_mr, NULL, "pc.rom", PC_ROM_SIZE,
1654 &error_fatal);
1655 if (pcmc->pci_enabled) {
1656 memory_region_set_readonly(option_rom_mr, true);
1658 memory_region_add_subregion_overlap(rom_memory,
1659 PC_ROM_MIN_VGA,
1660 option_rom_mr,
1663 fw_cfg = bochs_bios_init(&address_space_memory, pcms);
1665 rom_set_fw(fw_cfg);
1667 if (pcmc->has_reserved_memory && machine->device_memory->base) {
1668 uint64_t *val = g_malloc(sizeof(*val));
1669 PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
1670 uint64_t res_mem_end = machine->device_memory->base;
1672 if (!pcmc->broken_reserved_end) {
1673 res_mem_end += memory_region_size(&machine->device_memory->mr);
1675 *val = cpu_to_le64(ROUND_UP(res_mem_end, 1 * GiB));
1676 fw_cfg_add_file(fw_cfg, "etc/reserved-memory-end", val, sizeof(*val));
1679 if (linux_boot) {
1680 load_linux(pcms, fw_cfg);
1683 for (i = 0; i < nb_option_roms; i++) {
1684 rom_add_option(option_rom[i].name, option_rom[i].bootindex);
1686 pcms->fw_cfg = fw_cfg;
1688 /* Init default IOAPIC address space */
1689 pcms->ioapic_as = &address_space_memory;
1693 * The 64bit pci hole starts after "above 4G RAM" and
1694 * potentially the space reserved for memory hotplug.
1696 uint64_t pc_pci_hole64_start(void)
1698 PCMachineState *pcms = PC_MACHINE(qdev_get_machine());
1699 PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
1700 MachineState *ms = MACHINE(pcms);
1701 uint64_t hole64_start = 0;
1703 if (pcmc->has_reserved_memory && ms->device_memory->base) {
1704 hole64_start = ms->device_memory->base;
1705 if (!pcmc->broken_reserved_end) {
1706 hole64_start += memory_region_size(&ms->device_memory->mr);
1708 } else {
1709 hole64_start = 0x100000000ULL + pcms->above_4g_mem_size;
1712 return ROUND_UP(hole64_start, 1 * GiB);
1715 qemu_irq pc_allocate_cpu_irq(void)
1717 return qemu_allocate_irq(pic_irq_request, NULL, 0);
1720 DeviceState *pc_vga_init(ISABus *isa_bus, PCIBus *pci_bus)
1722 DeviceState *dev = NULL;
1724 rom_set_order_override(FW_CFG_ORDER_OVERRIDE_VGA);
1725 if (pci_bus) {
1726 PCIDevice *pcidev = pci_vga_init(pci_bus);
1727 dev = pcidev ? &pcidev->qdev : NULL;
1728 } else if (isa_bus) {
1729 ISADevice *isadev = isa_vga_init(isa_bus);
1730 dev = isadev ? DEVICE(isadev) : NULL;
1732 rom_reset_order_override();
1733 return dev;
1736 static const MemoryRegionOps ioport80_io_ops = {
1737 .write = ioport80_write,
1738 .read = ioport80_read,
1739 .endianness = DEVICE_NATIVE_ENDIAN,
1740 .impl = {
1741 .min_access_size = 1,
1742 .max_access_size = 1,
1746 static const MemoryRegionOps ioportF0_io_ops = {
1747 .write = ioportF0_write,
1748 .read = ioportF0_read,
1749 .endianness = DEVICE_NATIVE_ENDIAN,
1750 .impl = {
1751 .min_access_size = 1,
1752 .max_access_size = 1,
1756 static void pc_superio_init(ISABus *isa_bus, bool create_fdctrl, bool no_vmport)
1758 int i;
1759 DriveInfo *fd[MAX_FD];
1760 qemu_irq *a20_line;
1761 ISADevice *i8042, *port92, *vmmouse;
1763 serial_hds_isa_init(isa_bus, 0, MAX_ISA_SERIAL_PORTS);
1764 parallel_hds_isa_init(isa_bus, MAX_PARALLEL_PORTS);
1766 for (i = 0; i < MAX_FD; i++) {
1767 fd[i] = drive_get(IF_FLOPPY, 0, i);
1768 create_fdctrl |= !!fd[i];
1770 if (create_fdctrl) {
1771 fdctrl_init_isa(isa_bus, fd);
1774 i8042 = isa_create_simple(isa_bus, "i8042");
1775 if (!no_vmport) {
1776 vmport_init(isa_bus);
1777 vmmouse = isa_try_create(isa_bus, "vmmouse");
1778 } else {
1779 vmmouse = NULL;
1781 if (vmmouse) {
1782 DeviceState *dev = DEVICE(vmmouse);
1783 qdev_prop_set_ptr(dev, "ps2_mouse", i8042);
1784 qdev_init_nofail(dev);
1786 port92 = isa_create_simple(isa_bus, "port92");
1788 a20_line = qemu_allocate_irqs(handle_a20_line_change, first_cpu, 2);
1789 i8042_setup_a20_line(i8042, a20_line[0]);
1790 port92_init(port92, a20_line[1]);
1791 g_free(a20_line);
1794 void pc_basic_device_init(ISABus *isa_bus, qemu_irq *gsi,
1795 ISADevice **rtc_state,
1796 bool create_fdctrl,
1797 bool no_vmport,
1798 bool has_pit,
1799 uint32_t hpet_irqs)
1801 int i;
1802 DeviceState *hpet = NULL;
1803 int pit_isa_irq = 0;
1804 qemu_irq pit_alt_irq = NULL;
1805 qemu_irq rtc_irq = NULL;
1806 ISADevice *pit = NULL;
1807 MemoryRegion *ioport80_io = g_new(MemoryRegion, 1);
1808 MemoryRegion *ioportF0_io = g_new(MemoryRegion, 1);
1810 memory_region_init_io(ioport80_io, NULL, &ioport80_io_ops, NULL, "ioport80", 1);
1811 memory_region_add_subregion(isa_bus->address_space_io, 0x80, ioport80_io);
1813 memory_region_init_io(ioportF0_io, NULL, &ioportF0_io_ops, NULL, "ioportF0", 1);
1814 memory_region_add_subregion(isa_bus->address_space_io, 0xf0, ioportF0_io);
1817 * Check if an HPET shall be created.
1819 * Without KVM_CAP_PIT_STATE2, we cannot switch off the in-kernel PIT
1820 * when the HPET wants to take over. Thus we have to disable the latter.
1822 if (!no_hpet && (!kvm_irqchip_in_kernel() || kvm_has_pit_state2())) {
1823 /* In order to set property, here not using sysbus_try_create_simple */
1824 hpet = qdev_try_create(NULL, TYPE_HPET);
1825 if (hpet) {
1826 /* For pc-piix-*, hpet's intcap is always IRQ2. For pc-q35-1.7
1827 * and earlier, use IRQ2 for compat. Otherwise, use IRQ16~23,
1828 * IRQ8 and IRQ2.
1830 uint8_t compat = object_property_get_uint(OBJECT(hpet),
1831 HPET_INTCAP, NULL);
1832 if (!compat) {
1833 qdev_prop_set_uint32(hpet, HPET_INTCAP, hpet_irqs);
1835 qdev_init_nofail(hpet);
1836 sysbus_mmio_map(SYS_BUS_DEVICE(hpet), 0, HPET_BASE);
1838 for (i = 0; i < GSI_NUM_PINS; i++) {
1839 sysbus_connect_irq(SYS_BUS_DEVICE(hpet), i, gsi[i]);
1841 pit_isa_irq = -1;
1842 pit_alt_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_PIT_INT);
1843 rtc_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_RTC_INT);
1846 *rtc_state = mc146818_rtc_init(isa_bus, 2000, rtc_irq);
1848 qemu_register_boot_set(pc_boot_set, *rtc_state);
1850 if (!xen_enabled() && has_pit) {
1851 if (kvm_pit_in_kernel()) {
1852 pit = kvm_pit_init(isa_bus, 0x40);
1853 } else {
1854 pit = i8254_pit_init(isa_bus, 0x40, pit_isa_irq, pit_alt_irq);
1856 if (hpet) {
1857 /* connect PIT to output control line of the HPET */
1858 qdev_connect_gpio_out(hpet, 0, qdev_get_gpio_in(DEVICE(pit), 0));
1860 pcspk_init(isa_bus, pit);
1863 i8257_dma_init(isa_bus, 0);
1865 /* Super I/O */
1866 pc_superio_init(isa_bus, create_fdctrl, no_vmport);
1869 void pc_nic_init(PCMachineClass *pcmc, ISABus *isa_bus, PCIBus *pci_bus)
1871 int i;
1873 rom_set_order_override(FW_CFG_ORDER_OVERRIDE_NIC);
1874 for (i = 0; i < nb_nics; i++) {
1875 NICInfo *nd = &nd_table[i];
1876 const char *model = nd->model ? nd->model : pcmc->default_nic_model;
1878 if (g_str_equal(model, "ne2k_isa")) {
1879 pc_init_ne2k_isa(isa_bus, nd);
1880 } else {
1881 pci_nic_init_nofail(nd, pci_bus, model, NULL);
1884 rom_reset_order_override();
1887 void ioapic_init_gsi(GSIState *gsi_state, const char *parent_name)
1889 DeviceState *dev;
1890 SysBusDevice *d;
1891 unsigned int i;
1893 if (kvm_ioapic_in_kernel()) {
1894 dev = qdev_create(NULL, TYPE_KVM_IOAPIC);
1895 } else {
1896 dev = qdev_create(NULL, TYPE_IOAPIC);
1898 if (parent_name) {
1899 object_property_add_child(object_resolve_path(parent_name, NULL),
1900 "ioapic", OBJECT(dev), NULL);
1902 qdev_init_nofail(dev);
1903 d = SYS_BUS_DEVICE(dev);
1904 sysbus_mmio_map(d, 0, IO_APIC_DEFAULT_ADDRESS);
1906 for (i = 0; i < IOAPIC_NUM_PINS; i++) {
1907 gsi_state->ioapic_irq[i] = qdev_get_gpio_in(dev, i);
1911 static void pc_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
1912 Error **errp)
1914 const PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1915 const PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
1916 const bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
1917 const uint64_t legacy_align = TARGET_PAGE_SIZE;
1920 * When -no-acpi is used with Q35 machine type, no ACPI is built,
1921 * but pcms->acpi_dev is still created. Check !acpi_enabled in
1922 * addition to cover this case.
1924 if (!pcms->acpi_dev || !acpi_enabled) {
1925 error_setg(errp,
1926 "memory hotplug is not enabled: missing acpi device or acpi disabled");
1927 return;
1930 if (is_nvdimm && !pcms->acpi_nvdimm_state.is_enabled) {
1931 error_setg(errp, "nvdimm is not enabled: missing 'nvdimm' in '-M'");
1932 return;
1935 pc_dimm_pre_plug(PC_DIMM(dev), MACHINE(hotplug_dev),
1936 pcmc->enforce_aligned_dimm ? NULL : &legacy_align, errp);
1939 static void pc_memory_plug(HotplugHandler *hotplug_dev,
1940 DeviceState *dev, Error **errp)
1942 HotplugHandlerClass *hhc;
1943 Error *local_err = NULL;
1944 PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1945 bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
1947 pc_dimm_plug(PC_DIMM(dev), MACHINE(pcms), &local_err);
1948 if (local_err) {
1949 goto out;
1952 if (is_nvdimm) {
1953 nvdimm_plug(&pcms->acpi_nvdimm_state);
1956 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1957 hhc->plug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &error_abort);
1958 out:
1959 error_propagate(errp, local_err);
1962 static void pc_memory_unplug_request(HotplugHandler *hotplug_dev,
1963 DeviceState *dev, Error **errp)
1965 HotplugHandlerClass *hhc;
1966 Error *local_err = NULL;
1967 PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1970 * When -no-acpi is used with Q35 machine type, no ACPI is built,
1971 * but pcms->acpi_dev is still created. Check !acpi_enabled in
1972 * addition to cover this case.
1974 if (!pcms->acpi_dev || !acpi_enabled) {
1975 error_setg(&local_err,
1976 "memory hotplug is not enabled: missing acpi device or acpi disabled");
1977 goto out;
1980 if (object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM)) {
1981 error_setg(&local_err,
1982 "nvdimm device hot unplug is not supported yet.");
1983 goto out;
1986 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1987 hhc->unplug_request(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
1989 out:
1990 error_propagate(errp, local_err);
1993 static void pc_memory_unplug(HotplugHandler *hotplug_dev,
1994 DeviceState *dev, Error **errp)
1996 PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1997 HotplugHandlerClass *hhc;
1998 Error *local_err = NULL;
2000 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
2001 hhc->unplug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
2003 if (local_err) {
2004 goto out;
2007 pc_dimm_unplug(PC_DIMM(dev), MACHINE(pcms));
2008 object_unparent(OBJECT(dev));
2010 out:
2011 error_propagate(errp, local_err);
2014 static int pc_apic_cmp(const void *a, const void *b)
2016 CPUArchId *apic_a = (CPUArchId *)a;
2017 CPUArchId *apic_b = (CPUArchId *)b;
2019 return apic_a->arch_id - apic_b->arch_id;
2022 /* returns pointer to CPUArchId descriptor that matches CPU's apic_id
2023 * in ms->possible_cpus->cpus, if ms->possible_cpus->cpus has no
2024 * entry corresponding to CPU's apic_id returns NULL.
2026 static CPUArchId *pc_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
2028 CPUArchId apic_id, *found_cpu;
2030 apic_id.arch_id = id;
2031 found_cpu = bsearch(&apic_id, ms->possible_cpus->cpus,
2032 ms->possible_cpus->len, sizeof(*ms->possible_cpus->cpus),
2033 pc_apic_cmp);
2034 if (found_cpu && idx) {
2035 *idx = found_cpu - ms->possible_cpus->cpus;
2037 return found_cpu;
2040 static void pc_cpu_plug(HotplugHandler *hotplug_dev,
2041 DeviceState *dev, Error **errp)
2043 CPUArchId *found_cpu;
2044 HotplugHandlerClass *hhc;
2045 Error *local_err = NULL;
2046 X86CPU *cpu = X86_CPU(dev);
2047 PCMachineState *pcms = PC_MACHINE(hotplug_dev);
2049 if (pcms->acpi_dev) {
2050 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
2051 hhc->plug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
2052 if (local_err) {
2053 goto out;
2057 /* increment the number of CPUs */
2058 pcms->boot_cpus++;
2059 if (pcms->rtc) {
2060 rtc_set_cpus_count(pcms->rtc, pcms->boot_cpus);
2062 if (pcms->fw_cfg) {
2063 fw_cfg_modify_i16(pcms->fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus);
2066 found_cpu = pc_find_cpu_slot(MACHINE(pcms), cpu->apic_id, NULL);
2067 found_cpu->cpu = OBJECT(dev);
2068 out:
2069 error_propagate(errp, local_err);
2071 static void pc_cpu_unplug_request_cb(HotplugHandler *hotplug_dev,
2072 DeviceState *dev, Error **errp)
2074 int idx = -1;
2075 HotplugHandlerClass *hhc;
2076 Error *local_err = NULL;
2077 X86CPU *cpu = X86_CPU(dev);
2078 PCMachineState *pcms = PC_MACHINE(hotplug_dev);
2080 if (!pcms->acpi_dev) {
2081 error_setg(&local_err, "CPU hot unplug not supported without ACPI");
2082 goto out;
2085 pc_find_cpu_slot(MACHINE(pcms), cpu->apic_id, &idx);
2086 assert(idx != -1);
2087 if (idx == 0) {
2088 error_setg(&local_err, "Boot CPU is unpluggable");
2089 goto out;
2092 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
2093 hhc->unplug_request(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
2095 if (local_err) {
2096 goto out;
2099 out:
2100 error_propagate(errp, local_err);
2104 static void pc_cpu_unplug_cb(HotplugHandler *hotplug_dev,
2105 DeviceState *dev, Error **errp)
2107 CPUArchId *found_cpu;
2108 HotplugHandlerClass *hhc;
2109 Error *local_err = NULL;
2110 X86CPU *cpu = X86_CPU(dev);
2111 PCMachineState *pcms = PC_MACHINE(hotplug_dev);
2113 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
2114 hhc->unplug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
2116 if (local_err) {
2117 goto out;
2120 found_cpu = pc_find_cpu_slot(MACHINE(pcms), cpu->apic_id, NULL);
2121 found_cpu->cpu = NULL;
2122 object_unparent(OBJECT(dev));
2124 /* decrement the number of CPUs */
2125 pcms->boot_cpus--;
2126 /* Update the number of CPUs in CMOS */
2127 rtc_set_cpus_count(pcms->rtc, pcms->boot_cpus);
2128 fw_cfg_modify_i16(pcms->fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus);
2129 out:
2130 error_propagate(errp, local_err);
2133 static void pc_cpu_pre_plug(HotplugHandler *hotplug_dev,
2134 DeviceState *dev, Error **errp)
2136 int idx;
2137 CPUState *cs;
2138 CPUArchId *cpu_slot;
2139 X86CPUTopoInfo topo;
2140 X86CPU *cpu = X86_CPU(dev);
2141 MachineState *ms = MACHINE(hotplug_dev);
2142 PCMachineState *pcms = PC_MACHINE(hotplug_dev);
2144 if(!object_dynamic_cast(OBJECT(cpu), ms->cpu_type)) {
2145 error_setg(errp, "Invalid CPU type, expected cpu type: '%s'",
2146 ms->cpu_type);
2147 return;
2150 /* if APIC ID is not set, set it based on socket/core/thread properties */
2151 if (cpu->apic_id == UNASSIGNED_APIC_ID) {
2152 int max_socket = (max_cpus - 1) / smp_threads / smp_cores;
2154 if (cpu->socket_id < 0) {
2155 error_setg(errp, "CPU socket-id is not set");
2156 return;
2157 } else if (cpu->socket_id > max_socket) {
2158 error_setg(errp, "Invalid CPU socket-id: %u must be in range 0:%u",
2159 cpu->socket_id, max_socket);
2160 return;
2162 if (cpu->core_id < 0) {
2163 error_setg(errp, "CPU core-id is not set");
2164 return;
2165 } else if (cpu->core_id > (smp_cores - 1)) {
2166 error_setg(errp, "Invalid CPU core-id: %u must be in range 0:%u",
2167 cpu->core_id, smp_cores - 1);
2168 return;
2170 if (cpu->thread_id < 0) {
2171 error_setg(errp, "CPU thread-id is not set");
2172 return;
2173 } else if (cpu->thread_id > (smp_threads - 1)) {
2174 error_setg(errp, "Invalid CPU thread-id: %u must be in range 0:%u",
2175 cpu->thread_id, smp_threads - 1);
2176 return;
2179 topo.pkg_id = cpu->socket_id;
2180 topo.core_id = cpu->core_id;
2181 topo.smt_id = cpu->thread_id;
2182 cpu->apic_id = apicid_from_topo_ids(smp_cores, smp_threads, &topo);
2185 cpu_slot = pc_find_cpu_slot(MACHINE(pcms), cpu->apic_id, &idx);
2186 if (!cpu_slot) {
2187 MachineState *ms = MACHINE(pcms);
2189 x86_topo_ids_from_apicid(cpu->apic_id, smp_cores, smp_threads, &topo);
2190 error_setg(errp, "Invalid CPU [socket: %u, core: %u, thread: %u] with"
2191 " APIC ID %" PRIu32 ", valid index range 0:%d",
2192 topo.pkg_id, topo.core_id, topo.smt_id, cpu->apic_id,
2193 ms->possible_cpus->len - 1);
2194 return;
2197 if (cpu_slot->cpu) {
2198 error_setg(errp, "CPU[%d] with APIC ID %" PRIu32 " exists",
2199 idx, cpu->apic_id);
2200 return;
2203 /* if 'address' properties socket-id/core-id/thread-id are not set, set them
2204 * so that machine_query_hotpluggable_cpus would show correct values
2206 /* TODO: move socket_id/core_id/thread_id checks into x86_cpu_realizefn()
2207 * once -smp refactoring is complete and there will be CPU private
2208 * CPUState::nr_cores and CPUState::nr_threads fields instead of globals */
2209 x86_topo_ids_from_apicid(cpu->apic_id, smp_cores, smp_threads, &topo);
2210 if (cpu->socket_id != -1 && cpu->socket_id != topo.pkg_id) {
2211 error_setg(errp, "property socket-id: %u doesn't match set apic-id:"
2212 " 0x%x (socket-id: %u)", cpu->socket_id, cpu->apic_id, topo.pkg_id);
2213 return;
2215 cpu->socket_id = topo.pkg_id;
2217 if (cpu->core_id != -1 && cpu->core_id != topo.core_id) {
2218 error_setg(errp, "property core-id: %u doesn't match set apic-id:"
2219 " 0x%x (core-id: %u)", cpu->core_id, cpu->apic_id, topo.core_id);
2220 return;
2222 cpu->core_id = topo.core_id;
2224 if (cpu->thread_id != -1 && cpu->thread_id != topo.smt_id) {
2225 error_setg(errp, "property thread-id: %u doesn't match set apic-id:"
2226 " 0x%x (thread-id: %u)", cpu->thread_id, cpu->apic_id, topo.smt_id);
2227 return;
2229 cpu->thread_id = topo.smt_id;
2231 if (cpu->hyperv_vpindex && !kvm_hv_vpindex_settable()) {
2232 error_setg(errp, "kernel doesn't allow setting HyperV VP_INDEX");
2233 return;
2236 cs = CPU(cpu);
2237 cs->cpu_index = idx;
2239 numa_cpu_pre_plug(cpu_slot, dev, errp);
2242 static void pc_machine_device_pre_plug_cb(HotplugHandler *hotplug_dev,
2243 DeviceState *dev, Error **errp)
2245 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2246 pc_memory_pre_plug(hotplug_dev, dev, errp);
2247 } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
2248 pc_cpu_pre_plug(hotplug_dev, dev, errp);
2252 static void pc_machine_device_plug_cb(HotplugHandler *hotplug_dev,
2253 DeviceState *dev, Error **errp)
2255 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2256 pc_memory_plug(hotplug_dev, dev, errp);
2257 } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
2258 pc_cpu_plug(hotplug_dev, dev, errp);
2262 static void pc_machine_device_unplug_request_cb(HotplugHandler *hotplug_dev,
2263 DeviceState *dev, Error **errp)
2265 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2266 pc_memory_unplug_request(hotplug_dev, dev, errp);
2267 } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
2268 pc_cpu_unplug_request_cb(hotplug_dev, dev, errp);
2269 } else {
2270 error_setg(errp, "acpi: device unplug request for not supported device"
2271 " type: %s", object_get_typename(OBJECT(dev)));
2275 static void pc_machine_device_unplug_cb(HotplugHandler *hotplug_dev,
2276 DeviceState *dev, Error **errp)
2278 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2279 pc_memory_unplug(hotplug_dev, dev, errp);
2280 } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
2281 pc_cpu_unplug_cb(hotplug_dev, dev, errp);
2282 } else {
2283 error_setg(errp, "acpi: device unplug for not supported device"
2284 " type: %s", object_get_typename(OBJECT(dev)));
2288 static HotplugHandler *pc_get_hotpug_handler(MachineState *machine,
2289 DeviceState *dev)
2291 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
2292 object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
2293 return HOTPLUG_HANDLER(machine);
2296 return NULL;
2299 static void
2300 pc_machine_get_device_memory_region_size(Object *obj, Visitor *v,
2301 const char *name, void *opaque,
2302 Error **errp)
2304 MachineState *ms = MACHINE(obj);
2305 int64_t value = memory_region_size(&ms->device_memory->mr);
2307 visit_type_int(v, name, &value, errp);
2310 static void pc_machine_get_max_ram_below_4g(Object *obj, Visitor *v,
2311 const char *name, void *opaque,
2312 Error **errp)
2314 PCMachineState *pcms = PC_MACHINE(obj);
2315 uint64_t value = pcms->max_ram_below_4g;
2317 visit_type_size(v, name, &value, errp);
2320 static void pc_machine_set_max_ram_below_4g(Object *obj, Visitor *v,
2321 const char *name, void *opaque,
2322 Error **errp)
2324 PCMachineState *pcms = PC_MACHINE(obj);
2325 Error *error = NULL;
2326 uint64_t value;
2328 visit_type_size(v, name, &value, &error);
2329 if (error) {
2330 error_propagate(errp, error);
2331 return;
2333 if (value > 4 * GiB) {
2334 error_setg(&error,
2335 "Machine option 'max-ram-below-4g=%"PRIu64
2336 "' expects size less than or equal to 4G", value);
2337 error_propagate(errp, error);
2338 return;
2341 if (value < 1 * MiB) {
2342 warn_report("Only %" PRIu64 " bytes of RAM below the 4GiB boundary,"
2343 "BIOS may not work with less than 1MiB", value);
2346 pcms->max_ram_below_4g = value;
2349 static void pc_machine_get_vmport(Object *obj, Visitor *v, const char *name,
2350 void *opaque, Error **errp)
2352 PCMachineState *pcms = PC_MACHINE(obj);
2353 OnOffAuto vmport = pcms->vmport;
2355 visit_type_OnOffAuto(v, name, &vmport, errp);
2358 static void pc_machine_set_vmport(Object *obj, Visitor *v, const char *name,
2359 void *opaque, Error **errp)
2361 PCMachineState *pcms = PC_MACHINE(obj);
2363 visit_type_OnOffAuto(v, name, &pcms->vmport, errp);
2366 bool pc_machine_is_smm_enabled(PCMachineState *pcms)
2368 bool smm_available = false;
2370 if (pcms->smm == ON_OFF_AUTO_OFF) {
2371 return false;
2374 if (tcg_enabled() || qtest_enabled()) {
2375 smm_available = true;
2376 } else if (kvm_enabled()) {
2377 smm_available = kvm_has_smm();
2380 if (smm_available) {
2381 return true;
2384 if (pcms->smm == ON_OFF_AUTO_ON) {
2385 error_report("System Management Mode not supported by this hypervisor.");
2386 exit(1);
2388 return false;
2391 static void pc_machine_get_smm(Object *obj, Visitor *v, const char *name,
2392 void *opaque, Error **errp)
2394 PCMachineState *pcms = PC_MACHINE(obj);
2395 OnOffAuto smm = pcms->smm;
2397 visit_type_OnOffAuto(v, name, &smm, errp);
2400 static void pc_machine_set_smm(Object *obj, Visitor *v, const char *name,
2401 void *opaque, Error **errp)
2403 PCMachineState *pcms = PC_MACHINE(obj);
2405 visit_type_OnOffAuto(v, name, &pcms->smm, errp);
2408 static bool pc_machine_get_nvdimm(Object *obj, Error **errp)
2410 PCMachineState *pcms = PC_MACHINE(obj);
2412 return pcms->acpi_nvdimm_state.is_enabled;
2415 static void pc_machine_set_nvdimm(Object *obj, bool value, Error **errp)
2417 PCMachineState *pcms = PC_MACHINE(obj);
2419 pcms->acpi_nvdimm_state.is_enabled = value;
2422 static char *pc_machine_get_nvdimm_persistence(Object *obj, Error **errp)
2424 PCMachineState *pcms = PC_MACHINE(obj);
2426 return g_strdup(pcms->acpi_nvdimm_state.persistence_string);
2429 static void pc_machine_set_nvdimm_persistence(Object *obj, const char *value,
2430 Error **errp)
2432 PCMachineState *pcms = PC_MACHINE(obj);
2433 AcpiNVDIMMState *nvdimm_state = &pcms->acpi_nvdimm_state;
2435 if (strcmp(value, "cpu") == 0)
2436 nvdimm_state->persistence = 3;
2437 else if (strcmp(value, "mem-ctrl") == 0)
2438 nvdimm_state->persistence = 2;
2439 else {
2440 error_setg(errp, "-machine nvdimm-persistence=%s: unsupported option",
2441 value);
2442 return;
2445 g_free(nvdimm_state->persistence_string);
2446 nvdimm_state->persistence_string = g_strdup(value);
2449 static bool pc_machine_get_smbus(Object *obj, Error **errp)
2451 PCMachineState *pcms = PC_MACHINE(obj);
2453 return pcms->smbus_enabled;
2456 static void pc_machine_set_smbus(Object *obj, bool value, Error **errp)
2458 PCMachineState *pcms = PC_MACHINE(obj);
2460 pcms->smbus_enabled = value;
2463 static bool pc_machine_get_sata(Object *obj, Error **errp)
2465 PCMachineState *pcms = PC_MACHINE(obj);
2467 return pcms->sata_enabled;
2470 static void pc_machine_set_sata(Object *obj, bool value, Error **errp)
2472 PCMachineState *pcms = PC_MACHINE(obj);
2474 pcms->sata_enabled = value;
2477 static bool pc_machine_get_pit(Object *obj, Error **errp)
2479 PCMachineState *pcms = PC_MACHINE(obj);
2481 return pcms->pit_enabled;
2484 static void pc_machine_set_pit(Object *obj, bool value, Error **errp)
2486 PCMachineState *pcms = PC_MACHINE(obj);
2488 pcms->pit_enabled = value;
2491 static void pc_machine_initfn(Object *obj)
2493 PCMachineState *pcms = PC_MACHINE(obj);
2495 pcms->max_ram_below_4g = 0; /* use default */
2496 pcms->smm = ON_OFF_AUTO_AUTO;
2497 pcms->vmport = ON_OFF_AUTO_AUTO;
2498 /* nvdimm is disabled on default. */
2499 pcms->acpi_nvdimm_state.is_enabled = false;
2500 /* acpi build is enabled by default if machine supports it */
2501 pcms->acpi_build_enabled = PC_MACHINE_GET_CLASS(pcms)->has_acpi_build;
2502 pcms->smbus_enabled = true;
2503 pcms->sata_enabled = true;
2504 pcms->pit_enabled = true;
2507 static void pc_machine_reset(void)
2509 CPUState *cs;
2510 X86CPU *cpu;
2512 qemu_devices_reset();
2514 /* Reset APIC after devices have been reset to cancel
2515 * any changes that qemu_devices_reset() might have done.
2517 CPU_FOREACH(cs) {
2518 cpu = X86_CPU(cs);
2520 if (cpu->apic_state) {
2521 device_reset(cpu->apic_state);
2526 static CpuInstanceProperties
2527 pc_cpu_index_to_props(MachineState *ms, unsigned cpu_index)
2529 MachineClass *mc = MACHINE_GET_CLASS(ms);
2530 const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms);
2532 assert(cpu_index < possible_cpus->len);
2533 return possible_cpus->cpus[cpu_index].props;
2536 static int64_t pc_get_default_cpu_node_id(const MachineState *ms, int idx)
2538 X86CPUTopoInfo topo;
2540 assert(idx < ms->possible_cpus->len);
2541 x86_topo_ids_from_apicid(ms->possible_cpus->cpus[idx].arch_id,
2542 smp_cores, smp_threads, &topo);
2543 return topo.pkg_id % nb_numa_nodes;
2546 static const CPUArchIdList *pc_possible_cpu_arch_ids(MachineState *ms)
2548 int i;
2550 if (ms->possible_cpus) {
2552 * make sure that max_cpus hasn't changed since the first use, i.e.
2553 * -smp hasn't been parsed after it
2555 assert(ms->possible_cpus->len == max_cpus);
2556 return ms->possible_cpus;
2559 ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
2560 sizeof(CPUArchId) * max_cpus);
2561 ms->possible_cpus->len = max_cpus;
2562 for (i = 0; i < ms->possible_cpus->len; i++) {
2563 X86CPUTopoInfo topo;
2565 ms->possible_cpus->cpus[i].type = ms->cpu_type;
2566 ms->possible_cpus->cpus[i].vcpus_count = 1;
2567 ms->possible_cpus->cpus[i].arch_id = x86_cpu_apic_id_from_index(i);
2568 x86_topo_ids_from_apicid(ms->possible_cpus->cpus[i].arch_id,
2569 smp_cores, smp_threads, &topo);
2570 ms->possible_cpus->cpus[i].props.has_socket_id = true;
2571 ms->possible_cpus->cpus[i].props.socket_id = topo.pkg_id;
2572 ms->possible_cpus->cpus[i].props.has_core_id = true;
2573 ms->possible_cpus->cpus[i].props.core_id = topo.core_id;
2574 ms->possible_cpus->cpus[i].props.has_thread_id = true;
2575 ms->possible_cpus->cpus[i].props.thread_id = topo.smt_id;
2577 return ms->possible_cpus;
2580 static void x86_nmi(NMIState *n, int cpu_index, Error **errp)
2582 /* cpu index isn't used */
2583 CPUState *cs;
2585 CPU_FOREACH(cs) {
2586 X86CPU *cpu = X86_CPU(cs);
2588 if (!cpu->apic_state) {
2589 cpu_interrupt(cs, CPU_INTERRUPT_NMI);
2590 } else {
2591 apic_deliver_nmi(cpu->apic_state);
2596 static void pc_machine_class_init(ObjectClass *oc, void *data)
2598 MachineClass *mc = MACHINE_CLASS(oc);
2599 PCMachineClass *pcmc = PC_MACHINE_CLASS(oc);
2600 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
2601 NMIClass *nc = NMI_CLASS(oc);
2603 pcmc->pci_enabled = true;
2604 pcmc->has_acpi_build = true;
2605 pcmc->rsdp_in_ram = true;
2606 pcmc->smbios_defaults = true;
2607 pcmc->smbios_uuid_encoded = true;
2608 pcmc->gigabyte_align = true;
2609 pcmc->has_reserved_memory = true;
2610 pcmc->kvmclock_enabled = true;
2611 pcmc->enforce_aligned_dimm = true;
2612 /* BIOS ACPI tables: 128K. Other BIOS datastructures: less than 4K reported
2613 * to be used at the moment, 32K should be enough for a while. */
2614 pcmc->acpi_data_size = 0x20000 + 0x8000;
2615 pcmc->save_tsc_khz = true;
2616 pcmc->linuxboot_dma_enabled = true;
2617 assert(!mc->get_hotplug_handler);
2618 mc->get_hotplug_handler = pc_get_hotpug_handler;
2619 mc->cpu_index_to_instance_props = pc_cpu_index_to_props;
2620 mc->get_default_cpu_node_id = pc_get_default_cpu_node_id;
2621 mc->possible_cpu_arch_ids = pc_possible_cpu_arch_ids;
2622 mc->auto_enable_numa_with_memhp = true;
2623 mc->has_hotpluggable_cpus = true;
2624 mc->default_boot_order = "cad";
2625 mc->hot_add_cpu = pc_hot_add_cpu;
2626 mc->block_default_type = IF_IDE;
2627 mc->max_cpus = 255;
2628 mc->reset = pc_machine_reset;
2629 hc->pre_plug = pc_machine_device_pre_plug_cb;
2630 hc->plug = pc_machine_device_plug_cb;
2631 hc->unplug_request = pc_machine_device_unplug_request_cb;
2632 hc->unplug = pc_machine_device_unplug_cb;
2633 nc->nmi_monitor_handler = x86_nmi;
2634 mc->default_cpu_type = TARGET_DEFAULT_CPU_TYPE;
2636 object_class_property_add(oc, PC_MACHINE_DEVMEM_REGION_SIZE, "int",
2637 pc_machine_get_device_memory_region_size, NULL,
2638 NULL, NULL, &error_abort);
2640 object_class_property_add(oc, PC_MACHINE_MAX_RAM_BELOW_4G, "size",
2641 pc_machine_get_max_ram_below_4g, pc_machine_set_max_ram_below_4g,
2642 NULL, NULL, &error_abort);
2644 object_class_property_set_description(oc, PC_MACHINE_MAX_RAM_BELOW_4G,
2645 "Maximum ram below the 4G boundary (32bit boundary)", &error_abort);
2647 object_class_property_add(oc, PC_MACHINE_SMM, "OnOffAuto",
2648 pc_machine_get_smm, pc_machine_set_smm,
2649 NULL, NULL, &error_abort);
2650 object_class_property_set_description(oc, PC_MACHINE_SMM,
2651 "Enable SMM (pc & q35)", &error_abort);
2653 object_class_property_add(oc, PC_MACHINE_VMPORT, "OnOffAuto",
2654 pc_machine_get_vmport, pc_machine_set_vmport,
2655 NULL, NULL, &error_abort);
2656 object_class_property_set_description(oc, PC_MACHINE_VMPORT,
2657 "Enable vmport (pc & q35)", &error_abort);
2659 object_class_property_add_bool(oc, PC_MACHINE_NVDIMM,
2660 pc_machine_get_nvdimm, pc_machine_set_nvdimm, &error_abort);
2662 object_class_property_add_str(oc, PC_MACHINE_NVDIMM_PERSIST,
2663 pc_machine_get_nvdimm_persistence,
2664 pc_machine_set_nvdimm_persistence, &error_abort);
2666 object_class_property_add_bool(oc, PC_MACHINE_SMBUS,
2667 pc_machine_get_smbus, pc_machine_set_smbus, &error_abort);
2669 object_class_property_add_bool(oc, PC_MACHINE_SATA,
2670 pc_machine_get_sata, pc_machine_set_sata, &error_abort);
2672 object_class_property_add_bool(oc, PC_MACHINE_PIT,
2673 pc_machine_get_pit, pc_machine_set_pit, &error_abort);
2676 static const TypeInfo pc_machine_info = {
2677 .name = TYPE_PC_MACHINE,
2678 .parent = TYPE_MACHINE,
2679 .abstract = true,
2680 .instance_size = sizeof(PCMachineState),
2681 .instance_init = pc_machine_initfn,
2682 .class_size = sizeof(PCMachineClass),
2683 .class_init = pc_machine_class_init,
2684 .interfaces = (InterfaceInfo[]) {
2685 { TYPE_HOTPLUG_HANDLER },
2686 { TYPE_NMI },
2691 static void pc_machine_register_types(void)
2693 type_register_static(&pc_machine_info);
2696 type_init(pc_machine_register_types)