memory: try to inline constant-length reads
[qemu/ar7.git] / include / exec / ram_addr.h
blobba4c04d202347609cf18f4382d9818a6c402ecc0
1 /*
2 * Declarations for cpu physical memory functions
4 * Copyright 2011 Red Hat, Inc. and/or its affiliates
6 * Authors:
7 * Avi Kivity <avi@redhat.com>
9 * This work is licensed under the terms of the GNU GPL, version 2 or
10 * later. See the COPYING file in the top-level directory.
15 * This header is for use by exec.c and memory.c ONLY. Do not include it.
16 * The functions declared here will be removed soon.
19 #ifndef RAM_ADDR_H
20 #define RAM_ADDR_H
22 #ifndef CONFIG_USER_ONLY
23 #include "hw/xen/xen.h"
25 struct RAMBlock {
26 struct rcu_head rcu;
27 struct MemoryRegion *mr;
28 uint8_t *host;
29 ram_addr_t offset;
30 ram_addr_t used_length;
31 ram_addr_t max_length;
32 void (*resized)(const char*, uint64_t length, void *host);
33 uint32_t flags;
34 /* Protected by iothread lock. */
35 char idstr[256];
36 /* RCU-enabled, writes protected by the ramlist lock */
37 QLIST_ENTRY(RAMBlock) next;
38 int fd;
41 static inline void *ramblock_ptr(RAMBlock *block, ram_addr_t offset)
43 assert(offset < block->used_length);
44 assert(block->host);
45 return (char *)block->host + offset;
48 typedef struct RAMList {
49 QemuMutex mutex;
50 /* Protected by the iothread lock. */
51 unsigned long *dirty_memory[DIRTY_MEMORY_NUM];
52 RAMBlock *mru_block;
53 /* RCU-enabled, writes protected by the ramlist lock. */
54 QLIST_HEAD(, RAMBlock) blocks;
55 uint32_t version;
56 } RAMList;
57 extern RAMList ram_list;
59 ram_addr_t last_ram_offset(void);
60 void qemu_mutex_lock_ramlist(void);
61 void qemu_mutex_unlock_ramlist(void);
63 ram_addr_t qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr,
64 bool share, const char *mem_path,
65 Error **errp);
66 ram_addr_t qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
67 MemoryRegion *mr, Error **errp);
68 ram_addr_t qemu_ram_alloc(ram_addr_t size, MemoryRegion *mr, Error **errp);
69 ram_addr_t qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t max_size,
70 void (*resized)(const char*,
71 uint64_t length,
72 void *host),
73 MemoryRegion *mr, Error **errp);
74 int qemu_get_ram_fd(ram_addr_t addr);
75 void *qemu_get_ram_block_host_ptr(ram_addr_t addr);
76 void qemu_ram_free(ram_addr_t addr);
78 int qemu_ram_resize(ram_addr_t base, ram_addr_t newsize, Error **errp);
80 #define DIRTY_CLIENTS_ALL ((1 << DIRTY_MEMORY_NUM) - 1)
81 #define DIRTY_CLIENTS_NOCODE (DIRTY_CLIENTS_ALL & ~(1 << DIRTY_MEMORY_CODE))
83 static inline bool cpu_physical_memory_get_dirty(ram_addr_t start,
84 ram_addr_t length,
85 unsigned client)
87 unsigned long end, page, next;
89 assert(client < DIRTY_MEMORY_NUM);
91 end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
92 page = start >> TARGET_PAGE_BITS;
93 next = find_next_bit(ram_list.dirty_memory[client], end, page);
95 return next < end;
98 static inline bool cpu_physical_memory_all_dirty(ram_addr_t start,
99 ram_addr_t length,
100 unsigned client)
102 unsigned long end, page, next;
104 assert(client < DIRTY_MEMORY_NUM);
106 end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
107 page = start >> TARGET_PAGE_BITS;
108 next = find_next_zero_bit(ram_list.dirty_memory[client], end, page);
110 return next >= end;
113 static inline bool cpu_physical_memory_get_dirty_flag(ram_addr_t addr,
114 unsigned client)
116 return cpu_physical_memory_get_dirty(addr, 1, client);
119 static inline bool cpu_physical_memory_is_clean(ram_addr_t addr)
121 bool vga = cpu_physical_memory_get_dirty_flag(addr, DIRTY_MEMORY_VGA);
122 bool code = cpu_physical_memory_get_dirty_flag(addr, DIRTY_MEMORY_CODE);
123 bool migration =
124 cpu_physical_memory_get_dirty_flag(addr, DIRTY_MEMORY_MIGRATION);
125 return !(vga && code && migration);
128 static inline uint8_t cpu_physical_memory_range_includes_clean(ram_addr_t start,
129 ram_addr_t length,
130 uint8_t mask)
132 uint8_t ret = 0;
134 if (mask & (1 << DIRTY_MEMORY_VGA) &&
135 !cpu_physical_memory_all_dirty(start, length, DIRTY_MEMORY_VGA)) {
136 ret |= (1 << DIRTY_MEMORY_VGA);
138 if (mask & (1 << DIRTY_MEMORY_CODE) &&
139 !cpu_physical_memory_all_dirty(start, length, DIRTY_MEMORY_CODE)) {
140 ret |= (1 << DIRTY_MEMORY_CODE);
142 if (mask & (1 << DIRTY_MEMORY_MIGRATION) &&
143 !cpu_physical_memory_all_dirty(start, length, DIRTY_MEMORY_MIGRATION)) {
144 ret |= (1 << DIRTY_MEMORY_MIGRATION);
146 return ret;
149 static inline void cpu_physical_memory_set_dirty_flag(ram_addr_t addr,
150 unsigned client)
152 assert(client < DIRTY_MEMORY_NUM);
153 set_bit_atomic(addr >> TARGET_PAGE_BITS, ram_list.dirty_memory[client]);
156 static inline void cpu_physical_memory_set_dirty_range(ram_addr_t start,
157 ram_addr_t length,
158 uint8_t mask)
160 unsigned long end, page;
161 unsigned long **d = ram_list.dirty_memory;
163 end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
164 page = start >> TARGET_PAGE_BITS;
165 if (likely(mask & (1 << DIRTY_MEMORY_MIGRATION))) {
166 bitmap_set_atomic(d[DIRTY_MEMORY_MIGRATION], page, end - page);
168 if (unlikely(mask & (1 << DIRTY_MEMORY_VGA))) {
169 bitmap_set_atomic(d[DIRTY_MEMORY_VGA], page, end - page);
171 if (unlikely(mask & (1 << DIRTY_MEMORY_CODE))) {
172 bitmap_set_atomic(d[DIRTY_MEMORY_CODE], page, end - page);
174 xen_modified_memory(start, length);
177 #if !defined(_WIN32)
178 static inline void cpu_physical_memory_set_dirty_lebitmap(unsigned long *bitmap,
179 ram_addr_t start,
180 ram_addr_t pages)
182 unsigned long i, j;
183 unsigned long page_number, c;
184 hwaddr addr;
185 ram_addr_t ram_addr;
186 unsigned long len = (pages + HOST_LONG_BITS - 1) / HOST_LONG_BITS;
187 unsigned long hpratio = getpagesize() / TARGET_PAGE_SIZE;
188 unsigned long page = BIT_WORD(start >> TARGET_PAGE_BITS);
190 /* start address is aligned at the start of a word? */
191 if ((((page * BITS_PER_LONG) << TARGET_PAGE_BITS) == start) &&
192 (hpratio == 1)) {
193 long k;
194 long nr = BITS_TO_LONGS(pages);
196 for (k = 0; k < nr; k++) {
197 if (bitmap[k]) {
198 unsigned long temp = leul_to_cpu(bitmap[k]);
199 unsigned long **d = ram_list.dirty_memory;
201 atomic_or(&d[DIRTY_MEMORY_MIGRATION][page + k], temp);
202 atomic_or(&d[DIRTY_MEMORY_VGA][page + k], temp);
203 if (tcg_enabled()) {
204 atomic_or(&d[DIRTY_MEMORY_CODE][page + k], temp);
208 xen_modified_memory(start, pages << TARGET_PAGE_BITS);
209 } else {
210 uint8_t clients = tcg_enabled() ? DIRTY_CLIENTS_ALL : DIRTY_CLIENTS_NOCODE;
212 * bitmap-traveling is faster than memory-traveling (for addr...)
213 * especially when most of the memory is not dirty.
215 for (i = 0; i < len; i++) {
216 if (bitmap[i] != 0) {
217 c = leul_to_cpu(bitmap[i]);
218 do {
219 j = ctzl(c);
220 c &= ~(1ul << j);
221 page_number = (i * HOST_LONG_BITS + j) * hpratio;
222 addr = page_number * TARGET_PAGE_SIZE;
223 ram_addr = start + addr;
224 cpu_physical_memory_set_dirty_range(ram_addr,
225 TARGET_PAGE_SIZE * hpratio, clients);
226 } while (c != 0);
231 #endif /* not _WIN32 */
233 bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start,
234 ram_addr_t length,
235 unsigned client);
237 static inline void cpu_physical_memory_clear_dirty_range(ram_addr_t start,
238 ram_addr_t length)
240 cpu_physical_memory_test_and_clear_dirty(start, length, DIRTY_MEMORY_MIGRATION);
241 cpu_physical_memory_test_and_clear_dirty(start, length, DIRTY_MEMORY_VGA);
242 cpu_physical_memory_test_and_clear_dirty(start, length, DIRTY_MEMORY_CODE);
246 static inline
247 uint64_t cpu_physical_memory_sync_dirty_bitmap(unsigned long *dest,
248 ram_addr_t start,
249 ram_addr_t length)
251 ram_addr_t addr;
252 unsigned long page = BIT_WORD(start >> TARGET_PAGE_BITS);
253 uint64_t num_dirty = 0;
255 /* start address is aligned at the start of a word? */
256 if (((page * BITS_PER_LONG) << TARGET_PAGE_BITS) == start) {
257 int k;
258 int nr = BITS_TO_LONGS(length >> TARGET_PAGE_BITS);
259 unsigned long *src = ram_list.dirty_memory[DIRTY_MEMORY_MIGRATION];
261 for (k = page; k < page + nr; k++) {
262 if (src[k]) {
263 unsigned long bits = atomic_xchg(&src[k], 0);
264 unsigned long new_dirty;
265 new_dirty = ~dest[k];
266 dest[k] |= bits;
267 new_dirty &= bits;
268 num_dirty += ctpopl(new_dirty);
271 } else {
272 for (addr = 0; addr < length; addr += TARGET_PAGE_SIZE) {
273 if (cpu_physical_memory_test_and_clear_dirty(
274 start + addr,
275 TARGET_PAGE_SIZE,
276 DIRTY_MEMORY_MIGRATION)) {
277 long k = (start + addr) >> TARGET_PAGE_BITS;
278 if (!test_and_set_bit(k, dest)) {
279 num_dirty++;
285 return num_dirty;
288 void migration_bitmap_extend(ram_addr_t old, ram_addr_t new);
289 #endif
290 #endif