Merge tag 'v9.0.0-rc3'
[qemu/ar7.git] / hw / ppc / pnv.c
blob6e3a5ccdec764c8f6cbd076e27f59c7082e64876
1 /*
2 * QEMU PowerPC PowerNV machine model
4 * Copyright (c) 2016, IBM Corporation.
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #include "qemu/osdep.h"
21 #include "qemu/datadir.h"
22 #include "qemu/units.h"
23 #include "qemu/cutils.h"
24 #include "qapi/error.h"
25 #include "sysemu/qtest.h"
26 #include "sysemu/sysemu.h"
27 #include "sysemu/numa.h"
28 #include "sysemu/reset.h"
29 #include "sysemu/runstate.h"
30 #include "sysemu/cpus.h"
31 #include "sysemu/device_tree.h"
32 #include "sysemu/hw_accel.h"
33 #include "target/ppc/cpu.h"
34 #include "hw/ppc/fdt.h"
35 #include "hw/ppc/ppc.h"
36 #include "hw/ppc/pnv.h"
37 #include "hw/ppc/pnv_core.h"
38 #include "hw/loader.h"
39 #include "hw/nmi.h"
40 #include "qapi/visitor.h"
41 #include "monitor/monitor.h"
42 #include "hw/intc/intc.h"
43 #include "hw/ipmi/ipmi.h"
44 #include "target/ppc/mmu-hash64.h"
45 #include "hw/pci/msi.h"
46 #include "hw/pci-host/pnv_phb.h"
47 #include "hw/pci-host/pnv_phb3.h"
48 #include "hw/pci-host/pnv_phb4.h"
50 #include "hw/ppc/xics.h"
51 #include "hw/qdev-properties.h"
52 #include "hw/ppc/pnv_chip.h"
53 #include "hw/ppc/pnv_xscom.h"
54 #include "hw/ppc/pnv_pnor.h"
56 #include "hw/isa/isa.h"
57 #include "hw/char/serial.h"
58 #include "hw/rtc/mc146818rtc.h"
60 #include <libfdt.h>
62 #define FDT_MAX_SIZE (1 * MiB)
64 #define FW_FILE_NAME "skiboot.lid"
65 #define FW_LOAD_ADDR 0x0
66 #define FW_MAX_SIZE (16 * MiB)
68 #define KERNEL_LOAD_ADDR 0x20000000
69 #define KERNEL_MAX_SIZE (128 * MiB)
70 #define INITRD_LOAD_ADDR 0x28000000
71 #define INITRD_MAX_SIZE (128 * MiB)
73 static const char *pnv_chip_core_typename(const PnvChip *o)
75 const char *chip_type = object_class_get_name(object_get_class(OBJECT(o)));
76 int len = strlen(chip_type) - strlen(PNV_CHIP_TYPE_SUFFIX);
77 char *s = g_strdup_printf(PNV_CORE_TYPE_NAME("%.*s"), len, chip_type);
78 const char *core_type = object_class_get_name(object_class_by_name(s));
79 g_free(s);
80 return core_type;
84 * On Power Systems E880 (POWER8), the max cpus (threads) should be :
85 * 4 * 4 sockets * 12 cores * 8 threads = 1536
86 * Let's make it 2^11
88 #define MAX_CPUS 2048
91 * Memory nodes are created by hostboot, one for each range of memory
92 * that has a different "affinity". In practice, it means one range
93 * per chip.
95 static void pnv_dt_memory(void *fdt, int chip_id, hwaddr start, hwaddr size)
97 char *mem_name;
98 uint64_t mem_reg_property[2];
99 int off;
101 mem_reg_property[0] = cpu_to_be64(start);
102 mem_reg_property[1] = cpu_to_be64(size);
104 mem_name = g_strdup_printf("memory@%"HWADDR_PRIx, start);
105 off = fdt_add_subnode(fdt, 0, mem_name);
106 g_free(mem_name);
108 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
109 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
110 sizeof(mem_reg_property))));
111 _FDT((fdt_setprop_cell(fdt, off, "ibm,chip-id", chip_id)));
114 static int get_cpus_node(void *fdt)
116 int cpus_offset = fdt_path_offset(fdt, "/cpus");
118 if (cpus_offset < 0) {
119 cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
120 if (cpus_offset) {
121 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
122 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
125 _FDT(cpus_offset);
126 return cpus_offset;
130 * The PowerNV cores (and threads) need to use real HW ids and not an
131 * incremental index like it has been done on other platforms. This HW
132 * id is stored in the CPU PIR, it is used to create cpu nodes in the
133 * device tree, used in XSCOM to address cores and in interrupt
134 * servers.
136 static int pnv_dt_core(PnvChip *chip, PnvCore *pc, void *fdt)
138 PowerPCCPU *cpu = pc->threads[0];
139 CPUState *cs = CPU(cpu);
140 DeviceClass *dc = DEVICE_GET_CLASS(cs);
141 int smt_threads = CPU_CORE(pc)->nr_threads;
142 CPUPPCState *env = &cpu->env;
143 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
144 PnvChipClass *pnv_cc = PNV_CHIP_GET_CLASS(chip);
145 g_autofree uint32_t *servers_prop = g_new(uint32_t, smt_threads);
146 int i;
147 uint32_t pir;
148 uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
149 0xffffffff, 0xffffffff};
150 uint32_t tbfreq = PNV_TIMEBASE_FREQ;
151 uint32_t cpufreq = 1000000000;
152 uint32_t page_sizes_prop[64];
153 size_t page_sizes_prop_size;
154 int offset;
155 char *nodename;
156 int cpus_offset = get_cpus_node(fdt);
158 pir = pnv_cc->chip_pir(chip, pc->hwid, 0);
160 nodename = g_strdup_printf("%s@%x", dc->fw_name, pir);
161 offset = fdt_add_subnode(fdt, cpus_offset, nodename);
162 _FDT(offset);
163 g_free(nodename);
165 _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id", chip->chip_id)));
167 _FDT((fdt_setprop_cell(fdt, offset, "reg", pir)));
168 _FDT((fdt_setprop_cell(fdt, offset, "ibm,pir", pir)));
169 _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
171 _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
172 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
173 env->dcache_line_size)));
174 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
175 env->dcache_line_size)));
176 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
177 env->icache_line_size)));
178 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
179 env->icache_line_size)));
181 if (pcc->l1_dcache_size) {
182 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
183 pcc->l1_dcache_size)));
184 } else {
185 warn_report("Unknown L1 dcache size for cpu");
187 if (pcc->l1_icache_size) {
188 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
189 pcc->l1_icache_size)));
190 } else {
191 warn_report("Unknown L1 icache size for cpu");
194 _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
195 _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
196 _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size",
197 cpu->hash64_opts->slb_size)));
198 _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
199 _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
201 if (ppc_has_spr(cpu, SPR_PURR)) {
202 _FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0)));
205 if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) {
206 _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
207 segs, sizeof(segs))));
211 * Advertise VMX/VSX (vector extensions) if available
212 * 0 / no property == no vector extensions
213 * 1 == VMX / Altivec available
214 * 2 == VSX available
216 if (env->insns_flags & PPC_ALTIVEC) {
217 uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1;
219 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", vmx)));
223 * Advertise DFP (Decimal Floating Point) if available
224 * 0 / no property == no DFP
225 * 1 == DFP available
227 if (env->insns_flags2 & PPC2_DFP) {
228 _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
231 page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop,
232 sizeof(page_sizes_prop));
233 if (page_sizes_prop_size) {
234 _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
235 page_sizes_prop, page_sizes_prop_size)));
238 /* Build interrupt servers properties */
239 for (i = 0; i < smt_threads; i++) {
240 servers_prop[i] = cpu_to_be32(pnv_cc->chip_pir(chip, pc->hwid, i));
242 _FDT((fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
243 servers_prop, sizeof(*servers_prop) * smt_threads)));
245 return offset;
248 static void pnv_dt_icp(PnvChip *chip, void *fdt, uint32_t hwid,
249 uint32_t nr_threads)
251 PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
252 uint32_t pir = pcc->chip_pir(chip, hwid, 0);
253 uint64_t addr = PNV_ICP_BASE(chip) | (pir << 12);
254 char *name;
255 const char compat[] = "IBM,power8-icp\0IBM,ppc-xicp";
256 uint32_t irange[2], i, rsize;
257 uint64_t *reg;
258 int offset;
260 irange[0] = cpu_to_be32(pir);
261 irange[1] = cpu_to_be32(nr_threads);
263 rsize = sizeof(uint64_t) * 2 * nr_threads;
264 reg = g_malloc(rsize);
265 for (i = 0; i < nr_threads; i++) {
266 /* We know P8 PIR is linear with thread id */
267 reg[i * 2] = cpu_to_be64(addr | ((pir + i) * 0x1000));
268 reg[i * 2 + 1] = cpu_to_be64(0x1000);
271 name = g_strdup_printf("interrupt-controller@%"PRIX64, addr);
272 offset = fdt_add_subnode(fdt, 0, name);
273 _FDT(offset);
274 g_free(name);
276 _FDT((fdt_setprop(fdt, offset, "compatible", compat, sizeof(compat))));
277 _FDT((fdt_setprop(fdt, offset, "reg", reg, rsize)));
278 _FDT((fdt_setprop_string(fdt, offset, "device_type",
279 "PowerPC-External-Interrupt-Presentation")));
280 _FDT((fdt_setprop(fdt, offset, "interrupt-controller", NULL, 0)));
281 _FDT((fdt_setprop(fdt, offset, "ibm,interrupt-server-ranges",
282 irange, sizeof(irange))));
283 _FDT((fdt_setprop_cell(fdt, offset, "#interrupt-cells", 1)));
284 _FDT((fdt_setprop_cell(fdt, offset, "#address-cells", 0)));
285 g_free(reg);
289 * Adds a PnvPHB to the chip on P8.
290 * Implemented here, like for defaults PHBs
292 PnvChip *pnv_chip_add_phb(PnvChip *chip, PnvPHB *phb)
294 Pnv8Chip *chip8 = PNV8_CHIP(chip);
296 phb->chip = chip;
298 chip8->phbs[chip8->num_phbs] = phb;
299 chip8->num_phbs++;
300 return chip;
304 * Same as spapr pa_features_207 except pnv always enables CI largepages bit.
305 * HTM is always enabled because TCG does implement HTM, it's just a
306 * degenerate implementation.
308 static const uint8_t pa_features_207[] = { 24, 0,
309 0xf6, 0x3f, 0xc7, 0xc0, 0x00, 0xf0,
310 0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
311 0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
312 0x80, 0x00, 0x80, 0x00, 0x80, 0x00 };
314 static void pnv_chip_power8_dt_populate(PnvChip *chip, void *fdt)
316 static const char compat[] = "ibm,power8-xscom\0ibm,xscom";
317 int i;
319 pnv_dt_xscom(chip, fdt, 0,
320 cpu_to_be64(PNV_XSCOM_BASE(chip)),
321 cpu_to_be64(PNV_XSCOM_SIZE),
322 compat, sizeof(compat));
324 for (i = 0; i < chip->nr_cores; i++) {
325 PnvCore *pnv_core = chip->cores[i];
326 int offset;
328 offset = pnv_dt_core(chip, pnv_core, fdt);
330 _FDT((fdt_setprop(fdt, offset, "ibm,pa-features",
331 pa_features_207, sizeof(pa_features_207))));
333 /* Interrupt Control Presenters (ICP). One per core. */
334 pnv_dt_icp(chip, fdt, pnv_core->hwid, CPU_CORE(pnv_core)->nr_threads);
337 if (chip->ram_size) {
338 pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size);
343 * Same as spapr pa_features_300 except pnv always enables CI largepages bit.
345 static const uint8_t pa_features_300[] = { 66, 0,
346 /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: CILRG|fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */
347 /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, 5: LE|CFAR|EB|LSQ */
348 0xf6, 0x3f, 0xc7, 0xc0, 0x00, 0xf0, /* 0 - 5 */
349 /* 6: DS207 */
350 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */
351 /* 16: Vector */
352 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
353 /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */
354 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 18 - 23 */
355 /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */
356 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */
357 /* 32: LE atomic, 34: EBB + ext EBB */
358 0x00, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */
359 /* 40: Radix MMU */
360 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 36 - 41 */
361 /* 42: PM, 44: PC RA, 46: SC vec'd */
362 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */
363 /* 48: SIMD, 50: QP BFP, 52: String */
364 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */
365 /* 54: DecFP, 56: DecI, 58: SHA */
366 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */
367 /* 60: NM atomic, 62: RNG */
368 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */
371 static void pnv_chip_power9_dt_populate(PnvChip *chip, void *fdt)
373 static const char compat[] = "ibm,power9-xscom\0ibm,xscom";
374 int i;
376 pnv_dt_xscom(chip, fdt, 0,
377 cpu_to_be64(PNV9_XSCOM_BASE(chip)),
378 cpu_to_be64(PNV9_XSCOM_SIZE),
379 compat, sizeof(compat));
381 for (i = 0; i < chip->nr_cores; i++) {
382 PnvCore *pnv_core = chip->cores[i];
383 int offset;
385 offset = pnv_dt_core(chip, pnv_core, fdt);
387 _FDT((fdt_setprop(fdt, offset, "ibm,pa-features",
388 pa_features_300, sizeof(pa_features_300))));
391 if (chip->ram_size) {
392 pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size);
395 pnv_dt_lpc(chip, fdt, 0, PNV9_LPCM_BASE(chip), PNV9_LPCM_SIZE);
399 * Same as spapr pa_features_31 except pnv always enables CI largepages bit,
400 * always disables copy/paste.
402 static const uint8_t pa_features_31[] = { 74, 0,
403 /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: CILRG|fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */
404 /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, 5: LE|CFAR|EB|LSQ */
405 0xf6, 0x3f, 0xc7, 0xc0, 0x00, 0xf0, /* 0 - 5 */
406 /* 6: DS207 */
407 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */
408 /* 16: Vector */
409 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
410 /* 18: Vec. Scalar, 20: Vec. XOR */
411 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */
412 /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */
413 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */
414 /* 32: LE atomic, 34: EBB + ext EBB */
415 0x00, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */
416 /* 40: Radix MMU */
417 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 36 - 41 */
418 /* 42: PM, 44: PC RA, 46: SC vec'd */
419 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */
420 /* 48: SIMD, 50: QP BFP, 52: String */
421 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */
422 /* 54: DecFP, 56: DecI, 58: SHA */
423 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */
424 /* 60: NM atomic, 62: RNG */
425 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */
426 /* 68: DEXCR[SBHE|IBRTPDUS|SRAPD|NPHIE|PHIE] */
427 0x00, 0x00, 0xce, 0x00, 0x00, 0x00, /* 66 - 71 */
428 /* 72: [P]HASHST/[P]HASHCHK */
429 0x80, 0x00, /* 72 - 73 */
432 static void pnv_chip_power10_dt_populate(PnvChip *chip, void *fdt)
434 static const char compat[] = "ibm,power10-xscom\0ibm,xscom";
435 int i;
437 pnv_dt_xscom(chip, fdt, 0,
438 cpu_to_be64(PNV10_XSCOM_BASE(chip)),
439 cpu_to_be64(PNV10_XSCOM_SIZE),
440 compat, sizeof(compat));
442 for (i = 0; i < chip->nr_cores; i++) {
443 PnvCore *pnv_core = chip->cores[i];
444 int offset;
446 offset = pnv_dt_core(chip, pnv_core, fdt);
448 _FDT((fdt_setprop(fdt, offset, "ibm,pa-features",
449 pa_features_31, sizeof(pa_features_31))));
452 if (chip->ram_size) {
453 pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size);
456 pnv_dt_lpc(chip, fdt, 0, PNV10_LPCM_BASE(chip), PNV10_LPCM_SIZE);
459 static void pnv_dt_rtc(ISADevice *d, void *fdt, int lpc_off)
461 uint32_t io_base = d->ioport_id;
462 uint32_t io_regs[] = {
463 cpu_to_be32(1),
464 cpu_to_be32(io_base),
465 cpu_to_be32(2)
467 char *name;
468 int node;
470 name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
471 node = fdt_add_subnode(fdt, lpc_off, name);
472 _FDT(node);
473 g_free(name);
475 _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
476 _FDT((fdt_setprop_string(fdt, node, "compatible", "pnpPNP,b00")));
479 static void pnv_dt_serial(ISADevice *d, void *fdt, int lpc_off)
481 const char compatible[] = "ns16550\0pnpPNP,501";
482 uint32_t io_base = d->ioport_id;
483 uint32_t io_regs[] = {
484 cpu_to_be32(1),
485 cpu_to_be32(io_base),
486 cpu_to_be32(8)
488 uint32_t irq;
489 char *name;
490 int node;
492 irq = object_property_get_uint(OBJECT(d), "irq", &error_fatal);
494 name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
495 node = fdt_add_subnode(fdt, lpc_off, name);
496 _FDT(node);
497 g_free(name);
499 _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
500 _FDT((fdt_setprop(fdt, node, "compatible", compatible,
501 sizeof(compatible))));
503 _FDT((fdt_setprop_cell(fdt, node, "clock-frequency", 1843200)));
504 _FDT((fdt_setprop_cell(fdt, node, "current-speed", 115200)));
505 _FDT((fdt_setprop_cell(fdt, node, "interrupts", irq)));
506 _FDT((fdt_setprop_cell(fdt, node, "interrupt-parent",
507 fdt_get_phandle(fdt, lpc_off))));
509 /* This is needed by Linux */
510 _FDT((fdt_setprop_string(fdt, node, "device_type", "serial")));
513 static void pnv_dt_ipmi_bt(ISADevice *d, void *fdt, int lpc_off)
515 const char compatible[] = "bt\0ipmi-bt";
516 uint32_t io_base;
517 uint32_t io_regs[] = {
518 cpu_to_be32(1),
519 0, /* 'io_base' retrieved from the 'ioport' property of 'isa-ipmi-bt' */
520 cpu_to_be32(3)
522 uint32_t irq;
523 char *name;
524 int node;
526 io_base = object_property_get_int(OBJECT(d), "ioport", &error_fatal);
527 io_regs[1] = cpu_to_be32(io_base);
529 irq = object_property_get_int(OBJECT(d), "irq", &error_fatal);
531 name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
532 node = fdt_add_subnode(fdt, lpc_off, name);
533 _FDT(node);
534 g_free(name);
536 _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
537 _FDT((fdt_setprop(fdt, node, "compatible", compatible,
538 sizeof(compatible))));
540 /* Mark it as reserved to avoid Linux trying to claim it */
541 _FDT((fdt_setprop_string(fdt, node, "status", "reserved")));
542 _FDT((fdt_setprop_cell(fdt, node, "interrupts", irq)));
543 _FDT((fdt_setprop_cell(fdt, node, "interrupt-parent",
544 fdt_get_phandle(fdt, lpc_off))));
547 typedef struct ForeachPopulateArgs {
548 void *fdt;
549 int offset;
550 } ForeachPopulateArgs;
552 static int pnv_dt_isa_device(DeviceState *dev, void *opaque)
554 ForeachPopulateArgs *args = opaque;
555 ISADevice *d = ISA_DEVICE(dev);
557 if (object_dynamic_cast(OBJECT(dev), TYPE_MC146818_RTC)) {
558 pnv_dt_rtc(d, args->fdt, args->offset);
559 } else if (object_dynamic_cast(OBJECT(dev), TYPE_ISA_SERIAL)) {
560 pnv_dt_serial(d, args->fdt, args->offset);
561 } else if (object_dynamic_cast(OBJECT(dev), "isa-ipmi-bt")) {
562 pnv_dt_ipmi_bt(d, args->fdt, args->offset);
563 } else {
564 error_report("unknown isa device %s@i%x", qdev_fw_name(dev),
565 d->ioport_id);
568 return 0;
572 * The default LPC bus of a multichip system is on chip 0. It's
573 * recognized by the firmware (skiboot) using a "primary" property.
575 static void pnv_dt_isa(PnvMachineState *pnv, void *fdt)
577 int isa_offset = fdt_path_offset(fdt, pnv->chips[0]->dt_isa_nodename);
578 ForeachPopulateArgs args = {
579 .fdt = fdt,
580 .offset = isa_offset,
582 uint32_t phandle;
584 _FDT((fdt_setprop(fdt, isa_offset, "primary", NULL, 0)));
586 phandle = qemu_fdt_alloc_phandle(fdt);
587 assert(phandle > 0);
588 _FDT((fdt_setprop_cell(fdt, isa_offset, "phandle", phandle)));
591 * ISA devices are not necessarily parented to the ISA bus so we
592 * can not use object_child_foreach()
594 qbus_walk_children(BUS(pnv->isa_bus), pnv_dt_isa_device, NULL, NULL, NULL,
595 &args);
598 static void pnv_dt_power_mgt(PnvMachineState *pnv, void *fdt)
600 int off;
602 off = fdt_add_subnode(fdt, 0, "ibm,opal");
603 off = fdt_add_subnode(fdt, off, "power-mgt");
605 _FDT(fdt_setprop_cell(fdt, off, "ibm,enabled-stop-levels", 0xc0000000));
608 static void *pnv_dt_create(MachineState *machine)
610 PnvMachineClass *pmc = PNV_MACHINE_GET_CLASS(machine);
611 PnvMachineState *pnv = PNV_MACHINE(machine);
612 void *fdt;
613 char *buf;
614 int off;
615 int i;
617 fdt = g_malloc0(FDT_MAX_SIZE);
618 _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE)));
620 /* /qemu node */
621 _FDT((fdt_add_subnode(fdt, 0, "qemu")));
623 /* Root node */
624 _FDT((fdt_setprop_cell(fdt, 0, "#address-cells", 0x2)));
625 _FDT((fdt_setprop_cell(fdt, 0, "#size-cells", 0x2)));
626 _FDT((fdt_setprop_string(fdt, 0, "model",
627 "IBM PowerNV (emulated by qemu)")));
628 _FDT((fdt_setprop(fdt, 0, "compatible", pmc->compat, pmc->compat_size)));
630 buf = qemu_uuid_unparse_strdup(&qemu_uuid);
631 _FDT((fdt_setprop_string(fdt, 0, "vm,uuid", buf)));
632 if (qemu_uuid_set) {
633 _FDT((fdt_setprop_string(fdt, 0, "system-id", buf)));
635 g_free(buf);
637 off = fdt_add_subnode(fdt, 0, "chosen");
638 if (machine->kernel_cmdline) {
639 _FDT((fdt_setprop_string(fdt, off, "bootargs",
640 machine->kernel_cmdline)));
643 if (pnv->initrd_size) {
644 uint32_t start_prop = cpu_to_be32(pnv->initrd_base);
645 uint32_t end_prop = cpu_to_be32(pnv->initrd_base + pnv->initrd_size);
647 _FDT((fdt_setprop(fdt, off, "linux,initrd-start",
648 &start_prop, sizeof(start_prop))));
649 _FDT((fdt_setprop(fdt, off, "linux,initrd-end",
650 &end_prop, sizeof(end_prop))));
653 /* Populate device tree for each chip */
654 for (i = 0; i < pnv->num_chips; i++) {
655 PNV_CHIP_GET_CLASS(pnv->chips[i])->dt_populate(pnv->chips[i], fdt);
658 /* Populate ISA devices on chip 0 */
659 pnv_dt_isa(pnv, fdt);
661 if (pnv->bmc) {
662 pnv_dt_bmc_sensors(pnv->bmc, fdt);
665 /* Create an extra node for power management on machines that support it */
666 if (pmc->dt_power_mgt) {
667 pmc->dt_power_mgt(pnv, fdt);
670 return fdt;
673 static void pnv_powerdown_notify(Notifier *n, void *opaque)
675 PnvMachineState *pnv = container_of(n, PnvMachineState, powerdown_notifier);
677 if (pnv->bmc) {
678 pnv_bmc_powerdown(pnv->bmc);
682 static void pnv_reset(MachineState *machine, ShutdownCause reason)
684 PnvMachineState *pnv = PNV_MACHINE(machine);
685 IPMIBmc *bmc;
686 void *fdt;
688 qemu_devices_reset(reason);
691 * The machine should provide by default an internal BMC simulator.
692 * If not, try to use the BMC device that was provided on the command
693 * line.
695 bmc = pnv_bmc_find(&error_fatal);
696 if (!pnv->bmc) {
697 if (!bmc) {
698 if (!qtest_enabled()) {
699 warn_report("machine has no BMC device. Use '-device "
700 "ipmi-bmc-sim,id=bmc0 -device isa-ipmi-bt,bmc=bmc0,irq=10' "
701 "to define one");
703 } else {
704 pnv_bmc_set_pnor(bmc, pnv->pnor);
705 pnv->bmc = bmc;
709 fdt = pnv_dt_create(machine);
711 /* Pack resulting tree */
712 _FDT((fdt_pack(fdt)));
714 qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
715 cpu_physical_memory_write(PNV_FDT_ADDR, fdt, fdt_totalsize(fdt));
718 * Set machine->fdt for 'dumpdtb' QMP/HMP command. Free
719 * the existing machine->fdt to avoid leaking it during
720 * a reset.
722 g_free(machine->fdt);
723 machine->fdt = fdt;
726 static ISABus *pnv_chip_power8_isa_create(PnvChip *chip, Error **errp)
728 Pnv8Chip *chip8 = PNV8_CHIP(chip);
729 qemu_irq irq = qdev_get_gpio_in(DEVICE(&chip8->psi), PSIHB_IRQ_EXTERNAL);
731 qdev_connect_gpio_out(DEVICE(&chip8->lpc), 0, irq);
732 return pnv_lpc_isa_create(&chip8->lpc, true, errp);
735 static ISABus *pnv_chip_power8nvl_isa_create(PnvChip *chip, Error **errp)
737 Pnv8Chip *chip8 = PNV8_CHIP(chip);
738 qemu_irq irq = qdev_get_gpio_in(DEVICE(&chip8->psi), PSIHB_IRQ_LPC_I2C);
740 qdev_connect_gpio_out(DEVICE(&chip8->lpc), 0, irq);
741 return pnv_lpc_isa_create(&chip8->lpc, false, errp);
744 static ISABus *pnv_chip_power9_isa_create(PnvChip *chip, Error **errp)
746 Pnv9Chip *chip9 = PNV9_CHIP(chip);
747 qemu_irq irq = qdev_get_gpio_in(DEVICE(&chip9->psi), PSIHB9_IRQ_LPCHC);
749 qdev_connect_gpio_out(DEVICE(&chip9->lpc), 0, irq);
750 return pnv_lpc_isa_create(&chip9->lpc, false, errp);
753 static ISABus *pnv_chip_power10_isa_create(PnvChip *chip, Error **errp)
755 Pnv10Chip *chip10 = PNV10_CHIP(chip);
756 qemu_irq irq = qdev_get_gpio_in(DEVICE(&chip10->psi), PSIHB9_IRQ_LPCHC);
758 qdev_connect_gpio_out(DEVICE(&chip10->lpc), 0, irq);
759 return pnv_lpc_isa_create(&chip10->lpc, false, errp);
762 static ISABus *pnv_isa_create(PnvChip *chip, Error **errp)
764 return PNV_CHIP_GET_CLASS(chip)->isa_create(chip, errp);
767 static void pnv_chip_power8_pic_print_info(PnvChip *chip, Monitor *mon)
769 Pnv8Chip *chip8 = PNV8_CHIP(chip);
770 int i;
772 ics_pic_print_info(&chip8->psi.ics, mon);
774 for (i = 0; i < chip8->num_phbs; i++) {
775 PnvPHB *phb = chip8->phbs[i];
776 PnvPHB3 *phb3 = PNV_PHB3(phb->backend);
778 pnv_phb3_msi_pic_print_info(&phb3->msis, mon);
779 ics_pic_print_info(&phb3->lsis, mon);
783 static int pnv_chip_power9_pic_print_info_child(Object *child, void *opaque)
785 Monitor *mon = opaque;
786 PnvPHB *phb = (PnvPHB *) object_dynamic_cast(child, TYPE_PNV_PHB);
788 if (!phb) {
789 return 0;
792 pnv_phb4_pic_print_info(PNV_PHB4(phb->backend), mon);
794 return 0;
797 static void pnv_chip_power9_pic_print_info(PnvChip *chip, Monitor *mon)
799 Pnv9Chip *chip9 = PNV9_CHIP(chip);
801 pnv_xive_pic_print_info(&chip9->xive, mon);
802 pnv_psi_pic_print_info(&chip9->psi, mon);
804 object_child_foreach_recursive(OBJECT(chip),
805 pnv_chip_power9_pic_print_info_child, mon);
808 static uint64_t pnv_chip_power8_xscom_core_base(PnvChip *chip,
809 uint32_t core_id)
811 return PNV_XSCOM_EX_BASE(core_id);
814 static uint64_t pnv_chip_power9_xscom_core_base(PnvChip *chip,
815 uint32_t core_id)
817 return PNV9_XSCOM_EC_BASE(core_id);
820 static uint64_t pnv_chip_power10_xscom_core_base(PnvChip *chip,
821 uint32_t core_id)
823 return PNV10_XSCOM_EC_BASE(core_id);
826 static bool pnv_match_cpu(const char *default_type, const char *cpu_type)
828 PowerPCCPUClass *ppc_default =
829 POWERPC_CPU_CLASS(object_class_by_name(default_type));
830 PowerPCCPUClass *ppc =
831 POWERPC_CPU_CLASS(object_class_by_name(cpu_type));
833 return ppc_default->pvr_match(ppc_default, ppc->pvr, false);
836 static void pnv_ipmi_bt_init(ISABus *bus, IPMIBmc *bmc, uint32_t irq)
838 ISADevice *dev = isa_new("isa-ipmi-bt");
840 object_property_set_link(OBJECT(dev), "bmc", OBJECT(bmc), &error_fatal);
841 object_property_set_int(OBJECT(dev), "irq", irq, &error_fatal);
842 isa_realize_and_unref(dev, bus, &error_fatal);
845 static void pnv_chip_power10_pic_print_info(PnvChip *chip, Monitor *mon)
847 Pnv10Chip *chip10 = PNV10_CHIP(chip);
849 pnv_xive2_pic_print_info(&chip10->xive, mon);
850 pnv_psi_pic_print_info(&chip10->psi, mon);
852 object_child_foreach_recursive(OBJECT(chip),
853 pnv_chip_power9_pic_print_info_child, mon);
856 /* Always give the first 1GB to chip 0 else we won't boot */
857 static uint64_t pnv_chip_get_ram_size(PnvMachineState *pnv, int chip_id)
859 MachineState *machine = MACHINE(pnv);
860 uint64_t ram_per_chip;
862 assert(machine->ram_size >= 1 * GiB);
864 ram_per_chip = machine->ram_size / pnv->num_chips;
865 if (ram_per_chip >= 1 * GiB) {
866 return QEMU_ALIGN_DOWN(ram_per_chip, 1 * MiB);
869 assert(pnv->num_chips > 1);
871 ram_per_chip = (machine->ram_size - 1 * GiB) / (pnv->num_chips - 1);
872 return chip_id == 0 ? 1 * GiB : QEMU_ALIGN_DOWN(ram_per_chip, 1 * MiB);
875 static void pnv_init(MachineState *machine)
877 const char *bios_name = machine->firmware ?: FW_FILE_NAME;
878 PnvMachineState *pnv = PNV_MACHINE(machine);
879 MachineClass *mc = MACHINE_GET_CLASS(machine);
880 PnvMachineClass *pmc = PNV_MACHINE_GET_CLASS(machine);
881 char *fw_filename;
882 long fw_size;
883 uint64_t chip_ram_start = 0;
884 int i;
885 char *chip_typename;
886 DriveInfo *pnor = drive_get(IF_MTD, 0, 0);
887 DeviceState *dev;
889 if (kvm_enabled()) {
890 error_report("machine %s does not support the KVM accelerator",
891 mc->name);
892 exit(EXIT_FAILURE);
895 /* allocate RAM */
896 if (machine->ram_size < mc->default_ram_size) {
897 char *sz = size_to_str(mc->default_ram_size);
898 error_report("Invalid RAM size, should be bigger than %s", sz);
899 g_free(sz);
900 exit(EXIT_FAILURE);
902 memory_region_add_subregion(get_system_memory(), 0, machine->ram);
905 * Create our simple PNOR device
907 dev = qdev_new(TYPE_PNV_PNOR);
908 if (pnor) {
909 qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(pnor));
911 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
912 pnv->pnor = PNV_PNOR(dev);
914 /* load skiboot firmware */
915 fw_filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
916 if (!fw_filename) {
917 error_report("Could not find OPAL firmware '%s'", bios_name);
918 exit(1);
921 fw_size = load_image_targphys(fw_filename, pnv->fw_load_addr, FW_MAX_SIZE);
922 if (fw_size < 0) {
923 error_report("Could not load OPAL firmware '%s'", fw_filename);
924 exit(1);
926 g_free(fw_filename);
928 /* load kernel */
929 if (machine->kernel_filename) {
930 long kernel_size;
932 kernel_size = load_image_targphys(machine->kernel_filename,
933 KERNEL_LOAD_ADDR, KERNEL_MAX_SIZE);
934 if (kernel_size < 0) {
935 error_report("Could not load kernel '%s'",
936 machine->kernel_filename);
937 exit(1);
941 /* load initrd */
942 if (machine->initrd_filename) {
943 pnv->initrd_base = INITRD_LOAD_ADDR;
944 pnv->initrd_size = load_image_targphys(machine->initrd_filename,
945 pnv->initrd_base, INITRD_MAX_SIZE);
946 if (pnv->initrd_size < 0) {
947 error_report("Could not load initial ram disk '%s'",
948 machine->initrd_filename);
949 exit(1);
953 /* MSIs are supported on this platform */
954 msi_nonbroken = true;
957 * Check compatibility of the specified CPU with the machine
958 * default.
960 if (!pnv_match_cpu(mc->default_cpu_type, machine->cpu_type)) {
961 error_report("invalid CPU model '%s' for %s machine",
962 machine->cpu_type, mc->name);
963 exit(1);
966 /* Create the processor chips */
967 i = strlen(machine->cpu_type) - strlen(POWERPC_CPU_TYPE_SUFFIX);
968 chip_typename = g_strdup_printf(PNV_CHIP_TYPE_NAME("%.*s"),
969 i, machine->cpu_type);
970 if (!object_class_by_name(chip_typename)) {
971 error_report("invalid chip model '%.*s' for %s machine",
972 i, machine->cpu_type, mc->name);
973 exit(1);
976 pnv->num_chips =
977 machine->smp.max_cpus / (machine->smp.cores * machine->smp.threads);
979 if (machine->smp.threads > 8) {
980 error_report("Cannot support more than 8 threads/core "
981 "on a powernv machine");
982 exit(1);
984 if (!is_power_of_2(machine->smp.threads)) {
985 error_report("Cannot support %d threads/core on a powernv"
986 "machine because it must be a power of 2",
987 machine->smp.threads);
988 exit(1);
991 * TODO: should we decide on how many chips we can create based
992 * on #cores and Venice vs. Murano vs. Naples chip type etc...,
994 if (!is_power_of_2(pnv->num_chips) || pnv->num_chips > 16) {
995 error_report("invalid number of chips: '%d'", pnv->num_chips);
996 error_printf(
997 "Try '-smp sockets=N'. Valid values are : 1, 2, 4, 8 and 16.\n");
998 exit(1);
1001 pnv->chips = g_new0(PnvChip *, pnv->num_chips);
1002 for (i = 0; i < pnv->num_chips; i++) {
1003 char chip_name[32];
1004 Object *chip = OBJECT(qdev_new(chip_typename));
1005 uint64_t chip_ram_size = pnv_chip_get_ram_size(pnv, i);
1007 pnv->chips[i] = PNV_CHIP(chip);
1009 /* Distribute RAM among the chips */
1010 object_property_set_int(chip, "ram-start", chip_ram_start,
1011 &error_fatal);
1012 object_property_set_int(chip, "ram-size", chip_ram_size,
1013 &error_fatal);
1014 chip_ram_start += chip_ram_size;
1016 snprintf(chip_name, sizeof(chip_name), "chip[%d]", i);
1017 object_property_add_child(OBJECT(pnv), chip_name, chip);
1018 object_property_set_int(chip, "chip-id", i, &error_fatal);
1019 object_property_set_int(chip, "nr-cores", machine->smp.cores,
1020 &error_fatal);
1021 object_property_set_int(chip, "nr-threads", machine->smp.threads,
1022 &error_fatal);
1024 * The POWER8 machine use the XICS interrupt interface.
1025 * Propagate the XICS fabric to the chip and its controllers.
1027 if (object_dynamic_cast(OBJECT(pnv), TYPE_XICS_FABRIC)) {
1028 object_property_set_link(chip, "xics", OBJECT(pnv), &error_abort);
1030 if (object_dynamic_cast(OBJECT(pnv), TYPE_XIVE_FABRIC)) {
1031 object_property_set_link(chip, "xive-fabric", OBJECT(pnv),
1032 &error_abort);
1034 sysbus_realize_and_unref(SYS_BUS_DEVICE(chip), &error_fatal);
1036 g_free(chip_typename);
1038 /* Instantiate ISA bus on chip 0 */
1039 pnv->isa_bus = pnv_isa_create(pnv->chips[0], &error_fatal);
1041 /* Create serial port */
1042 serial_hds_isa_init(pnv->isa_bus, 0, MAX_ISA_SERIAL_PORTS);
1044 /* Create an RTC ISA device too */
1045 mc146818_rtc_init(pnv->isa_bus, 2000, NULL);
1048 * Create the machine BMC simulator and the IPMI BT device for
1049 * communication with the BMC
1051 if (defaults_enabled()) {
1052 pnv->bmc = pnv_bmc_create(pnv->pnor);
1053 pnv_ipmi_bt_init(pnv->isa_bus, pnv->bmc, 10);
1057 * The PNOR is mapped on the LPC FW address space by the BMC.
1058 * Since we can not reach the remote BMC machine with LPC memops,
1059 * map it always for now.
1061 memory_region_add_subregion(pnv->chips[0]->fw_mr, PNOR_SPI_OFFSET,
1062 &pnv->pnor->mmio);
1065 * OpenPOWER systems use a IPMI SEL Event message to notify the
1066 * host to powerdown
1068 pnv->powerdown_notifier.notify = pnv_powerdown_notify;
1069 qemu_register_powerdown_notifier(&pnv->powerdown_notifier);
1072 * Create/Connect any machine-specific I2C devices
1074 if (pmc->i2c_init) {
1075 pmc->i2c_init(pnv);
1080 * 0:21 Reserved - Read as zeros
1081 * 22:24 Chip ID
1082 * 25:28 Core number
1083 * 29:31 Thread ID
1085 static uint32_t pnv_chip_pir_p8(PnvChip *chip, uint32_t core_id,
1086 uint32_t thread_id)
1088 return (chip->chip_id << 7) | (core_id << 3) | thread_id;
1091 static void pnv_chip_power8_intc_create(PnvChip *chip, PowerPCCPU *cpu,
1092 Error **errp)
1094 Pnv8Chip *chip8 = PNV8_CHIP(chip);
1095 Error *local_err = NULL;
1096 Object *obj;
1097 PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1099 obj = icp_create(OBJECT(cpu), TYPE_PNV_ICP, chip8->xics, &local_err);
1100 if (local_err) {
1101 error_propagate(errp, local_err);
1102 return;
1105 pnv_cpu->intc = obj;
1109 static void pnv_chip_power8_intc_reset(PnvChip *chip, PowerPCCPU *cpu)
1111 PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1113 icp_reset(ICP(pnv_cpu->intc));
1116 static void pnv_chip_power8_intc_destroy(PnvChip *chip, PowerPCCPU *cpu)
1118 PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1120 icp_destroy(ICP(pnv_cpu->intc));
1121 pnv_cpu->intc = NULL;
1124 static void pnv_chip_power8_intc_print_info(PnvChip *chip, PowerPCCPU *cpu,
1125 Monitor *mon)
1127 icp_pic_print_info(ICP(pnv_cpu_state(cpu)->intc), mon);
1131 * 0:48 Reserved - Read as zeroes
1132 * 49:52 Node ID
1133 * 53:55 Chip ID
1134 * 56 Reserved - Read as zero
1135 * 57:61 Core number
1136 * 62:63 Thread ID
1138 * We only care about the lower bits. uint32_t is fine for the moment.
1140 static uint32_t pnv_chip_pir_p9(PnvChip *chip, uint32_t core_id,
1141 uint32_t thread_id)
1143 if (chip->nr_threads == 8) {
1144 return (chip->chip_id << 8) | ((thread_id & 1) << 2) | (core_id << 3) |
1145 (thread_id >> 1);
1146 } else {
1147 return (chip->chip_id << 8) | (core_id << 2) | thread_id;
1152 * 0:48 Reserved - Read as zeroes
1153 * 49:52 Node ID
1154 * 53:55 Chip ID
1155 * 56 Reserved - Read as zero
1156 * 57:59 Quad ID
1157 * 60 Core Chiplet Pair ID
1158 * 61:63 Thread/Core Chiplet ID t0-t2
1160 * We only care about the lower bits. uint32_t is fine for the moment.
1162 static uint32_t pnv_chip_pir_p10(PnvChip *chip, uint32_t core_id,
1163 uint32_t thread_id)
1165 if (chip->nr_threads == 8) {
1166 return (chip->chip_id << 8) | ((core_id / 4) << 4) |
1167 ((core_id % 2) << 3) | thread_id;
1168 } else {
1169 return (chip->chip_id << 8) | (core_id << 2) | thread_id;
1173 static void pnv_chip_power9_intc_create(PnvChip *chip, PowerPCCPU *cpu,
1174 Error **errp)
1176 Pnv9Chip *chip9 = PNV9_CHIP(chip);
1177 Error *local_err = NULL;
1178 Object *obj;
1179 PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1182 * The core creates its interrupt presenter but the XIVE interrupt
1183 * controller object is initialized afterwards. Hopefully, it's
1184 * only used at runtime.
1186 obj = xive_tctx_create(OBJECT(cpu), XIVE_PRESENTER(&chip9->xive),
1187 &local_err);
1188 if (local_err) {
1189 error_propagate(errp, local_err);
1190 return;
1193 pnv_cpu->intc = obj;
1196 static void pnv_chip_power9_intc_reset(PnvChip *chip, PowerPCCPU *cpu)
1198 PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1200 xive_tctx_reset(XIVE_TCTX(pnv_cpu->intc));
1203 static void pnv_chip_power9_intc_destroy(PnvChip *chip, PowerPCCPU *cpu)
1205 PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1207 xive_tctx_destroy(XIVE_TCTX(pnv_cpu->intc));
1208 pnv_cpu->intc = NULL;
1211 static void pnv_chip_power9_intc_print_info(PnvChip *chip, PowerPCCPU *cpu,
1212 Monitor *mon)
1214 xive_tctx_pic_print_info(XIVE_TCTX(pnv_cpu_state(cpu)->intc), mon);
1217 static void pnv_chip_power10_intc_create(PnvChip *chip, PowerPCCPU *cpu,
1218 Error **errp)
1220 Pnv10Chip *chip10 = PNV10_CHIP(chip);
1221 Error *local_err = NULL;
1222 Object *obj;
1223 PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1226 * The core creates its interrupt presenter but the XIVE2 interrupt
1227 * controller object is initialized afterwards. Hopefully, it's
1228 * only used at runtime.
1230 obj = xive_tctx_create(OBJECT(cpu), XIVE_PRESENTER(&chip10->xive),
1231 &local_err);
1232 if (local_err) {
1233 error_propagate(errp, local_err);
1234 return;
1237 pnv_cpu->intc = obj;
1240 static void pnv_chip_power10_intc_reset(PnvChip *chip, PowerPCCPU *cpu)
1242 PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1244 xive_tctx_reset(XIVE_TCTX(pnv_cpu->intc));
1247 static void pnv_chip_power10_intc_destroy(PnvChip *chip, PowerPCCPU *cpu)
1249 PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1251 xive_tctx_destroy(XIVE_TCTX(pnv_cpu->intc));
1252 pnv_cpu->intc = NULL;
1255 static void pnv_chip_power10_intc_print_info(PnvChip *chip, PowerPCCPU *cpu,
1256 Monitor *mon)
1258 xive_tctx_pic_print_info(XIVE_TCTX(pnv_cpu_state(cpu)->intc), mon);
1262 * Allowed core identifiers on a POWER8 Processor Chip :
1264 * <EX0 reserved>
1265 * EX1 - Venice only
1266 * EX2 - Venice only
1267 * EX3 - Venice only
1268 * EX4
1269 * EX5
1270 * EX6
1271 * <EX7,8 reserved> <reserved>
1272 * EX9 - Venice only
1273 * EX10 - Venice only
1274 * EX11 - Venice only
1275 * EX12
1276 * EX13
1277 * EX14
1278 * <EX15 reserved>
1280 #define POWER8E_CORE_MASK (0x7070ull)
1281 #define POWER8_CORE_MASK (0x7e7eull)
1284 * POWER9 has 24 cores, ids starting at 0x0
1286 #define POWER9_CORE_MASK (0xffffffffffffffull)
1289 #define POWER10_CORE_MASK (0xffffffffffffffull)
1291 static void pnv_chip_power8_instance_init(Object *obj)
1293 Pnv8Chip *chip8 = PNV8_CHIP(obj);
1294 PnvChipClass *pcc = PNV_CHIP_GET_CLASS(obj);
1295 int i;
1297 object_property_add_link(obj, "xics", TYPE_XICS_FABRIC,
1298 (Object **)&chip8->xics,
1299 object_property_allow_set_link,
1300 OBJ_PROP_LINK_STRONG);
1302 object_initialize_child(obj, "psi", &chip8->psi, TYPE_PNV8_PSI);
1304 object_initialize_child(obj, "lpc", &chip8->lpc, TYPE_PNV8_LPC);
1306 object_initialize_child(obj, "occ", &chip8->occ, TYPE_PNV8_OCC);
1308 object_initialize_child(obj, "homer", &chip8->homer, TYPE_PNV8_HOMER);
1310 if (defaults_enabled()) {
1311 chip8->num_phbs = pcc->num_phbs;
1313 for (i = 0; i < chip8->num_phbs; i++) {
1314 Object *phb = object_new(TYPE_PNV_PHB);
1317 * We need the chip to parent the PHB to allow the DT
1318 * to build correctly (via pnv_xscom_dt()).
1320 * TODO: the PHB should be parented by a PEC device that, at
1321 * this moment, is not modelled powernv8/phb3.
1323 object_property_add_child(obj, "phb[*]", phb);
1324 chip8->phbs[i] = PNV_PHB(phb);
1330 static void pnv_chip_icp_realize(Pnv8Chip *chip8, Error **errp)
1332 PnvChip *chip = PNV_CHIP(chip8);
1333 PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
1334 int i, j;
1335 char *name;
1337 name = g_strdup_printf("icp-%x", chip->chip_id);
1338 memory_region_init(&chip8->icp_mmio, OBJECT(chip), name, PNV_ICP_SIZE);
1339 g_free(name);
1340 memory_region_add_subregion(get_system_memory(), PNV_ICP_BASE(chip),
1341 &chip8->icp_mmio);
1343 /* Map the ICP registers for each thread */
1344 for (i = 0; i < chip->nr_cores; i++) {
1345 PnvCore *pnv_core = chip->cores[i];
1346 int core_hwid = CPU_CORE(pnv_core)->core_id;
1348 for (j = 0; j < CPU_CORE(pnv_core)->nr_threads; j++) {
1349 uint32_t pir = pcc->chip_pir(chip, core_hwid, j);
1350 PnvICPState *icp = PNV_ICP(xics_icp_get(chip8->xics, pir));
1352 memory_region_add_subregion(&chip8->icp_mmio, pir << 12,
1353 &icp->mmio);
1358 static void pnv_chip_power8_realize(DeviceState *dev, Error **errp)
1360 PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev);
1361 PnvChip *chip = PNV_CHIP(dev);
1362 Pnv8Chip *chip8 = PNV8_CHIP(dev);
1363 Pnv8Psi *psi8 = &chip8->psi;
1364 Error *local_err = NULL;
1365 int i;
1367 assert(chip8->xics);
1369 /* XSCOM bridge is first */
1370 pnv_xscom_init(chip, PNV_XSCOM_SIZE, PNV_XSCOM_BASE(chip));
1372 pcc->parent_realize(dev, &local_err);
1373 if (local_err) {
1374 error_propagate(errp, local_err);
1375 return;
1378 /* Processor Service Interface (PSI) Host Bridge */
1379 object_property_set_int(OBJECT(psi8), "bar", PNV_PSIHB_BASE(chip),
1380 &error_fatal);
1381 object_property_set_link(OBJECT(psi8), ICS_PROP_XICS,
1382 OBJECT(chip8->xics), &error_abort);
1383 if (!qdev_realize(DEVICE(psi8), NULL, errp)) {
1384 return;
1386 pnv_xscom_add_subregion(chip, PNV_XSCOM_PSIHB_BASE,
1387 &PNV_PSI(psi8)->xscom_regs);
1389 /* Create LPC controller */
1390 qdev_realize(DEVICE(&chip8->lpc), NULL, &error_fatal);
1391 pnv_xscom_add_subregion(chip, PNV_XSCOM_LPC_BASE, &chip8->lpc.xscom_regs);
1393 chip->fw_mr = &chip8->lpc.isa_fw;
1394 chip->dt_isa_nodename = g_strdup_printf("/xscom@%" PRIx64 "/isa@%x",
1395 (uint64_t) PNV_XSCOM_BASE(chip),
1396 PNV_XSCOM_LPC_BASE);
1399 * Interrupt Management Area. This is the memory region holding
1400 * all the Interrupt Control Presenter (ICP) registers
1402 pnv_chip_icp_realize(chip8, &local_err);
1403 if (local_err) {
1404 error_propagate(errp, local_err);
1405 return;
1408 /* Create the simplified OCC model */
1409 if (!qdev_realize(DEVICE(&chip8->occ), NULL, errp)) {
1410 return;
1412 pnv_xscom_add_subregion(chip, PNV_XSCOM_OCC_BASE, &chip8->occ.xscom_regs);
1413 qdev_connect_gpio_out(DEVICE(&chip8->occ), 0,
1414 qdev_get_gpio_in(DEVICE(psi8), PSIHB_IRQ_OCC));
1416 /* OCC SRAM model */
1417 memory_region_add_subregion(get_system_memory(), PNV_OCC_SENSOR_BASE(chip),
1418 &chip8->occ.sram_regs);
1420 /* HOMER */
1421 object_property_set_link(OBJECT(&chip8->homer), "chip", OBJECT(chip),
1422 &error_abort);
1423 if (!qdev_realize(DEVICE(&chip8->homer), NULL, errp)) {
1424 return;
1426 /* Homer Xscom region */
1427 pnv_xscom_add_subregion(chip, PNV_XSCOM_PBA_BASE, &chip8->homer.pba_regs);
1429 /* Homer mmio region */
1430 memory_region_add_subregion(get_system_memory(), PNV_HOMER_BASE(chip),
1431 &chip8->homer.regs);
1433 /* PHB controllers */
1434 for (i = 0; i < chip8->num_phbs; i++) {
1435 PnvPHB *phb = chip8->phbs[i];
1437 object_property_set_int(OBJECT(phb), "index", i, &error_fatal);
1438 object_property_set_int(OBJECT(phb), "chip-id", chip->chip_id,
1439 &error_fatal);
1440 object_property_set_link(OBJECT(phb), "chip", OBJECT(chip),
1441 &error_fatal);
1442 if (!sysbus_realize(SYS_BUS_DEVICE(phb), errp)) {
1443 return;
1448 static uint32_t pnv_chip_power8_xscom_pcba(PnvChip *chip, uint64_t addr)
1450 addr &= (PNV_XSCOM_SIZE - 1);
1451 return ((addr >> 4) & ~0xfull) | ((addr >> 3) & 0xf);
1454 static void pnv_chip_power8e_class_init(ObjectClass *klass, void *data)
1456 DeviceClass *dc = DEVICE_CLASS(klass);
1457 PnvChipClass *k = PNV_CHIP_CLASS(klass);
1459 k->chip_cfam_id = 0x221ef04980000000ull; /* P8 Murano DD2.1 */
1460 k->cores_mask = POWER8E_CORE_MASK;
1461 k->num_phbs = 3;
1462 k->chip_pir = pnv_chip_pir_p8;
1463 k->intc_create = pnv_chip_power8_intc_create;
1464 k->intc_reset = pnv_chip_power8_intc_reset;
1465 k->intc_destroy = pnv_chip_power8_intc_destroy;
1466 k->intc_print_info = pnv_chip_power8_intc_print_info;
1467 k->isa_create = pnv_chip_power8_isa_create;
1468 k->dt_populate = pnv_chip_power8_dt_populate;
1469 k->pic_print_info = pnv_chip_power8_pic_print_info;
1470 k->xscom_core_base = pnv_chip_power8_xscom_core_base;
1471 k->xscom_pcba = pnv_chip_power8_xscom_pcba;
1472 dc->desc = "PowerNV Chip POWER8E";
1474 device_class_set_parent_realize(dc, pnv_chip_power8_realize,
1475 &k->parent_realize);
1478 static void pnv_chip_power8_class_init(ObjectClass *klass, void *data)
1480 DeviceClass *dc = DEVICE_CLASS(klass);
1481 PnvChipClass *k = PNV_CHIP_CLASS(klass);
1483 k->chip_cfam_id = 0x220ea04980000000ull; /* P8 Venice DD2.0 */
1484 k->cores_mask = POWER8_CORE_MASK;
1485 k->num_phbs = 3;
1486 k->chip_pir = pnv_chip_pir_p8;
1487 k->intc_create = pnv_chip_power8_intc_create;
1488 k->intc_reset = pnv_chip_power8_intc_reset;
1489 k->intc_destroy = pnv_chip_power8_intc_destroy;
1490 k->intc_print_info = pnv_chip_power8_intc_print_info;
1491 k->isa_create = pnv_chip_power8_isa_create;
1492 k->dt_populate = pnv_chip_power8_dt_populate;
1493 k->pic_print_info = pnv_chip_power8_pic_print_info;
1494 k->xscom_core_base = pnv_chip_power8_xscom_core_base;
1495 k->xscom_pcba = pnv_chip_power8_xscom_pcba;
1496 dc->desc = "PowerNV Chip POWER8";
1498 device_class_set_parent_realize(dc, pnv_chip_power8_realize,
1499 &k->parent_realize);
1502 static void pnv_chip_power8nvl_class_init(ObjectClass *klass, void *data)
1504 DeviceClass *dc = DEVICE_CLASS(klass);
1505 PnvChipClass *k = PNV_CHIP_CLASS(klass);
1507 k->chip_cfam_id = 0x120d304980000000ull; /* P8 Naples DD1.0 */
1508 k->cores_mask = POWER8_CORE_MASK;
1509 k->num_phbs = 4;
1510 k->chip_pir = pnv_chip_pir_p8;
1511 k->intc_create = pnv_chip_power8_intc_create;
1512 k->intc_reset = pnv_chip_power8_intc_reset;
1513 k->intc_destroy = pnv_chip_power8_intc_destroy;
1514 k->intc_print_info = pnv_chip_power8_intc_print_info;
1515 k->isa_create = pnv_chip_power8nvl_isa_create;
1516 k->dt_populate = pnv_chip_power8_dt_populate;
1517 k->pic_print_info = pnv_chip_power8_pic_print_info;
1518 k->xscom_core_base = pnv_chip_power8_xscom_core_base;
1519 k->xscom_pcba = pnv_chip_power8_xscom_pcba;
1520 dc->desc = "PowerNV Chip POWER8NVL";
1522 device_class_set_parent_realize(dc, pnv_chip_power8_realize,
1523 &k->parent_realize);
1526 static void pnv_chip_power9_instance_init(Object *obj)
1528 PnvChip *chip = PNV_CHIP(obj);
1529 Pnv9Chip *chip9 = PNV9_CHIP(obj);
1530 PnvChipClass *pcc = PNV_CHIP_GET_CLASS(obj);
1531 int i;
1533 object_initialize_child(obj, "xive", &chip9->xive, TYPE_PNV_XIVE);
1534 object_property_add_alias(obj, "xive-fabric", OBJECT(&chip9->xive),
1535 "xive-fabric");
1537 object_initialize_child(obj, "psi", &chip9->psi, TYPE_PNV9_PSI);
1539 object_initialize_child(obj, "lpc", &chip9->lpc, TYPE_PNV9_LPC);
1541 object_initialize_child(obj, "chiptod", &chip9->chiptod, TYPE_PNV9_CHIPTOD);
1543 object_initialize_child(obj, "occ", &chip9->occ, TYPE_PNV9_OCC);
1545 object_initialize_child(obj, "sbe", &chip9->sbe, TYPE_PNV9_SBE);
1547 object_initialize_child(obj, "homer", &chip9->homer, TYPE_PNV9_HOMER);
1549 /* Number of PECs is the chip default */
1550 chip->num_pecs = pcc->num_pecs;
1552 for (i = 0; i < chip->num_pecs; i++) {
1553 object_initialize_child(obj, "pec[*]", &chip9->pecs[i],
1554 TYPE_PNV_PHB4_PEC);
1557 for (i = 0; i < pcc->i2c_num_engines; i++) {
1558 object_initialize_child(obj, "i2c[*]", &chip9->i2c[i], TYPE_PNV_I2C);
1562 static void pnv_chip_quad_realize_one(PnvChip *chip, PnvQuad *eq,
1563 PnvCore *pnv_core,
1564 const char *type)
1566 char eq_name[32];
1567 int core_id = CPU_CORE(pnv_core)->core_id;
1569 snprintf(eq_name, sizeof(eq_name), "eq[%d]", core_id);
1570 object_initialize_child_with_props(OBJECT(chip), eq_name, eq,
1571 sizeof(*eq), type,
1572 &error_fatal, NULL);
1574 object_property_set_int(OBJECT(eq), "quad-id", core_id, &error_fatal);
1575 qdev_realize(DEVICE(eq), NULL, &error_fatal);
1578 static void pnv_chip_quad_realize(Pnv9Chip *chip9, Error **errp)
1580 PnvChip *chip = PNV_CHIP(chip9);
1581 int i;
1583 chip9->nr_quads = DIV_ROUND_UP(chip->nr_cores, 4);
1584 chip9->quads = g_new0(PnvQuad, chip9->nr_quads);
1586 for (i = 0; i < chip9->nr_quads; i++) {
1587 PnvQuad *eq = &chip9->quads[i];
1589 pnv_chip_quad_realize_one(chip, eq, chip->cores[i * 4],
1590 PNV_QUAD_TYPE_NAME("power9"));
1592 pnv_xscom_add_subregion(chip, PNV9_XSCOM_EQ_BASE(eq->quad_id),
1593 &eq->xscom_regs);
1597 static void pnv_chip_power9_pec_realize(PnvChip *chip, Error **errp)
1599 Pnv9Chip *chip9 = PNV9_CHIP(chip);
1600 int i;
1602 for (i = 0; i < chip->num_pecs; i++) {
1603 PnvPhb4PecState *pec = &chip9->pecs[i];
1604 PnvPhb4PecClass *pecc = PNV_PHB4_PEC_GET_CLASS(pec);
1605 uint32_t pec_nest_base;
1606 uint32_t pec_pci_base;
1608 object_property_set_int(OBJECT(pec), "index", i, &error_fatal);
1609 object_property_set_int(OBJECT(pec), "chip-id", chip->chip_id,
1610 &error_fatal);
1611 object_property_set_link(OBJECT(pec), "chip", OBJECT(chip),
1612 &error_fatal);
1613 if (!qdev_realize(DEVICE(pec), NULL, errp)) {
1614 return;
1617 pec_nest_base = pecc->xscom_nest_base(pec);
1618 pec_pci_base = pecc->xscom_pci_base(pec);
1620 pnv_xscom_add_subregion(chip, pec_nest_base, &pec->nest_regs_mr);
1621 pnv_xscom_add_subregion(chip, pec_pci_base, &pec->pci_regs_mr);
1625 static void pnv_chip_power9_realize(DeviceState *dev, Error **errp)
1627 PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev);
1628 Pnv9Chip *chip9 = PNV9_CHIP(dev);
1629 PnvChip *chip = PNV_CHIP(dev);
1630 Pnv9Psi *psi9 = &chip9->psi;
1631 Error *local_err = NULL;
1632 int i;
1634 /* XSCOM bridge is first */
1635 pnv_xscom_init(chip, PNV9_XSCOM_SIZE, PNV9_XSCOM_BASE(chip));
1637 pcc->parent_realize(dev, &local_err);
1638 if (local_err) {
1639 error_propagate(errp, local_err);
1640 return;
1643 pnv_chip_quad_realize(chip9, &local_err);
1644 if (local_err) {
1645 error_propagate(errp, local_err);
1646 return;
1649 /* XIVE interrupt controller (POWER9) */
1650 object_property_set_int(OBJECT(&chip9->xive), "ic-bar",
1651 PNV9_XIVE_IC_BASE(chip), &error_fatal);
1652 object_property_set_int(OBJECT(&chip9->xive), "vc-bar",
1653 PNV9_XIVE_VC_BASE(chip), &error_fatal);
1654 object_property_set_int(OBJECT(&chip9->xive), "pc-bar",
1655 PNV9_XIVE_PC_BASE(chip), &error_fatal);
1656 object_property_set_int(OBJECT(&chip9->xive), "tm-bar",
1657 PNV9_XIVE_TM_BASE(chip), &error_fatal);
1658 object_property_set_link(OBJECT(&chip9->xive), "chip", OBJECT(chip),
1659 &error_abort);
1660 if (!sysbus_realize(SYS_BUS_DEVICE(&chip9->xive), errp)) {
1661 return;
1663 pnv_xscom_add_subregion(chip, PNV9_XSCOM_XIVE_BASE,
1664 &chip9->xive.xscom_regs);
1666 /* Processor Service Interface (PSI) Host Bridge */
1667 object_property_set_int(OBJECT(psi9), "bar", PNV9_PSIHB_BASE(chip),
1668 &error_fatal);
1669 /* This is the only device with 4k ESB pages */
1670 object_property_set_int(OBJECT(psi9), "shift", XIVE_ESB_4K,
1671 &error_fatal);
1672 if (!qdev_realize(DEVICE(psi9), NULL, errp)) {
1673 return;
1675 pnv_xscom_add_subregion(chip, PNV9_XSCOM_PSIHB_BASE,
1676 &PNV_PSI(psi9)->xscom_regs);
1678 /* LPC */
1679 if (!qdev_realize(DEVICE(&chip9->lpc), NULL, errp)) {
1680 return;
1682 memory_region_add_subregion(get_system_memory(), PNV9_LPCM_BASE(chip),
1683 &chip9->lpc.xscom_regs);
1685 chip->fw_mr = &chip9->lpc.isa_fw;
1686 chip->dt_isa_nodename = g_strdup_printf("/lpcm-opb@%" PRIx64 "/lpc@0",
1687 (uint64_t) PNV9_LPCM_BASE(chip));
1689 /* ChipTOD */
1690 object_property_set_bool(OBJECT(&chip9->chiptod), "primary",
1691 chip->chip_id == 0, &error_abort);
1692 object_property_set_bool(OBJECT(&chip9->chiptod), "secondary",
1693 chip->chip_id == 1, &error_abort);
1694 object_property_set_link(OBJECT(&chip9->chiptod), "chip", OBJECT(chip),
1695 &error_abort);
1696 if (!qdev_realize(DEVICE(&chip9->chiptod), NULL, errp)) {
1697 return;
1699 pnv_xscom_add_subregion(chip, PNV9_XSCOM_CHIPTOD_BASE,
1700 &chip9->chiptod.xscom_regs);
1702 /* Create the simplified OCC model */
1703 if (!qdev_realize(DEVICE(&chip9->occ), NULL, errp)) {
1704 return;
1706 pnv_xscom_add_subregion(chip, PNV9_XSCOM_OCC_BASE, &chip9->occ.xscom_regs);
1707 qdev_connect_gpio_out(DEVICE(&chip9->occ), 0, qdev_get_gpio_in(
1708 DEVICE(psi9), PSIHB9_IRQ_OCC));
1710 /* OCC SRAM model */
1711 memory_region_add_subregion(get_system_memory(), PNV9_OCC_SENSOR_BASE(chip),
1712 &chip9->occ.sram_regs);
1714 /* SBE */
1715 if (!qdev_realize(DEVICE(&chip9->sbe), NULL, errp)) {
1716 return;
1718 pnv_xscom_add_subregion(chip, PNV9_XSCOM_SBE_CTRL_BASE,
1719 &chip9->sbe.xscom_ctrl_regs);
1720 pnv_xscom_add_subregion(chip, PNV9_XSCOM_SBE_MBOX_BASE,
1721 &chip9->sbe.xscom_mbox_regs);
1722 qdev_connect_gpio_out(DEVICE(&chip9->sbe), 0, qdev_get_gpio_in(
1723 DEVICE(psi9), PSIHB9_IRQ_PSU));
1725 /* HOMER */
1726 object_property_set_link(OBJECT(&chip9->homer), "chip", OBJECT(chip),
1727 &error_abort);
1728 if (!qdev_realize(DEVICE(&chip9->homer), NULL, errp)) {
1729 return;
1731 /* Homer Xscom region */
1732 pnv_xscom_add_subregion(chip, PNV9_XSCOM_PBA_BASE, &chip9->homer.pba_regs);
1734 /* Homer mmio region */
1735 memory_region_add_subregion(get_system_memory(), PNV9_HOMER_BASE(chip),
1736 &chip9->homer.regs);
1738 /* PEC PHBs */
1739 pnv_chip_power9_pec_realize(chip, &local_err);
1740 if (local_err) {
1741 error_propagate(errp, local_err);
1742 return;
1746 * I2C
1748 for (i = 0; i < pcc->i2c_num_engines; i++) {
1749 Object *obj = OBJECT(&chip9->i2c[i]);
1751 object_property_set_int(obj, "engine", i + 1, &error_fatal);
1752 object_property_set_int(obj, "num-busses",
1753 pcc->i2c_ports_per_engine[i],
1754 &error_fatal);
1755 object_property_set_link(obj, "chip", OBJECT(chip), &error_abort);
1756 if (!qdev_realize(DEVICE(obj), NULL, errp)) {
1757 return;
1759 pnv_xscom_add_subregion(chip, PNV9_XSCOM_I2CM_BASE +
1760 (chip9->i2c[i].engine - 1) *
1761 PNV9_XSCOM_I2CM_SIZE,
1762 &chip9->i2c[i].xscom_regs);
1763 qdev_connect_gpio_out(DEVICE(&chip9->i2c[i]), 0,
1764 qdev_get_gpio_in(DEVICE(psi9),
1765 PSIHB9_IRQ_SBE_I2C));
1769 static uint32_t pnv_chip_power9_xscom_pcba(PnvChip *chip, uint64_t addr)
1771 addr &= (PNV9_XSCOM_SIZE - 1);
1772 return addr >> 3;
1775 static void pnv_chip_power9_class_init(ObjectClass *klass, void *data)
1777 DeviceClass *dc = DEVICE_CLASS(klass);
1778 PnvChipClass *k = PNV_CHIP_CLASS(klass);
1779 static const int i2c_ports_per_engine[PNV9_CHIP_MAX_I2C] = {2, 13, 2, 2};
1781 k->chip_cfam_id = 0x220d104900008000ull; /* P9 Nimbus DD2.0 */
1782 k->cores_mask = POWER9_CORE_MASK;
1783 k->chip_pir = pnv_chip_pir_p9;
1784 k->intc_create = pnv_chip_power9_intc_create;
1785 k->intc_reset = pnv_chip_power9_intc_reset;
1786 k->intc_destroy = pnv_chip_power9_intc_destroy;
1787 k->intc_print_info = pnv_chip_power9_intc_print_info;
1788 k->isa_create = pnv_chip_power9_isa_create;
1789 k->dt_populate = pnv_chip_power9_dt_populate;
1790 k->pic_print_info = pnv_chip_power9_pic_print_info;
1791 k->xscom_core_base = pnv_chip_power9_xscom_core_base;
1792 k->xscom_pcba = pnv_chip_power9_xscom_pcba;
1793 dc->desc = "PowerNV Chip POWER9";
1794 k->num_pecs = PNV9_CHIP_MAX_PEC;
1795 k->i2c_num_engines = PNV9_CHIP_MAX_I2C;
1796 k->i2c_ports_per_engine = i2c_ports_per_engine;
1798 device_class_set_parent_realize(dc, pnv_chip_power9_realize,
1799 &k->parent_realize);
1802 static void pnv_chip_power10_instance_init(Object *obj)
1804 PnvChip *chip = PNV_CHIP(obj);
1805 Pnv10Chip *chip10 = PNV10_CHIP(obj);
1806 PnvChipClass *pcc = PNV_CHIP_GET_CLASS(obj);
1807 int i;
1809 object_initialize_child(obj, "xive", &chip10->xive, TYPE_PNV_XIVE2);
1810 object_property_add_alias(obj, "xive-fabric", OBJECT(&chip10->xive),
1811 "xive-fabric");
1812 object_initialize_child(obj, "psi", &chip10->psi, TYPE_PNV10_PSI);
1813 object_initialize_child(obj, "lpc", &chip10->lpc, TYPE_PNV10_LPC);
1814 object_initialize_child(obj, "chiptod", &chip10->chiptod,
1815 TYPE_PNV10_CHIPTOD);
1816 object_initialize_child(obj, "occ", &chip10->occ, TYPE_PNV10_OCC);
1817 object_initialize_child(obj, "sbe", &chip10->sbe, TYPE_PNV10_SBE);
1818 object_initialize_child(obj, "homer", &chip10->homer, TYPE_PNV10_HOMER);
1819 object_initialize_child(obj, "n1-chiplet", &chip10->n1_chiplet,
1820 TYPE_PNV_N1_CHIPLET);
1822 chip->num_pecs = pcc->num_pecs;
1824 for (i = 0; i < chip->num_pecs; i++) {
1825 object_initialize_child(obj, "pec[*]", &chip10->pecs[i],
1826 TYPE_PNV_PHB5_PEC);
1829 for (i = 0; i < pcc->i2c_num_engines; i++) {
1830 object_initialize_child(obj, "i2c[*]", &chip10->i2c[i], TYPE_PNV_I2C);
1834 static void pnv_chip_power10_quad_realize(Pnv10Chip *chip10, Error **errp)
1836 PnvChip *chip = PNV_CHIP(chip10);
1837 int i;
1839 chip10->nr_quads = DIV_ROUND_UP(chip->nr_cores, 4);
1840 chip10->quads = g_new0(PnvQuad, chip10->nr_quads);
1842 for (i = 0; i < chip10->nr_quads; i++) {
1843 PnvQuad *eq = &chip10->quads[i];
1845 pnv_chip_quad_realize_one(chip, eq, chip->cores[i * 4],
1846 PNV_QUAD_TYPE_NAME("power10"));
1848 pnv_xscom_add_subregion(chip, PNV10_XSCOM_EQ_BASE(eq->quad_id),
1849 &eq->xscom_regs);
1851 pnv_xscom_add_subregion(chip, PNV10_XSCOM_QME_BASE(eq->quad_id),
1852 &eq->xscom_qme_regs);
1856 static void pnv_chip_power10_phb_realize(PnvChip *chip, Error **errp)
1858 Pnv10Chip *chip10 = PNV10_CHIP(chip);
1859 int i;
1861 for (i = 0; i < chip->num_pecs; i++) {
1862 PnvPhb4PecState *pec = &chip10->pecs[i];
1863 PnvPhb4PecClass *pecc = PNV_PHB4_PEC_GET_CLASS(pec);
1864 uint32_t pec_nest_base;
1865 uint32_t pec_pci_base;
1867 object_property_set_int(OBJECT(pec), "index", i, &error_fatal);
1868 object_property_set_int(OBJECT(pec), "chip-id", chip->chip_id,
1869 &error_fatal);
1870 object_property_set_link(OBJECT(pec), "chip", OBJECT(chip),
1871 &error_fatal);
1872 if (!qdev_realize(DEVICE(pec), NULL, errp)) {
1873 return;
1876 pec_nest_base = pecc->xscom_nest_base(pec);
1877 pec_pci_base = pecc->xscom_pci_base(pec);
1879 pnv_xscom_add_subregion(chip, pec_nest_base, &pec->nest_regs_mr);
1880 pnv_xscom_add_subregion(chip, pec_pci_base, &pec->pci_regs_mr);
1884 static void pnv_chip_power10_realize(DeviceState *dev, Error **errp)
1886 PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev);
1887 PnvChip *chip = PNV_CHIP(dev);
1888 Pnv10Chip *chip10 = PNV10_CHIP(dev);
1889 Error *local_err = NULL;
1890 int i;
1892 /* XSCOM bridge is first */
1893 pnv_xscom_init(chip, PNV10_XSCOM_SIZE, PNV10_XSCOM_BASE(chip));
1895 pcc->parent_realize(dev, &local_err);
1896 if (local_err) {
1897 error_propagate(errp, local_err);
1898 return;
1901 pnv_chip_power10_quad_realize(chip10, &local_err);
1902 if (local_err) {
1903 error_propagate(errp, local_err);
1904 return;
1907 /* XIVE2 interrupt controller (POWER10) */
1908 object_property_set_int(OBJECT(&chip10->xive), "ic-bar",
1909 PNV10_XIVE2_IC_BASE(chip), &error_fatal);
1910 object_property_set_int(OBJECT(&chip10->xive), "esb-bar",
1911 PNV10_XIVE2_ESB_BASE(chip), &error_fatal);
1912 object_property_set_int(OBJECT(&chip10->xive), "end-bar",
1913 PNV10_XIVE2_END_BASE(chip), &error_fatal);
1914 object_property_set_int(OBJECT(&chip10->xive), "nvpg-bar",
1915 PNV10_XIVE2_NVPG_BASE(chip), &error_fatal);
1916 object_property_set_int(OBJECT(&chip10->xive), "nvc-bar",
1917 PNV10_XIVE2_NVC_BASE(chip), &error_fatal);
1918 object_property_set_int(OBJECT(&chip10->xive), "tm-bar",
1919 PNV10_XIVE2_TM_BASE(chip), &error_fatal);
1920 object_property_set_link(OBJECT(&chip10->xive), "chip", OBJECT(chip),
1921 &error_abort);
1922 if (!sysbus_realize(SYS_BUS_DEVICE(&chip10->xive), errp)) {
1923 return;
1925 pnv_xscom_add_subregion(chip, PNV10_XSCOM_XIVE2_BASE,
1926 &chip10->xive.xscom_regs);
1928 /* Processor Service Interface (PSI) Host Bridge */
1929 object_property_set_int(OBJECT(&chip10->psi), "bar",
1930 PNV10_PSIHB_BASE(chip), &error_fatal);
1931 /* PSI can now be configured to use 64k ESB pages on POWER10 */
1932 object_property_set_int(OBJECT(&chip10->psi), "shift", XIVE_ESB_64K,
1933 &error_fatal);
1934 if (!qdev_realize(DEVICE(&chip10->psi), NULL, errp)) {
1935 return;
1937 pnv_xscom_add_subregion(chip, PNV10_XSCOM_PSIHB_BASE,
1938 &PNV_PSI(&chip10->psi)->xscom_regs);
1940 /* LPC */
1941 if (!qdev_realize(DEVICE(&chip10->lpc), NULL, errp)) {
1942 return;
1944 memory_region_add_subregion(get_system_memory(), PNV10_LPCM_BASE(chip),
1945 &chip10->lpc.xscom_regs);
1947 chip->fw_mr = &chip10->lpc.isa_fw;
1948 chip->dt_isa_nodename = g_strdup_printf("/lpcm-opb@%" PRIx64 "/lpc@0",
1949 (uint64_t) PNV10_LPCM_BASE(chip));
1951 /* ChipTOD */
1952 object_property_set_bool(OBJECT(&chip10->chiptod), "primary",
1953 chip->chip_id == 0, &error_abort);
1954 object_property_set_bool(OBJECT(&chip10->chiptod), "secondary",
1955 chip->chip_id == 1, &error_abort);
1956 object_property_set_link(OBJECT(&chip10->chiptod), "chip", OBJECT(chip),
1957 &error_abort);
1958 if (!qdev_realize(DEVICE(&chip10->chiptod), NULL, errp)) {
1959 return;
1961 pnv_xscom_add_subregion(chip, PNV10_XSCOM_CHIPTOD_BASE,
1962 &chip10->chiptod.xscom_regs);
1964 /* Create the simplified OCC model */
1965 if (!qdev_realize(DEVICE(&chip10->occ), NULL, errp)) {
1966 return;
1968 pnv_xscom_add_subregion(chip, PNV10_XSCOM_OCC_BASE,
1969 &chip10->occ.xscom_regs);
1970 qdev_connect_gpio_out(DEVICE(&chip10->occ), 0, qdev_get_gpio_in(
1971 DEVICE(&chip10->psi), PSIHB9_IRQ_OCC));
1973 /* OCC SRAM model */
1974 memory_region_add_subregion(get_system_memory(),
1975 PNV10_OCC_SENSOR_BASE(chip),
1976 &chip10->occ.sram_regs);
1978 /* SBE */
1979 if (!qdev_realize(DEVICE(&chip10->sbe), NULL, errp)) {
1980 return;
1982 pnv_xscom_add_subregion(chip, PNV10_XSCOM_SBE_CTRL_BASE,
1983 &chip10->sbe.xscom_ctrl_regs);
1984 pnv_xscom_add_subregion(chip, PNV10_XSCOM_SBE_MBOX_BASE,
1985 &chip10->sbe.xscom_mbox_regs);
1986 qdev_connect_gpio_out(DEVICE(&chip10->sbe), 0, qdev_get_gpio_in(
1987 DEVICE(&chip10->psi), PSIHB9_IRQ_PSU));
1989 /* HOMER */
1990 object_property_set_link(OBJECT(&chip10->homer), "chip", OBJECT(chip),
1991 &error_abort);
1992 if (!qdev_realize(DEVICE(&chip10->homer), NULL, errp)) {
1993 return;
1995 /* Homer Xscom region */
1996 pnv_xscom_add_subregion(chip, PNV10_XSCOM_PBA_BASE,
1997 &chip10->homer.pba_regs);
1999 /* Homer mmio region */
2000 memory_region_add_subregion(get_system_memory(), PNV10_HOMER_BASE(chip),
2001 &chip10->homer.regs);
2003 /* N1 chiplet */
2004 if (!qdev_realize(DEVICE(&chip10->n1_chiplet), NULL, errp)) {
2005 return;
2007 pnv_xscom_add_subregion(chip, PNV10_XSCOM_N1_CHIPLET_CTRL_REGS_BASE,
2008 &chip10->n1_chiplet.nest_pervasive.xscom_ctrl_regs_mr);
2010 pnv_xscom_add_subregion(chip, PNV10_XSCOM_N1_PB_SCOM_EQ_BASE,
2011 &chip10->n1_chiplet.xscom_pb_eq_mr);
2013 pnv_xscom_add_subregion(chip, PNV10_XSCOM_N1_PB_SCOM_ES_BASE,
2014 &chip10->n1_chiplet.xscom_pb_es_mr);
2016 /* PHBs */
2017 pnv_chip_power10_phb_realize(chip, &local_err);
2018 if (local_err) {
2019 error_propagate(errp, local_err);
2020 return;
2025 * I2C
2027 for (i = 0; i < pcc->i2c_num_engines; i++) {
2028 Object *obj = OBJECT(&chip10->i2c[i]);
2030 object_property_set_int(obj, "engine", i + 1, &error_fatal);
2031 object_property_set_int(obj, "num-busses",
2032 pcc->i2c_ports_per_engine[i],
2033 &error_fatal);
2034 object_property_set_link(obj, "chip", OBJECT(chip), &error_abort);
2035 if (!qdev_realize(DEVICE(obj), NULL, errp)) {
2036 return;
2038 pnv_xscom_add_subregion(chip, PNV10_XSCOM_I2CM_BASE +
2039 (chip10->i2c[i].engine - 1) *
2040 PNV10_XSCOM_I2CM_SIZE,
2041 &chip10->i2c[i].xscom_regs);
2042 qdev_connect_gpio_out(DEVICE(&chip10->i2c[i]), 0,
2043 qdev_get_gpio_in(DEVICE(&chip10->psi),
2044 PSIHB9_IRQ_SBE_I2C));
2049 static void pnv_rainier_i2c_init(PnvMachineState *pnv)
2051 int i;
2052 for (i = 0; i < pnv->num_chips; i++) {
2053 Pnv10Chip *chip10 = PNV10_CHIP(pnv->chips[i]);
2056 * Add a PCA9552 I2C device for PCIe hotplug control
2057 * to engine 2, bus 1, address 0x63
2059 I2CSlave *dev = i2c_slave_create_simple(chip10->i2c[2].busses[1],
2060 "pca9552", 0x63);
2063 * Connect PCA9552 GPIO pins 0-4 (SLOTx_EN) outputs to GPIO pins 5-9
2064 * (SLOTx_PG) inputs in order to fake the pgood state of PCIe slots
2065 * after hypervisor code sets a SLOTx_EN pin high.
2067 qdev_connect_gpio_out(DEVICE(dev), 0, qdev_get_gpio_in(DEVICE(dev), 5));
2068 qdev_connect_gpio_out(DEVICE(dev), 1, qdev_get_gpio_in(DEVICE(dev), 6));
2069 qdev_connect_gpio_out(DEVICE(dev), 2, qdev_get_gpio_in(DEVICE(dev), 7));
2070 qdev_connect_gpio_out(DEVICE(dev), 3, qdev_get_gpio_in(DEVICE(dev), 8));
2071 qdev_connect_gpio_out(DEVICE(dev), 4, qdev_get_gpio_in(DEVICE(dev), 9));
2074 * Add a PCA9554 I2C device for cable card presence detection
2075 * to engine 2, bus 1, address 0x25
2077 i2c_slave_create_simple(chip10->i2c[2].busses[1], "pca9554", 0x25);
2081 static uint32_t pnv_chip_power10_xscom_pcba(PnvChip *chip, uint64_t addr)
2083 addr &= (PNV10_XSCOM_SIZE - 1);
2084 return addr >> 3;
2087 static void pnv_chip_power10_class_init(ObjectClass *klass, void *data)
2089 DeviceClass *dc = DEVICE_CLASS(klass);
2090 PnvChipClass *k = PNV_CHIP_CLASS(klass);
2091 static const int i2c_ports_per_engine[PNV10_CHIP_MAX_I2C] = {14, 14, 2, 16};
2093 k->chip_cfam_id = 0x120da04900008000ull; /* P10 DD1.0 (with NX) */
2094 k->cores_mask = POWER10_CORE_MASK;
2095 k->chip_pir = pnv_chip_pir_p10;
2096 k->intc_create = pnv_chip_power10_intc_create;
2097 k->intc_reset = pnv_chip_power10_intc_reset;
2098 k->intc_destroy = pnv_chip_power10_intc_destroy;
2099 k->intc_print_info = pnv_chip_power10_intc_print_info;
2100 k->isa_create = pnv_chip_power10_isa_create;
2101 k->dt_populate = pnv_chip_power10_dt_populate;
2102 k->pic_print_info = pnv_chip_power10_pic_print_info;
2103 k->xscom_core_base = pnv_chip_power10_xscom_core_base;
2104 k->xscom_pcba = pnv_chip_power10_xscom_pcba;
2105 dc->desc = "PowerNV Chip POWER10";
2106 k->num_pecs = PNV10_CHIP_MAX_PEC;
2107 k->i2c_num_engines = PNV10_CHIP_MAX_I2C;
2108 k->i2c_ports_per_engine = i2c_ports_per_engine;
2110 device_class_set_parent_realize(dc, pnv_chip_power10_realize,
2111 &k->parent_realize);
2114 static void pnv_chip_core_sanitize(PnvChip *chip, Error **errp)
2116 PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
2117 int cores_max;
2120 * No custom mask for this chip, let's use the default one from *
2121 * the chip class
2123 if (!chip->cores_mask) {
2124 chip->cores_mask = pcc->cores_mask;
2127 /* filter alien core ids ! some are reserved */
2128 if ((chip->cores_mask & pcc->cores_mask) != chip->cores_mask) {
2129 error_setg(errp, "warning: invalid core mask for chip Ox%"PRIx64" !",
2130 chip->cores_mask);
2131 return;
2133 chip->cores_mask &= pcc->cores_mask;
2135 /* now that we have a sane layout, let check the number of cores */
2136 cores_max = ctpop64(chip->cores_mask);
2137 if (chip->nr_cores > cores_max) {
2138 error_setg(errp, "warning: too many cores for chip ! Limit is %d",
2139 cores_max);
2140 return;
2144 static void pnv_chip_core_realize(PnvChip *chip, Error **errp)
2146 Error *error = NULL;
2147 PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
2148 const char *typename = pnv_chip_core_typename(chip);
2149 int i, core_hwid;
2150 PnvMachineState *pnv = PNV_MACHINE(qdev_get_machine());
2152 if (!object_class_by_name(typename)) {
2153 error_setg(errp, "Unable to find PowerNV CPU Core '%s'", typename);
2154 return;
2157 /* Cores */
2158 pnv_chip_core_sanitize(chip, &error);
2159 if (error) {
2160 error_propagate(errp, error);
2161 return;
2164 chip->cores = g_new0(PnvCore *, chip->nr_cores);
2166 for (i = 0, core_hwid = 0; (core_hwid < sizeof(chip->cores_mask) * 8)
2167 && (i < chip->nr_cores); core_hwid++) {
2168 char core_name[32];
2169 PnvCore *pnv_core;
2170 uint64_t xscom_core_base;
2172 if (!(chip->cores_mask & (1ull << core_hwid))) {
2173 continue;
2176 pnv_core = PNV_CORE(object_new(typename));
2178 snprintf(core_name, sizeof(core_name), "core[%d]", core_hwid);
2179 object_property_add_child(OBJECT(chip), core_name, OBJECT(pnv_core));
2180 chip->cores[i] = pnv_core;
2181 object_property_set_int(OBJECT(pnv_core), "nr-threads",
2182 chip->nr_threads, &error_fatal);
2183 object_property_set_int(OBJECT(pnv_core), CPU_CORE_PROP_CORE_ID,
2184 core_hwid, &error_fatal);
2185 object_property_set_int(OBJECT(pnv_core), "hwid", core_hwid,
2186 &error_fatal);
2187 object_property_set_int(OBJECT(pnv_core), "hrmor", pnv->fw_load_addr,
2188 &error_fatal);
2189 object_property_set_link(OBJECT(pnv_core), "chip", OBJECT(chip),
2190 &error_abort);
2191 qdev_realize(DEVICE(pnv_core), NULL, &error_fatal);
2193 /* Each core has an XSCOM MMIO region */
2194 xscom_core_base = pcc->xscom_core_base(chip, core_hwid);
2196 pnv_xscom_add_subregion(chip, xscom_core_base,
2197 &pnv_core->xscom_regs);
2198 i++;
2202 static void pnv_chip_realize(DeviceState *dev, Error **errp)
2204 PnvChip *chip = PNV_CHIP(dev);
2205 Error *error = NULL;
2207 /* Cores */
2208 pnv_chip_core_realize(chip, &error);
2209 if (error) {
2210 error_propagate(errp, error);
2211 return;
2215 static Property pnv_chip_properties[] = {
2216 DEFINE_PROP_UINT32("chip-id", PnvChip, chip_id, 0),
2217 DEFINE_PROP_UINT64("ram-start", PnvChip, ram_start, 0),
2218 DEFINE_PROP_UINT64("ram-size", PnvChip, ram_size, 0),
2219 DEFINE_PROP_UINT32("nr-cores", PnvChip, nr_cores, 1),
2220 DEFINE_PROP_UINT64("cores-mask", PnvChip, cores_mask, 0x0),
2221 DEFINE_PROP_UINT32("nr-threads", PnvChip, nr_threads, 1),
2222 DEFINE_PROP_END_OF_LIST(),
2225 static void pnv_chip_class_init(ObjectClass *klass, void *data)
2227 DeviceClass *dc = DEVICE_CLASS(klass);
2229 set_bit(DEVICE_CATEGORY_CPU, dc->categories);
2230 dc->realize = pnv_chip_realize;
2231 device_class_set_props(dc, pnv_chip_properties);
2232 dc->desc = "PowerNV Chip";
2235 PnvCore *pnv_chip_find_core(PnvChip *chip, uint32_t core_id)
2237 int i;
2239 for (i = 0; i < chip->nr_cores; i++) {
2240 PnvCore *pc = chip->cores[i];
2241 CPUCore *cc = CPU_CORE(pc);
2243 if (cc->core_id == core_id) {
2244 return pc;
2247 return NULL;
2250 PowerPCCPU *pnv_chip_find_cpu(PnvChip *chip, uint32_t pir)
2252 int i, j;
2254 for (i = 0; i < chip->nr_cores; i++) {
2255 PnvCore *pc = chip->cores[i];
2256 CPUCore *cc = CPU_CORE(pc);
2258 for (j = 0; j < cc->nr_threads; j++) {
2259 if (ppc_cpu_pir(pc->threads[j]) == pir) {
2260 return pc->threads[j];
2264 return NULL;
2267 static ICSState *pnv_ics_get(XICSFabric *xi, int irq)
2269 PnvMachineState *pnv = PNV_MACHINE(xi);
2270 int i, j;
2272 for (i = 0; i < pnv->num_chips; i++) {
2273 Pnv8Chip *chip8 = PNV8_CHIP(pnv->chips[i]);
2275 if (ics_valid_irq(&chip8->psi.ics, irq)) {
2276 return &chip8->psi.ics;
2279 for (j = 0; j < chip8->num_phbs; j++) {
2280 PnvPHB *phb = chip8->phbs[j];
2281 PnvPHB3 *phb3 = PNV_PHB3(phb->backend);
2283 if (ics_valid_irq(&phb3->lsis, irq)) {
2284 return &phb3->lsis;
2287 if (ics_valid_irq(ICS(&phb3->msis), irq)) {
2288 return ICS(&phb3->msis);
2292 return NULL;
2295 PnvChip *pnv_get_chip(PnvMachineState *pnv, uint32_t chip_id)
2297 int i;
2299 for (i = 0; i < pnv->num_chips; i++) {
2300 PnvChip *chip = pnv->chips[i];
2301 if (chip->chip_id == chip_id) {
2302 return chip;
2305 return NULL;
2308 static void pnv_ics_resend(XICSFabric *xi)
2310 PnvMachineState *pnv = PNV_MACHINE(xi);
2311 int i, j;
2313 for (i = 0; i < pnv->num_chips; i++) {
2314 Pnv8Chip *chip8 = PNV8_CHIP(pnv->chips[i]);
2316 ics_resend(&chip8->psi.ics);
2318 for (j = 0; j < chip8->num_phbs; j++) {
2319 PnvPHB *phb = chip8->phbs[j];
2320 PnvPHB3 *phb3 = PNV_PHB3(phb->backend);
2322 ics_resend(&phb3->lsis);
2323 ics_resend(ICS(&phb3->msis));
2328 static ICPState *pnv_icp_get(XICSFabric *xi, int pir)
2330 PowerPCCPU *cpu = ppc_get_vcpu_by_pir(pir);
2332 return cpu ? ICP(pnv_cpu_state(cpu)->intc) : NULL;
2335 static void pnv_pic_print_info(InterruptStatsProvider *obj,
2336 Monitor *mon)
2338 PnvMachineState *pnv = PNV_MACHINE(obj);
2339 int i;
2340 CPUState *cs;
2342 CPU_FOREACH(cs) {
2343 PowerPCCPU *cpu = POWERPC_CPU(cs);
2345 /* XXX: loop on each chip/core/thread instead of CPU_FOREACH() */
2346 PNV_CHIP_GET_CLASS(pnv->chips[0])->intc_print_info(pnv->chips[0], cpu,
2347 mon);
2350 for (i = 0; i < pnv->num_chips; i++) {
2351 PNV_CHIP_GET_CLASS(pnv->chips[i])->pic_print_info(pnv->chips[i], mon);
2355 static int pnv_match_nvt(XiveFabric *xfb, uint8_t format,
2356 uint8_t nvt_blk, uint32_t nvt_idx,
2357 bool cam_ignore, uint8_t priority,
2358 uint32_t logic_serv,
2359 XiveTCTXMatch *match)
2361 PnvMachineState *pnv = PNV_MACHINE(xfb);
2362 int total_count = 0;
2363 int i;
2365 for (i = 0; i < pnv->num_chips; i++) {
2366 Pnv9Chip *chip9 = PNV9_CHIP(pnv->chips[i]);
2367 XivePresenter *xptr = XIVE_PRESENTER(&chip9->xive);
2368 XivePresenterClass *xpc = XIVE_PRESENTER_GET_CLASS(xptr);
2369 int count;
2371 count = xpc->match_nvt(xptr, format, nvt_blk, nvt_idx, cam_ignore,
2372 priority, logic_serv, match);
2374 if (count < 0) {
2375 return count;
2378 total_count += count;
2381 return total_count;
2384 static int pnv10_xive_match_nvt(XiveFabric *xfb, uint8_t format,
2385 uint8_t nvt_blk, uint32_t nvt_idx,
2386 bool cam_ignore, uint8_t priority,
2387 uint32_t logic_serv,
2388 XiveTCTXMatch *match)
2390 PnvMachineState *pnv = PNV_MACHINE(xfb);
2391 int total_count = 0;
2392 int i;
2394 for (i = 0; i < pnv->num_chips; i++) {
2395 Pnv10Chip *chip10 = PNV10_CHIP(pnv->chips[i]);
2396 XivePresenter *xptr = XIVE_PRESENTER(&chip10->xive);
2397 XivePresenterClass *xpc = XIVE_PRESENTER_GET_CLASS(xptr);
2398 int count;
2400 count = xpc->match_nvt(xptr, format, nvt_blk, nvt_idx, cam_ignore,
2401 priority, logic_serv, match);
2403 if (count < 0) {
2404 return count;
2407 total_count += count;
2410 return total_count;
2413 static void pnv_machine_power8_class_init(ObjectClass *oc, void *data)
2415 MachineClass *mc = MACHINE_CLASS(oc);
2416 XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
2417 PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc);
2418 static const char compat[] = "qemu,powernv8\0qemu,powernv\0ibm,powernv";
2420 static GlobalProperty phb_compat[] = {
2421 { TYPE_PNV_PHB, "version", "3" },
2422 { TYPE_PNV_PHB_ROOT_PORT, "version", "3" },
2425 mc->desc = "IBM PowerNV (Non-Virtualized) POWER8";
2426 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0");
2427 compat_props_add(mc->compat_props, phb_compat, G_N_ELEMENTS(phb_compat));
2429 xic->icp_get = pnv_icp_get;
2430 xic->ics_get = pnv_ics_get;
2431 xic->ics_resend = pnv_ics_resend;
2433 pmc->compat = compat;
2434 pmc->compat_size = sizeof(compat);
2436 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_PNV_PHB);
2439 static void pnv_machine_power9_class_init(ObjectClass *oc, void *data)
2441 MachineClass *mc = MACHINE_CLASS(oc);
2442 XiveFabricClass *xfc = XIVE_FABRIC_CLASS(oc);
2443 PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc);
2444 static const char compat[] = "qemu,powernv9\0ibm,powernv";
2446 static GlobalProperty phb_compat[] = {
2447 { TYPE_PNV_PHB, "version", "4" },
2448 { TYPE_PNV_PHB_ROOT_PORT, "version", "4" },
2451 mc->desc = "IBM PowerNV (Non-Virtualized) POWER9";
2452 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power9_v2.2");
2453 compat_props_add(mc->compat_props, phb_compat, G_N_ELEMENTS(phb_compat));
2455 xfc->match_nvt = pnv_match_nvt;
2457 pmc->compat = compat;
2458 pmc->compat_size = sizeof(compat);
2459 pmc->dt_power_mgt = pnv_dt_power_mgt;
2461 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_PNV_PHB);
2464 static void pnv_machine_p10_common_class_init(ObjectClass *oc, void *data)
2466 MachineClass *mc = MACHINE_CLASS(oc);
2467 PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc);
2468 XiveFabricClass *xfc = XIVE_FABRIC_CLASS(oc);
2469 static const char compat[] = "qemu,powernv10\0ibm,powernv";
2471 static GlobalProperty phb_compat[] = {
2472 { TYPE_PNV_PHB, "version", "5" },
2473 { TYPE_PNV_PHB_ROOT_PORT, "version", "5" },
2476 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power10_v2.0");
2477 compat_props_add(mc->compat_props, phb_compat, G_N_ELEMENTS(phb_compat));
2479 mc->alias = "powernv";
2481 pmc->compat = compat;
2482 pmc->compat_size = sizeof(compat);
2483 pmc->dt_power_mgt = pnv_dt_power_mgt;
2485 xfc->match_nvt = pnv10_xive_match_nvt;
2487 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_PNV_PHB);
2490 static void pnv_machine_power10_class_init(ObjectClass *oc, void *data)
2492 MachineClass *mc = MACHINE_CLASS(oc);
2494 pnv_machine_p10_common_class_init(oc, data);
2495 mc->desc = "IBM PowerNV (Non-Virtualized) POWER10";
2498 static void pnv_machine_p10_rainier_class_init(ObjectClass *oc, void *data)
2500 MachineClass *mc = MACHINE_CLASS(oc);
2501 PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc);
2503 pnv_machine_p10_common_class_init(oc, data);
2504 mc->desc = "IBM PowerNV (Non-Virtualized) POWER10 Rainier";
2505 pmc->i2c_init = pnv_rainier_i2c_init;
2508 static bool pnv_machine_get_hb(Object *obj, Error **errp)
2510 PnvMachineState *pnv = PNV_MACHINE(obj);
2512 return !!pnv->fw_load_addr;
2515 static void pnv_machine_set_hb(Object *obj, bool value, Error **errp)
2517 PnvMachineState *pnv = PNV_MACHINE(obj);
2519 if (value) {
2520 pnv->fw_load_addr = 0x8000000;
2524 static void pnv_cpu_do_nmi_on_cpu(CPUState *cs, run_on_cpu_data arg)
2526 CPUPPCState *env = cpu_env(cs);
2528 cpu_synchronize_state(cs);
2529 ppc_cpu_do_system_reset(cs);
2530 if (env->spr[SPR_SRR1] & SRR1_WAKESTATE) {
2532 * Power-save wakeups, as indicated by non-zero SRR1[46:47] put the
2533 * wakeup reason in SRR1[42:45], system reset is indicated with 0b0100
2534 * (PPC_BIT(43)).
2536 if (!(env->spr[SPR_SRR1] & SRR1_WAKERESET)) {
2537 warn_report("ppc_cpu_do_system_reset does not set system reset wakeup reason");
2538 env->spr[SPR_SRR1] |= SRR1_WAKERESET;
2540 } else {
2542 * For non-powersave system resets, SRR1[42:45] are defined to be
2543 * implementation-dependent. The POWER9 User Manual specifies that
2544 * an external (SCOM driven, which may come from a BMC nmi command or
2545 * another CPU requesting a NMI IPI) system reset exception should be
2546 * 0b0010 (PPC_BIT(44)).
2548 env->spr[SPR_SRR1] |= SRR1_WAKESCOM;
2552 static void pnv_nmi(NMIState *n, int cpu_index, Error **errp)
2554 CPUState *cs;
2556 CPU_FOREACH(cs) {
2557 async_run_on_cpu(cs, pnv_cpu_do_nmi_on_cpu, RUN_ON_CPU_NULL);
2561 static void pnv_machine_class_init(ObjectClass *oc, void *data)
2563 MachineClass *mc = MACHINE_CLASS(oc);
2564 InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
2565 NMIClass *nc = NMI_CLASS(oc);
2567 mc->desc = "IBM PowerNV (Non-Virtualized)";
2568 mc->init = pnv_init;
2569 mc->reset = pnv_reset;
2570 mc->max_cpus = MAX_CPUS;
2571 /* Pnv provides a AHCI device for storage */
2572 mc->block_default_type = IF_IDE;
2573 mc->no_parallel = 1;
2574 mc->default_boot_order = NULL;
2576 * RAM defaults to less than 2048 for 32-bit hosts, and large
2577 * enough to fit the maximum initrd size at it's load address
2579 mc->default_ram_size = 1 * GiB;
2580 mc->default_ram_id = "pnv.ram";
2581 ispc->print_info = pnv_pic_print_info;
2582 nc->nmi_monitor_handler = pnv_nmi;
2584 object_class_property_add_bool(oc, "hb-mode",
2585 pnv_machine_get_hb, pnv_machine_set_hb);
2586 object_class_property_set_description(oc, "hb-mode",
2587 "Use a hostboot like boot loader");
2590 #define DEFINE_PNV8_CHIP_TYPE(type, class_initfn) \
2592 .name = type, \
2593 .class_init = class_initfn, \
2594 .parent = TYPE_PNV8_CHIP, \
2597 #define DEFINE_PNV9_CHIP_TYPE(type, class_initfn) \
2599 .name = type, \
2600 .class_init = class_initfn, \
2601 .parent = TYPE_PNV9_CHIP, \
2604 #define DEFINE_PNV10_CHIP_TYPE(type, class_initfn) \
2606 .name = type, \
2607 .class_init = class_initfn, \
2608 .parent = TYPE_PNV10_CHIP, \
2611 static const TypeInfo types[] = {
2613 .name = MACHINE_TYPE_NAME("powernv10-rainier"),
2614 .parent = MACHINE_TYPE_NAME("powernv10"),
2615 .class_init = pnv_machine_p10_rainier_class_init,
2618 .name = MACHINE_TYPE_NAME("powernv10"),
2619 .parent = TYPE_PNV_MACHINE,
2620 .class_init = pnv_machine_power10_class_init,
2621 .interfaces = (InterfaceInfo[]) {
2622 { TYPE_XIVE_FABRIC },
2623 { },
2627 .name = MACHINE_TYPE_NAME("powernv9"),
2628 .parent = TYPE_PNV_MACHINE,
2629 .class_init = pnv_machine_power9_class_init,
2630 .interfaces = (InterfaceInfo[]) {
2631 { TYPE_XIVE_FABRIC },
2632 { },
2636 .name = MACHINE_TYPE_NAME("powernv8"),
2637 .parent = TYPE_PNV_MACHINE,
2638 .class_init = pnv_machine_power8_class_init,
2639 .interfaces = (InterfaceInfo[]) {
2640 { TYPE_XICS_FABRIC },
2641 { },
2645 .name = TYPE_PNV_MACHINE,
2646 .parent = TYPE_MACHINE,
2647 .abstract = true,
2648 .instance_size = sizeof(PnvMachineState),
2649 .class_init = pnv_machine_class_init,
2650 .class_size = sizeof(PnvMachineClass),
2651 .interfaces = (InterfaceInfo[]) {
2652 { TYPE_INTERRUPT_STATS_PROVIDER },
2653 { TYPE_NMI },
2654 { },
2658 .name = TYPE_PNV_CHIP,
2659 .parent = TYPE_SYS_BUS_DEVICE,
2660 .class_init = pnv_chip_class_init,
2661 .instance_size = sizeof(PnvChip),
2662 .class_size = sizeof(PnvChipClass),
2663 .abstract = true,
2667 * P10 chip and variants
2670 .name = TYPE_PNV10_CHIP,
2671 .parent = TYPE_PNV_CHIP,
2672 .instance_init = pnv_chip_power10_instance_init,
2673 .instance_size = sizeof(Pnv10Chip),
2675 DEFINE_PNV10_CHIP_TYPE(TYPE_PNV_CHIP_POWER10, pnv_chip_power10_class_init),
2678 * P9 chip and variants
2681 .name = TYPE_PNV9_CHIP,
2682 .parent = TYPE_PNV_CHIP,
2683 .instance_init = pnv_chip_power9_instance_init,
2684 .instance_size = sizeof(Pnv9Chip),
2686 DEFINE_PNV9_CHIP_TYPE(TYPE_PNV_CHIP_POWER9, pnv_chip_power9_class_init),
2689 * P8 chip and variants
2692 .name = TYPE_PNV8_CHIP,
2693 .parent = TYPE_PNV_CHIP,
2694 .instance_init = pnv_chip_power8_instance_init,
2695 .instance_size = sizeof(Pnv8Chip),
2697 DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8, pnv_chip_power8_class_init),
2698 DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8E, pnv_chip_power8e_class_init),
2699 DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8NVL,
2700 pnv_chip_power8nvl_class_init),
2703 DEFINE_TYPES(types)