2 * QEMU PowerPC PowerNV machine model
4 * Copyright (c) 2016, IBM Corporation.
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #include "qemu/osdep.h"
21 #include "qapi/error.h"
22 #include "sysemu/sysemu.h"
23 #include "sysemu/numa.h"
25 #include "target-ppc/cpu.h"
27 #include "hw/ppc/fdt.h"
28 #include "hw/ppc/ppc.h"
29 #include "hw/ppc/pnv.h"
30 #include "hw/ppc/pnv_core.h"
31 #include "hw/loader.h"
32 #include "exec/address-spaces.h"
33 #include "qemu/cutils.h"
34 #include "qapi/visitor.h"
36 #include "hw/ppc/pnv_xscom.h"
38 #include "hw/isa/isa.h"
39 #include "hw/char/serial.h"
40 #include "hw/timer/mc146818rtc.h"
44 #define FDT_MAX_SIZE 0x00100000
46 #define FW_FILE_NAME "skiboot.lid"
47 #define FW_LOAD_ADDR 0x0
48 #define FW_MAX_SIZE 0x00400000
50 #define KERNEL_LOAD_ADDR 0x20000000
51 #define INITRD_LOAD_ADDR 0x40000000
54 * On Power Systems E880 (POWER8), the max cpus (threads) should be :
55 * 4 * 4 sockets * 12 cores * 8 threads = 1536
61 * Memory nodes are created by hostboot, one for each range of memory
62 * that has a different "affinity". In practice, it means one range
65 static void powernv_populate_memory_node(void *fdt
, int chip_id
, hwaddr start
,
69 uint64_t mem_reg_property
[2];
72 mem_reg_property
[0] = cpu_to_be64(start
);
73 mem_reg_property
[1] = cpu_to_be64(size
);
75 mem_name
= g_strdup_printf("memory@%"HWADDR_PRIx
, start
);
76 off
= fdt_add_subnode(fdt
, 0, mem_name
);
79 _FDT((fdt_setprop_string(fdt
, off
, "device_type", "memory")));
80 _FDT((fdt_setprop(fdt
, off
, "reg", mem_reg_property
,
81 sizeof(mem_reg_property
))));
82 _FDT((fdt_setprop_cell(fdt
, off
, "ibm,chip-id", chip_id
)));
85 static int get_cpus_node(void *fdt
)
87 int cpus_offset
= fdt_path_offset(fdt
, "/cpus");
89 if (cpus_offset
< 0) {
90 cpus_offset
= fdt_add_subnode(fdt
, fdt_path_offset(fdt
, "/"),
93 _FDT((fdt_setprop_cell(fdt
, cpus_offset
, "#address-cells", 0x1)));
94 _FDT((fdt_setprop_cell(fdt
, cpus_offset
, "#size-cells", 0x0)));
102 * The PowerNV cores (and threads) need to use real HW ids and not an
103 * incremental index like it has been done on other platforms. This HW
104 * id is stored in the CPU PIR, it is used to create cpu nodes in the
105 * device tree, used in XSCOM to address cores and in interrupt
108 static void powernv_create_core_node(PnvChip
*chip
, PnvCore
*pc
, void *fdt
)
110 CPUState
*cs
= CPU(DEVICE(pc
->threads
));
111 DeviceClass
*dc
= DEVICE_GET_CLASS(cs
);
112 PowerPCCPU
*cpu
= POWERPC_CPU(cs
);
113 int smt_threads
= ppc_get_compat_smt_threads(cpu
);
114 CPUPPCState
*env
= &cpu
->env
;
115 PowerPCCPUClass
*pcc
= POWERPC_CPU_GET_CLASS(cs
);
116 uint32_t servers_prop
[smt_threads
];
118 uint32_t segs
[] = {cpu_to_be32(28), cpu_to_be32(40),
119 0xffffffff, 0xffffffff};
120 uint32_t tbfreq
= PNV_TIMEBASE_FREQ
;
121 uint32_t cpufreq
= 1000000000;
122 uint32_t page_sizes_prop
[64];
123 size_t page_sizes_prop_size
;
124 const uint8_t pa_features
[] = { 24, 0,
125 0xf6, 0x3f, 0xc7, 0xc0, 0x80, 0xf0,
126 0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
127 0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
128 0x80, 0x00, 0x80, 0x00, 0x80, 0x00 };
131 int cpus_offset
= get_cpus_node(fdt
);
133 nodename
= g_strdup_printf("%s@%x", dc
->fw_name
, pc
->pir
);
134 offset
= fdt_add_subnode(fdt
, cpus_offset
, nodename
);
138 _FDT((fdt_setprop_cell(fdt
, offset
, "ibm,chip-id", chip
->chip_id
)));
140 _FDT((fdt_setprop_cell(fdt
, offset
, "reg", pc
->pir
)));
141 _FDT((fdt_setprop_cell(fdt
, offset
, "ibm,pir", pc
->pir
)));
142 _FDT((fdt_setprop_string(fdt
, offset
, "device_type", "cpu")));
144 _FDT((fdt_setprop_cell(fdt
, offset
, "cpu-version", env
->spr
[SPR_PVR
])));
145 _FDT((fdt_setprop_cell(fdt
, offset
, "d-cache-block-size",
146 env
->dcache_line_size
)));
147 _FDT((fdt_setprop_cell(fdt
, offset
, "d-cache-line-size",
148 env
->dcache_line_size
)));
149 _FDT((fdt_setprop_cell(fdt
, offset
, "i-cache-block-size",
150 env
->icache_line_size
)));
151 _FDT((fdt_setprop_cell(fdt
, offset
, "i-cache-line-size",
152 env
->icache_line_size
)));
154 if (pcc
->l1_dcache_size
) {
155 _FDT((fdt_setprop_cell(fdt
, offset
, "d-cache-size",
156 pcc
->l1_dcache_size
)));
158 error_report("Warning: Unknown L1 dcache size for cpu");
160 if (pcc
->l1_icache_size
) {
161 _FDT((fdt_setprop_cell(fdt
, offset
, "i-cache-size",
162 pcc
->l1_icache_size
)));
164 error_report("Warning: Unknown L1 icache size for cpu");
167 _FDT((fdt_setprop_cell(fdt
, offset
, "timebase-frequency", tbfreq
)));
168 _FDT((fdt_setprop_cell(fdt
, offset
, "clock-frequency", cpufreq
)));
169 _FDT((fdt_setprop_cell(fdt
, offset
, "ibm,slb-size", env
->slb_nr
)));
170 _FDT((fdt_setprop_string(fdt
, offset
, "status", "okay")));
171 _FDT((fdt_setprop(fdt
, offset
, "64-bit", NULL
, 0)));
173 if (env
->spr_cb
[SPR_PURR
].oea_read
) {
174 _FDT((fdt_setprop(fdt
, offset
, "ibm,purr", NULL
, 0)));
177 if (env
->mmu_model
& POWERPC_MMU_1TSEG
) {
178 _FDT((fdt_setprop(fdt
, offset
, "ibm,processor-segment-sizes",
179 segs
, sizeof(segs
))));
182 /* Advertise VMX/VSX (vector extensions) if available
183 * 0 / no property == no vector extensions
184 * 1 == VMX / Altivec available
185 * 2 == VSX available */
186 if (env
->insns_flags
& PPC_ALTIVEC
) {
187 uint32_t vmx
= (env
->insns_flags2
& PPC2_VSX
) ? 2 : 1;
189 _FDT((fdt_setprop_cell(fdt
, offset
, "ibm,vmx", vmx
)));
192 /* Advertise DFP (Decimal Floating Point) if available
193 * 0 / no property == no DFP
194 * 1 == DFP available */
195 if (env
->insns_flags2
& PPC2_DFP
) {
196 _FDT((fdt_setprop_cell(fdt
, offset
, "ibm,dfp", 1)));
199 page_sizes_prop_size
= ppc_create_page_sizes_prop(env
, page_sizes_prop
,
200 sizeof(page_sizes_prop
));
201 if (page_sizes_prop_size
) {
202 _FDT((fdt_setprop(fdt
, offset
, "ibm,segment-page-sizes",
203 page_sizes_prop
, page_sizes_prop_size
)));
206 _FDT((fdt_setprop(fdt
, offset
, "ibm,pa-features",
207 pa_features
, sizeof(pa_features
))));
209 if (cpu
->cpu_version
) {
210 _FDT((fdt_setprop_cell(fdt
, offset
, "cpu-version", cpu
->cpu_version
)));
213 /* Build interrupt servers properties */
214 for (i
= 0; i
< smt_threads
; i
++) {
215 servers_prop
[i
] = cpu_to_be32(pc
->pir
+ i
);
217 _FDT((fdt_setprop(fdt
, offset
, "ibm,ppc-interrupt-server#s",
218 servers_prop
, sizeof(servers_prop
))));
221 static void powernv_populate_chip(PnvChip
*chip
, void *fdt
)
223 PnvChipClass
*pcc
= PNV_CHIP_GET_CLASS(chip
);
224 char *typename
= pnv_core_typename(pcc
->cpu_model
);
225 size_t typesize
= object_type_get_instance_size(typename
);
228 pnv_xscom_populate(chip
, fdt
, 0);
230 for (i
= 0; i
< chip
->nr_cores
; i
++) {
231 PnvCore
*pnv_core
= PNV_CORE(chip
->cores
+ i
* typesize
);
233 powernv_create_core_node(chip
, pnv_core
, fdt
);
236 if (chip
->ram_size
) {
237 powernv_populate_memory_node(fdt
, chip
->chip_id
, chip
->ram_start
,
243 static void *powernv_create_fdt(MachineState
*machine
)
245 const char plat_compat
[] = "qemu,powernv\0ibm,powernv";
246 PnvMachineState
*pnv
= POWERNV_MACHINE(machine
);
252 fdt
= g_malloc0(FDT_MAX_SIZE
);
253 _FDT((fdt_create_empty_tree(fdt
, FDT_MAX_SIZE
)));
256 _FDT((fdt_setprop_cell(fdt
, 0, "#address-cells", 0x2)));
257 _FDT((fdt_setprop_cell(fdt
, 0, "#size-cells", 0x2)));
258 _FDT((fdt_setprop_string(fdt
, 0, "model",
259 "IBM PowerNV (emulated by qemu)")));
260 _FDT((fdt_setprop(fdt
, 0, "compatible", plat_compat
,
261 sizeof(plat_compat
))));
263 buf
= qemu_uuid_unparse_strdup(&qemu_uuid
);
264 _FDT((fdt_setprop_string(fdt
, 0, "vm,uuid", buf
)));
266 _FDT((fdt_property_string(fdt
, "system-id", buf
)));
270 off
= fdt_add_subnode(fdt
, 0, "chosen");
271 if (machine
->kernel_cmdline
) {
272 _FDT((fdt_setprop_string(fdt
, off
, "bootargs",
273 machine
->kernel_cmdline
)));
276 if (pnv
->initrd_size
) {
277 uint32_t start_prop
= cpu_to_be32(pnv
->initrd_base
);
278 uint32_t end_prop
= cpu_to_be32(pnv
->initrd_base
+ pnv
->initrd_size
);
280 _FDT((fdt_setprop(fdt
, off
, "linux,initrd-start",
281 &start_prop
, sizeof(start_prop
))));
282 _FDT((fdt_setprop(fdt
, off
, "linux,initrd-end",
283 &end_prop
, sizeof(end_prop
))));
286 /* Populate device tree for each chip */
287 for (i
= 0; i
< pnv
->num_chips
; i
++) {
288 powernv_populate_chip(pnv
->chips
[i
], fdt
);
293 static void ppc_powernv_reset(void)
295 MachineState
*machine
= MACHINE(qdev_get_machine());
298 qemu_devices_reset();
300 fdt
= powernv_create_fdt(machine
);
302 /* Pack resulting tree */
303 _FDT((fdt_pack(fdt
)));
305 cpu_physical_memory_write(PNV_FDT_ADDR
, fdt
, fdt_totalsize(fdt
));
308 /* If we don't use the built-in LPC interrupt deserializer, we need
309 * to provide a set of qirqs for the ISA bus or things will go bad.
311 * Most machines using pre-Naples chips (without said deserializer)
312 * have a CPLD that will collect the SerIRQ and shoot them as a
313 * single level interrupt to the P8 chip. So let's setup a hook
314 * for doing just that.
316 * Note: The actual interrupt input isn't emulated yet, this will
317 * come with the PSI bridge model.
319 static void pnv_lpc_isa_irq_handler_cpld(void *opaque
, int n
, int level
)
321 /* We don't yet emulate the PSI bridge which provides the external
322 * interrupt, so just drop interrupts on the floor
326 static void pnv_lpc_isa_irq_handler(void *opaque
, int n
, int level
)
331 static ISABus
*pnv_isa_create(PnvChip
*chip
)
333 PnvLpcController
*lpc
= &chip
->lpc
;
336 PnvChipClass
*pcc
= PNV_CHIP_GET_CLASS(chip
);
338 /* let isa_bus_new() create its own bridge on SysBus otherwise
339 * devices speficied on the command line won't find the bus and
340 * will fail to create.
342 isa_bus
= isa_bus_new(NULL
, &lpc
->isa_mem
, &lpc
->isa_io
,
345 /* Not all variants have a working serial irq decoder. If not,
346 * handling of LPC interrupts becomes a platform issue (some
347 * platforms have a CPLD to do it).
349 if (pcc
->chip_type
== PNV_CHIP_POWER8NVL
) {
350 irqs
= qemu_allocate_irqs(pnv_lpc_isa_irq_handler
, chip
, ISA_NUM_IRQS
);
352 irqs
= qemu_allocate_irqs(pnv_lpc_isa_irq_handler_cpld
, chip
,
356 isa_bus_irqs(isa_bus
, irqs
);
360 static void ppc_powernv_init(MachineState
*machine
)
362 PnvMachineState
*pnv
= POWERNV_MACHINE(machine
);
370 if (machine
->ram_size
< (1 * G_BYTE
)) {
371 error_report("Warning: skiboot may not work with < 1GB of RAM");
374 ram
= g_new(MemoryRegion
, 1);
375 memory_region_allocate_system_memory(ram
, NULL
, "ppc_powernv.ram",
377 memory_region_add_subregion(get_system_memory(), 0, ram
);
379 /* load skiboot firmware */
380 if (bios_name
== NULL
) {
381 bios_name
= FW_FILE_NAME
;
384 fw_filename
= qemu_find_file(QEMU_FILE_TYPE_BIOS
, bios_name
);
386 fw_size
= load_image_targphys(fw_filename
, FW_LOAD_ADDR
, FW_MAX_SIZE
);
388 hw_error("qemu: could not load OPAL '%s'\n", fw_filename
);
394 if (machine
->kernel_filename
) {
397 kernel_size
= load_image_targphys(machine
->kernel_filename
,
398 KERNEL_LOAD_ADDR
, 0x2000000);
399 if (kernel_size
< 0) {
400 hw_error("qemu: could not load kernel'%s'\n",
401 machine
->kernel_filename
);
407 if (machine
->initrd_filename
) {
408 pnv
->initrd_base
= INITRD_LOAD_ADDR
;
409 pnv
->initrd_size
= load_image_targphys(machine
->initrd_filename
,
410 pnv
->initrd_base
, 0x10000000); /* 128MB max */
411 if (pnv
->initrd_size
< 0) {
412 error_report("qemu: could not load initial ram disk '%s'",
413 machine
->initrd_filename
);
418 /* We need some cpu model to instantiate the PnvChip class */
419 if (machine
->cpu_model
== NULL
) {
420 machine
->cpu_model
= "POWER8";
423 /* Create the processor chips */
424 chip_typename
= g_strdup_printf(TYPE_PNV_CHIP
"-%s", machine
->cpu_model
);
425 if (!object_class_by_name(chip_typename
)) {
426 error_report("qemu: invalid CPU model '%s' for %s machine",
427 machine
->cpu_model
, MACHINE_GET_CLASS(machine
)->name
);
431 pnv
->chips
= g_new0(PnvChip
*, pnv
->num_chips
);
432 for (i
= 0; i
< pnv
->num_chips
; i
++) {
434 Object
*chip
= object_new(chip_typename
);
436 pnv
->chips
[i
] = PNV_CHIP(chip
);
438 /* TODO: put all the memory in one node on chip 0 until we find a
439 * way to specify different ranges for each chip
442 object_property_set_int(chip
, machine
->ram_size
, "ram-size",
446 snprintf(chip_name
, sizeof(chip_name
), "chip[%d]", PNV_CHIP_HWID(i
));
447 object_property_add_child(OBJECT(pnv
), chip_name
, chip
, &error_fatal
);
448 object_property_set_int(chip
, PNV_CHIP_HWID(i
), "chip-id",
450 object_property_set_int(chip
, smp_cores
, "nr-cores", &error_fatal
);
451 object_property_set_bool(chip
, true, "realized", &error_fatal
);
453 g_free(chip_typename
);
455 /* Instantiate ISA bus on chip 0 */
456 pnv
->isa_bus
= pnv_isa_create(pnv
->chips
[0]);
458 /* Create serial port */
459 serial_hds_isa_init(pnv
->isa_bus
, 0, MAX_SERIAL_PORTS
);
461 /* Create an RTC ISA device too */
462 rtc_init(pnv
->isa_bus
, 2000, NULL
);
466 * 0:21 Reserved - Read as zeros
471 static uint32_t pnv_chip_core_pir_p8(PnvChip
*chip
, uint32_t core_id
)
473 return (chip
->chip_id
<< 7) | (core_id
<< 3);
477 * 0:48 Reserved - Read as zeroes
480 * 56 Reserved - Read as zero
484 * We only care about the lower bits. uint32_t is fine for the moment.
486 static uint32_t pnv_chip_core_pir_p9(PnvChip
*chip
, uint32_t core_id
)
488 return (chip
->chip_id
<< 8) | (core_id
<< 2);
491 /* Allowed core identifiers on a POWER8 Processor Chip :
500 * <EX7,8 reserved> <reserved>
509 #define POWER8E_CORE_MASK (0x7070ull)
510 #define POWER8_CORE_MASK (0x7e7eull)
513 * POWER9 has 24 cores, ids starting at 0x20
515 #define POWER9_CORE_MASK (0xffffff00000000ull)
517 static void pnv_chip_power8e_class_init(ObjectClass
*klass
, void *data
)
519 DeviceClass
*dc
= DEVICE_CLASS(klass
);
520 PnvChipClass
*k
= PNV_CHIP_CLASS(klass
);
522 k
->cpu_model
= "POWER8E";
523 k
->chip_type
= PNV_CHIP_POWER8E
;
524 k
->chip_cfam_id
= 0x221ef04980000000ull
; /* P8 Murano DD2.1 */
525 k
->cores_mask
= POWER8E_CORE_MASK
;
526 k
->core_pir
= pnv_chip_core_pir_p8
;
527 k
->xscom_base
= 0x003fc0000000000ull
;
528 dc
->desc
= "PowerNV Chip POWER8E";
531 static const TypeInfo pnv_chip_power8e_info
= {
532 .name
= TYPE_PNV_CHIP_POWER8E
,
533 .parent
= TYPE_PNV_CHIP
,
534 .instance_size
= sizeof(PnvChip
),
535 .class_init
= pnv_chip_power8e_class_init
,
538 static void pnv_chip_power8_class_init(ObjectClass
*klass
, void *data
)
540 DeviceClass
*dc
= DEVICE_CLASS(klass
);
541 PnvChipClass
*k
= PNV_CHIP_CLASS(klass
);
543 k
->cpu_model
= "POWER8";
544 k
->chip_type
= PNV_CHIP_POWER8
;
545 k
->chip_cfam_id
= 0x220ea04980000000ull
; /* P8 Venice DD2.0 */
546 k
->cores_mask
= POWER8_CORE_MASK
;
547 k
->core_pir
= pnv_chip_core_pir_p8
;
548 k
->xscom_base
= 0x003fc0000000000ull
;
549 dc
->desc
= "PowerNV Chip POWER8";
552 static const TypeInfo pnv_chip_power8_info
= {
553 .name
= TYPE_PNV_CHIP_POWER8
,
554 .parent
= TYPE_PNV_CHIP
,
555 .instance_size
= sizeof(PnvChip
),
556 .class_init
= pnv_chip_power8_class_init
,
559 static void pnv_chip_power8nvl_class_init(ObjectClass
*klass
, void *data
)
561 DeviceClass
*dc
= DEVICE_CLASS(klass
);
562 PnvChipClass
*k
= PNV_CHIP_CLASS(klass
);
564 k
->cpu_model
= "POWER8NVL";
565 k
->chip_type
= PNV_CHIP_POWER8NVL
;
566 k
->chip_cfam_id
= 0x120d304980000000ull
; /* P8 Naples DD1.0 */
567 k
->cores_mask
= POWER8_CORE_MASK
;
568 k
->core_pir
= pnv_chip_core_pir_p8
;
569 k
->xscom_base
= 0x003fc0000000000ull
;
570 dc
->desc
= "PowerNV Chip POWER8NVL";
573 static const TypeInfo pnv_chip_power8nvl_info
= {
574 .name
= TYPE_PNV_CHIP_POWER8NVL
,
575 .parent
= TYPE_PNV_CHIP
,
576 .instance_size
= sizeof(PnvChip
),
577 .class_init
= pnv_chip_power8nvl_class_init
,
580 static void pnv_chip_power9_class_init(ObjectClass
*klass
, void *data
)
582 DeviceClass
*dc
= DEVICE_CLASS(klass
);
583 PnvChipClass
*k
= PNV_CHIP_CLASS(klass
);
585 k
->cpu_model
= "POWER9";
586 k
->chip_type
= PNV_CHIP_POWER9
;
587 k
->chip_cfam_id
= 0x100d104980000000ull
; /* P9 Nimbus DD1.0 */
588 k
->cores_mask
= POWER9_CORE_MASK
;
589 k
->core_pir
= pnv_chip_core_pir_p9
;
590 k
->xscom_base
= 0x00603fc00000000ull
;
591 dc
->desc
= "PowerNV Chip POWER9";
594 static const TypeInfo pnv_chip_power9_info
= {
595 .name
= TYPE_PNV_CHIP_POWER9
,
596 .parent
= TYPE_PNV_CHIP
,
597 .instance_size
= sizeof(PnvChip
),
598 .class_init
= pnv_chip_power9_class_init
,
601 static void pnv_chip_core_sanitize(PnvChip
*chip
, Error
**errp
)
603 PnvChipClass
*pcc
= PNV_CHIP_GET_CLASS(chip
);
607 * No custom mask for this chip, let's use the default one from *
610 if (!chip
->cores_mask
) {
611 chip
->cores_mask
= pcc
->cores_mask
;
614 /* filter alien core ids ! some are reserved */
615 if ((chip
->cores_mask
& pcc
->cores_mask
) != chip
->cores_mask
) {
616 error_setg(errp
, "warning: invalid core mask for chip Ox%"PRIx64
" !",
620 chip
->cores_mask
&= pcc
->cores_mask
;
622 /* now that we have a sane layout, let check the number of cores */
623 cores_max
= hweight_long(chip
->cores_mask
);
624 if (chip
->nr_cores
> cores_max
) {
625 error_setg(errp
, "warning: too many cores for chip ! Limit is %d",
631 static void pnv_chip_init(Object
*obj
)
633 PnvChip
*chip
= PNV_CHIP(obj
);
634 PnvChipClass
*pcc
= PNV_CHIP_GET_CLASS(chip
);
636 chip
->xscom_base
= pcc
->xscom_base
;
638 object_initialize(&chip
->lpc
, sizeof(chip
->lpc
), TYPE_PNV_LPC
);
639 object_property_add_child(obj
, "lpc", OBJECT(&chip
->lpc
), NULL
);
642 static void pnv_chip_realize(DeviceState
*dev
, Error
**errp
)
644 PnvChip
*chip
= PNV_CHIP(dev
);
646 PnvChipClass
*pcc
= PNV_CHIP_GET_CLASS(chip
);
647 char *typename
= pnv_core_typename(pcc
->cpu_model
);
648 size_t typesize
= object_type_get_instance_size(typename
);
651 if (!object_class_by_name(typename
)) {
652 error_setg(errp
, "Unable to find PowerNV CPU Core '%s'", typename
);
657 pnv_xscom_realize(chip
, &error
);
659 error_propagate(errp
, error
);
662 sysbus_mmio_map(SYS_BUS_DEVICE(chip
), 0, PNV_XSCOM_BASE(chip
));
665 pnv_chip_core_sanitize(chip
, &error
);
667 error_propagate(errp
, error
);
671 chip
->cores
= g_malloc0(typesize
* chip
->nr_cores
);
673 for (i
= 0, core_hwid
= 0; (core_hwid
< sizeof(chip
->cores_mask
) * 8)
674 && (i
< chip
->nr_cores
); core_hwid
++) {
676 void *pnv_core
= chip
->cores
+ i
* typesize
;
678 if (!(chip
->cores_mask
& (1ull << core_hwid
))) {
682 object_initialize(pnv_core
, typesize
, typename
);
683 snprintf(core_name
, sizeof(core_name
), "core[%d]", core_hwid
);
684 object_property_add_child(OBJECT(chip
), core_name
, OBJECT(pnv_core
),
686 object_property_set_int(OBJECT(pnv_core
), smp_threads
, "nr-threads",
688 object_property_set_int(OBJECT(pnv_core
), core_hwid
,
689 CPU_CORE_PROP_CORE_ID
, &error_fatal
);
690 object_property_set_int(OBJECT(pnv_core
),
691 pcc
->core_pir(chip
, core_hwid
),
692 "pir", &error_fatal
);
693 object_property_set_bool(OBJECT(pnv_core
), true, "realized",
695 object_unref(OBJECT(pnv_core
));
697 /* Each core has an XSCOM MMIO region */
698 pnv_xscom_add_subregion(chip
, PNV_XSCOM_EX_CORE_BASE(core_hwid
),
699 &PNV_CORE(pnv_core
)->xscom_regs
);
704 /* Create LPC controller */
705 object_property_set_bool(OBJECT(&chip
->lpc
), true, "realized",
707 pnv_xscom_add_subregion(chip
, PNV_XSCOM_LPC_BASE
, &chip
->lpc
.xscom_regs
);
710 static Property pnv_chip_properties
[] = {
711 DEFINE_PROP_UINT32("chip-id", PnvChip
, chip_id
, 0),
712 DEFINE_PROP_UINT64("ram-start", PnvChip
, ram_start
, 0),
713 DEFINE_PROP_UINT64("ram-size", PnvChip
, ram_size
, 0),
714 DEFINE_PROP_UINT32("nr-cores", PnvChip
, nr_cores
, 1),
715 DEFINE_PROP_UINT64("cores-mask", PnvChip
, cores_mask
, 0x0),
716 DEFINE_PROP_END_OF_LIST(),
719 static void pnv_chip_class_init(ObjectClass
*klass
, void *data
)
721 DeviceClass
*dc
= DEVICE_CLASS(klass
);
723 dc
->realize
= pnv_chip_realize
;
724 dc
->props
= pnv_chip_properties
;
725 dc
->desc
= "PowerNV Chip";
728 static const TypeInfo pnv_chip_info
= {
729 .name
= TYPE_PNV_CHIP
,
730 .parent
= TYPE_SYS_BUS_DEVICE
,
731 .class_init
= pnv_chip_class_init
,
732 .instance_init
= pnv_chip_init
,
733 .class_size
= sizeof(PnvChipClass
),
737 static void pnv_get_num_chips(Object
*obj
, Visitor
*v
, const char *name
,
738 void *opaque
, Error
**errp
)
740 visit_type_uint32(v
, name
, &POWERNV_MACHINE(obj
)->num_chips
, errp
);
743 static void pnv_set_num_chips(Object
*obj
, Visitor
*v
, const char *name
,
744 void *opaque
, Error
**errp
)
746 PnvMachineState
*pnv
= POWERNV_MACHINE(obj
);
748 Error
*local_err
= NULL
;
750 visit_type_uint32(v
, name
, &num_chips
, &local_err
);
752 error_propagate(errp
, local_err
);
757 * TODO: should we decide on how many chips we can create based
758 * on #cores and Venice vs. Murano vs. Naples chip type etc...,
760 if (!is_power_of_2(num_chips
) || num_chips
> 4) {
761 error_setg(errp
, "invalid number of chips: '%d'", num_chips
);
765 pnv
->num_chips
= num_chips
;
768 static void powernv_machine_initfn(Object
*obj
)
770 PnvMachineState
*pnv
= POWERNV_MACHINE(obj
);
774 static void powernv_machine_class_props_init(ObjectClass
*oc
)
776 object_class_property_add(oc
, "num-chips", "uint32_t",
777 pnv_get_num_chips
, pnv_set_num_chips
,
779 object_class_property_set_description(oc
, "num-chips",
780 "Specifies the number of processor chips",
784 static void powernv_machine_class_init(ObjectClass
*oc
, void *data
)
786 MachineClass
*mc
= MACHINE_CLASS(oc
);
788 mc
->desc
= "IBM PowerNV (Non-Virtualized)";
789 mc
->init
= ppc_powernv_init
;
790 mc
->reset
= ppc_powernv_reset
;
791 mc
->max_cpus
= MAX_CPUS
;
792 mc
->block_default_type
= IF_IDE
; /* Pnv provides a AHCI device for
795 mc
->default_boot_order
= NULL
;
796 mc
->default_ram_size
= 1 * G_BYTE
;
798 powernv_machine_class_props_init(oc
);
801 static const TypeInfo powernv_machine_info
= {
802 .name
= TYPE_POWERNV_MACHINE
,
803 .parent
= TYPE_MACHINE
,
804 .instance_size
= sizeof(PnvMachineState
),
805 .instance_init
= powernv_machine_initfn
,
806 .class_init
= powernv_machine_class_init
,
809 static void powernv_machine_register_types(void)
811 type_register_static(&powernv_machine_info
);
812 type_register_static(&pnv_chip_info
);
813 type_register_static(&pnv_chip_power8e_info
);
814 type_register_static(&pnv_chip_power8_info
);
815 type_register_static(&pnv_chip_power8nvl_info
);
816 type_register_static(&pnv_chip_power9_info
);
819 type_init(powernv_machine_register_types
)