Merge remote-tracking branch 'remotes/kraxel/tags/ui-20191106-pull-request' into...
[qemu/ar7.git] / include / exec / ram_addr.h
blobbed0554f4d2a5a1d6b77552a6febf5f3b714f1f1
1 /*
2 * Declarations for cpu physical memory functions
4 * Copyright 2011 Red Hat, Inc. and/or its affiliates
6 * Authors:
7 * Avi Kivity <avi@redhat.com>
9 * This work is licensed under the terms of the GNU GPL, version 2 or
10 * later. See the COPYING file in the top-level directory.
15 * This header is for use by exec.c and memory.c ONLY. Do not include it.
16 * The functions declared here will be removed soon.
19 #ifndef RAM_ADDR_H
20 #define RAM_ADDR_H
22 #ifndef CONFIG_USER_ONLY
23 #include "cpu.h"
24 #include "hw/xen/xen.h"
25 #include "sysemu/tcg.h"
26 #include "exec/ramlist.h"
28 struct RAMBlock {
29 struct rcu_head rcu;
30 struct MemoryRegion *mr;
31 uint8_t *host;
32 uint8_t *colo_cache; /* For colo, VM's ram cache */
33 ram_addr_t offset;
34 ram_addr_t used_length;
35 ram_addr_t max_length;
36 void (*resized)(const char*, uint64_t length, void *host);
37 uint32_t flags;
38 /* Protected by iothread lock. */
39 char idstr[256];
40 /* RCU-enabled, writes protected by the ramlist lock */
41 QLIST_ENTRY(RAMBlock) next;
42 QLIST_HEAD(, RAMBlockNotifier) ramblock_notifiers;
43 int fd;
44 size_t page_size;
45 /* dirty bitmap used during migration */
46 unsigned long *bmap;
47 /* bitmap of already received pages in postcopy */
48 unsigned long *receivedmap;
51 * bitmap to track already cleared dirty bitmap. When the bit is
52 * set, it means the corresponding memory chunk needs a log-clear.
53 * Set this up to non-NULL to enable the capability to postpone
54 * and split clearing of dirty bitmap on the remote node (e.g.,
55 * KVM). The bitmap will be set only when doing global sync.
57 * NOTE: this bitmap is different comparing to the other bitmaps
58 * in that one bit can represent multiple guest pages (which is
59 * decided by the `clear_bmap_shift' variable below). On
60 * destination side, this should always be NULL, and the variable
61 * `clear_bmap_shift' is meaningless.
63 unsigned long *clear_bmap;
64 uint8_t clear_bmap_shift;
67 /**
68 * clear_bmap_size: calculate clear bitmap size
70 * @pages: number of guest pages
71 * @shift: guest page number shift
73 * Returns: number of bits for the clear bitmap
75 static inline long clear_bmap_size(uint64_t pages, uint8_t shift)
77 return DIV_ROUND_UP(pages, 1UL << shift);
80 /**
81 * clear_bmap_set: set clear bitmap for the page range
83 * @rb: the ramblock to operate on
84 * @start: the start page number
85 * @size: number of pages to set in the bitmap
87 * Returns: None
89 static inline void clear_bmap_set(RAMBlock *rb, uint64_t start,
90 uint64_t npages)
92 uint8_t shift = rb->clear_bmap_shift;
94 bitmap_set_atomic(rb->clear_bmap, start >> shift,
95 clear_bmap_size(npages, shift));
98 /**
99 * clear_bmap_test_and_clear: test clear bitmap for the page, clear if set
101 * @rb: the ramblock to operate on
102 * @page: the page number to check
104 * Returns: true if the bit was set, false otherwise
106 static inline bool clear_bmap_test_and_clear(RAMBlock *rb, uint64_t page)
108 uint8_t shift = rb->clear_bmap_shift;
110 return bitmap_test_and_clear_atomic(rb->clear_bmap, page >> shift, 1);
113 static inline bool offset_in_ramblock(RAMBlock *b, ram_addr_t offset)
115 return (b && b->host && offset < b->used_length) ? true : false;
118 static inline void *ramblock_ptr(RAMBlock *block, ram_addr_t offset)
120 assert(offset_in_ramblock(block, offset));
121 return (char *)block->host + offset;
124 static inline unsigned long int ramblock_recv_bitmap_offset(void *host_addr,
125 RAMBlock *rb)
127 uint64_t host_addr_offset =
128 (uint64_t)(uintptr_t)(host_addr - (void *)rb->host);
129 return host_addr_offset >> TARGET_PAGE_BITS;
132 bool ramblock_is_pmem(RAMBlock *rb);
134 long qemu_minrampagesize(void);
135 long qemu_maxrampagesize(void);
138 * qemu_ram_alloc_from_file,
139 * qemu_ram_alloc_from_fd: Allocate a ram block from the specified backing
140 * file or device
142 * Parameters:
143 * @size: the size in bytes of the ram block
144 * @mr: the memory region where the ram block is
145 * @ram_flags: specify the properties of the ram block, which can be one
146 * or bit-or of following values
147 * - RAM_SHARED: mmap the backing file or device with MAP_SHARED
148 * - RAM_PMEM: the backend @mem_path or @fd is persistent memory
149 * Other bits are ignored.
150 * @mem_path or @fd: specify the backing file or device
151 * @errp: pointer to Error*, to store an error if it happens
153 * Return:
154 * On success, return a pointer to the ram block.
155 * On failure, return NULL.
157 RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr,
158 uint32_t ram_flags, const char *mem_path,
159 Error **errp);
160 RAMBlock *qemu_ram_alloc_from_fd(ram_addr_t size, MemoryRegion *mr,
161 uint32_t ram_flags, int fd,
162 Error **errp);
164 RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
165 MemoryRegion *mr, Error **errp);
166 RAMBlock *qemu_ram_alloc(ram_addr_t size, bool share, MemoryRegion *mr,
167 Error **errp);
168 RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t max_size,
169 void (*resized)(const char*,
170 uint64_t length,
171 void *host),
172 MemoryRegion *mr, Error **errp);
173 void qemu_ram_free(RAMBlock *block);
175 int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp);
177 #define DIRTY_CLIENTS_ALL ((1 << DIRTY_MEMORY_NUM) - 1)
178 #define DIRTY_CLIENTS_NOCODE (DIRTY_CLIENTS_ALL & ~(1 << DIRTY_MEMORY_CODE))
180 void tb_invalidate_phys_range(ram_addr_t start, ram_addr_t end);
182 static inline bool cpu_physical_memory_get_dirty(ram_addr_t start,
183 ram_addr_t length,
184 unsigned client)
186 DirtyMemoryBlocks *blocks;
187 unsigned long end, page;
188 unsigned long idx, offset, base;
189 bool dirty = false;
191 assert(client < DIRTY_MEMORY_NUM);
193 end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
194 page = start >> TARGET_PAGE_BITS;
196 WITH_RCU_READ_LOCK_GUARD() {
197 blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
199 idx = page / DIRTY_MEMORY_BLOCK_SIZE;
200 offset = page % DIRTY_MEMORY_BLOCK_SIZE;
201 base = page - offset;
202 while (page < end) {
203 unsigned long next = MIN(end, base + DIRTY_MEMORY_BLOCK_SIZE);
204 unsigned long num = next - base;
205 unsigned long found = find_next_bit(blocks->blocks[idx],
206 num, offset);
207 if (found < num) {
208 dirty = true;
209 break;
212 page = next;
213 idx++;
214 offset = 0;
215 base += DIRTY_MEMORY_BLOCK_SIZE;
219 return dirty;
222 static inline bool cpu_physical_memory_all_dirty(ram_addr_t start,
223 ram_addr_t length,
224 unsigned client)
226 DirtyMemoryBlocks *blocks;
227 unsigned long end, page;
228 unsigned long idx, offset, base;
229 bool dirty = true;
231 assert(client < DIRTY_MEMORY_NUM);
233 end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
234 page = start >> TARGET_PAGE_BITS;
236 RCU_READ_LOCK_GUARD();
238 blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
240 idx = page / DIRTY_MEMORY_BLOCK_SIZE;
241 offset = page % DIRTY_MEMORY_BLOCK_SIZE;
242 base = page - offset;
243 while (page < end) {
244 unsigned long next = MIN(end, base + DIRTY_MEMORY_BLOCK_SIZE);
245 unsigned long num = next - base;
246 unsigned long found = find_next_zero_bit(blocks->blocks[idx], num, offset);
247 if (found < num) {
248 dirty = false;
249 break;
252 page = next;
253 idx++;
254 offset = 0;
255 base += DIRTY_MEMORY_BLOCK_SIZE;
258 return dirty;
261 static inline bool cpu_physical_memory_get_dirty_flag(ram_addr_t addr,
262 unsigned client)
264 return cpu_physical_memory_get_dirty(addr, 1, client);
267 static inline bool cpu_physical_memory_is_clean(ram_addr_t addr)
269 bool vga = cpu_physical_memory_get_dirty_flag(addr, DIRTY_MEMORY_VGA);
270 bool code = cpu_physical_memory_get_dirty_flag(addr, DIRTY_MEMORY_CODE);
271 bool migration =
272 cpu_physical_memory_get_dirty_flag(addr, DIRTY_MEMORY_MIGRATION);
273 return !(vga && code && migration);
276 static inline uint8_t cpu_physical_memory_range_includes_clean(ram_addr_t start,
277 ram_addr_t length,
278 uint8_t mask)
280 uint8_t ret = 0;
282 if (mask & (1 << DIRTY_MEMORY_VGA) &&
283 !cpu_physical_memory_all_dirty(start, length, DIRTY_MEMORY_VGA)) {
284 ret |= (1 << DIRTY_MEMORY_VGA);
286 if (mask & (1 << DIRTY_MEMORY_CODE) &&
287 !cpu_physical_memory_all_dirty(start, length, DIRTY_MEMORY_CODE)) {
288 ret |= (1 << DIRTY_MEMORY_CODE);
290 if (mask & (1 << DIRTY_MEMORY_MIGRATION) &&
291 !cpu_physical_memory_all_dirty(start, length, DIRTY_MEMORY_MIGRATION)) {
292 ret |= (1 << DIRTY_MEMORY_MIGRATION);
294 return ret;
297 static inline void cpu_physical_memory_set_dirty_flag(ram_addr_t addr,
298 unsigned client)
300 unsigned long page, idx, offset;
301 DirtyMemoryBlocks *blocks;
303 assert(client < DIRTY_MEMORY_NUM);
305 page = addr >> TARGET_PAGE_BITS;
306 idx = page / DIRTY_MEMORY_BLOCK_SIZE;
307 offset = page % DIRTY_MEMORY_BLOCK_SIZE;
309 RCU_READ_LOCK_GUARD();
311 blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
313 set_bit_atomic(offset, blocks->blocks[idx]);
316 static inline void cpu_physical_memory_set_dirty_range(ram_addr_t start,
317 ram_addr_t length,
318 uint8_t mask)
320 DirtyMemoryBlocks *blocks[DIRTY_MEMORY_NUM];
321 unsigned long end, page;
322 unsigned long idx, offset, base;
323 int i;
325 if (!mask && !xen_enabled()) {
326 return;
329 end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
330 page = start >> TARGET_PAGE_BITS;
332 WITH_RCU_READ_LOCK_GUARD() {
333 for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
334 blocks[i] = atomic_rcu_read(&ram_list.dirty_memory[i]);
337 idx = page / DIRTY_MEMORY_BLOCK_SIZE;
338 offset = page % DIRTY_MEMORY_BLOCK_SIZE;
339 base = page - offset;
340 while (page < end) {
341 unsigned long next = MIN(end, base + DIRTY_MEMORY_BLOCK_SIZE);
343 if (likely(mask & (1 << DIRTY_MEMORY_MIGRATION))) {
344 bitmap_set_atomic(blocks[DIRTY_MEMORY_MIGRATION]->blocks[idx],
345 offset, next - page);
347 if (unlikely(mask & (1 << DIRTY_MEMORY_VGA))) {
348 bitmap_set_atomic(blocks[DIRTY_MEMORY_VGA]->blocks[idx],
349 offset, next - page);
351 if (unlikely(mask & (1 << DIRTY_MEMORY_CODE))) {
352 bitmap_set_atomic(blocks[DIRTY_MEMORY_CODE]->blocks[idx],
353 offset, next - page);
356 page = next;
357 idx++;
358 offset = 0;
359 base += DIRTY_MEMORY_BLOCK_SIZE;
363 xen_hvm_modified_memory(start, length);
366 #if !defined(_WIN32)
367 static inline void cpu_physical_memory_set_dirty_lebitmap(unsigned long *bitmap,
368 ram_addr_t start,
369 ram_addr_t pages)
371 unsigned long i, j;
372 unsigned long page_number, c;
373 hwaddr addr;
374 ram_addr_t ram_addr;
375 unsigned long len = (pages + HOST_LONG_BITS - 1) / HOST_LONG_BITS;
376 unsigned long hpratio = qemu_real_host_page_size / TARGET_PAGE_SIZE;
377 unsigned long page = BIT_WORD(start >> TARGET_PAGE_BITS);
379 /* start address is aligned at the start of a word? */
380 if ((((page * BITS_PER_LONG) << TARGET_PAGE_BITS) == start) &&
381 (hpratio == 1)) {
382 unsigned long **blocks[DIRTY_MEMORY_NUM];
383 unsigned long idx;
384 unsigned long offset;
385 long k;
386 long nr = BITS_TO_LONGS(pages);
388 idx = (start >> TARGET_PAGE_BITS) / DIRTY_MEMORY_BLOCK_SIZE;
389 offset = BIT_WORD((start >> TARGET_PAGE_BITS) %
390 DIRTY_MEMORY_BLOCK_SIZE);
392 WITH_RCU_READ_LOCK_GUARD() {
393 for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
394 blocks[i] = atomic_rcu_read(&ram_list.dirty_memory[i])->blocks;
397 for (k = 0; k < nr; k++) {
398 if (bitmap[k]) {
399 unsigned long temp = leul_to_cpu(bitmap[k]);
401 atomic_or(&blocks[DIRTY_MEMORY_VGA][idx][offset], temp);
403 if (global_dirty_log) {
404 atomic_or(&blocks[DIRTY_MEMORY_MIGRATION][idx][offset],
405 temp);
408 if (tcg_enabled()) {
409 atomic_or(&blocks[DIRTY_MEMORY_CODE][idx][offset],
410 temp);
414 if (++offset >= BITS_TO_LONGS(DIRTY_MEMORY_BLOCK_SIZE)) {
415 offset = 0;
416 idx++;
421 xen_hvm_modified_memory(start, pages << TARGET_PAGE_BITS);
422 } else {
423 uint8_t clients = tcg_enabled() ? DIRTY_CLIENTS_ALL : DIRTY_CLIENTS_NOCODE;
425 if (!global_dirty_log) {
426 clients &= ~(1 << DIRTY_MEMORY_MIGRATION);
430 * bitmap-traveling is faster than memory-traveling (for addr...)
431 * especially when most of the memory is not dirty.
433 for (i = 0; i < len; i++) {
434 if (bitmap[i] != 0) {
435 c = leul_to_cpu(bitmap[i]);
436 do {
437 j = ctzl(c);
438 c &= ~(1ul << j);
439 page_number = (i * HOST_LONG_BITS + j) * hpratio;
440 addr = page_number * TARGET_PAGE_SIZE;
441 ram_addr = start + addr;
442 cpu_physical_memory_set_dirty_range(ram_addr,
443 TARGET_PAGE_SIZE * hpratio, clients);
444 } while (c != 0);
449 #endif /* not _WIN32 */
451 bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start,
452 ram_addr_t length,
453 unsigned client);
455 DirtyBitmapSnapshot *cpu_physical_memory_snapshot_and_clear_dirty
456 (MemoryRegion *mr, hwaddr offset, hwaddr length, unsigned client);
458 bool cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot *snap,
459 ram_addr_t start,
460 ram_addr_t length);
462 static inline void cpu_physical_memory_clear_dirty_range(ram_addr_t start,
463 ram_addr_t length)
465 cpu_physical_memory_test_and_clear_dirty(start, length, DIRTY_MEMORY_MIGRATION);
466 cpu_physical_memory_test_and_clear_dirty(start, length, DIRTY_MEMORY_VGA);
467 cpu_physical_memory_test_and_clear_dirty(start, length, DIRTY_MEMORY_CODE);
471 /* Called with RCU critical section */
472 static inline
473 uint64_t cpu_physical_memory_sync_dirty_bitmap(RAMBlock *rb,
474 ram_addr_t start,
475 ram_addr_t length,
476 uint64_t *real_dirty_pages)
478 ram_addr_t addr;
479 unsigned long word = BIT_WORD((start + rb->offset) >> TARGET_PAGE_BITS);
480 uint64_t num_dirty = 0;
481 unsigned long *dest = rb->bmap;
483 /* start address and length is aligned at the start of a word? */
484 if (((word * BITS_PER_LONG) << TARGET_PAGE_BITS) ==
485 (start + rb->offset) &&
486 !(length & ((BITS_PER_LONG << TARGET_PAGE_BITS) - 1))) {
487 int k;
488 int nr = BITS_TO_LONGS(length >> TARGET_PAGE_BITS);
489 unsigned long * const *src;
490 unsigned long idx = (word * BITS_PER_LONG) / DIRTY_MEMORY_BLOCK_SIZE;
491 unsigned long offset = BIT_WORD((word * BITS_PER_LONG) %
492 DIRTY_MEMORY_BLOCK_SIZE);
493 unsigned long page = BIT_WORD(start >> TARGET_PAGE_BITS);
495 src = atomic_rcu_read(
496 &ram_list.dirty_memory[DIRTY_MEMORY_MIGRATION])->blocks;
498 for (k = page; k < page + nr; k++) {
499 if (src[idx][offset]) {
500 unsigned long bits = atomic_xchg(&src[idx][offset], 0);
501 unsigned long new_dirty;
502 *real_dirty_pages += ctpopl(bits);
503 new_dirty = ~dest[k];
504 dest[k] |= bits;
505 new_dirty &= bits;
506 num_dirty += ctpopl(new_dirty);
509 if (++offset >= BITS_TO_LONGS(DIRTY_MEMORY_BLOCK_SIZE)) {
510 offset = 0;
511 idx++;
515 if (rb->clear_bmap) {
517 * Postpone the dirty bitmap clear to the point before we
518 * really send the pages, also we will split the clear
519 * dirty procedure into smaller chunks.
521 clear_bmap_set(rb, start >> TARGET_PAGE_BITS,
522 length >> TARGET_PAGE_BITS);
523 } else {
524 /* Slow path - still do that in a huge chunk */
525 memory_region_clear_dirty_bitmap(rb->mr, start, length);
527 } else {
528 ram_addr_t offset = rb->offset;
530 for (addr = 0; addr < length; addr += TARGET_PAGE_SIZE) {
531 if (cpu_physical_memory_test_and_clear_dirty(
532 start + addr + offset,
533 TARGET_PAGE_SIZE,
534 DIRTY_MEMORY_MIGRATION)) {
535 *real_dirty_pages += 1;
536 long k = (start + addr) >> TARGET_PAGE_BITS;
537 if (!test_and_set_bit(k, dest)) {
538 num_dirty++;
544 return num_dirty;
546 #endif
547 #endif