2 * ARM mach-virt emulation
4 * Copyright (c) 2013 Linaro Limited
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2 or later, as published by the Free Software Foundation.
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 * You should have received a copy of the GNU General Public License along with
16 * this program. If not, see <http://www.gnu.org/licenses/>.
18 * Emulate a virtual board which works by passing Linux all the information
19 * it needs about what devices are present via the device tree.
20 * There are some restrictions about what we can do here:
21 * + we can only present devices whose Linux drivers will work based
22 * purely on the device tree with no platform data at all
23 * + we want to present a very stripped-down minimalist platform,
24 * both because this reduces the security attack surface from the guest
25 * and also because it reduces our exposure to being broken when
26 * the kernel updates its device tree bindings and requires further
27 * information in a device binding that we aren't providing.
28 * This is essentially the same approach kvmtool uses.
31 #include "qemu/osdep.h"
32 #include "qapi/error.h"
33 #include "hw/sysbus.h"
34 #include "hw/arm/arm.h"
35 #include "hw/arm/primecell.h"
36 #include "hw/arm/virt.h"
37 #include "hw/vfio/vfio-calxeda-xgmac.h"
38 #include "hw/vfio/vfio-amd-xgbe.h"
39 #include "hw/devices.h"
41 #include "sysemu/block-backend.h"
42 #include "sysemu/device_tree.h"
43 #include "sysemu/numa.h"
44 #include "sysemu/sysemu.h"
45 #include "sysemu/kvm.h"
46 #include "hw/compat.h"
47 #include "hw/loader.h"
48 #include "exec/address-spaces.h"
49 #include "qemu/bitops.h"
50 #include "qemu/error-report.h"
51 #include "hw/pci-host/gpex.h"
52 #include "hw/arm/sysbus-fdt.h"
53 #include "hw/platform-bus.h"
54 #include "hw/arm/fdt.h"
55 #include "hw/intc/arm_gic.h"
56 #include "hw/intc/arm_gicv3_common.h"
58 #include "hw/smbios/smbios.h"
59 #include "qapi/visitor.h"
60 #include "standard-headers/linux/input.h"
62 #define DEFINE_VIRT_MACHINE_LATEST(major, minor, latest) \
63 static void virt_##major##_##minor##_class_init(ObjectClass *oc, \
66 MachineClass *mc = MACHINE_CLASS(oc); \
67 virt_machine_##major##_##minor##_options(mc); \
68 mc->desc = "QEMU " # major "." # minor " ARM Virtual Machine"; \
73 static const TypeInfo machvirt_##major##_##minor##_info = { \
74 .name = MACHINE_TYPE_NAME("virt-" # major "." # minor), \
75 .parent = TYPE_VIRT_MACHINE, \
76 .instance_init = virt_##major##_##minor##_instance_init, \
77 .class_init = virt_##major##_##minor##_class_init, \
79 static void machvirt_machine_##major##_##minor##_init(void) \
81 type_register_static(&machvirt_##major##_##minor##_info); \
83 type_init(machvirt_machine_##major##_##minor##_init);
85 #define DEFINE_VIRT_MACHINE_AS_LATEST(major, minor) \
86 DEFINE_VIRT_MACHINE_LATEST(major, minor, true)
87 #define DEFINE_VIRT_MACHINE(major, minor) \
88 DEFINE_VIRT_MACHINE_LATEST(major, minor, false)
91 /* Number of external interrupt lines to configure the GIC with */
94 #define PLATFORM_BUS_NUM_IRQS 64
96 static ARMPlatformBusSystemParams platform_bus_params
;
98 /* RAM limit in GB. Since VIRT_MEM starts at the 1GB mark, this means
99 * RAM can go up to the 256GB mark, leaving 256GB of the physical
100 * address space unallocated and free for future use between 256G and 512G.
101 * If we need to provide more RAM to VMs in the future then we need to:
102 * * allocate a second bank of RAM starting at 2TB and working up
103 * * fix the DT and ACPI table generation code in QEMU to correctly
104 * report two split lumps of RAM to the guest
105 * * fix KVM in the host kernel to allow guests with >40 bit address spaces
106 * (We don't want to fill all the way up to 512GB with RAM because
107 * we might want it for non-RAM purposes later. Conversely it seems
108 * reasonable to assume that anybody configuring a VM with a quarter
109 * of a terabyte of RAM will be doing it on a host with more than a
110 * terabyte of physical address space.)
112 #define RAMLIMIT_GB 255
113 #define RAMLIMIT_BYTES (RAMLIMIT_GB * 1024ULL * 1024 * 1024)
115 /* Addresses and sizes of our components.
116 * 0..128MB is space for a flash device so we can run bootrom code such as UEFI.
117 * 128MB..256MB is used for miscellaneous device I/O.
118 * 256MB..1GB is reserved for possible future PCI support (ie where the
119 * PCI memory window will go if we add a PCI host controller).
120 * 1GB and up is RAM (which may happily spill over into the
121 * high memory region beyond 4GB).
122 * This represents a compromise between how much RAM can be given to
123 * a 32 bit VM and leaving space for expansion and in particular for PCI.
124 * Note that devices should generally be placed at multiples of 0x10000,
125 * to accommodate guests using 64K pages.
127 static const MemMapEntry a15memmap
[] = {
128 /* Space up to 0x8000000 is reserved for a boot ROM */
129 [VIRT_FLASH
] = { 0, 0x08000000 },
130 [VIRT_CPUPERIPHS
] = { 0x08000000, 0x00020000 },
131 /* GIC distributor and CPU interfaces sit inside the CPU peripheral space */
132 [VIRT_GIC_DIST
] = { 0x08000000, 0x00010000 },
133 [VIRT_GIC_CPU
] = { 0x08010000, 0x00010000 },
134 [VIRT_GIC_V2M
] = { 0x08020000, 0x00001000 },
135 /* The space in between here is reserved for GICv3 CPU/vCPU/HYP */
136 [VIRT_GIC_ITS
] = { 0x08080000, 0x00020000 },
137 /* This redistributor space allows up to 2*64kB*123 CPUs */
138 [VIRT_GIC_REDIST
] = { 0x080A0000, 0x00F60000 },
139 [VIRT_UART
] = { 0x09000000, 0x00001000 },
140 [VIRT_RTC
] = { 0x09010000, 0x00001000 },
141 [VIRT_FW_CFG
] = { 0x09020000, 0x00000018 },
142 [VIRT_GPIO
] = { 0x09030000, 0x00001000 },
143 [VIRT_SECURE_UART
] = { 0x09040000, 0x00001000 },
144 [VIRT_MMIO
] = { 0x0a000000, 0x00000200 },
145 /* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */
146 [VIRT_PLATFORM_BUS
] = { 0x0c000000, 0x02000000 },
147 [VIRT_SECURE_MEM
] = { 0x0e000000, 0x01000000 },
148 [VIRT_PCIE_MMIO
] = { 0x10000000, 0x2eff0000 },
149 [VIRT_PCIE_PIO
] = { 0x3eff0000, 0x00010000 },
150 [VIRT_PCIE_ECAM
] = { 0x3f000000, 0x01000000 },
151 [VIRT_MEM
] = { 0x40000000, RAMLIMIT_BYTES
},
152 /* Second PCIe window, 512GB wide at the 512GB boundary */
153 [VIRT_PCIE_MMIO_HIGH
] = { 0x8000000000ULL
, 0x8000000000ULL
},
156 static const int a15irqmap
[] = {
159 [VIRT_PCIE
] = 3, /* ... to 6 */
161 [VIRT_SECURE_UART
] = 8,
162 [VIRT_MMIO
] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */
163 [VIRT_GIC_V2M
] = 48, /* ...to 48 + NUM_GICV2M_SPIS - 1 */
164 [VIRT_PLATFORM_BUS
] = 112, /* ...to 112 + PLATFORM_BUS_NUM_IRQS -1 */
167 static const char *valid_cpus
[] = {
168 ARM_CPU_TYPE_NAME("cortex-a15"),
169 ARM_CPU_TYPE_NAME("cortex-a53"),
170 ARM_CPU_TYPE_NAME("cortex-a57"),
171 ARM_CPU_TYPE_NAME("host"),
172 ARM_CPU_TYPE_NAME("max"),
175 static bool cpu_type_valid(const char *cpu
)
179 for (i
= 0; i
< ARRAY_SIZE(valid_cpus
); i
++) {
180 if (strcmp(cpu
, valid_cpus
[i
]) == 0) {
187 static void create_fdt(VirtMachineState
*vms
)
189 void *fdt
= create_device_tree(&vms
->fdt_size
);
192 error_report("create_device_tree() failed");
199 qemu_fdt_setprop_string(fdt
, "/", "compatible", "linux,dummy-virt");
200 qemu_fdt_setprop_cell(fdt
, "/", "#address-cells", 0x2);
201 qemu_fdt_setprop_cell(fdt
, "/", "#size-cells", 0x2);
204 * /chosen and /memory nodes must exist for load_dtb
205 * to fill in necessary properties later
207 qemu_fdt_add_subnode(fdt
, "/chosen");
208 qemu_fdt_add_subnode(fdt
, "/memory");
209 qemu_fdt_setprop_string(fdt
, "/memory", "device_type", "memory");
211 /* Clock node, for the benefit of the UART. The kernel device tree
212 * binding documentation claims the PL011 node clock properties are
213 * optional but in practice if you omit them the kernel refuses to
214 * probe for the device.
216 vms
->clock_phandle
= qemu_fdt_alloc_phandle(fdt
);
217 qemu_fdt_add_subnode(fdt
, "/apb-pclk");
218 qemu_fdt_setprop_string(fdt
, "/apb-pclk", "compatible", "fixed-clock");
219 qemu_fdt_setprop_cell(fdt
, "/apb-pclk", "#clock-cells", 0x0);
220 qemu_fdt_setprop_cell(fdt
, "/apb-pclk", "clock-frequency", 24000000);
221 qemu_fdt_setprop_string(fdt
, "/apb-pclk", "clock-output-names",
223 qemu_fdt_setprop_cell(fdt
, "/apb-pclk", "phandle", vms
->clock_phandle
);
225 if (have_numa_distance
) {
226 int size
= nb_numa_nodes
* nb_numa_nodes
* 3 * sizeof(uint32_t);
227 uint32_t *matrix
= g_malloc0(size
);
230 for (i
= 0; i
< nb_numa_nodes
; i
++) {
231 for (j
= 0; j
< nb_numa_nodes
; j
++) {
232 idx
= (i
* nb_numa_nodes
+ j
) * 3;
233 matrix
[idx
+ 0] = cpu_to_be32(i
);
234 matrix
[idx
+ 1] = cpu_to_be32(j
);
235 matrix
[idx
+ 2] = cpu_to_be32(numa_info
[i
].distance
[j
]);
239 qemu_fdt_add_subnode(fdt
, "/distance-map");
240 qemu_fdt_setprop_string(fdt
, "/distance-map", "compatible",
241 "numa-distance-map-v1");
242 qemu_fdt_setprop(fdt
, "/distance-map", "distance-matrix",
248 static void fdt_add_timer_nodes(const VirtMachineState
*vms
)
250 /* On real hardware these interrupts are level-triggered.
251 * On KVM they were edge-triggered before host kernel version 4.4,
252 * and level-triggered afterwards.
253 * On emulated QEMU they are level-triggered.
255 * Getting the DTB info about them wrong is awkward for some
257 * pre-4.8 ignore the DT and leave the interrupt configured
258 * with whatever the GIC reset value (or the bootloader) left it at
259 * 4.8 before rc6 honour the incorrect data by programming it back
260 * into the GIC, causing problems
261 * 4.8rc6 and later ignore the DT and always write "level triggered"
264 * For backwards-compatibility, virt-2.8 and earlier will continue
265 * to say these are edge-triggered, but later machines will report
266 * the correct information.
269 VirtMachineClass
*vmc
= VIRT_MACHINE_GET_CLASS(vms
);
270 uint32_t irqflags
= GIC_FDT_IRQ_FLAGS_LEVEL_HI
;
272 if (vmc
->claim_edge_triggered_timers
) {
273 irqflags
= GIC_FDT_IRQ_FLAGS_EDGE_LO_HI
;
276 if (vms
->gic_version
== 2) {
277 irqflags
= deposit32(irqflags
, GIC_FDT_IRQ_PPI_CPU_START
,
278 GIC_FDT_IRQ_PPI_CPU_WIDTH
,
279 (1 << vms
->smp_cpus
) - 1);
282 qemu_fdt_add_subnode(vms
->fdt
, "/timer");
284 armcpu
= ARM_CPU(qemu_get_cpu(0));
285 if (arm_feature(&armcpu
->env
, ARM_FEATURE_V8
)) {
286 const char compat
[] = "arm,armv8-timer\0arm,armv7-timer";
287 qemu_fdt_setprop(vms
->fdt
, "/timer", "compatible",
288 compat
, sizeof(compat
));
290 qemu_fdt_setprop_string(vms
->fdt
, "/timer", "compatible",
293 qemu_fdt_setprop(vms
->fdt
, "/timer", "always-on", NULL
, 0);
294 qemu_fdt_setprop_cells(vms
->fdt
, "/timer", "interrupts",
295 GIC_FDT_IRQ_TYPE_PPI
, ARCH_TIMER_S_EL1_IRQ
, irqflags
,
296 GIC_FDT_IRQ_TYPE_PPI
, ARCH_TIMER_NS_EL1_IRQ
, irqflags
,
297 GIC_FDT_IRQ_TYPE_PPI
, ARCH_TIMER_VIRT_IRQ
, irqflags
,
298 GIC_FDT_IRQ_TYPE_PPI
, ARCH_TIMER_NS_EL2_IRQ
, irqflags
);
301 static void fdt_add_cpu_nodes(const VirtMachineState
*vms
)
305 const MachineState
*ms
= MACHINE(vms
);
308 * From Documentation/devicetree/bindings/arm/cpus.txt
309 * On ARM v8 64-bit systems value should be set to 2,
310 * that corresponds to the MPIDR_EL1 register size.
311 * If MPIDR_EL1[63:32] value is equal to 0 on all CPUs
312 * in the system, #address-cells can be set to 1, since
313 * MPIDR_EL1[63:32] bits are not used for CPUs
316 * Here we actually don't know whether our system is 32- or 64-bit one.
317 * The simplest way to go is to examine affinity IDs of all our CPUs. If
318 * at least one of them has Aff3 populated, we set #address-cells to 2.
320 for (cpu
= 0; cpu
< vms
->smp_cpus
; cpu
++) {
321 ARMCPU
*armcpu
= ARM_CPU(qemu_get_cpu(cpu
));
323 if (armcpu
->mp_affinity
& ARM_AFF3_MASK
) {
329 qemu_fdt_add_subnode(vms
->fdt
, "/cpus");
330 qemu_fdt_setprop_cell(vms
->fdt
, "/cpus", "#address-cells", addr_cells
);
331 qemu_fdt_setprop_cell(vms
->fdt
, "/cpus", "#size-cells", 0x0);
333 for (cpu
= vms
->smp_cpus
- 1; cpu
>= 0; cpu
--) {
334 char *nodename
= g_strdup_printf("/cpus/cpu@%d", cpu
);
335 ARMCPU
*armcpu
= ARM_CPU(qemu_get_cpu(cpu
));
336 CPUState
*cs
= CPU(armcpu
);
338 qemu_fdt_add_subnode(vms
->fdt
, nodename
);
339 qemu_fdt_setprop_string(vms
->fdt
, nodename
, "device_type", "cpu");
340 qemu_fdt_setprop_string(vms
->fdt
, nodename
, "compatible",
341 armcpu
->dtb_compatible
);
343 if (vms
->psci_conduit
!= QEMU_PSCI_CONDUIT_DISABLED
344 && vms
->smp_cpus
> 1) {
345 qemu_fdt_setprop_string(vms
->fdt
, nodename
,
346 "enable-method", "psci");
349 if (addr_cells
== 2) {
350 qemu_fdt_setprop_u64(vms
->fdt
, nodename
, "reg",
351 armcpu
->mp_affinity
);
353 qemu_fdt_setprop_cell(vms
->fdt
, nodename
, "reg",
354 armcpu
->mp_affinity
);
357 if (ms
->possible_cpus
->cpus
[cs
->cpu_index
].props
.has_node_id
) {
358 qemu_fdt_setprop_cell(vms
->fdt
, nodename
, "numa-node-id",
359 ms
->possible_cpus
->cpus
[cs
->cpu_index
].props
.node_id
);
366 static void fdt_add_its_gic_node(VirtMachineState
*vms
)
368 vms
->msi_phandle
= qemu_fdt_alloc_phandle(vms
->fdt
);
369 qemu_fdt_add_subnode(vms
->fdt
, "/intc/its");
370 qemu_fdt_setprop_string(vms
->fdt
, "/intc/its", "compatible",
372 qemu_fdt_setprop(vms
->fdt
, "/intc/its", "msi-controller", NULL
, 0);
373 qemu_fdt_setprop_sized_cells(vms
->fdt
, "/intc/its", "reg",
374 2, vms
->memmap
[VIRT_GIC_ITS
].base
,
375 2, vms
->memmap
[VIRT_GIC_ITS
].size
);
376 qemu_fdt_setprop_cell(vms
->fdt
, "/intc/its", "phandle", vms
->msi_phandle
);
379 static void fdt_add_v2m_gic_node(VirtMachineState
*vms
)
381 vms
->msi_phandle
= qemu_fdt_alloc_phandle(vms
->fdt
);
382 qemu_fdt_add_subnode(vms
->fdt
, "/intc/v2m");
383 qemu_fdt_setprop_string(vms
->fdt
, "/intc/v2m", "compatible",
384 "arm,gic-v2m-frame");
385 qemu_fdt_setprop(vms
->fdt
, "/intc/v2m", "msi-controller", NULL
, 0);
386 qemu_fdt_setprop_sized_cells(vms
->fdt
, "/intc/v2m", "reg",
387 2, vms
->memmap
[VIRT_GIC_V2M
].base
,
388 2, vms
->memmap
[VIRT_GIC_V2M
].size
);
389 qemu_fdt_setprop_cell(vms
->fdt
, "/intc/v2m", "phandle", vms
->msi_phandle
);
392 static void fdt_add_gic_node(VirtMachineState
*vms
)
394 vms
->gic_phandle
= qemu_fdt_alloc_phandle(vms
->fdt
);
395 qemu_fdt_setprop_cell(vms
->fdt
, "/", "interrupt-parent", vms
->gic_phandle
);
397 qemu_fdt_add_subnode(vms
->fdt
, "/intc");
398 qemu_fdt_setprop_cell(vms
->fdt
, "/intc", "#interrupt-cells", 3);
399 qemu_fdt_setprop(vms
->fdt
, "/intc", "interrupt-controller", NULL
, 0);
400 qemu_fdt_setprop_cell(vms
->fdt
, "/intc", "#address-cells", 0x2);
401 qemu_fdt_setprop_cell(vms
->fdt
, "/intc", "#size-cells", 0x2);
402 qemu_fdt_setprop(vms
->fdt
, "/intc", "ranges", NULL
, 0);
403 if (vms
->gic_version
== 3) {
404 qemu_fdt_setprop_string(vms
->fdt
, "/intc", "compatible",
406 qemu_fdt_setprop_sized_cells(vms
->fdt
, "/intc", "reg",
407 2, vms
->memmap
[VIRT_GIC_DIST
].base
,
408 2, vms
->memmap
[VIRT_GIC_DIST
].size
,
409 2, vms
->memmap
[VIRT_GIC_REDIST
].base
,
410 2, vms
->memmap
[VIRT_GIC_REDIST
].size
);
412 qemu_fdt_setprop_cells(vms
->fdt
, "/intc", "interrupts",
413 GIC_FDT_IRQ_TYPE_PPI
, ARCH_GICV3_MAINT_IRQ
,
414 GIC_FDT_IRQ_FLAGS_LEVEL_HI
);
417 /* 'cortex-a15-gic' means 'GIC v2' */
418 qemu_fdt_setprop_string(vms
->fdt
, "/intc", "compatible",
419 "arm,cortex-a15-gic");
420 qemu_fdt_setprop_sized_cells(vms
->fdt
, "/intc", "reg",
421 2, vms
->memmap
[VIRT_GIC_DIST
].base
,
422 2, vms
->memmap
[VIRT_GIC_DIST
].size
,
423 2, vms
->memmap
[VIRT_GIC_CPU
].base
,
424 2, vms
->memmap
[VIRT_GIC_CPU
].size
);
427 qemu_fdt_setprop_cell(vms
->fdt
, "/intc", "phandle", vms
->gic_phandle
);
430 static void fdt_add_pmu_nodes(const VirtMachineState
*vms
)
434 uint32_t irqflags
= GIC_FDT_IRQ_FLAGS_LEVEL_HI
;
437 armcpu
= ARM_CPU(cpu
);
438 if (!arm_feature(&armcpu
->env
, ARM_FEATURE_PMU
)) {
442 if (kvm_irqchip_in_kernel()) {
443 kvm_arm_pmu_set_irq(cpu
, PPI(VIRTUAL_PMU_IRQ
));
445 kvm_arm_pmu_init(cpu
);
449 if (vms
->gic_version
== 2) {
450 irqflags
= deposit32(irqflags
, GIC_FDT_IRQ_PPI_CPU_START
,
451 GIC_FDT_IRQ_PPI_CPU_WIDTH
,
452 (1 << vms
->smp_cpus
) - 1);
455 armcpu
= ARM_CPU(qemu_get_cpu(0));
456 qemu_fdt_add_subnode(vms
->fdt
, "/pmu");
457 if (arm_feature(&armcpu
->env
, ARM_FEATURE_V8
)) {
458 const char compat
[] = "arm,armv8-pmuv3";
459 qemu_fdt_setprop(vms
->fdt
, "/pmu", "compatible",
460 compat
, sizeof(compat
));
461 qemu_fdt_setprop_cells(vms
->fdt
, "/pmu", "interrupts",
462 GIC_FDT_IRQ_TYPE_PPI
, VIRTUAL_PMU_IRQ
, irqflags
);
466 static void create_its(VirtMachineState
*vms
, DeviceState
*gicdev
)
468 const char *itsclass
= its_class_name();
472 /* Do nothing if not supported */
476 dev
= qdev_create(NULL
, itsclass
);
478 object_property_set_link(OBJECT(dev
), OBJECT(gicdev
), "parent-gicv3",
480 qdev_init_nofail(dev
);
481 sysbus_mmio_map(SYS_BUS_DEVICE(dev
), 0, vms
->memmap
[VIRT_GIC_ITS
].base
);
483 fdt_add_its_gic_node(vms
);
486 static void create_v2m(VirtMachineState
*vms
, qemu_irq
*pic
)
489 int irq
= vms
->irqmap
[VIRT_GIC_V2M
];
492 dev
= qdev_create(NULL
, "arm-gicv2m");
493 sysbus_mmio_map(SYS_BUS_DEVICE(dev
), 0, vms
->memmap
[VIRT_GIC_V2M
].base
);
494 qdev_prop_set_uint32(dev
, "base-spi", irq
);
495 qdev_prop_set_uint32(dev
, "num-spi", NUM_GICV2M_SPIS
);
496 qdev_init_nofail(dev
);
498 for (i
= 0; i
< NUM_GICV2M_SPIS
; i
++) {
499 sysbus_connect_irq(SYS_BUS_DEVICE(dev
), i
, pic
[irq
+ i
]);
502 fdt_add_v2m_gic_node(vms
);
505 static void create_gic(VirtMachineState
*vms
, qemu_irq
*pic
)
507 /* We create a standalone GIC */
509 SysBusDevice
*gicbusdev
;
511 int type
= vms
->gic_version
, i
;
513 gictype
= (type
== 3) ? gicv3_class_name() : gic_class_name();
515 gicdev
= qdev_create(NULL
, gictype
);
516 qdev_prop_set_uint32(gicdev
, "revision", type
);
517 qdev_prop_set_uint32(gicdev
, "num-cpu", smp_cpus
);
518 /* Note that the num-irq property counts both internal and external
519 * interrupts; there are always 32 of the former (mandated by GIC spec).
521 qdev_prop_set_uint32(gicdev
, "num-irq", NUM_IRQS
+ 32);
522 if (!kvm_irqchip_in_kernel()) {
523 qdev_prop_set_bit(gicdev
, "has-security-extensions", vms
->secure
);
525 qdev_init_nofail(gicdev
);
526 gicbusdev
= SYS_BUS_DEVICE(gicdev
);
527 sysbus_mmio_map(gicbusdev
, 0, vms
->memmap
[VIRT_GIC_DIST
].base
);
529 sysbus_mmio_map(gicbusdev
, 1, vms
->memmap
[VIRT_GIC_REDIST
].base
);
531 sysbus_mmio_map(gicbusdev
, 1, vms
->memmap
[VIRT_GIC_CPU
].base
);
534 /* Wire the outputs from each CPU's generic timer and the GICv3
535 * maintenance interrupt signal to the appropriate GIC PPI inputs,
536 * and the GIC's IRQ/FIQ/VIRQ/VFIQ interrupt outputs to the CPU's inputs.
538 for (i
= 0; i
< smp_cpus
; i
++) {
539 DeviceState
*cpudev
= DEVICE(qemu_get_cpu(i
));
540 int ppibase
= NUM_IRQS
+ i
* GIC_INTERNAL
+ GIC_NR_SGIS
;
542 /* Mapping from the output timer irq lines from the CPU to the
543 * GIC PPI inputs we use for the virt board.
545 const int timer_irq
[] = {
546 [GTIMER_PHYS
] = ARCH_TIMER_NS_EL1_IRQ
,
547 [GTIMER_VIRT
] = ARCH_TIMER_VIRT_IRQ
,
548 [GTIMER_HYP
] = ARCH_TIMER_NS_EL2_IRQ
,
549 [GTIMER_SEC
] = ARCH_TIMER_S_EL1_IRQ
,
552 for (irq
= 0; irq
< ARRAY_SIZE(timer_irq
); irq
++) {
553 qdev_connect_gpio_out(cpudev
, irq
,
554 qdev_get_gpio_in(gicdev
,
555 ppibase
+ timer_irq
[irq
]));
558 qdev_connect_gpio_out_named(cpudev
, "gicv3-maintenance-interrupt", 0,
559 qdev_get_gpio_in(gicdev
, ppibase
560 + ARCH_GICV3_MAINT_IRQ
));
561 qdev_connect_gpio_out_named(cpudev
, "pmu-interrupt", 0,
562 qdev_get_gpio_in(gicdev
, ppibase
565 sysbus_connect_irq(gicbusdev
, i
, qdev_get_gpio_in(cpudev
, ARM_CPU_IRQ
));
566 sysbus_connect_irq(gicbusdev
, i
+ smp_cpus
,
567 qdev_get_gpio_in(cpudev
, ARM_CPU_FIQ
));
568 sysbus_connect_irq(gicbusdev
, i
+ 2 * smp_cpus
,
569 qdev_get_gpio_in(cpudev
, ARM_CPU_VIRQ
));
570 sysbus_connect_irq(gicbusdev
, i
+ 3 * smp_cpus
,
571 qdev_get_gpio_in(cpudev
, ARM_CPU_VFIQ
));
574 for (i
= 0; i
< NUM_IRQS
; i
++) {
575 pic
[i
] = qdev_get_gpio_in(gicdev
, i
);
578 fdt_add_gic_node(vms
);
580 if (type
== 3 && vms
->its
) {
581 create_its(vms
, gicdev
);
582 } else if (type
== 2) {
583 create_v2m(vms
, pic
);
587 static void create_uart(const VirtMachineState
*vms
, qemu_irq
*pic
, int uart
,
588 MemoryRegion
*mem
, Chardev
*chr
)
591 hwaddr base
= vms
->memmap
[uart
].base
;
592 hwaddr size
= vms
->memmap
[uart
].size
;
593 int irq
= vms
->irqmap
[uart
];
594 const char compat
[] = "arm,pl011\0arm,primecell";
595 const char clocknames
[] = "uartclk\0apb_pclk";
596 DeviceState
*dev
= qdev_create(NULL
, "pl011");
597 SysBusDevice
*s
= SYS_BUS_DEVICE(dev
);
599 qdev_prop_set_chr(dev
, "chardev", chr
);
600 qdev_init_nofail(dev
);
601 memory_region_add_subregion(mem
, base
,
602 sysbus_mmio_get_region(s
, 0));
603 sysbus_connect_irq(s
, 0, pic
[irq
]);
605 nodename
= g_strdup_printf("/pl011@%" PRIx64
, base
);
606 qemu_fdt_add_subnode(vms
->fdt
, nodename
);
607 /* Note that we can't use setprop_string because of the embedded NUL */
608 qemu_fdt_setprop(vms
->fdt
, nodename
, "compatible",
609 compat
, sizeof(compat
));
610 qemu_fdt_setprop_sized_cells(vms
->fdt
, nodename
, "reg",
612 qemu_fdt_setprop_cells(vms
->fdt
, nodename
, "interrupts",
613 GIC_FDT_IRQ_TYPE_SPI
, irq
,
614 GIC_FDT_IRQ_FLAGS_LEVEL_HI
);
615 qemu_fdt_setprop_cells(vms
->fdt
, nodename
, "clocks",
616 vms
->clock_phandle
, vms
->clock_phandle
);
617 qemu_fdt_setprop(vms
->fdt
, nodename
, "clock-names",
618 clocknames
, sizeof(clocknames
));
620 if (uart
== VIRT_UART
) {
621 qemu_fdt_setprop_string(vms
->fdt
, "/chosen", "stdout-path", nodename
);
623 /* Mark as not usable by the normal world */
624 qemu_fdt_setprop_string(vms
->fdt
, nodename
, "status", "disabled");
625 qemu_fdt_setprop_string(vms
->fdt
, nodename
, "secure-status", "okay");
631 static void create_rtc(const VirtMachineState
*vms
, qemu_irq
*pic
)
634 hwaddr base
= vms
->memmap
[VIRT_RTC
].base
;
635 hwaddr size
= vms
->memmap
[VIRT_RTC
].size
;
636 int irq
= vms
->irqmap
[VIRT_RTC
];
637 const char compat
[] = "arm,pl031\0arm,primecell";
639 sysbus_create_simple("pl031", base
, pic
[irq
]);
641 nodename
= g_strdup_printf("/pl031@%" PRIx64
, base
);
642 qemu_fdt_add_subnode(vms
->fdt
, nodename
);
643 qemu_fdt_setprop(vms
->fdt
, nodename
, "compatible", compat
, sizeof(compat
));
644 qemu_fdt_setprop_sized_cells(vms
->fdt
, nodename
, "reg",
646 qemu_fdt_setprop_cells(vms
->fdt
, nodename
, "interrupts",
647 GIC_FDT_IRQ_TYPE_SPI
, irq
,
648 GIC_FDT_IRQ_FLAGS_LEVEL_HI
);
649 qemu_fdt_setprop_cell(vms
->fdt
, nodename
, "clocks", vms
->clock_phandle
);
650 qemu_fdt_setprop_string(vms
->fdt
, nodename
, "clock-names", "apb_pclk");
654 static DeviceState
*gpio_key_dev
;
655 static void virt_powerdown_req(Notifier
*n
, void *opaque
)
657 /* use gpio Pin 3 for power button event */
658 qemu_set_irq(qdev_get_gpio_in(gpio_key_dev
, 0), 1);
661 static Notifier virt_system_powerdown_notifier
= {
662 .notify
= virt_powerdown_req
665 static void create_gpio(const VirtMachineState
*vms
, qemu_irq
*pic
)
668 DeviceState
*pl061_dev
;
669 hwaddr base
= vms
->memmap
[VIRT_GPIO
].base
;
670 hwaddr size
= vms
->memmap
[VIRT_GPIO
].size
;
671 int irq
= vms
->irqmap
[VIRT_GPIO
];
672 const char compat
[] = "arm,pl061\0arm,primecell";
674 pl061_dev
= sysbus_create_simple("pl061", base
, pic
[irq
]);
676 uint32_t phandle
= qemu_fdt_alloc_phandle(vms
->fdt
);
677 nodename
= g_strdup_printf("/pl061@%" PRIx64
, base
);
678 qemu_fdt_add_subnode(vms
->fdt
, nodename
);
679 qemu_fdt_setprop_sized_cells(vms
->fdt
, nodename
, "reg",
681 qemu_fdt_setprop(vms
->fdt
, nodename
, "compatible", compat
, sizeof(compat
));
682 qemu_fdt_setprop_cell(vms
->fdt
, nodename
, "#gpio-cells", 2);
683 qemu_fdt_setprop(vms
->fdt
, nodename
, "gpio-controller", NULL
, 0);
684 qemu_fdt_setprop_cells(vms
->fdt
, nodename
, "interrupts",
685 GIC_FDT_IRQ_TYPE_SPI
, irq
,
686 GIC_FDT_IRQ_FLAGS_LEVEL_HI
);
687 qemu_fdt_setprop_cell(vms
->fdt
, nodename
, "clocks", vms
->clock_phandle
);
688 qemu_fdt_setprop_string(vms
->fdt
, nodename
, "clock-names", "apb_pclk");
689 qemu_fdt_setprop_cell(vms
->fdt
, nodename
, "phandle", phandle
);
691 gpio_key_dev
= sysbus_create_simple("gpio-key", -1,
692 qdev_get_gpio_in(pl061_dev
, 3));
693 qemu_fdt_add_subnode(vms
->fdt
, "/gpio-keys");
694 qemu_fdt_setprop_string(vms
->fdt
, "/gpio-keys", "compatible", "gpio-keys");
695 qemu_fdt_setprop_cell(vms
->fdt
, "/gpio-keys", "#size-cells", 0);
696 qemu_fdt_setprop_cell(vms
->fdt
, "/gpio-keys", "#address-cells", 1);
698 qemu_fdt_add_subnode(vms
->fdt
, "/gpio-keys/poweroff");
699 qemu_fdt_setprop_string(vms
->fdt
, "/gpio-keys/poweroff",
700 "label", "GPIO Key Poweroff");
701 qemu_fdt_setprop_cell(vms
->fdt
, "/gpio-keys/poweroff", "linux,code",
703 qemu_fdt_setprop_cells(vms
->fdt
, "/gpio-keys/poweroff",
704 "gpios", phandle
, 3, 0);
706 /* connect powerdown request */
707 qemu_register_powerdown_notifier(&virt_system_powerdown_notifier
);
712 static void create_virtio_devices(const VirtMachineState
*vms
, qemu_irq
*pic
)
715 hwaddr size
= vms
->memmap
[VIRT_MMIO
].size
;
717 /* We create the transports in forwards order. Since qbus_realize()
718 * prepends (not appends) new child buses, the incrementing loop below will
719 * create a list of virtio-mmio buses with decreasing base addresses.
721 * When a -device option is processed from the command line,
722 * qbus_find_recursive() picks the next free virtio-mmio bus in forwards
723 * order. The upshot is that -device options in increasing command line
724 * order are mapped to virtio-mmio buses with decreasing base addresses.
726 * When this code was originally written, that arrangement ensured that the
727 * guest Linux kernel would give the lowest "name" (/dev/vda, eth0, etc) to
728 * the first -device on the command line. (The end-to-end order is a
729 * function of this loop, qbus_realize(), qbus_find_recursive(), and the
730 * guest kernel's name-to-address assignment strategy.)
732 * Meanwhile, the kernel's traversal seems to have been reversed; see eg.
733 * the message, if not necessarily the code, of commit 70161ff336.
734 * Therefore the loop now establishes the inverse of the original intent.
736 * Unfortunately, we can't counteract the kernel change by reversing the
737 * loop; it would break existing command lines.
739 * In any case, the kernel makes no guarantee about the stability of
740 * enumeration order of virtio devices (as demonstrated by it changing
741 * between kernel versions). For reliable and stable identification
742 * of disks users must use UUIDs or similar mechanisms.
744 for (i
= 0; i
< NUM_VIRTIO_TRANSPORTS
; i
++) {
745 int irq
= vms
->irqmap
[VIRT_MMIO
] + i
;
746 hwaddr base
= vms
->memmap
[VIRT_MMIO
].base
+ i
* size
;
748 sysbus_create_simple("virtio-mmio", base
, pic
[irq
]);
751 /* We add dtb nodes in reverse order so that they appear in the finished
752 * device tree lowest address first.
754 * Note that this mapping is independent of the loop above. The previous
755 * loop influences virtio device to virtio transport assignment, whereas
756 * this loop controls how virtio transports are laid out in the dtb.
758 for (i
= NUM_VIRTIO_TRANSPORTS
- 1; i
>= 0; i
--) {
760 int irq
= vms
->irqmap
[VIRT_MMIO
] + i
;
761 hwaddr base
= vms
->memmap
[VIRT_MMIO
].base
+ i
* size
;
763 nodename
= g_strdup_printf("/virtio_mmio@%" PRIx64
, base
);
764 qemu_fdt_add_subnode(vms
->fdt
, nodename
);
765 qemu_fdt_setprop_string(vms
->fdt
, nodename
,
766 "compatible", "virtio,mmio");
767 qemu_fdt_setprop_sized_cells(vms
->fdt
, nodename
, "reg",
769 qemu_fdt_setprop_cells(vms
->fdt
, nodename
, "interrupts",
770 GIC_FDT_IRQ_TYPE_SPI
, irq
,
771 GIC_FDT_IRQ_FLAGS_EDGE_LO_HI
);
772 qemu_fdt_setprop(vms
->fdt
, nodename
, "dma-coherent", NULL
, 0);
777 static void create_one_flash(const char *name
, hwaddr flashbase
,
778 hwaddr flashsize
, const char *file
,
779 MemoryRegion
*sysmem
)
781 /* Create and map a single flash device. We use the same
782 * parameters as the flash devices on the Versatile Express board.
784 DriveInfo
*dinfo
= drive_get_next(IF_PFLASH
);
785 DeviceState
*dev
= qdev_create(NULL
, "cfi.pflash01");
786 SysBusDevice
*sbd
= SYS_BUS_DEVICE(dev
);
787 const uint64_t sectorlength
= 256 * 1024;
790 qdev_prop_set_drive(dev
, "drive", blk_by_legacy_dinfo(dinfo
),
794 qdev_prop_set_uint32(dev
, "num-blocks", flashsize
/ sectorlength
);
795 qdev_prop_set_uint64(dev
, "sector-length", sectorlength
);
796 qdev_prop_set_uint8(dev
, "width", 4);
797 qdev_prop_set_uint8(dev
, "device-width", 2);
798 qdev_prop_set_bit(dev
, "big-endian", false);
799 qdev_prop_set_uint16(dev
, "id0", 0x89);
800 qdev_prop_set_uint16(dev
, "id1", 0x18);
801 qdev_prop_set_uint16(dev
, "id2", 0x00);
802 qdev_prop_set_uint16(dev
, "id3", 0x00);
803 qdev_prop_set_string(dev
, "name", name
);
804 qdev_init_nofail(dev
);
806 memory_region_add_subregion(sysmem
, flashbase
,
807 sysbus_mmio_get_region(SYS_BUS_DEVICE(dev
), 0));
813 if (drive_get(IF_PFLASH
, 0, 0)) {
814 error_report("The contents of the first flash device may be "
815 "specified with -bios or with -drive if=pflash... "
816 "but you cannot use both options at once");
819 fn
= qemu_find_file(QEMU_FILE_TYPE_BIOS
, file
);
821 error_report("Could not find ROM image '%s'", file
);
824 image_size
= load_image_mr(fn
, sysbus_mmio_get_region(sbd
, 0));
826 if (image_size
< 0) {
827 error_report("Could not load ROM image '%s'", file
);
833 static void create_flash(const VirtMachineState
*vms
,
834 MemoryRegion
*sysmem
,
835 MemoryRegion
*secure_sysmem
)
837 /* Create two flash devices to fill the VIRT_FLASH space in the memmap.
838 * Any file passed via -bios goes in the first of these.
839 * sysmem is the system memory space. secure_sysmem is the secure view
840 * of the system, and the first flash device should be made visible only
841 * there. The second flash device is visible to both secure and nonsecure.
842 * If sysmem == secure_sysmem this means there is no separate Secure
843 * address space and both flash devices are generally visible.
845 hwaddr flashsize
= vms
->memmap
[VIRT_FLASH
].size
/ 2;
846 hwaddr flashbase
= vms
->memmap
[VIRT_FLASH
].base
;
849 create_one_flash("virt.flash0", flashbase
, flashsize
,
850 bios_name
, secure_sysmem
);
851 create_one_flash("virt.flash1", flashbase
+ flashsize
, flashsize
,
854 if (sysmem
== secure_sysmem
) {
855 /* Report both flash devices as a single node in the DT */
856 nodename
= g_strdup_printf("/flash@%" PRIx64
, flashbase
);
857 qemu_fdt_add_subnode(vms
->fdt
, nodename
);
858 qemu_fdt_setprop_string(vms
->fdt
, nodename
, "compatible", "cfi-flash");
859 qemu_fdt_setprop_sized_cells(vms
->fdt
, nodename
, "reg",
860 2, flashbase
, 2, flashsize
,
861 2, flashbase
+ flashsize
, 2, flashsize
);
862 qemu_fdt_setprop_cell(vms
->fdt
, nodename
, "bank-width", 4);
865 /* Report the devices as separate nodes so we can mark one as
866 * only visible to the secure world.
868 nodename
= g_strdup_printf("/secflash@%" PRIx64
, flashbase
);
869 qemu_fdt_add_subnode(vms
->fdt
, nodename
);
870 qemu_fdt_setprop_string(vms
->fdt
, nodename
, "compatible", "cfi-flash");
871 qemu_fdt_setprop_sized_cells(vms
->fdt
, nodename
, "reg",
872 2, flashbase
, 2, flashsize
);
873 qemu_fdt_setprop_cell(vms
->fdt
, nodename
, "bank-width", 4);
874 qemu_fdt_setprop_string(vms
->fdt
, nodename
, "status", "disabled");
875 qemu_fdt_setprop_string(vms
->fdt
, nodename
, "secure-status", "okay");
878 nodename
= g_strdup_printf("/flash@%" PRIx64
, flashbase
);
879 qemu_fdt_add_subnode(vms
->fdt
, nodename
);
880 qemu_fdt_setprop_string(vms
->fdt
, nodename
, "compatible", "cfi-flash");
881 qemu_fdt_setprop_sized_cells(vms
->fdt
, nodename
, "reg",
882 2, flashbase
+ flashsize
, 2, flashsize
);
883 qemu_fdt_setprop_cell(vms
->fdt
, nodename
, "bank-width", 4);
888 static FWCfgState
*create_fw_cfg(const VirtMachineState
*vms
, AddressSpace
*as
)
890 hwaddr base
= vms
->memmap
[VIRT_FW_CFG
].base
;
891 hwaddr size
= vms
->memmap
[VIRT_FW_CFG
].size
;
895 fw_cfg
= fw_cfg_init_mem_wide(base
+ 8, base
, 8, base
+ 16, as
);
896 fw_cfg_add_i16(fw_cfg
, FW_CFG_NB_CPUS
, (uint16_t)smp_cpus
);
898 nodename
= g_strdup_printf("/fw-cfg@%" PRIx64
, base
);
899 qemu_fdt_add_subnode(vms
->fdt
, nodename
);
900 qemu_fdt_setprop_string(vms
->fdt
, nodename
,
901 "compatible", "qemu,fw-cfg-mmio");
902 qemu_fdt_setprop_sized_cells(vms
->fdt
, nodename
, "reg",
904 qemu_fdt_setprop(vms
->fdt
, nodename
, "dma-coherent", NULL
, 0);
909 static void create_pcie_irq_map(const VirtMachineState
*vms
,
910 uint32_t gic_phandle
,
911 int first_irq
, const char *nodename
)
914 uint32_t full_irq_map
[4 * 4 * 10] = { 0 };
915 uint32_t *irq_map
= full_irq_map
;
917 for (devfn
= 0; devfn
<= 0x18; devfn
+= 0x8) {
918 for (pin
= 0; pin
< 4; pin
++) {
919 int irq_type
= GIC_FDT_IRQ_TYPE_SPI
;
920 int irq_nr
= first_irq
+ ((pin
+ PCI_SLOT(devfn
)) % PCI_NUM_PINS
);
921 int irq_level
= GIC_FDT_IRQ_FLAGS_LEVEL_HI
;
925 devfn
<< 8, 0, 0, /* devfn */
926 pin
+ 1, /* PCI pin */
927 gic_phandle
, 0, 0, irq_type
, irq_nr
, irq_level
}; /* GIC irq */
929 /* Convert map to big endian */
930 for (i
= 0; i
< 10; i
++) {
931 irq_map
[i
] = cpu_to_be32(map
[i
]);
937 qemu_fdt_setprop(vms
->fdt
, nodename
, "interrupt-map",
938 full_irq_map
, sizeof(full_irq_map
));
940 qemu_fdt_setprop_cells(vms
->fdt
, nodename
, "interrupt-map-mask",
941 0x1800, 0, 0, /* devfn (PCI_SLOT(3)) */
945 static void create_pcie(const VirtMachineState
*vms
, qemu_irq
*pic
)
947 hwaddr base_mmio
= vms
->memmap
[VIRT_PCIE_MMIO
].base
;
948 hwaddr size_mmio
= vms
->memmap
[VIRT_PCIE_MMIO
].size
;
949 hwaddr base_mmio_high
= vms
->memmap
[VIRT_PCIE_MMIO_HIGH
].base
;
950 hwaddr size_mmio_high
= vms
->memmap
[VIRT_PCIE_MMIO_HIGH
].size
;
951 hwaddr base_pio
= vms
->memmap
[VIRT_PCIE_PIO
].base
;
952 hwaddr size_pio
= vms
->memmap
[VIRT_PCIE_PIO
].size
;
953 hwaddr base_ecam
= vms
->memmap
[VIRT_PCIE_ECAM
].base
;
954 hwaddr size_ecam
= vms
->memmap
[VIRT_PCIE_ECAM
].size
;
955 hwaddr base
= base_mmio
;
956 int nr_pcie_buses
= size_ecam
/ PCIE_MMCFG_SIZE_MIN
;
957 int irq
= vms
->irqmap
[VIRT_PCIE
];
958 MemoryRegion
*mmio_alias
;
959 MemoryRegion
*mmio_reg
;
960 MemoryRegion
*ecam_alias
;
961 MemoryRegion
*ecam_reg
;
967 dev
= qdev_create(NULL
, TYPE_GPEX_HOST
);
968 qdev_init_nofail(dev
);
970 /* Map only the first size_ecam bytes of ECAM space */
971 ecam_alias
= g_new0(MemoryRegion
, 1);
972 ecam_reg
= sysbus_mmio_get_region(SYS_BUS_DEVICE(dev
), 0);
973 memory_region_init_alias(ecam_alias
, OBJECT(dev
), "pcie-ecam",
974 ecam_reg
, 0, size_ecam
);
975 memory_region_add_subregion(get_system_memory(), base_ecam
, ecam_alias
);
977 /* Map the MMIO window into system address space so as to expose
978 * the section of PCI MMIO space which starts at the same base address
979 * (ie 1:1 mapping for that part of PCI MMIO space visible through
982 mmio_alias
= g_new0(MemoryRegion
, 1);
983 mmio_reg
= sysbus_mmio_get_region(SYS_BUS_DEVICE(dev
), 1);
984 memory_region_init_alias(mmio_alias
, OBJECT(dev
), "pcie-mmio",
985 mmio_reg
, base_mmio
, size_mmio
);
986 memory_region_add_subregion(get_system_memory(), base_mmio
, mmio_alias
);
989 /* Map high MMIO space */
990 MemoryRegion
*high_mmio_alias
= g_new0(MemoryRegion
, 1);
992 memory_region_init_alias(high_mmio_alias
, OBJECT(dev
), "pcie-mmio-high",
993 mmio_reg
, base_mmio_high
, size_mmio_high
);
994 memory_region_add_subregion(get_system_memory(), base_mmio_high
,
998 /* Map IO port space */
999 sysbus_mmio_map(SYS_BUS_DEVICE(dev
), 2, base_pio
);
1001 for (i
= 0; i
< GPEX_NUM_IRQS
; i
++) {
1002 sysbus_connect_irq(SYS_BUS_DEVICE(dev
), i
, pic
[irq
+ i
]);
1003 gpex_set_irq_num(GPEX_HOST(dev
), i
, irq
+ i
);
1006 pci
= PCI_HOST_BRIDGE(dev
);
1008 for (i
= 0; i
< nb_nics
; i
++) {
1009 NICInfo
*nd
= &nd_table
[i
];
1012 nd
->model
= g_strdup("virtio");
1015 pci_nic_init_nofail(nd
, pci
->bus
, nd
->model
, NULL
);
1019 nodename
= g_strdup_printf("/pcie@%" PRIx64
, base
);
1020 qemu_fdt_add_subnode(vms
->fdt
, nodename
);
1021 qemu_fdt_setprop_string(vms
->fdt
, nodename
,
1022 "compatible", "pci-host-ecam-generic");
1023 qemu_fdt_setprop_string(vms
->fdt
, nodename
, "device_type", "pci");
1024 qemu_fdt_setprop_cell(vms
->fdt
, nodename
, "#address-cells", 3);
1025 qemu_fdt_setprop_cell(vms
->fdt
, nodename
, "#size-cells", 2);
1026 qemu_fdt_setprop_cells(vms
->fdt
, nodename
, "bus-range", 0,
1028 qemu_fdt_setprop(vms
->fdt
, nodename
, "dma-coherent", NULL
, 0);
1030 if (vms
->msi_phandle
) {
1031 qemu_fdt_setprop_cells(vms
->fdt
, nodename
, "msi-parent",
1035 qemu_fdt_setprop_sized_cells(vms
->fdt
, nodename
, "reg",
1036 2, base_ecam
, 2, size_ecam
);
1039 qemu_fdt_setprop_sized_cells(vms
->fdt
, nodename
, "ranges",
1040 1, FDT_PCI_RANGE_IOPORT
, 2, 0,
1041 2, base_pio
, 2, size_pio
,
1042 1, FDT_PCI_RANGE_MMIO
, 2, base_mmio
,
1043 2, base_mmio
, 2, size_mmio
,
1044 1, FDT_PCI_RANGE_MMIO_64BIT
,
1046 2, base_mmio_high
, 2, size_mmio_high
);
1048 qemu_fdt_setprop_sized_cells(vms
->fdt
, nodename
, "ranges",
1049 1, FDT_PCI_RANGE_IOPORT
, 2, 0,
1050 2, base_pio
, 2, size_pio
,
1051 1, FDT_PCI_RANGE_MMIO
, 2, base_mmio
,
1052 2, base_mmio
, 2, size_mmio
);
1055 qemu_fdt_setprop_cell(vms
->fdt
, nodename
, "#interrupt-cells", 1);
1056 create_pcie_irq_map(vms
, vms
->gic_phandle
, irq
, nodename
);
1061 static void create_platform_bus(VirtMachineState
*vms
, qemu_irq
*pic
)
1066 ARMPlatformBusFDTParams
*fdt_params
= g_new(ARMPlatformBusFDTParams
, 1);
1067 MemoryRegion
*sysmem
= get_system_memory();
1069 platform_bus_params
.platform_bus_base
= vms
->memmap
[VIRT_PLATFORM_BUS
].base
;
1070 platform_bus_params
.platform_bus_size
= vms
->memmap
[VIRT_PLATFORM_BUS
].size
;
1071 platform_bus_params
.platform_bus_first_irq
= vms
->irqmap
[VIRT_PLATFORM_BUS
];
1072 platform_bus_params
.platform_bus_num_irqs
= PLATFORM_BUS_NUM_IRQS
;
1074 fdt_params
->system_params
= &platform_bus_params
;
1075 fdt_params
->binfo
= &vms
->bootinfo
;
1076 fdt_params
->intc
= "/intc";
1078 * register a machine init done notifier that creates the device tree
1079 * nodes of the platform bus and its children dynamic sysbus devices
1081 arm_register_platform_bus_fdt_creator(fdt_params
);
1083 dev
= qdev_create(NULL
, TYPE_PLATFORM_BUS_DEVICE
);
1084 dev
->id
= TYPE_PLATFORM_BUS_DEVICE
;
1085 qdev_prop_set_uint32(dev
, "num_irqs",
1086 platform_bus_params
.platform_bus_num_irqs
);
1087 qdev_prop_set_uint32(dev
, "mmio_size",
1088 platform_bus_params
.platform_bus_size
);
1089 qdev_init_nofail(dev
);
1090 s
= SYS_BUS_DEVICE(dev
);
1092 for (i
= 0; i
< platform_bus_params
.platform_bus_num_irqs
; i
++) {
1093 int irqn
= platform_bus_params
.platform_bus_first_irq
+ i
;
1094 sysbus_connect_irq(s
, i
, pic
[irqn
]);
1097 memory_region_add_subregion(sysmem
,
1098 platform_bus_params
.platform_bus_base
,
1099 sysbus_mmio_get_region(s
, 0));
1102 static void create_secure_ram(VirtMachineState
*vms
,
1103 MemoryRegion
*secure_sysmem
)
1105 MemoryRegion
*secram
= g_new(MemoryRegion
, 1);
1107 hwaddr base
= vms
->memmap
[VIRT_SECURE_MEM
].base
;
1108 hwaddr size
= vms
->memmap
[VIRT_SECURE_MEM
].size
;
1110 memory_region_init_ram(secram
, NULL
, "virt.secure-ram", size
,
1112 memory_region_add_subregion(secure_sysmem
, base
, secram
);
1114 nodename
= g_strdup_printf("/secram@%" PRIx64
, base
);
1115 qemu_fdt_add_subnode(vms
->fdt
, nodename
);
1116 qemu_fdt_setprop_string(vms
->fdt
, nodename
, "device_type", "memory");
1117 qemu_fdt_setprop_sized_cells(vms
->fdt
, nodename
, "reg", 2, base
, 2, size
);
1118 qemu_fdt_setprop_string(vms
->fdt
, nodename
, "status", "disabled");
1119 qemu_fdt_setprop_string(vms
->fdt
, nodename
, "secure-status", "okay");
1124 static void *machvirt_dtb(const struct arm_boot_info
*binfo
, int *fdt_size
)
1126 const VirtMachineState
*board
= container_of(binfo
, VirtMachineState
,
1129 *fdt_size
= board
->fdt_size
;
1133 static void virt_build_smbios(VirtMachineState
*vms
)
1135 uint8_t *smbios_tables
, *smbios_anchor
;
1136 size_t smbios_tables_len
, smbios_anchor_len
;
1137 const char *product
= "QEMU Virtual Machine";
1143 if (kvm_enabled()) {
1144 product
= "KVM Virtual Machine";
1147 smbios_set_defaults("QEMU", product
,
1148 "1.0", false, true, SMBIOS_ENTRY_POINT_30
);
1150 smbios_get_tables(NULL
, 0, &smbios_tables
, &smbios_tables_len
,
1151 &smbios_anchor
, &smbios_anchor_len
);
1153 if (smbios_anchor
) {
1154 fw_cfg_add_file(vms
->fw_cfg
, "etc/smbios/smbios-tables",
1155 smbios_tables
, smbios_tables_len
);
1156 fw_cfg_add_file(vms
->fw_cfg
, "etc/smbios/smbios-anchor",
1157 smbios_anchor
, smbios_anchor_len
);
1162 void virt_machine_done(Notifier
*notifier
, void *data
)
1164 VirtMachineState
*vms
= container_of(notifier
, VirtMachineState
,
1167 virt_acpi_setup(vms
);
1168 virt_build_smbios(vms
);
1171 static uint64_t virt_cpu_mp_affinity(VirtMachineState
*vms
, int idx
)
1173 uint8_t clustersz
= ARM_DEFAULT_CPUS_PER_CLUSTER
;
1174 VirtMachineClass
*vmc
= VIRT_MACHINE_GET_CLASS(vms
);
1176 if (!vmc
->disallow_affinity_adjustment
) {
1177 /* Adjust MPIDR like 64-bit KVM hosts, which incorporate the
1178 * GIC's target-list limitations. 32-bit KVM hosts currently
1179 * always create clusters of 4 CPUs, but that is expected to
1180 * change when they gain support for gicv3. When KVM is enabled
1181 * it will override the changes we make here, therefore our
1182 * purposes are to make TCG consistent (with 64-bit KVM hosts)
1183 * and to improve SGI efficiency.
1185 if (vms
->gic_version
== 3) {
1186 clustersz
= GICV3_TARGETLIST_BITS
;
1188 clustersz
= GIC_TARGETLIST_BITS
;
1191 return arm_cpu_mp_affinity(idx
, clustersz
);
1194 static void machvirt_init(MachineState
*machine
)
1196 VirtMachineState
*vms
= VIRT_MACHINE(machine
);
1197 VirtMachineClass
*vmc
= VIRT_MACHINE_GET_CLASS(machine
);
1198 MachineClass
*mc
= MACHINE_GET_CLASS(machine
);
1199 const CPUArchIdList
*possible_cpus
;
1200 qemu_irq pic
[NUM_IRQS
];
1201 MemoryRegion
*sysmem
= get_system_memory();
1202 MemoryRegion
*secure_sysmem
= NULL
;
1203 int n
, virt_max_cpus
;
1204 MemoryRegion
*ram
= g_new(MemoryRegion
, 1);
1205 bool firmware_loaded
= bios_name
|| drive_get(IF_PFLASH
, 0, 0);
1207 /* We can probe only here because during property set
1208 * KVM is not available yet
1210 if (vms
->gic_version
<= 0) {
1211 /* "host" or "max" */
1212 if (!kvm_enabled()) {
1213 if (vms
->gic_version
== 0) {
1214 error_report("gic-version=host requires KVM");
1217 /* "max": currently means 3 for TCG */
1218 vms
->gic_version
= 3;
1221 vms
->gic_version
= kvm_arm_vgic_probe();
1222 if (!vms
->gic_version
) {
1224 "Unable to determine GIC version supported by host");
1230 if (!cpu_type_valid(machine
->cpu_type
)) {
1231 error_report("mach-virt: CPU type %s not supported", machine
->cpu_type
);
1235 /* If we have an EL3 boot ROM then the assumption is that it will
1236 * implement PSCI itself, so disable QEMU's internal implementation
1237 * so it doesn't get in the way. Instead of starting secondary
1238 * CPUs in PSCI powerdown state we will start them all running and
1239 * let the boot ROM sort them out.
1240 * The usual case is that we do use QEMU's PSCI implementation;
1241 * if the guest has EL2 then we will use SMC as the conduit,
1242 * and otherwise we will use HVC (for backwards compatibility and
1243 * because if we're using KVM then we must use HVC).
1245 if (vms
->secure
&& firmware_loaded
) {
1246 vms
->psci_conduit
= QEMU_PSCI_CONDUIT_DISABLED
;
1247 } else if (vms
->virt
) {
1248 vms
->psci_conduit
= QEMU_PSCI_CONDUIT_SMC
;
1250 vms
->psci_conduit
= QEMU_PSCI_CONDUIT_HVC
;
1253 /* The maximum number of CPUs depends on the GIC version, or on how
1254 * many redistributors we can fit into the memory map.
1256 if (vms
->gic_version
== 3) {
1257 virt_max_cpus
= vms
->memmap
[VIRT_GIC_REDIST
].size
/ 0x20000;
1259 virt_max_cpus
= GIC_NCPU
;
1262 if (max_cpus
> virt_max_cpus
) {
1263 error_report("Number of SMP CPUs requested (%d) exceeds max CPUs "
1264 "supported by machine 'mach-virt' (%d)",
1265 max_cpus
, virt_max_cpus
);
1269 vms
->smp_cpus
= smp_cpus
;
1271 if (machine
->ram_size
> vms
->memmap
[VIRT_MEM
].size
) {
1272 error_report("mach-virt: cannot model more than %dGB RAM", RAMLIMIT_GB
);
1276 if (vms
->virt
&& kvm_enabled()) {
1277 error_report("mach-virt: KVM does not support providing "
1278 "Virtualization extensions to the guest CPU");
1283 if (kvm_enabled()) {
1284 error_report("mach-virt: KVM does not support Security extensions");
1288 /* The Secure view of the world is the same as the NonSecure,
1289 * but with a few extra devices. Create it as a container region
1290 * containing the system memory at low priority; any secure-only
1291 * devices go in at higher priority and take precedence.
1293 secure_sysmem
= g_new(MemoryRegion
, 1);
1294 memory_region_init(secure_sysmem
, OBJECT(machine
), "secure-memory",
1296 memory_region_add_subregion_overlap(secure_sysmem
, 0, sysmem
, -1);
1301 possible_cpus
= mc
->possible_cpu_arch_ids(machine
);
1302 for (n
= 0; n
< possible_cpus
->len
; n
++) {
1306 if (n
>= smp_cpus
) {
1310 cpuobj
= object_new(possible_cpus
->cpus
[n
].type
);
1311 object_property_set_int(cpuobj
, possible_cpus
->cpus
[n
].arch_id
,
1312 "mp-affinity", NULL
);
1317 numa_cpu_pre_plug(&possible_cpus
->cpus
[cs
->cpu_index
], DEVICE(cpuobj
),
1321 object_property_set_bool(cpuobj
, false, "has_el3", NULL
);
1324 if (!vms
->virt
&& object_property_find(cpuobj
, "has_el2", NULL
)) {
1325 object_property_set_bool(cpuobj
, false, "has_el2", NULL
);
1328 if (vms
->psci_conduit
!= QEMU_PSCI_CONDUIT_DISABLED
) {
1329 object_property_set_int(cpuobj
, vms
->psci_conduit
,
1330 "psci-conduit", NULL
);
1332 /* Secondary CPUs start in PSCI powered-down state */
1334 object_property_set_bool(cpuobj
, true,
1335 "start-powered-off", NULL
);
1339 if (vmc
->no_pmu
&& object_property_find(cpuobj
, "pmu", NULL
)) {
1340 object_property_set_bool(cpuobj
, false, "pmu", NULL
);
1343 if (object_property_find(cpuobj
, "reset-cbar", NULL
)) {
1344 object_property_set_int(cpuobj
, vms
->memmap
[VIRT_CPUPERIPHS
].base
,
1345 "reset-cbar", &error_abort
);
1348 object_property_set_link(cpuobj
, OBJECT(sysmem
), "memory",
1351 object_property_set_link(cpuobj
, OBJECT(secure_sysmem
),
1352 "secure-memory", &error_abort
);
1355 object_property_set_bool(cpuobj
, true, "realized", &error_fatal
);
1356 object_unref(cpuobj
);
1358 fdt_add_timer_nodes(vms
);
1359 fdt_add_cpu_nodes(vms
);
1361 memory_region_allocate_system_memory(ram
, NULL
, "mach-virt.ram",
1363 memory_region_add_subregion(sysmem
, vms
->memmap
[VIRT_MEM
].base
, ram
);
1365 create_flash(vms
, sysmem
, secure_sysmem
? secure_sysmem
: sysmem
);
1367 create_gic(vms
, pic
);
1369 fdt_add_pmu_nodes(vms
);
1371 create_uart(vms
, pic
, VIRT_UART
, sysmem
, serial_hds
[0]);
1374 create_secure_ram(vms
, secure_sysmem
);
1375 create_uart(vms
, pic
, VIRT_SECURE_UART
, secure_sysmem
, serial_hds
[1]);
1378 create_rtc(vms
, pic
);
1380 create_pcie(vms
, pic
);
1382 create_gpio(vms
, pic
);
1384 /* Create mmio transports, so the user can create virtio backends
1385 * (which will be automatically plugged in to the transports). If
1386 * no backend is created the transport will just sit harmlessly idle.
1388 create_virtio_devices(vms
, pic
);
1390 vms
->fw_cfg
= create_fw_cfg(vms
, &address_space_memory
);
1391 rom_set_fw(vms
->fw_cfg
);
1393 vms
->machine_done
.notify
= virt_machine_done
;
1394 qemu_add_machine_init_done_notifier(&vms
->machine_done
);
1396 vms
->bootinfo
.ram_size
= machine
->ram_size
;
1397 vms
->bootinfo
.kernel_filename
= machine
->kernel_filename
;
1398 vms
->bootinfo
.kernel_cmdline
= machine
->kernel_cmdline
;
1399 vms
->bootinfo
.initrd_filename
= machine
->initrd_filename
;
1400 vms
->bootinfo
.nb_cpus
= smp_cpus
;
1401 vms
->bootinfo
.board_id
= -1;
1402 vms
->bootinfo
.loader_start
= vms
->memmap
[VIRT_MEM
].base
;
1403 vms
->bootinfo
.get_dtb
= machvirt_dtb
;
1404 vms
->bootinfo
.firmware_loaded
= firmware_loaded
;
1405 arm_load_kernel(ARM_CPU(first_cpu
), &vms
->bootinfo
);
1408 * arm_load_kernel machine init done notifier registration must
1409 * happen before the platform_bus_create call. In this latter,
1410 * another notifier is registered which adds platform bus nodes.
1411 * Notifiers are executed in registration reverse order.
1413 create_platform_bus(vms
, pic
);
1416 static bool virt_get_secure(Object
*obj
, Error
**errp
)
1418 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
1423 static void virt_set_secure(Object
*obj
, bool value
, Error
**errp
)
1425 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
1427 vms
->secure
= value
;
1430 static bool virt_get_virt(Object
*obj
, Error
**errp
)
1432 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
1437 static void virt_set_virt(Object
*obj
, bool value
, Error
**errp
)
1439 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
1444 static bool virt_get_highmem(Object
*obj
, Error
**errp
)
1446 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
1448 return vms
->highmem
;
1451 static void virt_set_highmem(Object
*obj
, bool value
, Error
**errp
)
1453 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
1455 vms
->highmem
= value
;
1458 static bool virt_get_its(Object
*obj
, Error
**errp
)
1460 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
1465 static void virt_set_its(Object
*obj
, bool value
, Error
**errp
)
1467 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
1472 static char *virt_get_gic_version(Object
*obj
, Error
**errp
)
1474 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
1475 const char *val
= vms
->gic_version
== 3 ? "3" : "2";
1477 return g_strdup(val
);
1480 static void virt_set_gic_version(Object
*obj
, const char *value
, Error
**errp
)
1482 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
1484 if (!strcmp(value
, "3")) {
1485 vms
->gic_version
= 3;
1486 } else if (!strcmp(value
, "2")) {
1487 vms
->gic_version
= 2;
1488 } else if (!strcmp(value
, "host")) {
1489 vms
->gic_version
= 0; /* Will probe later */
1490 } else if (!strcmp(value
, "max")) {
1491 vms
->gic_version
= -1; /* Will probe later */
1493 error_setg(errp
, "Invalid gic-version value");
1494 error_append_hint(errp
, "Valid values are 3, 2, host, max.\n");
1498 static CpuInstanceProperties
1499 virt_cpu_index_to_props(MachineState
*ms
, unsigned cpu_index
)
1501 MachineClass
*mc
= MACHINE_GET_CLASS(ms
);
1502 const CPUArchIdList
*possible_cpus
= mc
->possible_cpu_arch_ids(ms
);
1504 assert(cpu_index
< possible_cpus
->len
);
1505 return possible_cpus
->cpus
[cpu_index
].props
;
1508 static int64_t virt_get_default_cpu_node_id(const MachineState
*ms
, int idx
)
1510 return idx
% nb_numa_nodes
;
1513 static const CPUArchIdList
*virt_possible_cpu_arch_ids(MachineState
*ms
)
1516 VirtMachineState
*vms
= VIRT_MACHINE(ms
);
1518 if (ms
->possible_cpus
) {
1519 assert(ms
->possible_cpus
->len
== max_cpus
);
1520 return ms
->possible_cpus
;
1523 ms
->possible_cpus
= g_malloc0(sizeof(CPUArchIdList
) +
1524 sizeof(CPUArchId
) * max_cpus
);
1525 ms
->possible_cpus
->len
= max_cpus
;
1526 for (n
= 0; n
< ms
->possible_cpus
->len
; n
++) {
1527 ms
->possible_cpus
->cpus
[n
].type
= ms
->cpu_type
;
1528 ms
->possible_cpus
->cpus
[n
].arch_id
=
1529 virt_cpu_mp_affinity(vms
, n
);
1530 ms
->possible_cpus
->cpus
[n
].props
.has_thread_id
= true;
1531 ms
->possible_cpus
->cpus
[n
].props
.thread_id
= n
;
1533 return ms
->possible_cpus
;
1536 static void virt_machine_class_init(ObjectClass
*oc
, void *data
)
1538 MachineClass
*mc
= MACHINE_CLASS(oc
);
1540 mc
->init
= machvirt_init
;
1541 /* Start max_cpus at the maximum QEMU supports. We'll further restrict
1542 * it later in machvirt_init, where we have more information about the
1543 * configuration of the particular instance.
1546 machine_class_allow_dynamic_sysbus_dev(mc
, TYPE_VFIO_CALXEDA_XGMAC
);
1547 machine_class_allow_dynamic_sysbus_dev(mc
, TYPE_VFIO_AMD_XGBE
);
1548 mc
->block_default_type
= IF_VIRTIO
;
1550 mc
->pci_allow_0_address
= true;
1551 /* We know we will never create a pre-ARMv7 CPU which needs 1K pages */
1552 mc
->minimum_page_bits
= 12;
1553 mc
->possible_cpu_arch_ids
= virt_possible_cpu_arch_ids
;
1554 mc
->cpu_index_to_instance_props
= virt_cpu_index_to_props
;
1555 mc
->default_cpu_type
= ARM_CPU_TYPE_NAME("cortex-a15");
1556 mc
->get_default_cpu_node_id
= virt_get_default_cpu_node_id
;
1559 static const TypeInfo virt_machine_info
= {
1560 .name
= TYPE_VIRT_MACHINE
,
1561 .parent
= TYPE_MACHINE
,
1563 .instance_size
= sizeof(VirtMachineState
),
1564 .class_size
= sizeof(VirtMachineClass
),
1565 .class_init
= virt_machine_class_init
,
1568 static void machvirt_machine_init(void)
1570 type_register_static(&virt_machine_info
);
1572 type_init(machvirt_machine_init
);
1574 static void virt_2_12_instance_init(Object
*obj
)
1576 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
1577 VirtMachineClass
*vmc
= VIRT_MACHINE_GET_CLASS(vms
);
1579 /* EL3 is disabled by default on virt: this makes us consistent
1580 * between KVM and TCG for this board, and it also allows us to
1581 * boot UEFI blobs which assume no TrustZone support.
1583 vms
->secure
= false;
1584 object_property_add_bool(obj
, "secure", virt_get_secure
,
1585 virt_set_secure
, NULL
);
1586 object_property_set_description(obj
, "secure",
1587 "Set on/off to enable/disable the ARM "
1588 "Security Extensions (TrustZone)",
1591 /* EL2 is also disabled by default, for similar reasons */
1593 object_property_add_bool(obj
, "virtualization", virt_get_virt
,
1594 virt_set_virt
, NULL
);
1595 object_property_set_description(obj
, "virtualization",
1596 "Set on/off to enable/disable emulating a "
1597 "guest CPU which implements the ARM "
1598 "Virtualization Extensions",
1601 /* High memory is enabled by default */
1602 vms
->highmem
= true;
1603 object_property_add_bool(obj
, "highmem", virt_get_highmem
,
1604 virt_set_highmem
, NULL
);
1605 object_property_set_description(obj
, "highmem",
1606 "Set on/off to enable/disable using "
1607 "physical address space above 32 bits",
1609 /* Default GIC type is v2 */
1610 vms
->gic_version
= 2;
1611 object_property_add_str(obj
, "gic-version", virt_get_gic_version
,
1612 virt_set_gic_version
, NULL
);
1613 object_property_set_description(obj
, "gic-version",
1615 "Valid values are 2, 3 and host", NULL
);
1620 /* Default allows ITS instantiation */
1622 object_property_add_bool(obj
, "its", virt_get_its
,
1623 virt_set_its
, NULL
);
1624 object_property_set_description(obj
, "its",
1625 "Set on/off to enable/disable "
1626 "ITS instantiation",
1630 vms
->memmap
= a15memmap
;
1631 vms
->irqmap
= a15irqmap
;
1634 static void virt_machine_2_12_options(MachineClass
*mc
)
1637 DEFINE_VIRT_MACHINE_AS_LATEST(2, 12)
1639 #define VIRT_COMPAT_2_11 \
1642 static void virt_2_11_instance_init(Object
*obj
)
1644 virt_2_12_instance_init(obj
);
1647 static void virt_machine_2_11_options(MachineClass
*mc
)
1649 virt_machine_2_12_options(mc
);
1650 SET_MACHINE_COMPAT(mc
, VIRT_COMPAT_2_11
);
1652 DEFINE_VIRT_MACHINE(2, 11)
1654 #define VIRT_COMPAT_2_10 \
1657 static void virt_2_10_instance_init(Object
*obj
)
1659 virt_2_11_instance_init(obj
);
1662 static void virt_machine_2_10_options(MachineClass
*mc
)
1664 virt_machine_2_11_options(mc
);
1665 SET_MACHINE_COMPAT(mc
, VIRT_COMPAT_2_10
);
1667 DEFINE_VIRT_MACHINE(2, 10)
1669 #define VIRT_COMPAT_2_9 \
1672 static void virt_2_9_instance_init(Object
*obj
)
1674 virt_2_10_instance_init(obj
);
1677 static void virt_machine_2_9_options(MachineClass
*mc
)
1679 virt_machine_2_10_options(mc
);
1680 SET_MACHINE_COMPAT(mc
, VIRT_COMPAT_2_9
);
1682 DEFINE_VIRT_MACHINE(2, 9)
1684 #define VIRT_COMPAT_2_8 \
1687 static void virt_2_8_instance_init(Object
*obj
)
1689 virt_2_9_instance_init(obj
);
1692 static void virt_machine_2_8_options(MachineClass
*mc
)
1694 VirtMachineClass
*vmc
= VIRT_MACHINE_CLASS(OBJECT_CLASS(mc
));
1696 virt_machine_2_9_options(mc
);
1697 SET_MACHINE_COMPAT(mc
, VIRT_COMPAT_2_8
);
1698 /* For 2.8 and earlier we falsely claimed in the DT that
1699 * our timers were edge-triggered, not level-triggered.
1701 vmc
->claim_edge_triggered_timers
= true;
1703 DEFINE_VIRT_MACHINE(2, 8)
1705 #define VIRT_COMPAT_2_7 \
1708 static void virt_2_7_instance_init(Object
*obj
)
1710 virt_2_8_instance_init(obj
);
1713 static void virt_machine_2_7_options(MachineClass
*mc
)
1715 VirtMachineClass
*vmc
= VIRT_MACHINE_CLASS(OBJECT_CLASS(mc
));
1717 virt_machine_2_8_options(mc
);
1718 SET_MACHINE_COMPAT(mc
, VIRT_COMPAT_2_7
);
1719 /* ITS was introduced with 2.8 */
1721 /* Stick with 1K pages for migration compatibility */
1722 mc
->minimum_page_bits
= 0;
1724 DEFINE_VIRT_MACHINE(2, 7)
1726 #define VIRT_COMPAT_2_6 \
1729 static void virt_2_6_instance_init(Object
*obj
)
1731 virt_2_7_instance_init(obj
);
1734 static void virt_machine_2_6_options(MachineClass
*mc
)
1736 VirtMachineClass
*vmc
= VIRT_MACHINE_CLASS(OBJECT_CLASS(mc
));
1738 virt_machine_2_7_options(mc
);
1739 SET_MACHINE_COMPAT(mc
, VIRT_COMPAT_2_6
);
1740 vmc
->disallow_affinity_adjustment
= true;
1741 /* Disable PMU for 2.6 as PMU support was first introduced in 2.7 */
1744 DEFINE_VIRT_MACHINE(2, 6)