user: Prefer fast cpu_env() over slower CPU QOM cast macro
[qemu/ar7.git] / linux-user / signal.c
blob1aebf3fc47ab6534ea8dd06383cc3cd962043e07
1 /*
2 * Emulation of Linux signals
4 * Copyright (c) 2003 Fabrice Bellard
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, see <http://www.gnu.org/licenses/>.
19 #include "qemu/osdep.h"
20 #include "qemu/bitops.h"
21 #include "gdbstub/user.h"
22 #include "hw/core/tcg-cpu-ops.h"
24 #include <sys/ucontext.h>
25 #include <sys/resource.h>
27 #include "qemu.h"
28 #include "user-internals.h"
29 #include "strace.h"
30 #include "loader.h"
31 #include "trace.h"
32 #include "signal-common.h"
33 #include "host-signal.h"
34 #include "user/safe-syscall.h"
35 #include "tcg/tcg.h"
37 static struct target_sigaction sigact_table[TARGET_NSIG];
39 static void host_signal_handler(int host_signum, siginfo_t *info,
40 void *puc);
42 /* Fallback addresses into sigtramp page. */
43 abi_ulong default_sigreturn;
44 abi_ulong default_rt_sigreturn;
47 * System includes define _NSIG as SIGRTMAX + 1, but qemu (like the kernel)
48 * defines TARGET_NSIG as TARGET_SIGRTMAX and the first signal is 1.
49 * Signal number 0 is reserved for use as kill(pid, 0), to test whether
50 * a process exists without sending it a signal.
52 #ifdef __SIGRTMAX
53 QEMU_BUILD_BUG_ON(__SIGRTMAX + 1 != _NSIG);
54 #endif
55 static uint8_t host_to_target_signal_table[_NSIG] = {
56 #define MAKE_SIG_ENTRY(sig) [sig] = TARGET_##sig,
57 MAKE_SIGNAL_LIST
58 #undef MAKE_SIG_ENTRY
61 static uint8_t target_to_host_signal_table[TARGET_NSIG + 1];
63 /* valid sig is between 1 and _NSIG - 1 */
64 int host_to_target_signal(int sig)
66 if (sig < 1) {
67 return sig;
69 if (sig >= _NSIG) {
70 return TARGET_NSIG + 1;
72 return host_to_target_signal_table[sig];
75 /* valid sig is between 1 and TARGET_NSIG */
76 int target_to_host_signal(int sig)
78 if (sig < 1) {
79 return sig;
81 if (sig > TARGET_NSIG) {
82 return _NSIG;
84 return target_to_host_signal_table[sig];
87 static inline void target_sigaddset(target_sigset_t *set, int signum)
89 signum--;
90 abi_ulong mask = (abi_ulong)1 << (signum % TARGET_NSIG_BPW);
91 set->sig[signum / TARGET_NSIG_BPW] |= mask;
94 static inline int target_sigismember(const target_sigset_t *set, int signum)
96 signum--;
97 abi_ulong mask = (abi_ulong)1 << (signum % TARGET_NSIG_BPW);
98 return ((set->sig[signum / TARGET_NSIG_BPW] & mask) != 0);
101 void host_to_target_sigset_internal(target_sigset_t *d,
102 const sigset_t *s)
104 int host_sig, target_sig;
105 target_sigemptyset(d);
106 for (host_sig = 1; host_sig < _NSIG; host_sig++) {
107 target_sig = host_to_target_signal(host_sig);
108 if (target_sig < 1 || target_sig > TARGET_NSIG) {
109 continue;
111 if (sigismember(s, host_sig)) {
112 target_sigaddset(d, target_sig);
117 void host_to_target_sigset(target_sigset_t *d, const sigset_t *s)
119 target_sigset_t d1;
120 int i;
122 host_to_target_sigset_internal(&d1, s);
123 for(i = 0;i < TARGET_NSIG_WORDS; i++)
124 d->sig[i] = tswapal(d1.sig[i]);
127 void target_to_host_sigset_internal(sigset_t *d,
128 const target_sigset_t *s)
130 int host_sig, target_sig;
131 sigemptyset(d);
132 for (target_sig = 1; target_sig <= TARGET_NSIG; target_sig++) {
133 host_sig = target_to_host_signal(target_sig);
134 if (host_sig < 1 || host_sig >= _NSIG) {
135 continue;
137 if (target_sigismember(s, target_sig)) {
138 sigaddset(d, host_sig);
143 void target_to_host_sigset(sigset_t *d, const target_sigset_t *s)
145 target_sigset_t s1;
146 int i;
148 for(i = 0;i < TARGET_NSIG_WORDS; i++)
149 s1.sig[i] = tswapal(s->sig[i]);
150 target_to_host_sigset_internal(d, &s1);
153 void host_to_target_old_sigset(abi_ulong *old_sigset,
154 const sigset_t *sigset)
156 target_sigset_t d;
157 host_to_target_sigset(&d, sigset);
158 *old_sigset = d.sig[0];
161 void target_to_host_old_sigset(sigset_t *sigset,
162 const abi_ulong *old_sigset)
164 target_sigset_t d;
165 int i;
167 d.sig[0] = *old_sigset;
168 for(i = 1;i < TARGET_NSIG_WORDS; i++)
169 d.sig[i] = 0;
170 target_to_host_sigset(sigset, &d);
173 int block_signals(void)
175 TaskState *ts = get_task_state(thread_cpu);
176 sigset_t set;
178 /* It's OK to block everything including SIGSEGV, because we won't
179 * run any further guest code before unblocking signals in
180 * process_pending_signals().
182 sigfillset(&set);
183 sigprocmask(SIG_SETMASK, &set, 0);
185 return qatomic_xchg(&ts->signal_pending, 1);
188 /* Wrapper for sigprocmask function
189 * Emulates a sigprocmask in a safe way for the guest. Note that set and oldset
190 * are host signal set, not guest ones. Returns -QEMU_ERESTARTSYS if
191 * a signal was already pending and the syscall must be restarted, or
192 * 0 on success.
193 * If set is NULL, this is guaranteed not to fail.
195 int do_sigprocmask(int how, const sigset_t *set, sigset_t *oldset)
197 TaskState *ts = get_task_state(thread_cpu);
199 if (oldset) {
200 *oldset = ts->signal_mask;
203 if (set) {
204 int i;
206 if (block_signals()) {
207 return -QEMU_ERESTARTSYS;
210 switch (how) {
211 case SIG_BLOCK:
212 sigorset(&ts->signal_mask, &ts->signal_mask, set);
213 break;
214 case SIG_UNBLOCK:
215 for (i = 1; i <= NSIG; ++i) {
216 if (sigismember(set, i)) {
217 sigdelset(&ts->signal_mask, i);
220 break;
221 case SIG_SETMASK:
222 ts->signal_mask = *set;
223 break;
224 default:
225 g_assert_not_reached();
228 /* Silently ignore attempts to change blocking status of KILL or STOP */
229 sigdelset(&ts->signal_mask, SIGKILL);
230 sigdelset(&ts->signal_mask, SIGSTOP);
232 return 0;
235 /* Just set the guest's signal mask to the specified value; the
236 * caller is assumed to have called block_signals() already.
238 void set_sigmask(const sigset_t *set)
240 TaskState *ts = get_task_state(thread_cpu);
242 ts->signal_mask = *set;
245 /* sigaltstack management */
247 int on_sig_stack(unsigned long sp)
249 TaskState *ts = get_task_state(thread_cpu);
251 return (sp - ts->sigaltstack_used.ss_sp
252 < ts->sigaltstack_used.ss_size);
255 int sas_ss_flags(unsigned long sp)
257 TaskState *ts = get_task_state(thread_cpu);
259 return (ts->sigaltstack_used.ss_size == 0 ? SS_DISABLE
260 : on_sig_stack(sp) ? SS_ONSTACK : 0);
263 abi_ulong target_sigsp(abi_ulong sp, struct target_sigaction *ka)
266 * This is the X/Open sanctioned signal stack switching.
268 TaskState *ts = get_task_state(thread_cpu);
270 if ((ka->sa_flags & TARGET_SA_ONSTACK) && !sas_ss_flags(sp)) {
271 return ts->sigaltstack_used.ss_sp + ts->sigaltstack_used.ss_size;
273 return sp;
276 void target_save_altstack(target_stack_t *uss, CPUArchState *env)
278 TaskState *ts = get_task_state(thread_cpu);
280 __put_user(ts->sigaltstack_used.ss_sp, &uss->ss_sp);
281 __put_user(sas_ss_flags(get_sp_from_cpustate(env)), &uss->ss_flags);
282 __put_user(ts->sigaltstack_used.ss_size, &uss->ss_size);
285 abi_long target_restore_altstack(target_stack_t *uss, CPUArchState *env)
287 TaskState *ts = get_task_state(thread_cpu);
288 size_t minstacksize = TARGET_MINSIGSTKSZ;
289 target_stack_t ss;
291 #if defined(TARGET_PPC64)
292 /* ELF V2 for PPC64 has a 4K minimum stack size for signal handlers */
293 struct image_info *image = ts->info;
294 if (get_ppc64_abi(image) > 1) {
295 minstacksize = 4096;
297 #endif
299 __get_user(ss.ss_sp, &uss->ss_sp);
300 __get_user(ss.ss_size, &uss->ss_size);
301 __get_user(ss.ss_flags, &uss->ss_flags);
303 if (on_sig_stack(get_sp_from_cpustate(env))) {
304 return -TARGET_EPERM;
307 switch (ss.ss_flags) {
308 default:
309 return -TARGET_EINVAL;
311 case TARGET_SS_DISABLE:
312 ss.ss_size = 0;
313 ss.ss_sp = 0;
314 break;
316 case TARGET_SS_ONSTACK:
317 case 0:
318 if (ss.ss_size < minstacksize) {
319 return -TARGET_ENOMEM;
321 break;
324 ts->sigaltstack_used.ss_sp = ss.ss_sp;
325 ts->sigaltstack_used.ss_size = ss.ss_size;
326 return 0;
329 /* siginfo conversion */
331 static inline void host_to_target_siginfo_noswap(target_siginfo_t *tinfo,
332 const siginfo_t *info)
334 int sig = host_to_target_signal(info->si_signo);
335 int si_code = info->si_code;
336 int si_type;
337 tinfo->si_signo = sig;
338 tinfo->si_errno = 0;
339 tinfo->si_code = info->si_code;
341 /* This memset serves two purposes:
342 * (1) ensure we don't leak random junk to the guest later
343 * (2) placate false positives from gcc about fields
344 * being used uninitialized if it chooses to inline both this
345 * function and tswap_siginfo() into host_to_target_siginfo().
347 memset(tinfo->_sifields._pad, 0, sizeof(tinfo->_sifields._pad));
349 /* This is awkward, because we have to use a combination of
350 * the si_code and si_signo to figure out which of the union's
351 * members are valid. (Within the host kernel it is always possible
352 * to tell, but the kernel carefully avoids giving userspace the
353 * high 16 bits of si_code, so we don't have the information to
354 * do this the easy way...) We therefore make our best guess,
355 * bearing in mind that a guest can spoof most of the si_codes
356 * via rt_sigqueueinfo() if it likes.
358 * Once we have made our guess, we record it in the top 16 bits of
359 * the si_code, so that tswap_siginfo() later can use it.
360 * tswap_siginfo() will strip these top bits out before writing
361 * si_code to the guest (sign-extending the lower bits).
364 switch (si_code) {
365 case SI_USER:
366 case SI_TKILL:
367 case SI_KERNEL:
368 /* Sent via kill(), tkill() or tgkill(), or direct from the kernel.
369 * These are the only unspoofable si_code values.
371 tinfo->_sifields._kill._pid = info->si_pid;
372 tinfo->_sifields._kill._uid = info->si_uid;
373 si_type = QEMU_SI_KILL;
374 break;
375 default:
376 /* Everything else is spoofable. Make best guess based on signal */
377 switch (sig) {
378 case TARGET_SIGCHLD:
379 tinfo->_sifields._sigchld._pid = info->si_pid;
380 tinfo->_sifields._sigchld._uid = info->si_uid;
381 if (si_code == CLD_EXITED)
382 tinfo->_sifields._sigchld._status = info->si_status;
383 else
384 tinfo->_sifields._sigchld._status
385 = host_to_target_signal(info->si_status & 0x7f)
386 | (info->si_status & ~0x7f);
387 tinfo->_sifields._sigchld._utime = info->si_utime;
388 tinfo->_sifields._sigchld._stime = info->si_stime;
389 si_type = QEMU_SI_CHLD;
390 break;
391 case TARGET_SIGIO:
392 tinfo->_sifields._sigpoll._band = info->si_band;
393 tinfo->_sifields._sigpoll._fd = info->si_fd;
394 si_type = QEMU_SI_POLL;
395 break;
396 default:
397 /* Assume a sigqueue()/mq_notify()/rt_sigqueueinfo() source. */
398 tinfo->_sifields._rt._pid = info->si_pid;
399 tinfo->_sifields._rt._uid = info->si_uid;
400 /* XXX: potential problem if 64 bit */
401 tinfo->_sifields._rt._sigval.sival_ptr
402 = (abi_ulong)(unsigned long)info->si_value.sival_ptr;
403 si_type = QEMU_SI_RT;
404 break;
406 break;
409 tinfo->si_code = deposit32(si_code, 16, 16, si_type);
412 void tswap_siginfo(target_siginfo_t *tinfo,
413 const target_siginfo_t *info)
415 int si_type = extract32(info->si_code, 16, 16);
416 int si_code = sextract32(info->si_code, 0, 16);
418 __put_user(info->si_signo, &tinfo->si_signo);
419 __put_user(info->si_errno, &tinfo->si_errno);
420 __put_user(si_code, &tinfo->si_code);
422 /* We can use our internal marker of which fields in the structure
423 * are valid, rather than duplicating the guesswork of
424 * host_to_target_siginfo_noswap() here.
426 switch (si_type) {
427 case QEMU_SI_KILL:
428 __put_user(info->_sifields._kill._pid, &tinfo->_sifields._kill._pid);
429 __put_user(info->_sifields._kill._uid, &tinfo->_sifields._kill._uid);
430 break;
431 case QEMU_SI_TIMER:
432 __put_user(info->_sifields._timer._timer1,
433 &tinfo->_sifields._timer._timer1);
434 __put_user(info->_sifields._timer._timer2,
435 &tinfo->_sifields._timer._timer2);
436 break;
437 case QEMU_SI_POLL:
438 __put_user(info->_sifields._sigpoll._band,
439 &tinfo->_sifields._sigpoll._band);
440 __put_user(info->_sifields._sigpoll._fd,
441 &tinfo->_sifields._sigpoll._fd);
442 break;
443 case QEMU_SI_FAULT:
444 __put_user(info->_sifields._sigfault._addr,
445 &tinfo->_sifields._sigfault._addr);
446 break;
447 case QEMU_SI_CHLD:
448 __put_user(info->_sifields._sigchld._pid,
449 &tinfo->_sifields._sigchld._pid);
450 __put_user(info->_sifields._sigchld._uid,
451 &tinfo->_sifields._sigchld._uid);
452 __put_user(info->_sifields._sigchld._status,
453 &tinfo->_sifields._sigchld._status);
454 __put_user(info->_sifields._sigchld._utime,
455 &tinfo->_sifields._sigchld._utime);
456 __put_user(info->_sifields._sigchld._stime,
457 &tinfo->_sifields._sigchld._stime);
458 break;
459 case QEMU_SI_RT:
460 __put_user(info->_sifields._rt._pid, &tinfo->_sifields._rt._pid);
461 __put_user(info->_sifields._rt._uid, &tinfo->_sifields._rt._uid);
462 __put_user(info->_sifields._rt._sigval.sival_ptr,
463 &tinfo->_sifields._rt._sigval.sival_ptr);
464 break;
465 default:
466 g_assert_not_reached();
470 void host_to_target_siginfo(target_siginfo_t *tinfo, const siginfo_t *info)
472 target_siginfo_t tgt_tmp;
473 host_to_target_siginfo_noswap(&tgt_tmp, info);
474 tswap_siginfo(tinfo, &tgt_tmp);
477 /* XXX: we support only POSIX RT signals are used. */
478 /* XXX: find a solution for 64 bit (additional malloced data is needed) */
479 void target_to_host_siginfo(siginfo_t *info, const target_siginfo_t *tinfo)
481 /* This conversion is used only for the rt_sigqueueinfo syscall,
482 * and so we know that the _rt fields are the valid ones.
484 abi_ulong sival_ptr;
486 __get_user(info->si_signo, &tinfo->si_signo);
487 __get_user(info->si_errno, &tinfo->si_errno);
488 __get_user(info->si_code, &tinfo->si_code);
489 __get_user(info->si_pid, &tinfo->_sifields._rt._pid);
490 __get_user(info->si_uid, &tinfo->_sifields._rt._uid);
491 __get_user(sival_ptr, &tinfo->_sifields._rt._sigval.sival_ptr);
492 info->si_value.sival_ptr = (void *)(long)sival_ptr;
495 /* returns 1 if given signal should dump core if not handled */
496 static int core_dump_signal(int sig)
498 switch (sig) {
499 case TARGET_SIGABRT:
500 case TARGET_SIGFPE:
501 case TARGET_SIGILL:
502 case TARGET_SIGQUIT:
503 case TARGET_SIGSEGV:
504 case TARGET_SIGTRAP:
505 case TARGET_SIGBUS:
506 return (1);
507 default:
508 return (0);
512 static void signal_table_init(void)
514 int hsig, tsig, count;
517 * Signals are supported starting from TARGET_SIGRTMIN and going up
518 * until we run out of host realtime signals. Glibc uses the lower 2
519 * RT signals and (hopefully) nobody uses the upper ones.
520 * This is why SIGRTMIN (34) is generally greater than __SIGRTMIN (32).
521 * To fix this properly we would need to do manual signal delivery
522 * multiplexed over a single host signal.
523 * Attempts for configure "missing" signals via sigaction will be
524 * silently ignored.
526 * Remap the target SIGABRT, so that we can distinguish host abort
527 * from guest abort. When the guest registers a signal handler or
528 * calls raise(SIGABRT), the host will raise SIG_RTn. If the guest
529 * arrives at dump_core_and_abort(), we will map back to host SIGABRT
530 * so that the parent (native or emulated) sees the correct signal.
531 * Finally, also map host to guest SIGABRT so that the emulated
532 * parent sees the correct mapping from wait status.
535 hsig = SIGRTMIN;
536 host_to_target_signal_table[SIGABRT] = 0;
537 host_to_target_signal_table[hsig++] = TARGET_SIGABRT;
539 for (tsig = TARGET_SIGRTMIN;
540 hsig <= SIGRTMAX && tsig <= TARGET_NSIG;
541 hsig++, tsig++) {
542 host_to_target_signal_table[hsig] = tsig;
545 /* Invert the mapping that has already been assigned. */
546 for (hsig = 1; hsig < _NSIG; hsig++) {
547 tsig = host_to_target_signal_table[hsig];
548 if (tsig) {
549 assert(target_to_host_signal_table[tsig] == 0);
550 target_to_host_signal_table[tsig] = hsig;
554 host_to_target_signal_table[SIGABRT] = TARGET_SIGABRT;
556 /* Map everything else out-of-bounds. */
557 for (hsig = 1; hsig < _NSIG; hsig++) {
558 if (host_to_target_signal_table[hsig] == 0) {
559 host_to_target_signal_table[hsig] = TARGET_NSIG + 1;
562 for (count = 0, tsig = 1; tsig <= TARGET_NSIG; tsig++) {
563 if (target_to_host_signal_table[tsig] == 0) {
564 target_to_host_signal_table[tsig] = _NSIG;
565 count++;
569 trace_signal_table_init(count);
572 void signal_init(void)
574 TaskState *ts = get_task_state(thread_cpu);
575 struct sigaction act, oact;
577 /* initialize signal conversion tables */
578 signal_table_init();
580 /* Set the signal mask from the host mask. */
581 sigprocmask(0, 0, &ts->signal_mask);
583 sigfillset(&act.sa_mask);
584 act.sa_flags = SA_SIGINFO;
585 act.sa_sigaction = host_signal_handler;
588 * A parent process may configure ignored signals, but all other
589 * signals are default. For any target signals that have no host
590 * mapping, set to ignore. For all core_dump_signal, install our
591 * host signal handler so that we may invoke dump_core_and_abort.
592 * This includes SIGSEGV and SIGBUS, which are also need our signal
593 * handler for paging and exceptions.
595 for (int tsig = 1; tsig <= TARGET_NSIG; tsig++) {
596 int hsig = target_to_host_signal(tsig);
597 abi_ptr thand = TARGET_SIG_IGN;
599 if (hsig >= _NSIG) {
600 continue;
603 /* As we force remap SIGABRT, cannot probe and install in one step. */
604 if (tsig == TARGET_SIGABRT) {
605 sigaction(SIGABRT, NULL, &oact);
606 sigaction(hsig, &act, NULL);
607 } else {
608 struct sigaction *iact = core_dump_signal(tsig) ? &act : NULL;
609 sigaction(hsig, iact, &oact);
612 if (oact.sa_sigaction != (void *)SIG_IGN) {
613 thand = TARGET_SIG_DFL;
615 sigact_table[tsig - 1]._sa_handler = thand;
619 /* Force a synchronously taken signal. The kernel force_sig() function
620 * also forces the signal to "not blocked, not ignored", but for QEMU
621 * that work is done in process_pending_signals().
623 void force_sig(int sig)
625 CPUState *cpu = thread_cpu;
626 target_siginfo_t info = {};
628 info.si_signo = sig;
629 info.si_errno = 0;
630 info.si_code = TARGET_SI_KERNEL;
631 info._sifields._kill._pid = 0;
632 info._sifields._kill._uid = 0;
633 queue_signal(cpu_env(cpu), info.si_signo, QEMU_SI_KILL, &info);
637 * Force a synchronously taken QEMU_SI_FAULT signal. For QEMU the
638 * 'force' part is handled in process_pending_signals().
640 void force_sig_fault(int sig, int code, abi_ulong addr)
642 CPUState *cpu = thread_cpu;
643 target_siginfo_t info = {};
645 info.si_signo = sig;
646 info.si_errno = 0;
647 info.si_code = code;
648 info._sifields._sigfault._addr = addr;
649 queue_signal(cpu_env(cpu), sig, QEMU_SI_FAULT, &info);
652 /* Force a SIGSEGV if we couldn't write to memory trying to set
653 * up the signal frame. oldsig is the signal we were trying to handle
654 * at the point of failure.
656 #if !defined(TARGET_RISCV)
657 void force_sigsegv(int oldsig)
659 if (oldsig == SIGSEGV) {
660 /* Make sure we don't try to deliver the signal again; this will
661 * end up with handle_pending_signal() calling dump_core_and_abort().
663 sigact_table[oldsig - 1]._sa_handler = TARGET_SIG_DFL;
665 force_sig(TARGET_SIGSEGV);
667 #endif
669 void cpu_loop_exit_sigsegv(CPUState *cpu, target_ulong addr,
670 MMUAccessType access_type, bool maperr, uintptr_t ra)
672 const TCGCPUOps *tcg_ops = CPU_GET_CLASS(cpu)->tcg_ops;
674 if (tcg_ops->record_sigsegv) {
675 tcg_ops->record_sigsegv(cpu, addr, access_type, maperr, ra);
678 force_sig_fault(TARGET_SIGSEGV,
679 maperr ? TARGET_SEGV_MAPERR : TARGET_SEGV_ACCERR,
680 addr);
681 cpu->exception_index = EXCP_INTERRUPT;
682 cpu_loop_exit_restore(cpu, ra);
685 void cpu_loop_exit_sigbus(CPUState *cpu, target_ulong addr,
686 MMUAccessType access_type, uintptr_t ra)
688 const TCGCPUOps *tcg_ops = CPU_GET_CLASS(cpu)->tcg_ops;
690 if (tcg_ops->record_sigbus) {
691 tcg_ops->record_sigbus(cpu, addr, access_type, ra);
694 force_sig_fault(TARGET_SIGBUS, TARGET_BUS_ADRALN, addr);
695 cpu->exception_index = EXCP_INTERRUPT;
696 cpu_loop_exit_restore(cpu, ra);
699 /* abort execution with signal */
700 static G_NORETURN
701 void die_with_signal(int host_sig)
703 struct sigaction act = {
704 .sa_handler = SIG_DFL,
708 * The proper exit code for dying from an uncaught signal is -<signal>.
709 * The kernel doesn't allow exit() or _exit() to pass a negative value.
710 * To get the proper exit code we need to actually die from an uncaught
711 * signal. Here the default signal handler is installed, we send
712 * the signal and we wait for it to arrive.
714 sigfillset(&act.sa_mask);
715 sigaction(host_sig, &act, NULL);
717 kill(getpid(), host_sig);
719 /* Make sure the signal isn't masked (reusing the mask inside of act). */
720 sigdelset(&act.sa_mask, host_sig);
721 sigsuspend(&act.sa_mask);
723 /* unreachable */
724 _exit(EXIT_FAILURE);
727 static G_NORETURN
728 void dump_core_and_abort(CPUArchState *env, int target_sig)
730 CPUState *cpu = env_cpu(env);
731 TaskState *ts = get_task_state(cpu);
732 int host_sig, core_dumped = 0;
734 /* On exit, undo the remapping of SIGABRT. */
735 if (target_sig == TARGET_SIGABRT) {
736 host_sig = SIGABRT;
737 } else {
738 host_sig = target_to_host_signal(target_sig);
740 trace_user_dump_core_and_abort(env, target_sig, host_sig);
741 gdb_signalled(env, target_sig);
743 /* dump core if supported by target binary format */
744 if (core_dump_signal(target_sig) && (ts->bprm->core_dump != NULL)) {
745 stop_all_tasks();
746 core_dumped =
747 ((*ts->bprm->core_dump)(target_sig, env) == 0);
749 if (core_dumped) {
750 /* we already dumped the core of target process, we don't want
751 * a coredump of qemu itself */
752 struct rlimit nodump;
753 getrlimit(RLIMIT_CORE, &nodump);
754 nodump.rlim_cur=0;
755 setrlimit(RLIMIT_CORE, &nodump);
756 (void) fprintf(stderr, "qemu: uncaught target signal %d (%s) - %s\n",
757 target_sig, strsignal(host_sig), "core dumped" );
760 preexit_cleanup(env, 128 + target_sig);
761 die_with_signal(host_sig);
764 /* queue a signal so that it will be send to the virtual CPU as soon
765 as possible */
766 void queue_signal(CPUArchState *env, int sig, int si_type,
767 target_siginfo_t *info)
769 CPUState *cpu = env_cpu(env);
770 TaskState *ts = get_task_state(cpu);
772 trace_user_queue_signal(env, sig);
774 info->si_code = deposit32(info->si_code, 16, 16, si_type);
776 ts->sync_signal.info = *info;
777 ts->sync_signal.pending = sig;
778 /* signal that a new signal is pending */
779 qatomic_set(&ts->signal_pending, 1);
783 /* Adjust the signal context to rewind out of safe-syscall if we're in it */
784 static inline void rewind_if_in_safe_syscall(void *puc)
786 host_sigcontext *uc = (host_sigcontext *)puc;
787 uintptr_t pcreg = host_signal_pc(uc);
789 if (pcreg > (uintptr_t)safe_syscall_start
790 && pcreg < (uintptr_t)safe_syscall_end) {
791 host_signal_set_pc(uc, (uintptr_t)safe_syscall_start);
795 static G_NORETURN
796 void die_from_signal(siginfo_t *info)
798 char sigbuf[4], codebuf[12];
799 const char *sig, *code = NULL;
801 switch (info->si_signo) {
802 case SIGSEGV:
803 sig = "SEGV";
804 switch (info->si_code) {
805 case SEGV_MAPERR:
806 code = "MAPERR";
807 break;
808 case SEGV_ACCERR:
809 code = "ACCERR";
810 break;
812 break;
813 case SIGBUS:
814 sig = "BUS";
815 switch (info->si_code) {
816 case BUS_ADRALN:
817 code = "ADRALN";
818 break;
819 case BUS_ADRERR:
820 code = "ADRERR";
821 break;
823 break;
824 case SIGILL:
825 sig = "ILL";
826 switch (info->si_code) {
827 case ILL_ILLOPC:
828 code = "ILLOPC";
829 break;
830 case ILL_ILLOPN:
831 code = "ILLOPN";
832 break;
833 case ILL_ILLADR:
834 code = "ILLADR";
835 break;
836 case ILL_PRVOPC:
837 code = "PRVOPC";
838 break;
839 case ILL_PRVREG:
840 code = "PRVREG";
841 break;
842 case ILL_COPROC:
843 code = "COPROC";
844 break;
846 break;
847 case SIGFPE:
848 sig = "FPE";
849 switch (info->si_code) {
850 case FPE_INTDIV:
851 code = "INTDIV";
852 break;
853 case FPE_INTOVF:
854 code = "INTOVF";
855 break;
857 break;
858 case SIGTRAP:
859 sig = "TRAP";
860 break;
861 default:
862 snprintf(sigbuf, sizeof(sigbuf), "%d", info->si_signo);
863 sig = sigbuf;
864 break;
866 if (code == NULL) {
867 snprintf(codebuf, sizeof(sigbuf), "%d", info->si_code);
868 code = codebuf;
871 error_report("QEMU internal SIG%s {code=%s, addr=%p}",
872 sig, code, info->si_addr);
873 die_with_signal(info->si_signo);
876 static void host_sigsegv_handler(CPUState *cpu, siginfo_t *info,
877 host_sigcontext *uc)
879 uintptr_t host_addr = (uintptr_t)info->si_addr;
881 * Convert forcefully to guest address space: addresses outside
882 * reserved_va are still valid to report via SEGV_MAPERR.
884 bool is_valid = h2g_valid(host_addr);
885 abi_ptr guest_addr = h2g_nocheck(host_addr);
886 uintptr_t pc = host_signal_pc(uc);
887 bool is_write = host_signal_write(info, uc);
888 MMUAccessType access_type = adjust_signal_pc(&pc, is_write);
889 bool maperr;
891 /* If this was a write to a TB protected page, restart. */
892 if (is_write
893 && is_valid
894 && info->si_code == SEGV_ACCERR
895 && handle_sigsegv_accerr_write(cpu, host_signal_mask(uc),
896 pc, guest_addr)) {
897 return;
901 * If the access was not on behalf of the guest, within the executable
902 * mapping of the generated code buffer, then it is a host bug.
904 if (access_type != MMU_INST_FETCH
905 && !in_code_gen_buffer((void *)(pc - tcg_splitwx_diff))) {
906 die_from_signal(info);
909 maperr = true;
910 if (is_valid && info->si_code == SEGV_ACCERR) {
912 * With reserved_va, the whole address space is PROT_NONE,
913 * which means that we may get ACCERR when we want MAPERR.
915 if (page_get_flags(guest_addr) & PAGE_VALID) {
916 maperr = false;
917 } else {
918 info->si_code = SEGV_MAPERR;
922 sigprocmask(SIG_SETMASK, host_signal_mask(uc), NULL);
923 cpu_loop_exit_sigsegv(cpu, guest_addr, access_type, maperr, pc);
926 static uintptr_t host_sigbus_handler(CPUState *cpu, siginfo_t *info,
927 host_sigcontext *uc)
929 uintptr_t pc = host_signal_pc(uc);
930 bool is_write = host_signal_write(info, uc);
931 MMUAccessType access_type = adjust_signal_pc(&pc, is_write);
934 * If the access was not on behalf of the guest, within the executable
935 * mapping of the generated code buffer, then it is a host bug.
937 if (!in_code_gen_buffer((void *)(pc - tcg_splitwx_diff))) {
938 die_from_signal(info);
941 if (info->si_code == BUS_ADRALN) {
942 uintptr_t host_addr = (uintptr_t)info->si_addr;
943 abi_ptr guest_addr = h2g_nocheck(host_addr);
945 sigprocmask(SIG_SETMASK, host_signal_mask(uc), NULL);
946 cpu_loop_exit_sigbus(cpu, guest_addr, access_type, pc);
948 return pc;
951 static void host_signal_handler(int host_sig, siginfo_t *info, void *puc)
953 CPUState *cpu = thread_cpu;
954 CPUArchState *env = cpu_env(cpu);
955 TaskState *ts = get_task_state(cpu);
956 target_siginfo_t tinfo;
957 host_sigcontext *uc = puc;
958 struct emulated_sigtable *k;
959 int guest_sig;
960 uintptr_t pc = 0;
961 bool sync_sig = false;
962 void *sigmask;
965 * Non-spoofed SIGSEGV and SIGBUS are synchronous, and need special
966 * handling wrt signal blocking and unwinding. Non-spoofed SIGILL,
967 * SIGFPE, SIGTRAP are always host bugs.
969 if (info->si_code > 0) {
970 switch (host_sig) {
971 case SIGSEGV:
972 /* Only returns on handle_sigsegv_accerr_write success. */
973 host_sigsegv_handler(cpu, info, uc);
974 return;
975 case SIGBUS:
976 pc = host_sigbus_handler(cpu, info, uc);
977 sync_sig = true;
978 break;
979 case SIGILL:
980 case SIGFPE:
981 case SIGTRAP:
982 die_from_signal(info);
986 /* get target signal number */
987 guest_sig = host_to_target_signal(host_sig);
988 if (guest_sig < 1 || guest_sig > TARGET_NSIG) {
989 return;
991 trace_user_host_signal(env, host_sig, guest_sig);
993 host_to_target_siginfo_noswap(&tinfo, info);
994 k = &ts->sigtab[guest_sig - 1];
995 k->info = tinfo;
996 k->pending = guest_sig;
997 ts->signal_pending = 1;
1000 * For synchronous signals, unwind the cpu state to the faulting
1001 * insn and then exit back to the main loop so that the signal
1002 * is delivered immediately.
1004 if (sync_sig) {
1005 cpu->exception_index = EXCP_INTERRUPT;
1006 cpu_loop_exit_restore(cpu, pc);
1009 rewind_if_in_safe_syscall(puc);
1012 * Block host signals until target signal handler entered. We
1013 * can't block SIGSEGV or SIGBUS while we're executing guest
1014 * code in case the guest code provokes one in the window between
1015 * now and it getting out to the main loop. Signals will be
1016 * unblocked again in process_pending_signals().
1018 * WARNING: we cannot use sigfillset() here because the sigmask
1019 * field is a kernel sigset_t, which is much smaller than the
1020 * libc sigset_t which sigfillset() operates on. Using sigfillset()
1021 * would write 0xff bytes off the end of the structure and trash
1022 * data on the struct.
1024 sigmask = host_signal_mask(uc);
1025 memset(sigmask, 0xff, SIGSET_T_SIZE);
1026 sigdelset(sigmask, SIGSEGV);
1027 sigdelset(sigmask, SIGBUS);
1029 /* interrupt the virtual CPU as soon as possible */
1030 cpu_exit(thread_cpu);
1033 /* do_sigaltstack() returns target values and errnos. */
1034 /* compare linux/kernel/signal.c:do_sigaltstack() */
1035 abi_long do_sigaltstack(abi_ulong uss_addr, abi_ulong uoss_addr,
1036 CPUArchState *env)
1038 target_stack_t oss, *uoss = NULL;
1039 abi_long ret = -TARGET_EFAULT;
1041 if (uoss_addr) {
1042 /* Verify writability now, but do not alter user memory yet. */
1043 if (!lock_user_struct(VERIFY_WRITE, uoss, uoss_addr, 0)) {
1044 goto out;
1046 target_save_altstack(&oss, env);
1049 if (uss_addr) {
1050 target_stack_t *uss;
1052 if (!lock_user_struct(VERIFY_READ, uss, uss_addr, 1)) {
1053 goto out;
1055 ret = target_restore_altstack(uss, env);
1056 if (ret) {
1057 goto out;
1061 if (uoss_addr) {
1062 memcpy(uoss, &oss, sizeof(oss));
1063 unlock_user_struct(uoss, uoss_addr, 1);
1064 uoss = NULL;
1066 ret = 0;
1068 out:
1069 if (uoss) {
1070 unlock_user_struct(uoss, uoss_addr, 0);
1072 return ret;
1075 /* do_sigaction() return target values and host errnos */
1076 int do_sigaction(int sig, const struct target_sigaction *act,
1077 struct target_sigaction *oact, abi_ulong ka_restorer)
1079 struct target_sigaction *k;
1080 int host_sig;
1081 int ret = 0;
1083 trace_signal_do_sigaction_guest(sig, TARGET_NSIG);
1085 if (sig < 1 || sig > TARGET_NSIG) {
1086 return -TARGET_EINVAL;
1089 if (act && (sig == TARGET_SIGKILL || sig == TARGET_SIGSTOP)) {
1090 return -TARGET_EINVAL;
1093 if (block_signals()) {
1094 return -QEMU_ERESTARTSYS;
1097 k = &sigact_table[sig - 1];
1098 if (oact) {
1099 __put_user(k->_sa_handler, &oact->_sa_handler);
1100 __put_user(k->sa_flags, &oact->sa_flags);
1101 #ifdef TARGET_ARCH_HAS_SA_RESTORER
1102 __put_user(k->sa_restorer, &oact->sa_restorer);
1103 #endif
1104 /* Not swapped. */
1105 oact->sa_mask = k->sa_mask;
1107 if (act) {
1108 __get_user(k->_sa_handler, &act->_sa_handler);
1109 __get_user(k->sa_flags, &act->sa_flags);
1110 #ifdef TARGET_ARCH_HAS_SA_RESTORER
1111 __get_user(k->sa_restorer, &act->sa_restorer);
1112 #endif
1113 #ifdef TARGET_ARCH_HAS_KA_RESTORER
1114 k->ka_restorer = ka_restorer;
1115 #endif
1116 /* To be swapped in target_to_host_sigset. */
1117 k->sa_mask = act->sa_mask;
1119 /* we update the host linux signal state */
1120 host_sig = target_to_host_signal(sig);
1121 trace_signal_do_sigaction_host(host_sig, TARGET_NSIG);
1122 if (host_sig > SIGRTMAX) {
1123 /* we don't have enough host signals to map all target signals */
1124 qemu_log_mask(LOG_UNIMP, "Unsupported target signal #%d, ignored\n",
1125 sig);
1127 * we don't return an error here because some programs try to
1128 * register an handler for all possible rt signals even if they
1129 * don't need it.
1130 * An error here can abort them whereas there can be no problem
1131 * to not have the signal available later.
1132 * This is the case for golang,
1133 * See https://github.com/golang/go/issues/33746
1134 * So we silently ignore the error.
1136 return 0;
1138 if (host_sig != SIGSEGV && host_sig != SIGBUS) {
1139 struct sigaction act1;
1141 sigfillset(&act1.sa_mask);
1142 act1.sa_flags = SA_SIGINFO;
1143 if (k->_sa_handler == TARGET_SIG_IGN) {
1145 * It is important to update the host kernel signal ignore
1146 * state to avoid getting unexpected interrupted syscalls.
1148 act1.sa_sigaction = (void *)SIG_IGN;
1149 } else if (k->_sa_handler == TARGET_SIG_DFL) {
1150 if (core_dump_signal(sig)) {
1151 act1.sa_sigaction = host_signal_handler;
1152 } else {
1153 act1.sa_sigaction = (void *)SIG_DFL;
1155 } else {
1156 act1.sa_sigaction = host_signal_handler;
1157 if (k->sa_flags & TARGET_SA_RESTART) {
1158 act1.sa_flags |= SA_RESTART;
1161 ret = sigaction(host_sig, &act1, NULL);
1164 return ret;
1167 static void handle_pending_signal(CPUArchState *cpu_env, int sig,
1168 struct emulated_sigtable *k)
1170 CPUState *cpu = env_cpu(cpu_env);
1171 abi_ulong handler;
1172 sigset_t set;
1173 target_sigset_t target_old_set;
1174 struct target_sigaction *sa;
1175 TaskState *ts = get_task_state(cpu);
1177 trace_user_handle_signal(cpu_env, sig);
1178 /* dequeue signal */
1179 k->pending = 0;
1181 sig = gdb_handlesig(cpu, sig);
1182 if (!sig) {
1183 sa = NULL;
1184 handler = TARGET_SIG_IGN;
1185 } else {
1186 sa = &sigact_table[sig - 1];
1187 handler = sa->_sa_handler;
1190 if (unlikely(qemu_loglevel_mask(LOG_STRACE))) {
1191 print_taken_signal(sig, &k->info);
1194 if (handler == TARGET_SIG_DFL) {
1195 /* default handler : ignore some signal. The other are job control or fatal */
1196 if (sig == TARGET_SIGTSTP || sig == TARGET_SIGTTIN || sig == TARGET_SIGTTOU) {
1197 kill(getpid(),SIGSTOP);
1198 } else if (sig != TARGET_SIGCHLD &&
1199 sig != TARGET_SIGURG &&
1200 sig != TARGET_SIGWINCH &&
1201 sig != TARGET_SIGCONT) {
1202 dump_core_and_abort(cpu_env, sig);
1204 } else if (handler == TARGET_SIG_IGN) {
1205 /* ignore sig */
1206 } else if (handler == TARGET_SIG_ERR) {
1207 dump_core_and_abort(cpu_env, sig);
1208 } else {
1209 /* compute the blocked signals during the handler execution */
1210 sigset_t *blocked_set;
1212 target_to_host_sigset(&set, &sa->sa_mask);
1213 /* SA_NODEFER indicates that the current signal should not be
1214 blocked during the handler */
1215 if (!(sa->sa_flags & TARGET_SA_NODEFER))
1216 sigaddset(&set, target_to_host_signal(sig));
1218 /* save the previous blocked signal state to restore it at the
1219 end of the signal execution (see do_sigreturn) */
1220 host_to_target_sigset_internal(&target_old_set, &ts->signal_mask);
1222 /* block signals in the handler */
1223 blocked_set = ts->in_sigsuspend ?
1224 &ts->sigsuspend_mask : &ts->signal_mask;
1225 sigorset(&ts->signal_mask, blocked_set, &set);
1226 ts->in_sigsuspend = 0;
1228 /* if the CPU is in VM86 mode, we restore the 32 bit values */
1229 #if defined(TARGET_I386) && !defined(TARGET_X86_64)
1231 CPUX86State *env = cpu_env;
1232 if (env->eflags & VM_MASK)
1233 save_v86_state(env);
1235 #endif
1236 /* prepare the stack frame of the virtual CPU */
1237 #if defined(TARGET_ARCH_HAS_SETUP_FRAME)
1238 if (sa->sa_flags & TARGET_SA_SIGINFO) {
1239 setup_rt_frame(sig, sa, &k->info, &target_old_set, cpu_env);
1240 } else {
1241 setup_frame(sig, sa, &target_old_set, cpu_env);
1243 #else
1244 /* These targets do not have traditional signals. */
1245 setup_rt_frame(sig, sa, &k->info, &target_old_set, cpu_env);
1246 #endif
1247 if (sa->sa_flags & TARGET_SA_RESETHAND) {
1248 sa->_sa_handler = TARGET_SIG_DFL;
1253 void process_pending_signals(CPUArchState *cpu_env)
1255 CPUState *cpu = env_cpu(cpu_env);
1256 int sig;
1257 TaskState *ts = get_task_state(cpu);
1258 sigset_t set;
1259 sigset_t *blocked_set;
1261 while (qatomic_read(&ts->signal_pending)) {
1262 sigfillset(&set);
1263 sigprocmask(SIG_SETMASK, &set, 0);
1265 restart_scan:
1266 sig = ts->sync_signal.pending;
1267 if (sig) {
1268 /* Synchronous signals are forced,
1269 * see force_sig_info() and callers in Linux
1270 * Note that not all of our queue_signal() calls in QEMU correspond
1271 * to force_sig_info() calls in Linux (some are send_sig_info()).
1272 * However it seems like a kernel bug to me to allow the process
1273 * to block a synchronous signal since it could then just end up
1274 * looping round and round indefinitely.
1276 if (sigismember(&ts->signal_mask, target_to_host_signal_table[sig])
1277 || sigact_table[sig - 1]._sa_handler == TARGET_SIG_IGN) {
1278 sigdelset(&ts->signal_mask, target_to_host_signal_table[sig]);
1279 sigact_table[sig - 1]._sa_handler = TARGET_SIG_DFL;
1282 handle_pending_signal(cpu_env, sig, &ts->sync_signal);
1285 for (sig = 1; sig <= TARGET_NSIG; sig++) {
1286 blocked_set = ts->in_sigsuspend ?
1287 &ts->sigsuspend_mask : &ts->signal_mask;
1289 if (ts->sigtab[sig - 1].pending &&
1290 (!sigismember(blocked_set,
1291 target_to_host_signal_table[sig]))) {
1292 handle_pending_signal(cpu_env, sig, &ts->sigtab[sig - 1]);
1293 /* Restart scan from the beginning, as handle_pending_signal
1294 * might have resulted in a new synchronous signal (eg SIGSEGV).
1296 goto restart_scan;
1300 /* if no signal is pending, unblock signals and recheck (the act
1301 * of unblocking might cause us to take another host signal which
1302 * will set signal_pending again).
1304 qatomic_set(&ts->signal_pending, 0);
1305 ts->in_sigsuspend = 0;
1306 set = ts->signal_mask;
1307 sigdelset(&set, SIGSEGV);
1308 sigdelset(&set, SIGBUS);
1309 sigprocmask(SIG_SETMASK, &set, 0);
1311 ts->in_sigsuspend = 0;
1314 int process_sigsuspend_mask(sigset_t **pset, target_ulong sigset,
1315 target_ulong sigsize)
1317 TaskState *ts = get_task_state(thread_cpu);
1318 sigset_t *host_set = &ts->sigsuspend_mask;
1319 target_sigset_t *target_sigset;
1321 if (sigsize != sizeof(*target_sigset)) {
1322 /* Like the kernel, we enforce correct size sigsets */
1323 return -TARGET_EINVAL;
1326 target_sigset = lock_user(VERIFY_READ, sigset, sigsize, 1);
1327 if (!target_sigset) {
1328 return -TARGET_EFAULT;
1330 target_to_host_sigset(host_set, target_sigset);
1331 unlock_user(target_sigset, sigset, 0);
1333 *pset = host_set;
1334 return 0;