hw/ppc: Drop useless CONFIG_KVM ifdefery
[qemu/ar7.git] / hw / i386 / intel_iommu.c
blob44b12311579bfdfaff7bc852dc9939851f38c1c6
1 /*
2 * QEMU emulation of an Intel IOMMU (VT-d)
3 * (DMA Remapping device)
5 * Copyright (C) 2013 Knut Omang, Oracle <knut.omang@oracle.com>
6 * Copyright (C) 2014 Le Tan, <tamlokveer@gmail.com>
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public License along
19 * with this program; if not, see <http://www.gnu.org/licenses/>.
22 #include "qemu/osdep.h"
23 #include "qemu/error-report.h"
24 #include "qapi/error.h"
25 #include "hw/sysbus.h"
26 #include "exec/address-spaces.h"
27 #include "intel_iommu_internal.h"
28 #include "hw/pci/pci.h"
29 #include "hw/pci/pci_bus.h"
30 #include "hw/i386/pc.h"
31 #include "hw/i386/apic-msidef.h"
32 #include "hw/boards.h"
33 #include "hw/i386/x86-iommu.h"
34 #include "hw/pci-host/q35.h"
35 #include "sysemu/kvm.h"
36 #include "hw/i386/apic_internal.h"
37 #include "kvm_i386.h"
38 #include "trace.h"
40 /* context entry operations */
41 #define VTD_CE_GET_RID2PASID(ce) \
42 ((ce)->val[1] & VTD_SM_CONTEXT_ENTRY_RID2PASID_MASK)
43 #define VTD_CE_GET_PASID_DIR_TABLE(ce) \
44 ((ce)->val[0] & VTD_PASID_DIR_BASE_ADDR_MASK)
46 /* pe operations */
47 #define VTD_PE_GET_TYPE(pe) ((pe)->val[0] & VTD_SM_PASID_ENTRY_PGTT)
48 #define VTD_PE_GET_LEVEL(pe) (2 + (((pe)->val[0] >> 2) & VTD_SM_PASID_ENTRY_AW))
49 #define VTD_PE_GET_FPD_ERR(ret_fr, is_fpd_set, s, source_id, addr, is_write) {\
50 if (ret_fr) { \
51 ret_fr = -ret_fr; \
52 if (is_fpd_set && vtd_is_qualified_fault(ret_fr)) { \
53 trace_vtd_fault_disabled(); \
54 } else { \
55 vtd_report_dmar_fault(s, source_id, addr, ret_fr, is_write); \
56 } \
57 goto error; \
58 } \
61 static void vtd_address_space_refresh_all(IntelIOMMUState *s);
62 static void vtd_address_space_unmap(VTDAddressSpace *as, IOMMUNotifier *n);
64 static void vtd_define_quad(IntelIOMMUState *s, hwaddr addr, uint64_t val,
65 uint64_t wmask, uint64_t w1cmask)
67 stq_le_p(&s->csr[addr], val);
68 stq_le_p(&s->wmask[addr], wmask);
69 stq_le_p(&s->w1cmask[addr], w1cmask);
72 static void vtd_define_quad_wo(IntelIOMMUState *s, hwaddr addr, uint64_t mask)
74 stq_le_p(&s->womask[addr], mask);
77 static void vtd_define_long(IntelIOMMUState *s, hwaddr addr, uint32_t val,
78 uint32_t wmask, uint32_t w1cmask)
80 stl_le_p(&s->csr[addr], val);
81 stl_le_p(&s->wmask[addr], wmask);
82 stl_le_p(&s->w1cmask[addr], w1cmask);
85 static void vtd_define_long_wo(IntelIOMMUState *s, hwaddr addr, uint32_t mask)
87 stl_le_p(&s->womask[addr], mask);
90 /* "External" get/set operations */
91 static void vtd_set_quad(IntelIOMMUState *s, hwaddr addr, uint64_t val)
93 uint64_t oldval = ldq_le_p(&s->csr[addr]);
94 uint64_t wmask = ldq_le_p(&s->wmask[addr]);
95 uint64_t w1cmask = ldq_le_p(&s->w1cmask[addr]);
96 stq_le_p(&s->csr[addr],
97 ((oldval & ~wmask) | (val & wmask)) & ~(w1cmask & val));
100 static void vtd_set_long(IntelIOMMUState *s, hwaddr addr, uint32_t val)
102 uint32_t oldval = ldl_le_p(&s->csr[addr]);
103 uint32_t wmask = ldl_le_p(&s->wmask[addr]);
104 uint32_t w1cmask = ldl_le_p(&s->w1cmask[addr]);
105 stl_le_p(&s->csr[addr],
106 ((oldval & ~wmask) | (val & wmask)) & ~(w1cmask & val));
109 static uint64_t vtd_get_quad(IntelIOMMUState *s, hwaddr addr)
111 uint64_t val = ldq_le_p(&s->csr[addr]);
112 uint64_t womask = ldq_le_p(&s->womask[addr]);
113 return val & ~womask;
116 static uint32_t vtd_get_long(IntelIOMMUState *s, hwaddr addr)
118 uint32_t val = ldl_le_p(&s->csr[addr]);
119 uint32_t womask = ldl_le_p(&s->womask[addr]);
120 return val & ~womask;
123 /* "Internal" get/set operations */
124 static uint64_t vtd_get_quad_raw(IntelIOMMUState *s, hwaddr addr)
126 return ldq_le_p(&s->csr[addr]);
129 static uint32_t vtd_get_long_raw(IntelIOMMUState *s, hwaddr addr)
131 return ldl_le_p(&s->csr[addr]);
134 static void vtd_set_quad_raw(IntelIOMMUState *s, hwaddr addr, uint64_t val)
136 stq_le_p(&s->csr[addr], val);
139 static uint32_t vtd_set_clear_mask_long(IntelIOMMUState *s, hwaddr addr,
140 uint32_t clear, uint32_t mask)
142 uint32_t new_val = (ldl_le_p(&s->csr[addr]) & ~clear) | mask;
143 stl_le_p(&s->csr[addr], new_val);
144 return new_val;
147 static uint64_t vtd_set_clear_mask_quad(IntelIOMMUState *s, hwaddr addr,
148 uint64_t clear, uint64_t mask)
150 uint64_t new_val = (ldq_le_p(&s->csr[addr]) & ~clear) | mask;
151 stq_le_p(&s->csr[addr], new_val);
152 return new_val;
155 static inline void vtd_iommu_lock(IntelIOMMUState *s)
157 qemu_mutex_lock(&s->iommu_lock);
160 static inline void vtd_iommu_unlock(IntelIOMMUState *s)
162 qemu_mutex_unlock(&s->iommu_lock);
165 static void vtd_update_scalable_state(IntelIOMMUState *s)
167 uint64_t val = vtd_get_quad_raw(s, DMAR_RTADDR_REG);
169 if (s->scalable_mode) {
170 s->root_scalable = val & VTD_RTADDR_SMT;
174 /* Whether the address space needs to notify new mappings */
175 static inline gboolean vtd_as_has_map_notifier(VTDAddressSpace *as)
177 return as->notifier_flags & IOMMU_NOTIFIER_MAP;
180 /* GHashTable functions */
181 static gboolean vtd_uint64_equal(gconstpointer v1, gconstpointer v2)
183 return *((const uint64_t *)v1) == *((const uint64_t *)v2);
186 static guint vtd_uint64_hash(gconstpointer v)
188 return (guint)*(const uint64_t *)v;
191 static gboolean vtd_hash_remove_by_domain(gpointer key, gpointer value,
192 gpointer user_data)
194 VTDIOTLBEntry *entry = (VTDIOTLBEntry *)value;
195 uint16_t domain_id = *(uint16_t *)user_data;
196 return entry->domain_id == domain_id;
199 /* The shift of an addr for a certain level of paging structure */
200 static inline uint32_t vtd_slpt_level_shift(uint32_t level)
202 assert(level != 0);
203 return VTD_PAGE_SHIFT_4K + (level - 1) * VTD_SL_LEVEL_BITS;
206 static inline uint64_t vtd_slpt_level_page_mask(uint32_t level)
208 return ~((1ULL << vtd_slpt_level_shift(level)) - 1);
211 static gboolean vtd_hash_remove_by_page(gpointer key, gpointer value,
212 gpointer user_data)
214 VTDIOTLBEntry *entry = (VTDIOTLBEntry *)value;
215 VTDIOTLBPageInvInfo *info = (VTDIOTLBPageInvInfo *)user_data;
216 uint64_t gfn = (info->addr >> VTD_PAGE_SHIFT_4K) & info->mask;
217 uint64_t gfn_tlb = (info->addr & entry->mask) >> VTD_PAGE_SHIFT_4K;
218 return (entry->domain_id == info->domain_id) &&
219 (((entry->gfn & info->mask) == gfn) ||
220 (entry->gfn == gfn_tlb));
223 /* Reset all the gen of VTDAddressSpace to zero and set the gen of
224 * IntelIOMMUState to 1. Must be called with IOMMU lock held.
226 static void vtd_reset_context_cache_locked(IntelIOMMUState *s)
228 VTDAddressSpace *vtd_as;
229 VTDBus *vtd_bus;
230 GHashTableIter bus_it;
231 uint32_t devfn_it;
233 trace_vtd_context_cache_reset();
235 g_hash_table_iter_init(&bus_it, s->vtd_as_by_busptr);
237 while (g_hash_table_iter_next (&bus_it, NULL, (void**)&vtd_bus)) {
238 for (devfn_it = 0; devfn_it < PCI_DEVFN_MAX; ++devfn_it) {
239 vtd_as = vtd_bus->dev_as[devfn_it];
240 if (!vtd_as) {
241 continue;
243 vtd_as->context_cache_entry.context_cache_gen = 0;
246 s->context_cache_gen = 1;
249 /* Must be called with IOMMU lock held. */
250 static void vtd_reset_iotlb_locked(IntelIOMMUState *s)
252 assert(s->iotlb);
253 g_hash_table_remove_all(s->iotlb);
256 static void vtd_reset_iotlb(IntelIOMMUState *s)
258 vtd_iommu_lock(s);
259 vtd_reset_iotlb_locked(s);
260 vtd_iommu_unlock(s);
263 static void vtd_reset_caches(IntelIOMMUState *s)
265 vtd_iommu_lock(s);
266 vtd_reset_iotlb_locked(s);
267 vtd_reset_context_cache_locked(s);
268 vtd_iommu_unlock(s);
271 static uint64_t vtd_get_iotlb_key(uint64_t gfn, uint16_t source_id,
272 uint32_t level)
274 return gfn | ((uint64_t)(source_id) << VTD_IOTLB_SID_SHIFT) |
275 ((uint64_t)(level) << VTD_IOTLB_LVL_SHIFT);
278 static uint64_t vtd_get_iotlb_gfn(hwaddr addr, uint32_t level)
280 return (addr & vtd_slpt_level_page_mask(level)) >> VTD_PAGE_SHIFT_4K;
283 /* Must be called with IOMMU lock held */
284 static VTDIOTLBEntry *vtd_lookup_iotlb(IntelIOMMUState *s, uint16_t source_id,
285 hwaddr addr)
287 VTDIOTLBEntry *entry;
288 uint64_t key;
289 int level;
291 for (level = VTD_SL_PT_LEVEL; level < VTD_SL_PML4_LEVEL; level++) {
292 key = vtd_get_iotlb_key(vtd_get_iotlb_gfn(addr, level),
293 source_id, level);
294 entry = g_hash_table_lookup(s->iotlb, &key);
295 if (entry) {
296 goto out;
300 out:
301 return entry;
304 /* Must be with IOMMU lock held */
305 static void vtd_update_iotlb(IntelIOMMUState *s, uint16_t source_id,
306 uint16_t domain_id, hwaddr addr, uint64_t slpte,
307 uint8_t access_flags, uint32_t level)
309 VTDIOTLBEntry *entry = g_malloc(sizeof(*entry));
310 uint64_t *key = g_malloc(sizeof(*key));
311 uint64_t gfn = vtd_get_iotlb_gfn(addr, level);
313 trace_vtd_iotlb_page_update(source_id, addr, slpte, domain_id);
314 if (g_hash_table_size(s->iotlb) >= VTD_IOTLB_MAX_SIZE) {
315 trace_vtd_iotlb_reset("iotlb exceeds size limit");
316 vtd_reset_iotlb_locked(s);
319 entry->gfn = gfn;
320 entry->domain_id = domain_id;
321 entry->slpte = slpte;
322 entry->access_flags = access_flags;
323 entry->mask = vtd_slpt_level_page_mask(level);
324 *key = vtd_get_iotlb_key(gfn, source_id, level);
325 g_hash_table_replace(s->iotlb, key, entry);
328 /* Given the reg addr of both the message data and address, generate an
329 * interrupt via MSI.
331 static void vtd_generate_interrupt(IntelIOMMUState *s, hwaddr mesg_addr_reg,
332 hwaddr mesg_data_reg)
334 MSIMessage msi;
336 assert(mesg_data_reg < DMAR_REG_SIZE);
337 assert(mesg_addr_reg < DMAR_REG_SIZE);
339 msi.address = vtd_get_long_raw(s, mesg_addr_reg);
340 msi.data = vtd_get_long_raw(s, mesg_data_reg);
342 trace_vtd_irq_generate(msi.address, msi.data);
344 apic_get_class()->send_msi(&msi);
347 /* Generate a fault event to software via MSI if conditions are met.
348 * Notice that the value of FSTS_REG being passed to it should be the one
349 * before any update.
351 static void vtd_generate_fault_event(IntelIOMMUState *s, uint32_t pre_fsts)
353 if (pre_fsts & VTD_FSTS_PPF || pre_fsts & VTD_FSTS_PFO ||
354 pre_fsts & VTD_FSTS_IQE) {
355 error_report_once("There are previous interrupt conditions "
356 "to be serviced by software, fault event "
357 "is not generated");
358 return;
360 vtd_set_clear_mask_long(s, DMAR_FECTL_REG, 0, VTD_FECTL_IP);
361 if (vtd_get_long_raw(s, DMAR_FECTL_REG) & VTD_FECTL_IM) {
362 error_report_once("Interrupt Mask set, irq is not generated");
363 } else {
364 vtd_generate_interrupt(s, DMAR_FEADDR_REG, DMAR_FEDATA_REG);
365 vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
369 /* Check if the Fault (F) field of the Fault Recording Register referenced by
370 * @index is Set.
372 static bool vtd_is_frcd_set(IntelIOMMUState *s, uint16_t index)
374 /* Each reg is 128-bit */
375 hwaddr addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
376 addr += 8; /* Access the high 64-bit half */
378 assert(index < DMAR_FRCD_REG_NR);
380 return vtd_get_quad_raw(s, addr) & VTD_FRCD_F;
383 /* Update the PPF field of Fault Status Register.
384 * Should be called whenever change the F field of any fault recording
385 * registers.
387 static void vtd_update_fsts_ppf(IntelIOMMUState *s)
389 uint32_t i;
390 uint32_t ppf_mask = 0;
392 for (i = 0; i < DMAR_FRCD_REG_NR; i++) {
393 if (vtd_is_frcd_set(s, i)) {
394 ppf_mask = VTD_FSTS_PPF;
395 break;
398 vtd_set_clear_mask_long(s, DMAR_FSTS_REG, VTD_FSTS_PPF, ppf_mask);
399 trace_vtd_fsts_ppf(!!ppf_mask);
402 static void vtd_set_frcd_and_update_ppf(IntelIOMMUState *s, uint16_t index)
404 /* Each reg is 128-bit */
405 hwaddr addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
406 addr += 8; /* Access the high 64-bit half */
408 assert(index < DMAR_FRCD_REG_NR);
410 vtd_set_clear_mask_quad(s, addr, 0, VTD_FRCD_F);
411 vtd_update_fsts_ppf(s);
414 /* Must not update F field now, should be done later */
415 static void vtd_record_frcd(IntelIOMMUState *s, uint16_t index,
416 uint16_t source_id, hwaddr addr,
417 VTDFaultReason fault, bool is_write)
419 uint64_t hi = 0, lo;
420 hwaddr frcd_reg_addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
422 assert(index < DMAR_FRCD_REG_NR);
424 lo = VTD_FRCD_FI(addr);
425 hi = VTD_FRCD_SID(source_id) | VTD_FRCD_FR(fault);
426 if (!is_write) {
427 hi |= VTD_FRCD_T;
429 vtd_set_quad_raw(s, frcd_reg_addr, lo);
430 vtd_set_quad_raw(s, frcd_reg_addr + 8, hi);
432 trace_vtd_frr_new(index, hi, lo);
435 /* Try to collapse multiple pending faults from the same requester */
436 static bool vtd_try_collapse_fault(IntelIOMMUState *s, uint16_t source_id)
438 uint32_t i;
439 uint64_t frcd_reg;
440 hwaddr addr = DMAR_FRCD_REG_OFFSET + 8; /* The high 64-bit half */
442 for (i = 0; i < DMAR_FRCD_REG_NR; i++) {
443 frcd_reg = vtd_get_quad_raw(s, addr);
444 if ((frcd_reg & VTD_FRCD_F) &&
445 ((frcd_reg & VTD_FRCD_SID_MASK) == source_id)) {
446 return true;
448 addr += 16; /* 128-bit for each */
450 return false;
453 /* Log and report an DMAR (address translation) fault to software */
454 static void vtd_report_dmar_fault(IntelIOMMUState *s, uint16_t source_id,
455 hwaddr addr, VTDFaultReason fault,
456 bool is_write)
458 uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
460 assert(fault < VTD_FR_MAX);
462 if (fault == VTD_FR_RESERVED_ERR) {
463 /* This is not a normal fault reason case. Drop it. */
464 return;
467 trace_vtd_dmar_fault(source_id, fault, addr, is_write);
469 if (fsts_reg & VTD_FSTS_PFO) {
470 error_report_once("New fault is not recorded due to "
471 "Primary Fault Overflow");
472 return;
475 if (vtd_try_collapse_fault(s, source_id)) {
476 error_report_once("New fault is not recorded due to "
477 "compression of faults");
478 return;
481 if (vtd_is_frcd_set(s, s->next_frcd_reg)) {
482 error_report_once("Next Fault Recording Reg is used, "
483 "new fault is not recorded, set PFO field");
484 vtd_set_clear_mask_long(s, DMAR_FSTS_REG, 0, VTD_FSTS_PFO);
485 return;
488 vtd_record_frcd(s, s->next_frcd_reg, source_id, addr, fault, is_write);
490 if (fsts_reg & VTD_FSTS_PPF) {
491 error_report_once("There are pending faults already, "
492 "fault event is not generated");
493 vtd_set_frcd_and_update_ppf(s, s->next_frcd_reg);
494 s->next_frcd_reg++;
495 if (s->next_frcd_reg == DMAR_FRCD_REG_NR) {
496 s->next_frcd_reg = 0;
498 } else {
499 vtd_set_clear_mask_long(s, DMAR_FSTS_REG, VTD_FSTS_FRI_MASK,
500 VTD_FSTS_FRI(s->next_frcd_reg));
501 vtd_set_frcd_and_update_ppf(s, s->next_frcd_reg); /* Will set PPF */
502 s->next_frcd_reg++;
503 if (s->next_frcd_reg == DMAR_FRCD_REG_NR) {
504 s->next_frcd_reg = 0;
506 /* This case actually cause the PPF to be Set.
507 * So generate fault event (interrupt).
509 vtd_generate_fault_event(s, fsts_reg);
513 /* Handle Invalidation Queue Errors of queued invalidation interface error
514 * conditions.
516 static void vtd_handle_inv_queue_error(IntelIOMMUState *s)
518 uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
520 vtd_set_clear_mask_long(s, DMAR_FSTS_REG, 0, VTD_FSTS_IQE);
521 vtd_generate_fault_event(s, fsts_reg);
524 /* Set the IWC field and try to generate an invalidation completion interrupt */
525 static void vtd_generate_completion_event(IntelIOMMUState *s)
527 if (vtd_get_long_raw(s, DMAR_ICS_REG) & VTD_ICS_IWC) {
528 trace_vtd_inv_desc_wait_irq("One pending, skip current");
529 return;
531 vtd_set_clear_mask_long(s, DMAR_ICS_REG, 0, VTD_ICS_IWC);
532 vtd_set_clear_mask_long(s, DMAR_IECTL_REG, 0, VTD_IECTL_IP);
533 if (vtd_get_long_raw(s, DMAR_IECTL_REG) & VTD_IECTL_IM) {
534 trace_vtd_inv_desc_wait_irq("IM in IECTL_REG is set, "
535 "new event not generated");
536 return;
537 } else {
538 /* Generate the interrupt event */
539 trace_vtd_inv_desc_wait_irq("Generating complete event");
540 vtd_generate_interrupt(s, DMAR_IEADDR_REG, DMAR_IEDATA_REG);
541 vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
545 static inline bool vtd_root_entry_present(IntelIOMMUState *s,
546 VTDRootEntry *re,
547 uint8_t devfn)
549 if (s->root_scalable && devfn > UINT8_MAX / 2) {
550 return re->hi & VTD_ROOT_ENTRY_P;
553 return re->lo & VTD_ROOT_ENTRY_P;
556 static int vtd_get_root_entry(IntelIOMMUState *s, uint8_t index,
557 VTDRootEntry *re)
559 dma_addr_t addr;
561 addr = s->root + index * sizeof(*re);
562 if (dma_memory_read(&address_space_memory, addr, re, sizeof(*re))) {
563 re->lo = 0;
564 return -VTD_FR_ROOT_TABLE_INV;
566 re->lo = le64_to_cpu(re->lo);
567 re->hi = le64_to_cpu(re->hi);
568 return 0;
571 static inline bool vtd_ce_present(VTDContextEntry *context)
573 return context->lo & VTD_CONTEXT_ENTRY_P;
576 static int vtd_get_context_entry_from_root(IntelIOMMUState *s,
577 VTDRootEntry *re,
578 uint8_t index,
579 VTDContextEntry *ce)
581 dma_addr_t addr, ce_size;
583 /* we have checked that root entry is present */
584 ce_size = s->root_scalable ? VTD_CTX_ENTRY_SCALABLE_SIZE :
585 VTD_CTX_ENTRY_LEGACY_SIZE;
587 if (s->root_scalable && index > UINT8_MAX / 2) {
588 index = index & (~VTD_DEVFN_CHECK_MASK);
589 addr = re->hi & VTD_ROOT_ENTRY_CTP;
590 } else {
591 addr = re->lo & VTD_ROOT_ENTRY_CTP;
594 addr = addr + index * ce_size;
595 if (dma_memory_read(&address_space_memory, addr, ce, ce_size)) {
596 return -VTD_FR_CONTEXT_TABLE_INV;
599 ce->lo = le64_to_cpu(ce->lo);
600 ce->hi = le64_to_cpu(ce->hi);
601 if (ce_size == VTD_CTX_ENTRY_SCALABLE_SIZE) {
602 ce->val[2] = le64_to_cpu(ce->val[2]);
603 ce->val[3] = le64_to_cpu(ce->val[3]);
605 return 0;
608 static inline dma_addr_t vtd_ce_get_slpt_base(VTDContextEntry *ce)
610 return ce->lo & VTD_CONTEXT_ENTRY_SLPTPTR;
613 static inline uint64_t vtd_get_slpte_addr(uint64_t slpte, uint8_t aw)
615 return slpte & VTD_SL_PT_BASE_ADDR_MASK(aw);
618 /* Whether the pte indicates the address of the page frame */
619 static inline bool vtd_is_last_slpte(uint64_t slpte, uint32_t level)
621 return level == VTD_SL_PT_LEVEL || (slpte & VTD_SL_PT_PAGE_SIZE_MASK);
624 /* Get the content of a spte located in @base_addr[@index] */
625 static uint64_t vtd_get_slpte(dma_addr_t base_addr, uint32_t index)
627 uint64_t slpte;
629 assert(index < VTD_SL_PT_ENTRY_NR);
631 if (dma_memory_read(&address_space_memory,
632 base_addr + index * sizeof(slpte), &slpte,
633 sizeof(slpte))) {
634 slpte = (uint64_t)-1;
635 return slpte;
637 slpte = le64_to_cpu(slpte);
638 return slpte;
641 /* Given an iova and the level of paging structure, return the offset
642 * of current level.
644 static inline uint32_t vtd_iova_level_offset(uint64_t iova, uint32_t level)
646 return (iova >> vtd_slpt_level_shift(level)) &
647 ((1ULL << VTD_SL_LEVEL_BITS) - 1);
650 /* Check Capability Register to see if the @level of page-table is supported */
651 static inline bool vtd_is_level_supported(IntelIOMMUState *s, uint32_t level)
653 return VTD_CAP_SAGAW_MASK & s->cap &
654 (1ULL << (level - 2 + VTD_CAP_SAGAW_SHIFT));
657 /* Return true if check passed, otherwise false */
658 static inline bool vtd_pe_type_check(X86IOMMUState *x86_iommu,
659 VTDPASIDEntry *pe)
661 switch (VTD_PE_GET_TYPE(pe)) {
662 case VTD_SM_PASID_ENTRY_FLT:
663 case VTD_SM_PASID_ENTRY_SLT:
664 case VTD_SM_PASID_ENTRY_NESTED:
665 break;
666 case VTD_SM_PASID_ENTRY_PT:
667 if (!x86_iommu->pt_supported) {
668 return false;
670 break;
671 default:
672 /* Unknwon type */
673 return false;
675 return true;
678 static int vtd_get_pasid_dire(dma_addr_t pasid_dir_base,
679 uint32_t pasid,
680 VTDPASIDDirEntry *pdire)
682 uint32_t index;
683 dma_addr_t addr, entry_size;
685 index = VTD_PASID_DIR_INDEX(pasid);
686 entry_size = VTD_PASID_DIR_ENTRY_SIZE;
687 addr = pasid_dir_base + index * entry_size;
688 if (dma_memory_read(&address_space_memory, addr, pdire, entry_size)) {
689 return -VTD_FR_PASID_TABLE_INV;
692 return 0;
695 static int vtd_get_pasid_entry(IntelIOMMUState *s,
696 uint32_t pasid,
697 VTDPASIDDirEntry *pdire,
698 VTDPASIDEntry *pe)
700 uint32_t index;
701 dma_addr_t addr, entry_size;
702 X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
704 index = VTD_PASID_TABLE_INDEX(pasid);
705 entry_size = VTD_PASID_ENTRY_SIZE;
706 addr = pdire->val & VTD_PASID_TABLE_BASE_ADDR_MASK;
707 addr = addr + index * entry_size;
708 if (dma_memory_read(&address_space_memory, addr, pe, entry_size)) {
709 return -VTD_FR_PASID_TABLE_INV;
712 /* Do translation type check */
713 if (!vtd_pe_type_check(x86_iommu, pe)) {
714 return -VTD_FR_PASID_TABLE_INV;
717 if (!vtd_is_level_supported(s, VTD_PE_GET_LEVEL(pe))) {
718 return -VTD_FR_PASID_TABLE_INV;
721 return 0;
724 static int vtd_get_pasid_entry_from_pasid(IntelIOMMUState *s,
725 dma_addr_t pasid_dir_base,
726 uint32_t pasid,
727 VTDPASIDEntry *pe)
729 int ret;
730 VTDPASIDDirEntry pdire;
732 ret = vtd_get_pasid_dire(pasid_dir_base, pasid, &pdire);
733 if (ret) {
734 return ret;
737 ret = vtd_get_pasid_entry(s, pasid, &pdire, pe);
738 if (ret) {
739 return ret;
742 return ret;
745 static int vtd_ce_get_rid2pasid_entry(IntelIOMMUState *s,
746 VTDContextEntry *ce,
747 VTDPASIDEntry *pe)
749 uint32_t pasid;
750 dma_addr_t pasid_dir_base;
751 int ret = 0;
753 pasid = VTD_CE_GET_RID2PASID(ce);
754 pasid_dir_base = VTD_CE_GET_PASID_DIR_TABLE(ce);
755 ret = vtd_get_pasid_entry_from_pasid(s, pasid_dir_base, pasid, pe);
757 return ret;
760 static int vtd_ce_get_pasid_fpd(IntelIOMMUState *s,
761 VTDContextEntry *ce,
762 bool *pe_fpd_set)
764 int ret;
765 uint32_t pasid;
766 dma_addr_t pasid_dir_base;
767 VTDPASIDDirEntry pdire;
768 VTDPASIDEntry pe;
770 pasid = VTD_CE_GET_RID2PASID(ce);
771 pasid_dir_base = VTD_CE_GET_PASID_DIR_TABLE(ce);
773 ret = vtd_get_pasid_dire(pasid_dir_base, pasid, &pdire);
774 if (ret) {
775 return ret;
778 if (pdire.val & VTD_PASID_DIR_FPD) {
779 *pe_fpd_set = true;
780 return 0;
783 ret = vtd_get_pasid_entry(s, pasid, &pdire, &pe);
784 if (ret) {
785 return ret;
788 if (pe.val[0] & VTD_PASID_ENTRY_FPD) {
789 *pe_fpd_set = true;
792 return 0;
795 /* Get the page-table level that hardware should use for the second-level
796 * page-table walk from the Address Width field of context-entry.
798 static inline uint32_t vtd_ce_get_level(VTDContextEntry *ce)
800 return 2 + (ce->hi & VTD_CONTEXT_ENTRY_AW);
803 static uint32_t vtd_get_iova_level(IntelIOMMUState *s,
804 VTDContextEntry *ce)
806 VTDPASIDEntry pe;
808 if (s->root_scalable) {
809 vtd_ce_get_rid2pasid_entry(s, ce, &pe);
810 return VTD_PE_GET_LEVEL(&pe);
813 return vtd_ce_get_level(ce);
816 static inline uint32_t vtd_ce_get_agaw(VTDContextEntry *ce)
818 return 30 + (ce->hi & VTD_CONTEXT_ENTRY_AW) * 9;
821 static uint32_t vtd_get_iova_agaw(IntelIOMMUState *s,
822 VTDContextEntry *ce)
824 VTDPASIDEntry pe;
826 if (s->root_scalable) {
827 vtd_ce_get_rid2pasid_entry(s, ce, &pe);
828 return 30 + ((pe.val[0] >> 2) & VTD_SM_PASID_ENTRY_AW) * 9;
831 return vtd_ce_get_agaw(ce);
834 static inline uint32_t vtd_ce_get_type(VTDContextEntry *ce)
836 return ce->lo & VTD_CONTEXT_ENTRY_TT;
839 /* Only for Legacy Mode. Return true if check passed, otherwise false */
840 static inline bool vtd_ce_type_check(X86IOMMUState *x86_iommu,
841 VTDContextEntry *ce)
843 switch (vtd_ce_get_type(ce)) {
844 case VTD_CONTEXT_TT_MULTI_LEVEL:
845 /* Always supported */
846 break;
847 case VTD_CONTEXT_TT_DEV_IOTLB:
848 if (!x86_iommu->dt_supported) {
849 error_report_once("%s: DT specified but not supported", __func__);
850 return false;
852 break;
853 case VTD_CONTEXT_TT_PASS_THROUGH:
854 if (!x86_iommu->pt_supported) {
855 error_report_once("%s: PT specified but not supported", __func__);
856 return false;
858 break;
859 default:
860 /* Unknown type */
861 error_report_once("%s: unknown ce type: %"PRIu32, __func__,
862 vtd_ce_get_type(ce));
863 return false;
865 return true;
868 static inline uint64_t vtd_iova_limit(IntelIOMMUState *s,
869 VTDContextEntry *ce, uint8_t aw)
871 uint32_t ce_agaw = vtd_get_iova_agaw(s, ce);
872 return 1ULL << MIN(ce_agaw, aw);
875 /* Return true if IOVA passes range check, otherwise false. */
876 static inline bool vtd_iova_range_check(IntelIOMMUState *s,
877 uint64_t iova, VTDContextEntry *ce,
878 uint8_t aw)
881 * Check if @iova is above 2^X-1, where X is the minimum of MGAW
882 * in CAP_REG and AW in context-entry.
884 return !(iova & ~(vtd_iova_limit(s, ce, aw) - 1));
887 static dma_addr_t vtd_get_iova_pgtbl_base(IntelIOMMUState *s,
888 VTDContextEntry *ce)
890 VTDPASIDEntry pe;
892 if (s->root_scalable) {
893 vtd_ce_get_rid2pasid_entry(s, ce, &pe);
894 return pe.val[0] & VTD_SM_PASID_ENTRY_SLPTPTR;
897 return vtd_ce_get_slpt_base(ce);
901 * Rsvd field masks for spte:
902 * Index [1] to [4] 4k pages
903 * Index [5] to [8] large pages
905 static uint64_t vtd_paging_entry_rsvd_field[9];
907 static bool vtd_slpte_nonzero_rsvd(uint64_t slpte, uint32_t level)
909 if (slpte & VTD_SL_PT_PAGE_SIZE_MASK) {
910 /* Maybe large page */
911 return slpte & vtd_paging_entry_rsvd_field[level + 4];
912 } else {
913 return slpte & vtd_paging_entry_rsvd_field[level];
917 /* Find the VTD address space associated with a given bus number */
918 static VTDBus *vtd_find_as_from_bus_num(IntelIOMMUState *s, uint8_t bus_num)
920 VTDBus *vtd_bus = s->vtd_as_by_bus_num[bus_num];
921 if (!vtd_bus) {
923 * Iterate over the registered buses to find the one which
924 * currently hold this bus number, and update the bus_num
925 * lookup table:
927 GHashTableIter iter;
929 g_hash_table_iter_init(&iter, s->vtd_as_by_busptr);
930 while (g_hash_table_iter_next(&iter, NULL, (void **)&vtd_bus)) {
931 if (pci_bus_num(vtd_bus->bus) == bus_num) {
932 s->vtd_as_by_bus_num[bus_num] = vtd_bus;
933 return vtd_bus;
937 return vtd_bus;
940 /* Given the @iova, get relevant @slptep. @slpte_level will be the last level
941 * of the translation, can be used for deciding the size of large page.
943 static int vtd_iova_to_slpte(IntelIOMMUState *s, VTDContextEntry *ce,
944 uint64_t iova, bool is_write,
945 uint64_t *slptep, uint32_t *slpte_level,
946 bool *reads, bool *writes, uint8_t aw_bits)
948 dma_addr_t addr = vtd_get_iova_pgtbl_base(s, ce);
949 uint32_t level = vtd_get_iova_level(s, ce);
950 uint32_t offset;
951 uint64_t slpte;
952 uint64_t access_right_check;
954 if (!vtd_iova_range_check(s, iova, ce, aw_bits)) {
955 error_report_once("%s: detected IOVA overflow (iova=0x%" PRIx64 ")",
956 __func__, iova);
957 return -VTD_FR_ADDR_BEYOND_MGAW;
960 /* FIXME: what is the Atomics request here? */
961 access_right_check = is_write ? VTD_SL_W : VTD_SL_R;
963 while (true) {
964 offset = vtd_iova_level_offset(iova, level);
965 slpte = vtd_get_slpte(addr, offset);
967 if (slpte == (uint64_t)-1) {
968 error_report_once("%s: detected read error on DMAR slpte "
969 "(iova=0x%" PRIx64 ")", __func__, iova);
970 if (level == vtd_get_iova_level(s, ce)) {
971 /* Invalid programming of context-entry */
972 return -VTD_FR_CONTEXT_ENTRY_INV;
973 } else {
974 return -VTD_FR_PAGING_ENTRY_INV;
977 *reads = (*reads) && (slpte & VTD_SL_R);
978 *writes = (*writes) && (slpte & VTD_SL_W);
979 if (!(slpte & access_right_check)) {
980 error_report_once("%s: detected slpte permission error "
981 "(iova=0x%" PRIx64 ", level=0x%" PRIx32 ", "
982 "slpte=0x%" PRIx64 ", write=%d)", __func__,
983 iova, level, slpte, is_write);
984 return is_write ? -VTD_FR_WRITE : -VTD_FR_READ;
986 if (vtd_slpte_nonzero_rsvd(slpte, level)) {
987 error_report_once("%s: detected splte reserve non-zero "
988 "iova=0x%" PRIx64 ", level=0x%" PRIx32
989 "slpte=0x%" PRIx64 ")", __func__, iova,
990 level, slpte);
991 return -VTD_FR_PAGING_ENTRY_RSVD;
994 if (vtd_is_last_slpte(slpte, level)) {
995 *slptep = slpte;
996 *slpte_level = level;
997 return 0;
999 addr = vtd_get_slpte_addr(slpte, aw_bits);
1000 level--;
1004 typedef int (*vtd_page_walk_hook)(IOMMUTLBEntry *entry, void *private);
1007 * Constant information used during page walking
1009 * @hook_fn: hook func to be called when detected page
1010 * @private: private data to be passed into hook func
1011 * @notify_unmap: whether we should notify invalid entries
1012 * @as: VT-d address space of the device
1013 * @aw: maximum address width
1014 * @domain: domain ID of the page walk
1016 typedef struct {
1017 VTDAddressSpace *as;
1018 vtd_page_walk_hook hook_fn;
1019 void *private;
1020 bool notify_unmap;
1021 uint8_t aw;
1022 uint16_t domain_id;
1023 } vtd_page_walk_info;
1025 static int vtd_page_walk_one(IOMMUTLBEntry *entry, vtd_page_walk_info *info)
1027 VTDAddressSpace *as = info->as;
1028 vtd_page_walk_hook hook_fn = info->hook_fn;
1029 void *private = info->private;
1030 DMAMap target = {
1031 .iova = entry->iova,
1032 .size = entry->addr_mask,
1033 .translated_addr = entry->translated_addr,
1034 .perm = entry->perm,
1036 DMAMap *mapped = iova_tree_find(as->iova_tree, &target);
1038 if (entry->perm == IOMMU_NONE && !info->notify_unmap) {
1039 trace_vtd_page_walk_one_skip_unmap(entry->iova, entry->addr_mask);
1040 return 0;
1043 assert(hook_fn);
1045 /* Update local IOVA mapped ranges */
1046 if (entry->perm) {
1047 if (mapped) {
1048 /* If it's exactly the same translation, skip */
1049 if (!memcmp(mapped, &target, sizeof(target))) {
1050 trace_vtd_page_walk_one_skip_map(entry->iova, entry->addr_mask,
1051 entry->translated_addr);
1052 return 0;
1053 } else {
1055 * Translation changed. Normally this should not
1056 * happen, but it can happen when with buggy guest
1057 * OSes. Note that there will be a small window that
1058 * we don't have map at all. But that's the best
1059 * effort we can do. The ideal way to emulate this is
1060 * atomically modify the PTE to follow what has
1061 * changed, but we can't. One example is that vfio
1062 * driver only has VFIO_IOMMU_[UN]MAP_DMA but no
1063 * interface to modify a mapping (meanwhile it seems
1064 * meaningless to even provide one). Anyway, let's
1065 * mark this as a TODO in case one day we'll have
1066 * a better solution.
1068 IOMMUAccessFlags cache_perm = entry->perm;
1069 int ret;
1071 /* Emulate an UNMAP */
1072 entry->perm = IOMMU_NONE;
1073 trace_vtd_page_walk_one(info->domain_id,
1074 entry->iova,
1075 entry->translated_addr,
1076 entry->addr_mask,
1077 entry->perm);
1078 ret = hook_fn(entry, private);
1079 if (ret) {
1080 return ret;
1082 /* Drop any existing mapping */
1083 iova_tree_remove(as->iova_tree, &target);
1084 /* Recover the correct permission */
1085 entry->perm = cache_perm;
1088 iova_tree_insert(as->iova_tree, &target);
1089 } else {
1090 if (!mapped) {
1091 /* Skip since we didn't map this range at all */
1092 trace_vtd_page_walk_one_skip_unmap(entry->iova, entry->addr_mask);
1093 return 0;
1095 iova_tree_remove(as->iova_tree, &target);
1098 trace_vtd_page_walk_one(info->domain_id, entry->iova,
1099 entry->translated_addr, entry->addr_mask,
1100 entry->perm);
1101 return hook_fn(entry, private);
1105 * vtd_page_walk_level - walk over specific level for IOVA range
1107 * @addr: base GPA addr to start the walk
1108 * @start: IOVA range start address
1109 * @end: IOVA range end address (start <= addr < end)
1110 * @read: whether parent level has read permission
1111 * @write: whether parent level has write permission
1112 * @info: constant information for the page walk
1114 static int vtd_page_walk_level(dma_addr_t addr, uint64_t start,
1115 uint64_t end, uint32_t level, bool read,
1116 bool write, vtd_page_walk_info *info)
1118 bool read_cur, write_cur, entry_valid;
1119 uint32_t offset;
1120 uint64_t slpte;
1121 uint64_t subpage_size, subpage_mask;
1122 IOMMUTLBEntry entry;
1123 uint64_t iova = start;
1124 uint64_t iova_next;
1125 int ret = 0;
1127 trace_vtd_page_walk_level(addr, level, start, end);
1129 subpage_size = 1ULL << vtd_slpt_level_shift(level);
1130 subpage_mask = vtd_slpt_level_page_mask(level);
1132 while (iova < end) {
1133 iova_next = (iova & subpage_mask) + subpage_size;
1135 offset = vtd_iova_level_offset(iova, level);
1136 slpte = vtd_get_slpte(addr, offset);
1138 if (slpte == (uint64_t)-1) {
1139 trace_vtd_page_walk_skip_read(iova, iova_next);
1140 goto next;
1143 if (vtd_slpte_nonzero_rsvd(slpte, level)) {
1144 trace_vtd_page_walk_skip_reserve(iova, iova_next);
1145 goto next;
1148 /* Permissions are stacked with parents' */
1149 read_cur = read && (slpte & VTD_SL_R);
1150 write_cur = write && (slpte & VTD_SL_W);
1153 * As long as we have either read/write permission, this is a
1154 * valid entry. The rule works for both page entries and page
1155 * table entries.
1157 entry_valid = read_cur | write_cur;
1159 if (!vtd_is_last_slpte(slpte, level) && entry_valid) {
1161 * This is a valid PDE (or even bigger than PDE). We need
1162 * to walk one further level.
1164 ret = vtd_page_walk_level(vtd_get_slpte_addr(slpte, info->aw),
1165 iova, MIN(iova_next, end), level - 1,
1166 read_cur, write_cur, info);
1167 } else {
1169 * This means we are either:
1171 * (1) the real page entry (either 4K page, or huge page)
1172 * (2) the whole range is invalid
1174 * In either case, we send an IOTLB notification down.
1176 entry.target_as = &address_space_memory;
1177 entry.iova = iova & subpage_mask;
1178 entry.perm = IOMMU_ACCESS_FLAG(read_cur, write_cur);
1179 entry.addr_mask = ~subpage_mask;
1180 /* NOTE: this is only meaningful if entry_valid == true */
1181 entry.translated_addr = vtd_get_slpte_addr(slpte, info->aw);
1182 ret = vtd_page_walk_one(&entry, info);
1185 if (ret < 0) {
1186 return ret;
1189 next:
1190 iova = iova_next;
1193 return 0;
1197 * vtd_page_walk - walk specific IOVA range, and call the hook
1199 * @s: intel iommu state
1200 * @ce: context entry to walk upon
1201 * @start: IOVA address to start the walk
1202 * @end: IOVA range end address (start <= addr < end)
1203 * @info: page walking information struct
1205 static int vtd_page_walk(IntelIOMMUState *s, VTDContextEntry *ce,
1206 uint64_t start, uint64_t end,
1207 vtd_page_walk_info *info)
1209 dma_addr_t addr = vtd_get_iova_pgtbl_base(s, ce);
1210 uint32_t level = vtd_get_iova_level(s, ce);
1212 if (!vtd_iova_range_check(s, start, ce, info->aw)) {
1213 return -VTD_FR_ADDR_BEYOND_MGAW;
1216 if (!vtd_iova_range_check(s, end, ce, info->aw)) {
1217 /* Fix end so that it reaches the maximum */
1218 end = vtd_iova_limit(s, ce, info->aw);
1221 return vtd_page_walk_level(addr, start, end, level, true, true, info);
1224 static int vtd_root_entry_rsvd_bits_check(IntelIOMMUState *s,
1225 VTDRootEntry *re)
1227 /* Legacy Mode reserved bits check */
1228 if (!s->root_scalable &&
1229 (re->hi || (re->lo & VTD_ROOT_ENTRY_RSVD(s->aw_bits))))
1230 goto rsvd_err;
1232 /* Scalable Mode reserved bits check */
1233 if (s->root_scalable &&
1234 ((re->lo & VTD_ROOT_ENTRY_RSVD(s->aw_bits)) ||
1235 (re->hi & VTD_ROOT_ENTRY_RSVD(s->aw_bits))))
1236 goto rsvd_err;
1238 return 0;
1240 rsvd_err:
1241 error_report_once("%s: invalid root entry: hi=0x%"PRIx64
1242 ", lo=0x%"PRIx64,
1243 __func__, re->hi, re->lo);
1244 return -VTD_FR_ROOT_ENTRY_RSVD;
1247 static inline int vtd_context_entry_rsvd_bits_check(IntelIOMMUState *s,
1248 VTDContextEntry *ce)
1250 if (!s->root_scalable &&
1251 (ce->hi & VTD_CONTEXT_ENTRY_RSVD_HI ||
1252 ce->lo & VTD_CONTEXT_ENTRY_RSVD_LO(s->aw_bits))) {
1253 error_report_once("%s: invalid context entry: hi=%"PRIx64
1254 ", lo=%"PRIx64" (reserved nonzero)",
1255 __func__, ce->hi, ce->lo);
1256 return -VTD_FR_CONTEXT_ENTRY_RSVD;
1259 if (s->root_scalable &&
1260 (ce->val[0] & VTD_SM_CONTEXT_ENTRY_RSVD_VAL0(s->aw_bits) ||
1261 ce->val[1] & VTD_SM_CONTEXT_ENTRY_RSVD_VAL1 ||
1262 ce->val[2] ||
1263 ce->val[3])) {
1264 error_report_once("%s: invalid context entry: val[3]=%"PRIx64
1265 ", val[2]=%"PRIx64
1266 ", val[1]=%"PRIx64
1267 ", val[0]=%"PRIx64" (reserved nonzero)",
1268 __func__, ce->val[3], ce->val[2],
1269 ce->val[1], ce->val[0]);
1270 return -VTD_FR_CONTEXT_ENTRY_RSVD;
1273 return 0;
1276 static int vtd_ce_rid2pasid_check(IntelIOMMUState *s,
1277 VTDContextEntry *ce)
1279 VTDPASIDEntry pe;
1282 * Make sure in Scalable Mode, a present context entry
1283 * has valid rid2pasid setting, which includes valid
1284 * rid2pasid field and corresponding pasid entry setting
1286 return vtd_ce_get_rid2pasid_entry(s, ce, &pe);
1289 /* Map a device to its corresponding domain (context-entry) */
1290 static int vtd_dev_to_context_entry(IntelIOMMUState *s, uint8_t bus_num,
1291 uint8_t devfn, VTDContextEntry *ce)
1293 VTDRootEntry re;
1294 int ret_fr;
1295 X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
1297 ret_fr = vtd_get_root_entry(s, bus_num, &re);
1298 if (ret_fr) {
1299 return ret_fr;
1302 if (!vtd_root_entry_present(s, &re, devfn)) {
1303 /* Not error - it's okay we don't have root entry. */
1304 trace_vtd_re_not_present(bus_num);
1305 return -VTD_FR_ROOT_ENTRY_P;
1308 ret_fr = vtd_root_entry_rsvd_bits_check(s, &re);
1309 if (ret_fr) {
1310 return ret_fr;
1313 ret_fr = vtd_get_context_entry_from_root(s, &re, devfn, ce);
1314 if (ret_fr) {
1315 return ret_fr;
1318 if (!vtd_ce_present(ce)) {
1319 /* Not error - it's okay we don't have context entry. */
1320 trace_vtd_ce_not_present(bus_num, devfn);
1321 return -VTD_FR_CONTEXT_ENTRY_P;
1324 ret_fr = vtd_context_entry_rsvd_bits_check(s, ce);
1325 if (ret_fr) {
1326 return ret_fr;
1329 /* Check if the programming of context-entry is valid */
1330 if (!s->root_scalable &&
1331 !vtd_is_level_supported(s, vtd_ce_get_level(ce))) {
1332 error_report_once("%s: invalid context entry: hi=%"PRIx64
1333 ", lo=%"PRIx64" (level %d not supported)",
1334 __func__, ce->hi, ce->lo,
1335 vtd_ce_get_level(ce));
1336 return -VTD_FR_CONTEXT_ENTRY_INV;
1339 if (!s->root_scalable) {
1340 /* Do translation type check */
1341 if (!vtd_ce_type_check(x86_iommu, ce)) {
1342 /* Errors dumped in vtd_ce_type_check() */
1343 return -VTD_FR_CONTEXT_ENTRY_INV;
1345 } else {
1347 * Check if the programming of context-entry.rid2pasid
1348 * and corresponding pasid setting is valid, and thus
1349 * avoids to check pasid entry fetching result in future
1350 * helper function calling.
1352 ret_fr = vtd_ce_rid2pasid_check(s, ce);
1353 if (ret_fr) {
1354 return ret_fr;
1358 return 0;
1361 static int vtd_sync_shadow_page_hook(IOMMUTLBEntry *entry,
1362 void *private)
1364 memory_region_notify_iommu((IOMMUMemoryRegion *)private, 0, *entry);
1365 return 0;
1368 static uint16_t vtd_get_domain_id(IntelIOMMUState *s,
1369 VTDContextEntry *ce)
1371 VTDPASIDEntry pe;
1373 if (s->root_scalable) {
1374 vtd_ce_get_rid2pasid_entry(s, ce, &pe);
1375 return VTD_SM_PASID_ENTRY_DID(pe.val[1]);
1378 return VTD_CONTEXT_ENTRY_DID(ce->hi);
1381 static int vtd_sync_shadow_page_table_range(VTDAddressSpace *vtd_as,
1382 VTDContextEntry *ce,
1383 hwaddr addr, hwaddr size)
1385 IntelIOMMUState *s = vtd_as->iommu_state;
1386 vtd_page_walk_info info = {
1387 .hook_fn = vtd_sync_shadow_page_hook,
1388 .private = (void *)&vtd_as->iommu,
1389 .notify_unmap = true,
1390 .aw = s->aw_bits,
1391 .as = vtd_as,
1392 .domain_id = vtd_get_domain_id(s, ce),
1395 return vtd_page_walk(s, ce, addr, addr + size, &info);
1398 static int vtd_sync_shadow_page_table(VTDAddressSpace *vtd_as)
1400 int ret;
1401 VTDContextEntry ce;
1402 IOMMUNotifier *n;
1404 ret = vtd_dev_to_context_entry(vtd_as->iommu_state,
1405 pci_bus_num(vtd_as->bus),
1406 vtd_as->devfn, &ce);
1407 if (ret) {
1408 if (ret == -VTD_FR_CONTEXT_ENTRY_P) {
1410 * It's a valid scenario to have a context entry that is
1411 * not present. For example, when a device is removed
1412 * from an existing domain then the context entry will be
1413 * zeroed by the guest before it was put into another
1414 * domain. When this happens, instead of synchronizing
1415 * the shadow pages we should invalidate all existing
1416 * mappings and notify the backends.
1418 IOMMU_NOTIFIER_FOREACH(n, &vtd_as->iommu) {
1419 vtd_address_space_unmap(vtd_as, n);
1421 ret = 0;
1423 return ret;
1426 return vtd_sync_shadow_page_table_range(vtd_as, &ce, 0, UINT64_MAX);
1430 * Check if specific device is configed to bypass address
1431 * translation for DMA requests. In Scalable Mode, bypass
1432 * 1st-level translation or 2nd-level translation, it depends
1433 * on PGTT setting.
1435 static bool vtd_dev_pt_enabled(VTDAddressSpace *as)
1437 IntelIOMMUState *s;
1438 VTDContextEntry ce;
1439 VTDPASIDEntry pe;
1440 int ret;
1442 assert(as);
1444 s = as->iommu_state;
1445 ret = vtd_dev_to_context_entry(s, pci_bus_num(as->bus),
1446 as->devfn, &ce);
1447 if (ret) {
1449 * Possibly failed to parse the context entry for some reason
1450 * (e.g., during init, or any guest configuration errors on
1451 * context entries). We should assume PT not enabled for
1452 * safety.
1454 return false;
1457 if (s->root_scalable) {
1458 ret = vtd_ce_get_rid2pasid_entry(s, &ce, &pe);
1459 if (ret) {
1460 error_report_once("%s: vtd_ce_get_rid2pasid_entry error: %"PRId32,
1461 __func__, ret);
1462 return false;
1464 return (VTD_PE_GET_TYPE(&pe) == VTD_SM_PASID_ENTRY_PT);
1467 return (vtd_ce_get_type(&ce) == VTD_CONTEXT_TT_PASS_THROUGH);
1470 /* Return whether the device is using IOMMU translation. */
1471 static bool vtd_switch_address_space(VTDAddressSpace *as)
1473 bool use_iommu;
1474 /* Whether we need to take the BQL on our own */
1475 bool take_bql = !qemu_mutex_iothread_locked();
1477 assert(as);
1479 use_iommu = as->iommu_state->dmar_enabled && !vtd_dev_pt_enabled(as);
1481 trace_vtd_switch_address_space(pci_bus_num(as->bus),
1482 VTD_PCI_SLOT(as->devfn),
1483 VTD_PCI_FUNC(as->devfn),
1484 use_iommu);
1487 * It's possible that we reach here without BQL, e.g., when called
1488 * from vtd_pt_enable_fast_path(). However the memory APIs need
1489 * it. We'd better make sure we have had it already, or, take it.
1491 if (take_bql) {
1492 qemu_mutex_lock_iothread();
1495 /* Turn off first then on the other */
1496 if (use_iommu) {
1497 memory_region_set_enabled(&as->nodmar, false);
1498 memory_region_set_enabled(MEMORY_REGION(&as->iommu), true);
1499 } else {
1500 memory_region_set_enabled(MEMORY_REGION(&as->iommu), false);
1501 memory_region_set_enabled(&as->nodmar, true);
1504 if (take_bql) {
1505 qemu_mutex_unlock_iothread();
1508 return use_iommu;
1511 static void vtd_switch_address_space_all(IntelIOMMUState *s)
1513 GHashTableIter iter;
1514 VTDBus *vtd_bus;
1515 int i;
1517 g_hash_table_iter_init(&iter, s->vtd_as_by_busptr);
1518 while (g_hash_table_iter_next(&iter, NULL, (void **)&vtd_bus)) {
1519 for (i = 0; i < PCI_DEVFN_MAX; i++) {
1520 if (!vtd_bus->dev_as[i]) {
1521 continue;
1523 vtd_switch_address_space(vtd_bus->dev_as[i]);
1528 static inline uint16_t vtd_make_source_id(uint8_t bus_num, uint8_t devfn)
1530 return ((bus_num & 0xffUL) << 8) | (devfn & 0xffUL);
1533 static const bool vtd_qualified_faults[] = {
1534 [VTD_FR_RESERVED] = false,
1535 [VTD_FR_ROOT_ENTRY_P] = false,
1536 [VTD_FR_CONTEXT_ENTRY_P] = true,
1537 [VTD_FR_CONTEXT_ENTRY_INV] = true,
1538 [VTD_FR_ADDR_BEYOND_MGAW] = true,
1539 [VTD_FR_WRITE] = true,
1540 [VTD_FR_READ] = true,
1541 [VTD_FR_PAGING_ENTRY_INV] = true,
1542 [VTD_FR_ROOT_TABLE_INV] = false,
1543 [VTD_FR_CONTEXT_TABLE_INV] = false,
1544 [VTD_FR_ROOT_ENTRY_RSVD] = false,
1545 [VTD_FR_PAGING_ENTRY_RSVD] = true,
1546 [VTD_FR_CONTEXT_ENTRY_TT] = true,
1547 [VTD_FR_PASID_TABLE_INV] = false,
1548 [VTD_FR_RESERVED_ERR] = false,
1549 [VTD_FR_MAX] = false,
1552 /* To see if a fault condition is "qualified", which is reported to software
1553 * only if the FPD field in the context-entry used to process the faulting
1554 * request is 0.
1556 static inline bool vtd_is_qualified_fault(VTDFaultReason fault)
1558 return vtd_qualified_faults[fault];
1561 static inline bool vtd_is_interrupt_addr(hwaddr addr)
1563 return VTD_INTERRUPT_ADDR_FIRST <= addr && addr <= VTD_INTERRUPT_ADDR_LAST;
1566 static void vtd_pt_enable_fast_path(IntelIOMMUState *s, uint16_t source_id)
1568 VTDBus *vtd_bus;
1569 VTDAddressSpace *vtd_as;
1570 bool success = false;
1572 vtd_bus = vtd_find_as_from_bus_num(s, VTD_SID_TO_BUS(source_id));
1573 if (!vtd_bus) {
1574 goto out;
1577 vtd_as = vtd_bus->dev_as[VTD_SID_TO_DEVFN(source_id)];
1578 if (!vtd_as) {
1579 goto out;
1582 if (vtd_switch_address_space(vtd_as) == false) {
1583 /* We switched off IOMMU region successfully. */
1584 success = true;
1587 out:
1588 trace_vtd_pt_enable_fast_path(source_id, success);
1591 /* Map dev to context-entry then do a paging-structures walk to do a iommu
1592 * translation.
1594 * Called from RCU critical section.
1596 * @bus_num: The bus number
1597 * @devfn: The devfn, which is the combined of device and function number
1598 * @is_write: The access is a write operation
1599 * @entry: IOMMUTLBEntry that contain the addr to be translated and result
1601 * Returns true if translation is successful, otherwise false.
1603 static bool vtd_do_iommu_translate(VTDAddressSpace *vtd_as, PCIBus *bus,
1604 uint8_t devfn, hwaddr addr, bool is_write,
1605 IOMMUTLBEntry *entry)
1607 IntelIOMMUState *s = vtd_as->iommu_state;
1608 VTDContextEntry ce;
1609 uint8_t bus_num = pci_bus_num(bus);
1610 VTDContextCacheEntry *cc_entry;
1611 uint64_t slpte, page_mask;
1612 uint32_t level;
1613 uint16_t source_id = vtd_make_source_id(bus_num, devfn);
1614 int ret_fr;
1615 bool is_fpd_set = false;
1616 bool reads = true;
1617 bool writes = true;
1618 uint8_t access_flags;
1619 VTDIOTLBEntry *iotlb_entry;
1622 * We have standalone memory region for interrupt addresses, we
1623 * should never receive translation requests in this region.
1625 assert(!vtd_is_interrupt_addr(addr));
1627 vtd_iommu_lock(s);
1629 cc_entry = &vtd_as->context_cache_entry;
1631 /* Try to fetch slpte form IOTLB */
1632 iotlb_entry = vtd_lookup_iotlb(s, source_id, addr);
1633 if (iotlb_entry) {
1634 trace_vtd_iotlb_page_hit(source_id, addr, iotlb_entry->slpte,
1635 iotlb_entry->domain_id);
1636 slpte = iotlb_entry->slpte;
1637 access_flags = iotlb_entry->access_flags;
1638 page_mask = iotlb_entry->mask;
1639 goto out;
1642 /* Try to fetch context-entry from cache first */
1643 if (cc_entry->context_cache_gen == s->context_cache_gen) {
1644 trace_vtd_iotlb_cc_hit(bus_num, devfn, cc_entry->context_entry.hi,
1645 cc_entry->context_entry.lo,
1646 cc_entry->context_cache_gen);
1647 ce = cc_entry->context_entry;
1648 is_fpd_set = ce.lo & VTD_CONTEXT_ENTRY_FPD;
1649 if (!is_fpd_set && s->root_scalable) {
1650 ret_fr = vtd_ce_get_pasid_fpd(s, &ce, &is_fpd_set);
1651 VTD_PE_GET_FPD_ERR(ret_fr, is_fpd_set, s, source_id, addr, is_write);
1653 } else {
1654 ret_fr = vtd_dev_to_context_entry(s, bus_num, devfn, &ce);
1655 is_fpd_set = ce.lo & VTD_CONTEXT_ENTRY_FPD;
1656 if (!ret_fr && !is_fpd_set && s->root_scalable) {
1657 ret_fr = vtd_ce_get_pasid_fpd(s, &ce, &is_fpd_set);
1659 VTD_PE_GET_FPD_ERR(ret_fr, is_fpd_set, s, source_id, addr, is_write);
1660 /* Update context-cache */
1661 trace_vtd_iotlb_cc_update(bus_num, devfn, ce.hi, ce.lo,
1662 cc_entry->context_cache_gen,
1663 s->context_cache_gen);
1664 cc_entry->context_entry = ce;
1665 cc_entry->context_cache_gen = s->context_cache_gen;
1669 * We don't need to translate for pass-through context entries.
1670 * Also, let's ignore IOTLB caching as well for PT devices.
1672 if (vtd_ce_get_type(&ce) == VTD_CONTEXT_TT_PASS_THROUGH) {
1673 entry->iova = addr & VTD_PAGE_MASK_4K;
1674 entry->translated_addr = entry->iova;
1675 entry->addr_mask = ~VTD_PAGE_MASK_4K;
1676 entry->perm = IOMMU_RW;
1677 trace_vtd_translate_pt(source_id, entry->iova);
1680 * When this happens, it means firstly caching-mode is not
1681 * enabled, and this is the first passthrough translation for
1682 * the device. Let's enable the fast path for passthrough.
1684 * When passthrough is disabled again for the device, we can
1685 * capture it via the context entry invalidation, then the
1686 * IOMMU region can be swapped back.
1688 vtd_pt_enable_fast_path(s, source_id);
1689 vtd_iommu_unlock(s);
1690 return true;
1693 ret_fr = vtd_iova_to_slpte(s, &ce, addr, is_write, &slpte, &level,
1694 &reads, &writes, s->aw_bits);
1695 VTD_PE_GET_FPD_ERR(ret_fr, is_fpd_set, s, source_id, addr, is_write);
1697 page_mask = vtd_slpt_level_page_mask(level);
1698 access_flags = IOMMU_ACCESS_FLAG(reads, writes);
1699 vtd_update_iotlb(s, source_id, vtd_get_domain_id(s, &ce), addr, slpte,
1700 access_flags, level);
1701 out:
1702 vtd_iommu_unlock(s);
1703 entry->iova = addr & page_mask;
1704 entry->translated_addr = vtd_get_slpte_addr(slpte, s->aw_bits) & page_mask;
1705 entry->addr_mask = ~page_mask;
1706 entry->perm = access_flags;
1707 return true;
1709 error:
1710 vtd_iommu_unlock(s);
1711 entry->iova = 0;
1712 entry->translated_addr = 0;
1713 entry->addr_mask = 0;
1714 entry->perm = IOMMU_NONE;
1715 return false;
1718 static void vtd_root_table_setup(IntelIOMMUState *s)
1720 s->root = vtd_get_quad_raw(s, DMAR_RTADDR_REG);
1721 s->root &= VTD_RTADDR_ADDR_MASK(s->aw_bits);
1723 vtd_update_scalable_state(s);
1725 trace_vtd_reg_dmar_root(s->root, s->root_scalable);
1728 static void vtd_iec_notify_all(IntelIOMMUState *s, bool global,
1729 uint32_t index, uint32_t mask)
1731 x86_iommu_iec_notify_all(X86_IOMMU_DEVICE(s), global, index, mask);
1734 static void vtd_interrupt_remap_table_setup(IntelIOMMUState *s)
1736 uint64_t value = 0;
1737 value = vtd_get_quad_raw(s, DMAR_IRTA_REG);
1738 s->intr_size = 1UL << ((value & VTD_IRTA_SIZE_MASK) + 1);
1739 s->intr_root = value & VTD_IRTA_ADDR_MASK(s->aw_bits);
1740 s->intr_eime = value & VTD_IRTA_EIME;
1742 /* Notify global invalidation */
1743 vtd_iec_notify_all(s, true, 0, 0);
1745 trace_vtd_reg_ir_root(s->intr_root, s->intr_size);
1748 static void vtd_iommu_replay_all(IntelIOMMUState *s)
1750 VTDAddressSpace *vtd_as;
1752 QLIST_FOREACH(vtd_as, &s->vtd_as_with_notifiers, next) {
1753 vtd_sync_shadow_page_table(vtd_as);
1757 static void vtd_context_global_invalidate(IntelIOMMUState *s)
1759 trace_vtd_inv_desc_cc_global();
1760 /* Protects context cache */
1761 vtd_iommu_lock(s);
1762 s->context_cache_gen++;
1763 if (s->context_cache_gen == VTD_CONTEXT_CACHE_GEN_MAX) {
1764 vtd_reset_context_cache_locked(s);
1766 vtd_iommu_unlock(s);
1767 vtd_address_space_refresh_all(s);
1769 * From VT-d spec 6.5.2.1, a global context entry invalidation
1770 * should be followed by a IOTLB global invalidation, so we should
1771 * be safe even without this. Hoewever, let's replay the region as
1772 * well to be safer, and go back here when we need finer tunes for
1773 * VT-d emulation codes.
1775 vtd_iommu_replay_all(s);
1778 /* Do a context-cache device-selective invalidation.
1779 * @func_mask: FM field after shifting
1781 static void vtd_context_device_invalidate(IntelIOMMUState *s,
1782 uint16_t source_id,
1783 uint16_t func_mask)
1785 uint16_t mask;
1786 VTDBus *vtd_bus;
1787 VTDAddressSpace *vtd_as;
1788 uint8_t bus_n, devfn;
1789 uint16_t devfn_it;
1791 trace_vtd_inv_desc_cc_devices(source_id, func_mask);
1793 switch (func_mask & 3) {
1794 case 0:
1795 mask = 0; /* No bits in the SID field masked */
1796 break;
1797 case 1:
1798 mask = 4; /* Mask bit 2 in the SID field */
1799 break;
1800 case 2:
1801 mask = 6; /* Mask bit 2:1 in the SID field */
1802 break;
1803 case 3:
1804 mask = 7; /* Mask bit 2:0 in the SID field */
1805 break;
1807 mask = ~mask;
1809 bus_n = VTD_SID_TO_BUS(source_id);
1810 vtd_bus = vtd_find_as_from_bus_num(s, bus_n);
1811 if (vtd_bus) {
1812 devfn = VTD_SID_TO_DEVFN(source_id);
1813 for (devfn_it = 0; devfn_it < PCI_DEVFN_MAX; ++devfn_it) {
1814 vtd_as = vtd_bus->dev_as[devfn_it];
1815 if (vtd_as && ((devfn_it & mask) == (devfn & mask))) {
1816 trace_vtd_inv_desc_cc_device(bus_n, VTD_PCI_SLOT(devfn_it),
1817 VTD_PCI_FUNC(devfn_it));
1818 vtd_iommu_lock(s);
1819 vtd_as->context_cache_entry.context_cache_gen = 0;
1820 vtd_iommu_unlock(s);
1822 * Do switch address space when needed, in case if the
1823 * device passthrough bit is switched.
1825 vtd_switch_address_space(vtd_as);
1827 * So a device is moving out of (or moving into) a
1828 * domain, resync the shadow page table.
1829 * This won't bring bad even if we have no such
1830 * notifier registered - the IOMMU notification
1831 * framework will skip MAP notifications if that
1832 * happened.
1834 vtd_sync_shadow_page_table(vtd_as);
1840 /* Context-cache invalidation
1841 * Returns the Context Actual Invalidation Granularity.
1842 * @val: the content of the CCMD_REG
1844 static uint64_t vtd_context_cache_invalidate(IntelIOMMUState *s, uint64_t val)
1846 uint64_t caig;
1847 uint64_t type = val & VTD_CCMD_CIRG_MASK;
1849 switch (type) {
1850 case VTD_CCMD_DOMAIN_INVL:
1851 /* Fall through */
1852 case VTD_CCMD_GLOBAL_INVL:
1853 caig = VTD_CCMD_GLOBAL_INVL_A;
1854 vtd_context_global_invalidate(s);
1855 break;
1857 case VTD_CCMD_DEVICE_INVL:
1858 caig = VTD_CCMD_DEVICE_INVL_A;
1859 vtd_context_device_invalidate(s, VTD_CCMD_SID(val), VTD_CCMD_FM(val));
1860 break;
1862 default:
1863 error_report_once("%s: invalid context: 0x%" PRIx64,
1864 __func__, val);
1865 caig = 0;
1867 return caig;
1870 static void vtd_iotlb_global_invalidate(IntelIOMMUState *s)
1872 trace_vtd_inv_desc_iotlb_global();
1873 vtd_reset_iotlb(s);
1874 vtd_iommu_replay_all(s);
1877 static void vtd_iotlb_domain_invalidate(IntelIOMMUState *s, uint16_t domain_id)
1879 VTDContextEntry ce;
1880 VTDAddressSpace *vtd_as;
1882 trace_vtd_inv_desc_iotlb_domain(domain_id);
1884 vtd_iommu_lock(s);
1885 g_hash_table_foreach_remove(s->iotlb, vtd_hash_remove_by_domain,
1886 &domain_id);
1887 vtd_iommu_unlock(s);
1889 QLIST_FOREACH(vtd_as, &s->vtd_as_with_notifiers, next) {
1890 if (!vtd_dev_to_context_entry(s, pci_bus_num(vtd_as->bus),
1891 vtd_as->devfn, &ce) &&
1892 domain_id == vtd_get_domain_id(s, &ce)) {
1893 vtd_sync_shadow_page_table(vtd_as);
1898 static void vtd_iotlb_page_invalidate_notify(IntelIOMMUState *s,
1899 uint16_t domain_id, hwaddr addr,
1900 uint8_t am)
1902 VTDAddressSpace *vtd_as;
1903 VTDContextEntry ce;
1904 int ret;
1905 hwaddr size = (1 << am) * VTD_PAGE_SIZE;
1907 QLIST_FOREACH(vtd_as, &(s->vtd_as_with_notifiers), next) {
1908 ret = vtd_dev_to_context_entry(s, pci_bus_num(vtd_as->bus),
1909 vtd_as->devfn, &ce);
1910 if (!ret && domain_id == vtd_get_domain_id(s, &ce)) {
1911 if (vtd_as_has_map_notifier(vtd_as)) {
1913 * As long as we have MAP notifications registered in
1914 * any of our IOMMU notifiers, we need to sync the
1915 * shadow page table.
1917 vtd_sync_shadow_page_table_range(vtd_as, &ce, addr, size);
1918 } else {
1920 * For UNMAP-only notifiers, we don't need to walk the
1921 * page tables. We just deliver the PSI down to
1922 * invalidate caches.
1924 IOMMUTLBEntry entry = {
1925 .target_as = &address_space_memory,
1926 .iova = addr,
1927 .translated_addr = 0,
1928 .addr_mask = size - 1,
1929 .perm = IOMMU_NONE,
1931 memory_region_notify_iommu(&vtd_as->iommu, 0, entry);
1937 static void vtd_iotlb_page_invalidate(IntelIOMMUState *s, uint16_t domain_id,
1938 hwaddr addr, uint8_t am)
1940 VTDIOTLBPageInvInfo info;
1942 trace_vtd_inv_desc_iotlb_pages(domain_id, addr, am);
1944 assert(am <= VTD_MAMV);
1945 info.domain_id = domain_id;
1946 info.addr = addr;
1947 info.mask = ~((1 << am) - 1);
1948 vtd_iommu_lock(s);
1949 g_hash_table_foreach_remove(s->iotlb, vtd_hash_remove_by_page, &info);
1950 vtd_iommu_unlock(s);
1951 vtd_iotlb_page_invalidate_notify(s, domain_id, addr, am);
1954 /* Flush IOTLB
1955 * Returns the IOTLB Actual Invalidation Granularity.
1956 * @val: the content of the IOTLB_REG
1958 static uint64_t vtd_iotlb_flush(IntelIOMMUState *s, uint64_t val)
1960 uint64_t iaig;
1961 uint64_t type = val & VTD_TLB_FLUSH_GRANU_MASK;
1962 uint16_t domain_id;
1963 hwaddr addr;
1964 uint8_t am;
1966 switch (type) {
1967 case VTD_TLB_GLOBAL_FLUSH:
1968 iaig = VTD_TLB_GLOBAL_FLUSH_A;
1969 vtd_iotlb_global_invalidate(s);
1970 break;
1972 case VTD_TLB_DSI_FLUSH:
1973 domain_id = VTD_TLB_DID(val);
1974 iaig = VTD_TLB_DSI_FLUSH_A;
1975 vtd_iotlb_domain_invalidate(s, domain_id);
1976 break;
1978 case VTD_TLB_PSI_FLUSH:
1979 domain_id = VTD_TLB_DID(val);
1980 addr = vtd_get_quad_raw(s, DMAR_IVA_REG);
1981 am = VTD_IVA_AM(addr);
1982 addr = VTD_IVA_ADDR(addr);
1983 if (am > VTD_MAMV) {
1984 error_report_once("%s: address mask overflow: 0x%" PRIx64,
1985 __func__, vtd_get_quad_raw(s, DMAR_IVA_REG));
1986 iaig = 0;
1987 break;
1989 iaig = VTD_TLB_PSI_FLUSH_A;
1990 vtd_iotlb_page_invalidate(s, domain_id, addr, am);
1991 break;
1993 default:
1994 error_report_once("%s: invalid granularity: 0x%" PRIx64,
1995 __func__, val);
1996 iaig = 0;
1998 return iaig;
2001 static void vtd_fetch_inv_desc(IntelIOMMUState *s);
2003 static inline bool vtd_queued_inv_disable_check(IntelIOMMUState *s)
2005 return s->qi_enabled && (s->iq_tail == s->iq_head) &&
2006 (s->iq_last_desc_type == VTD_INV_DESC_WAIT);
2009 static void vtd_handle_gcmd_qie(IntelIOMMUState *s, bool en)
2011 uint64_t iqa_val = vtd_get_quad_raw(s, DMAR_IQA_REG);
2013 trace_vtd_inv_qi_enable(en);
2015 if (en) {
2016 s->iq = iqa_val & VTD_IQA_IQA_MASK(s->aw_bits);
2017 /* 2^(x+8) entries */
2018 s->iq_size = 1UL << ((iqa_val & VTD_IQA_QS) + 8 - (s->iq_dw ? 1 : 0));
2019 s->qi_enabled = true;
2020 trace_vtd_inv_qi_setup(s->iq, s->iq_size);
2021 /* Ok - report back to driver */
2022 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_QIES);
2024 if (s->iq_tail != 0) {
2026 * This is a spec violation but Windows guests are known to set up
2027 * Queued Invalidation this way so we allow the write and process
2028 * Invalidation Descriptors right away.
2030 trace_vtd_warn_invalid_qi_tail(s->iq_tail);
2031 if (!(vtd_get_long_raw(s, DMAR_FSTS_REG) & VTD_FSTS_IQE)) {
2032 vtd_fetch_inv_desc(s);
2035 } else {
2036 if (vtd_queued_inv_disable_check(s)) {
2037 /* disable Queued Invalidation */
2038 vtd_set_quad_raw(s, DMAR_IQH_REG, 0);
2039 s->iq_head = 0;
2040 s->qi_enabled = false;
2041 /* Ok - report back to driver */
2042 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_QIES, 0);
2043 } else {
2044 error_report_once("%s: detected improper state when disable QI "
2045 "(head=0x%x, tail=0x%x, last_type=%d)",
2046 __func__,
2047 s->iq_head, s->iq_tail, s->iq_last_desc_type);
2052 /* Set Root Table Pointer */
2053 static void vtd_handle_gcmd_srtp(IntelIOMMUState *s)
2055 vtd_root_table_setup(s);
2056 /* Ok - report back to driver */
2057 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_RTPS);
2058 vtd_reset_caches(s);
2059 vtd_address_space_refresh_all(s);
2062 /* Set Interrupt Remap Table Pointer */
2063 static void vtd_handle_gcmd_sirtp(IntelIOMMUState *s)
2065 vtd_interrupt_remap_table_setup(s);
2066 /* Ok - report back to driver */
2067 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_IRTPS);
2070 /* Handle Translation Enable/Disable */
2071 static void vtd_handle_gcmd_te(IntelIOMMUState *s, bool en)
2073 if (s->dmar_enabled == en) {
2074 return;
2077 trace_vtd_dmar_enable(en);
2079 if (en) {
2080 s->dmar_enabled = true;
2081 /* Ok - report back to driver */
2082 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_TES);
2083 } else {
2084 s->dmar_enabled = false;
2086 /* Clear the index of Fault Recording Register */
2087 s->next_frcd_reg = 0;
2088 /* Ok - report back to driver */
2089 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_TES, 0);
2092 vtd_reset_caches(s);
2093 vtd_address_space_refresh_all(s);
2096 /* Handle Interrupt Remap Enable/Disable */
2097 static void vtd_handle_gcmd_ire(IntelIOMMUState *s, bool en)
2099 trace_vtd_ir_enable(en);
2101 if (en) {
2102 s->intr_enabled = true;
2103 /* Ok - report back to driver */
2104 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_IRES);
2105 } else {
2106 s->intr_enabled = false;
2107 /* Ok - report back to driver */
2108 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_IRES, 0);
2112 /* Handle write to Global Command Register */
2113 static void vtd_handle_gcmd_write(IntelIOMMUState *s)
2115 uint32_t status = vtd_get_long_raw(s, DMAR_GSTS_REG);
2116 uint32_t val = vtd_get_long_raw(s, DMAR_GCMD_REG);
2117 uint32_t changed = status ^ val;
2119 trace_vtd_reg_write_gcmd(status, val);
2120 if (changed & VTD_GCMD_TE) {
2121 /* Translation enable/disable */
2122 vtd_handle_gcmd_te(s, val & VTD_GCMD_TE);
2124 if (val & VTD_GCMD_SRTP) {
2125 /* Set/update the root-table pointer */
2126 vtd_handle_gcmd_srtp(s);
2128 if (changed & VTD_GCMD_QIE) {
2129 /* Queued Invalidation Enable */
2130 vtd_handle_gcmd_qie(s, val & VTD_GCMD_QIE);
2132 if (val & VTD_GCMD_SIRTP) {
2133 /* Set/update the interrupt remapping root-table pointer */
2134 vtd_handle_gcmd_sirtp(s);
2136 if (changed & VTD_GCMD_IRE) {
2137 /* Interrupt remap enable/disable */
2138 vtd_handle_gcmd_ire(s, val & VTD_GCMD_IRE);
2142 /* Handle write to Context Command Register */
2143 static void vtd_handle_ccmd_write(IntelIOMMUState *s)
2145 uint64_t ret;
2146 uint64_t val = vtd_get_quad_raw(s, DMAR_CCMD_REG);
2148 /* Context-cache invalidation request */
2149 if (val & VTD_CCMD_ICC) {
2150 if (s->qi_enabled) {
2151 error_report_once("Queued Invalidation enabled, "
2152 "should not use register-based invalidation");
2153 return;
2155 ret = vtd_context_cache_invalidate(s, val);
2156 /* Invalidation completed. Change something to show */
2157 vtd_set_clear_mask_quad(s, DMAR_CCMD_REG, VTD_CCMD_ICC, 0ULL);
2158 ret = vtd_set_clear_mask_quad(s, DMAR_CCMD_REG, VTD_CCMD_CAIG_MASK,
2159 ret);
2163 /* Handle write to IOTLB Invalidation Register */
2164 static void vtd_handle_iotlb_write(IntelIOMMUState *s)
2166 uint64_t ret;
2167 uint64_t val = vtd_get_quad_raw(s, DMAR_IOTLB_REG);
2169 /* IOTLB invalidation request */
2170 if (val & VTD_TLB_IVT) {
2171 if (s->qi_enabled) {
2172 error_report_once("Queued Invalidation enabled, "
2173 "should not use register-based invalidation");
2174 return;
2176 ret = vtd_iotlb_flush(s, val);
2177 /* Invalidation completed. Change something to show */
2178 vtd_set_clear_mask_quad(s, DMAR_IOTLB_REG, VTD_TLB_IVT, 0ULL);
2179 ret = vtd_set_clear_mask_quad(s, DMAR_IOTLB_REG,
2180 VTD_TLB_FLUSH_GRANU_MASK_A, ret);
2184 /* Fetch an Invalidation Descriptor from the Invalidation Queue */
2185 static bool vtd_get_inv_desc(IntelIOMMUState *s,
2186 VTDInvDesc *inv_desc)
2188 dma_addr_t base_addr = s->iq;
2189 uint32_t offset = s->iq_head;
2190 uint32_t dw = s->iq_dw ? 32 : 16;
2191 dma_addr_t addr = base_addr + offset * dw;
2193 if (dma_memory_read(&address_space_memory, addr, inv_desc, dw)) {
2194 error_report_once("Read INV DESC failed.");
2195 return false;
2197 inv_desc->lo = le64_to_cpu(inv_desc->lo);
2198 inv_desc->hi = le64_to_cpu(inv_desc->hi);
2199 if (dw == 32) {
2200 inv_desc->val[2] = le64_to_cpu(inv_desc->val[2]);
2201 inv_desc->val[3] = le64_to_cpu(inv_desc->val[3]);
2203 return true;
2206 static bool vtd_process_wait_desc(IntelIOMMUState *s, VTDInvDesc *inv_desc)
2208 if ((inv_desc->hi & VTD_INV_DESC_WAIT_RSVD_HI) ||
2209 (inv_desc->lo & VTD_INV_DESC_WAIT_RSVD_LO)) {
2210 error_report_once("%s: invalid wait desc: hi=%"PRIx64", lo=%"PRIx64
2211 " (reserved nonzero)", __func__, inv_desc->hi,
2212 inv_desc->lo);
2213 return false;
2215 if (inv_desc->lo & VTD_INV_DESC_WAIT_SW) {
2216 /* Status Write */
2217 uint32_t status_data = (uint32_t)(inv_desc->lo >>
2218 VTD_INV_DESC_WAIT_DATA_SHIFT);
2220 assert(!(inv_desc->lo & VTD_INV_DESC_WAIT_IF));
2222 /* FIXME: need to be masked with HAW? */
2223 dma_addr_t status_addr = inv_desc->hi;
2224 trace_vtd_inv_desc_wait_sw(status_addr, status_data);
2225 status_data = cpu_to_le32(status_data);
2226 if (dma_memory_write(&address_space_memory, status_addr, &status_data,
2227 sizeof(status_data))) {
2228 trace_vtd_inv_desc_wait_write_fail(inv_desc->hi, inv_desc->lo);
2229 return false;
2231 } else if (inv_desc->lo & VTD_INV_DESC_WAIT_IF) {
2232 /* Interrupt flag */
2233 vtd_generate_completion_event(s);
2234 } else {
2235 error_report_once("%s: invalid wait desc: hi=%"PRIx64", lo=%"PRIx64
2236 " (unknown type)", __func__, inv_desc->hi,
2237 inv_desc->lo);
2238 return false;
2240 return true;
2243 static bool vtd_process_context_cache_desc(IntelIOMMUState *s,
2244 VTDInvDesc *inv_desc)
2246 uint16_t sid, fmask;
2248 if ((inv_desc->lo & VTD_INV_DESC_CC_RSVD) || inv_desc->hi) {
2249 error_report_once("%s: invalid cc inv desc: hi=%"PRIx64", lo=%"PRIx64
2250 " (reserved nonzero)", __func__, inv_desc->hi,
2251 inv_desc->lo);
2252 return false;
2254 switch (inv_desc->lo & VTD_INV_DESC_CC_G) {
2255 case VTD_INV_DESC_CC_DOMAIN:
2256 trace_vtd_inv_desc_cc_domain(
2257 (uint16_t)VTD_INV_DESC_CC_DID(inv_desc->lo));
2258 /* Fall through */
2259 case VTD_INV_DESC_CC_GLOBAL:
2260 vtd_context_global_invalidate(s);
2261 break;
2263 case VTD_INV_DESC_CC_DEVICE:
2264 sid = VTD_INV_DESC_CC_SID(inv_desc->lo);
2265 fmask = VTD_INV_DESC_CC_FM(inv_desc->lo);
2266 vtd_context_device_invalidate(s, sid, fmask);
2267 break;
2269 default:
2270 error_report_once("%s: invalid cc inv desc: hi=%"PRIx64", lo=%"PRIx64
2271 " (invalid type)", __func__, inv_desc->hi,
2272 inv_desc->lo);
2273 return false;
2275 return true;
2278 static bool vtd_process_iotlb_desc(IntelIOMMUState *s, VTDInvDesc *inv_desc)
2280 uint16_t domain_id;
2281 uint8_t am;
2282 hwaddr addr;
2284 if ((inv_desc->lo & VTD_INV_DESC_IOTLB_RSVD_LO) ||
2285 (inv_desc->hi & VTD_INV_DESC_IOTLB_RSVD_HI)) {
2286 error_report_once("%s: invalid iotlb inv desc: hi=0x%"PRIx64
2287 ", lo=0x%"PRIx64" (reserved bits unzero)\n",
2288 __func__, inv_desc->hi, inv_desc->lo);
2289 return false;
2292 switch (inv_desc->lo & VTD_INV_DESC_IOTLB_G) {
2293 case VTD_INV_DESC_IOTLB_GLOBAL:
2294 vtd_iotlb_global_invalidate(s);
2295 break;
2297 case VTD_INV_DESC_IOTLB_DOMAIN:
2298 domain_id = VTD_INV_DESC_IOTLB_DID(inv_desc->lo);
2299 vtd_iotlb_domain_invalidate(s, domain_id);
2300 break;
2302 case VTD_INV_DESC_IOTLB_PAGE:
2303 domain_id = VTD_INV_DESC_IOTLB_DID(inv_desc->lo);
2304 addr = VTD_INV_DESC_IOTLB_ADDR(inv_desc->hi);
2305 am = VTD_INV_DESC_IOTLB_AM(inv_desc->hi);
2306 if (am > VTD_MAMV) {
2307 error_report_once("%s: invalid iotlb inv desc: hi=0x%"PRIx64
2308 ", lo=0x%"PRIx64" (am=%u > VTD_MAMV=%u)\n",
2309 __func__, inv_desc->hi, inv_desc->lo,
2310 am, (unsigned)VTD_MAMV);
2311 return false;
2313 vtd_iotlb_page_invalidate(s, domain_id, addr, am);
2314 break;
2316 default:
2317 error_report_once("%s: invalid iotlb inv desc: hi=0x%"PRIx64
2318 ", lo=0x%"PRIx64" (type mismatch: 0x%llx)\n",
2319 __func__, inv_desc->hi, inv_desc->lo,
2320 inv_desc->lo & VTD_INV_DESC_IOTLB_G);
2321 return false;
2323 return true;
2326 static bool vtd_process_inv_iec_desc(IntelIOMMUState *s,
2327 VTDInvDesc *inv_desc)
2329 trace_vtd_inv_desc_iec(inv_desc->iec.granularity,
2330 inv_desc->iec.index,
2331 inv_desc->iec.index_mask);
2333 vtd_iec_notify_all(s, !inv_desc->iec.granularity,
2334 inv_desc->iec.index,
2335 inv_desc->iec.index_mask);
2336 return true;
2339 static bool vtd_process_device_iotlb_desc(IntelIOMMUState *s,
2340 VTDInvDesc *inv_desc)
2342 VTDAddressSpace *vtd_dev_as;
2343 IOMMUTLBEntry entry;
2344 struct VTDBus *vtd_bus;
2345 hwaddr addr;
2346 uint64_t sz;
2347 uint16_t sid;
2348 uint8_t devfn;
2349 bool size;
2350 uint8_t bus_num;
2352 addr = VTD_INV_DESC_DEVICE_IOTLB_ADDR(inv_desc->hi);
2353 sid = VTD_INV_DESC_DEVICE_IOTLB_SID(inv_desc->lo);
2354 devfn = sid & 0xff;
2355 bus_num = sid >> 8;
2356 size = VTD_INV_DESC_DEVICE_IOTLB_SIZE(inv_desc->hi);
2358 if ((inv_desc->lo & VTD_INV_DESC_DEVICE_IOTLB_RSVD_LO) ||
2359 (inv_desc->hi & VTD_INV_DESC_DEVICE_IOTLB_RSVD_HI)) {
2360 error_report_once("%s: invalid dev-iotlb inv desc: hi=%"PRIx64
2361 ", lo=%"PRIx64" (reserved nonzero)", __func__,
2362 inv_desc->hi, inv_desc->lo);
2363 return false;
2366 vtd_bus = vtd_find_as_from_bus_num(s, bus_num);
2367 if (!vtd_bus) {
2368 goto done;
2371 vtd_dev_as = vtd_bus->dev_as[devfn];
2372 if (!vtd_dev_as) {
2373 goto done;
2376 /* According to ATS spec table 2.4:
2377 * S = 0, bits 15:12 = xxxx range size: 4K
2378 * S = 1, bits 15:12 = xxx0 range size: 8K
2379 * S = 1, bits 15:12 = xx01 range size: 16K
2380 * S = 1, bits 15:12 = x011 range size: 32K
2381 * S = 1, bits 15:12 = 0111 range size: 64K
2382 * ...
2384 if (size) {
2385 sz = (VTD_PAGE_SIZE * 2) << cto64(addr >> VTD_PAGE_SHIFT);
2386 addr &= ~(sz - 1);
2387 } else {
2388 sz = VTD_PAGE_SIZE;
2391 entry.target_as = &vtd_dev_as->as;
2392 entry.addr_mask = sz - 1;
2393 entry.iova = addr;
2394 entry.perm = IOMMU_NONE;
2395 entry.translated_addr = 0;
2396 memory_region_notify_iommu(&vtd_dev_as->iommu, 0, entry);
2398 done:
2399 return true;
2402 static bool vtd_process_inv_desc(IntelIOMMUState *s)
2404 VTDInvDesc inv_desc;
2405 uint8_t desc_type;
2407 trace_vtd_inv_qi_head(s->iq_head);
2408 if (!vtd_get_inv_desc(s, &inv_desc)) {
2409 s->iq_last_desc_type = VTD_INV_DESC_NONE;
2410 return false;
2413 desc_type = inv_desc.lo & VTD_INV_DESC_TYPE;
2414 /* FIXME: should update at first or at last? */
2415 s->iq_last_desc_type = desc_type;
2417 switch (desc_type) {
2418 case VTD_INV_DESC_CC:
2419 trace_vtd_inv_desc("context-cache", inv_desc.hi, inv_desc.lo);
2420 if (!vtd_process_context_cache_desc(s, &inv_desc)) {
2421 return false;
2423 break;
2425 case VTD_INV_DESC_IOTLB:
2426 trace_vtd_inv_desc("iotlb", inv_desc.hi, inv_desc.lo);
2427 if (!vtd_process_iotlb_desc(s, &inv_desc)) {
2428 return false;
2430 break;
2433 * TODO: the entity of below two cases will be implemented in future series.
2434 * To make guest (which integrates scalable mode support patch set in
2435 * iommu driver) work, just return true is enough so far.
2437 case VTD_INV_DESC_PC:
2438 break;
2440 case VTD_INV_DESC_PIOTLB:
2441 break;
2443 case VTD_INV_DESC_WAIT:
2444 trace_vtd_inv_desc("wait", inv_desc.hi, inv_desc.lo);
2445 if (!vtd_process_wait_desc(s, &inv_desc)) {
2446 return false;
2448 break;
2450 case VTD_INV_DESC_IEC:
2451 trace_vtd_inv_desc("iec", inv_desc.hi, inv_desc.lo);
2452 if (!vtd_process_inv_iec_desc(s, &inv_desc)) {
2453 return false;
2455 break;
2457 case VTD_INV_DESC_DEVICE:
2458 trace_vtd_inv_desc("device", inv_desc.hi, inv_desc.lo);
2459 if (!vtd_process_device_iotlb_desc(s, &inv_desc)) {
2460 return false;
2462 break;
2464 default:
2465 error_report_once("%s: invalid inv desc: hi=%"PRIx64", lo=%"PRIx64
2466 " (unknown type)", __func__, inv_desc.hi,
2467 inv_desc.lo);
2468 return false;
2470 s->iq_head++;
2471 if (s->iq_head == s->iq_size) {
2472 s->iq_head = 0;
2474 return true;
2477 /* Try to fetch and process more Invalidation Descriptors */
2478 static void vtd_fetch_inv_desc(IntelIOMMUState *s)
2480 trace_vtd_inv_qi_fetch();
2482 if (s->iq_tail >= s->iq_size) {
2483 /* Detects an invalid Tail pointer */
2484 error_report_once("%s: detected invalid QI tail "
2485 "(tail=0x%x, size=0x%x)",
2486 __func__, s->iq_tail, s->iq_size);
2487 vtd_handle_inv_queue_error(s);
2488 return;
2490 while (s->iq_head != s->iq_tail) {
2491 if (!vtd_process_inv_desc(s)) {
2492 /* Invalidation Queue Errors */
2493 vtd_handle_inv_queue_error(s);
2494 break;
2496 /* Must update the IQH_REG in time */
2497 vtd_set_quad_raw(s, DMAR_IQH_REG,
2498 (((uint64_t)(s->iq_head)) << VTD_IQH_QH_SHIFT) &
2499 VTD_IQH_QH_MASK);
2503 /* Handle write to Invalidation Queue Tail Register */
2504 static void vtd_handle_iqt_write(IntelIOMMUState *s)
2506 uint64_t val = vtd_get_quad_raw(s, DMAR_IQT_REG);
2508 if (s->iq_dw && (val & VTD_IQT_QT_256_RSV_BIT)) {
2509 error_report_once("%s: RSV bit is set: val=0x%"PRIx64,
2510 __func__, val);
2511 return;
2513 s->iq_tail = VTD_IQT_QT(s->iq_dw, val);
2514 trace_vtd_inv_qi_tail(s->iq_tail);
2516 if (s->qi_enabled && !(vtd_get_long_raw(s, DMAR_FSTS_REG) & VTD_FSTS_IQE)) {
2517 /* Process Invalidation Queue here */
2518 vtd_fetch_inv_desc(s);
2522 static void vtd_handle_fsts_write(IntelIOMMUState *s)
2524 uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
2525 uint32_t fectl_reg = vtd_get_long_raw(s, DMAR_FECTL_REG);
2526 uint32_t status_fields = VTD_FSTS_PFO | VTD_FSTS_PPF | VTD_FSTS_IQE;
2528 if ((fectl_reg & VTD_FECTL_IP) && !(fsts_reg & status_fields)) {
2529 vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
2530 trace_vtd_fsts_clear_ip();
2532 /* FIXME: when IQE is Clear, should we try to fetch some Invalidation
2533 * Descriptors if there are any when Queued Invalidation is enabled?
2537 static void vtd_handle_fectl_write(IntelIOMMUState *s)
2539 uint32_t fectl_reg;
2540 /* FIXME: when software clears the IM field, check the IP field. But do we
2541 * need to compare the old value and the new value to conclude that
2542 * software clears the IM field? Or just check if the IM field is zero?
2544 fectl_reg = vtd_get_long_raw(s, DMAR_FECTL_REG);
2546 trace_vtd_reg_write_fectl(fectl_reg);
2548 if ((fectl_reg & VTD_FECTL_IP) && !(fectl_reg & VTD_FECTL_IM)) {
2549 vtd_generate_interrupt(s, DMAR_FEADDR_REG, DMAR_FEDATA_REG);
2550 vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
2554 static void vtd_handle_ics_write(IntelIOMMUState *s)
2556 uint32_t ics_reg = vtd_get_long_raw(s, DMAR_ICS_REG);
2557 uint32_t iectl_reg = vtd_get_long_raw(s, DMAR_IECTL_REG);
2559 if ((iectl_reg & VTD_IECTL_IP) && !(ics_reg & VTD_ICS_IWC)) {
2560 trace_vtd_reg_ics_clear_ip();
2561 vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
2565 static void vtd_handle_iectl_write(IntelIOMMUState *s)
2567 uint32_t iectl_reg;
2568 /* FIXME: when software clears the IM field, check the IP field. But do we
2569 * need to compare the old value and the new value to conclude that
2570 * software clears the IM field? Or just check if the IM field is zero?
2572 iectl_reg = vtd_get_long_raw(s, DMAR_IECTL_REG);
2574 trace_vtd_reg_write_iectl(iectl_reg);
2576 if ((iectl_reg & VTD_IECTL_IP) && !(iectl_reg & VTD_IECTL_IM)) {
2577 vtd_generate_interrupt(s, DMAR_IEADDR_REG, DMAR_IEDATA_REG);
2578 vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
2582 static uint64_t vtd_mem_read(void *opaque, hwaddr addr, unsigned size)
2584 IntelIOMMUState *s = opaque;
2585 uint64_t val;
2587 trace_vtd_reg_read(addr, size);
2589 if (addr + size > DMAR_REG_SIZE) {
2590 error_report_once("%s: MMIO over range: addr=0x%" PRIx64
2591 " size=0x%u", __func__, addr, size);
2592 return (uint64_t)-1;
2595 switch (addr) {
2596 /* Root Table Address Register, 64-bit */
2597 case DMAR_RTADDR_REG:
2598 if (size == 4) {
2599 val = s->root & ((1ULL << 32) - 1);
2600 } else {
2601 val = s->root;
2603 break;
2605 case DMAR_RTADDR_REG_HI:
2606 assert(size == 4);
2607 val = s->root >> 32;
2608 break;
2610 /* Invalidation Queue Address Register, 64-bit */
2611 case DMAR_IQA_REG:
2612 val = s->iq | (vtd_get_quad(s, DMAR_IQA_REG) & VTD_IQA_QS);
2613 if (size == 4) {
2614 val = val & ((1ULL << 32) - 1);
2616 break;
2618 case DMAR_IQA_REG_HI:
2619 assert(size == 4);
2620 val = s->iq >> 32;
2621 break;
2623 default:
2624 if (size == 4) {
2625 val = vtd_get_long(s, addr);
2626 } else {
2627 val = vtd_get_quad(s, addr);
2631 return val;
2634 static void vtd_mem_write(void *opaque, hwaddr addr,
2635 uint64_t val, unsigned size)
2637 IntelIOMMUState *s = opaque;
2639 trace_vtd_reg_write(addr, size, val);
2641 if (addr + size > DMAR_REG_SIZE) {
2642 error_report_once("%s: MMIO over range: addr=0x%" PRIx64
2643 " size=0x%u", __func__, addr, size);
2644 return;
2647 switch (addr) {
2648 /* Global Command Register, 32-bit */
2649 case DMAR_GCMD_REG:
2650 vtd_set_long(s, addr, val);
2651 vtd_handle_gcmd_write(s);
2652 break;
2654 /* Context Command Register, 64-bit */
2655 case DMAR_CCMD_REG:
2656 if (size == 4) {
2657 vtd_set_long(s, addr, val);
2658 } else {
2659 vtd_set_quad(s, addr, val);
2660 vtd_handle_ccmd_write(s);
2662 break;
2664 case DMAR_CCMD_REG_HI:
2665 assert(size == 4);
2666 vtd_set_long(s, addr, val);
2667 vtd_handle_ccmd_write(s);
2668 break;
2670 /* IOTLB Invalidation Register, 64-bit */
2671 case DMAR_IOTLB_REG:
2672 if (size == 4) {
2673 vtd_set_long(s, addr, val);
2674 } else {
2675 vtd_set_quad(s, addr, val);
2676 vtd_handle_iotlb_write(s);
2678 break;
2680 case DMAR_IOTLB_REG_HI:
2681 assert(size == 4);
2682 vtd_set_long(s, addr, val);
2683 vtd_handle_iotlb_write(s);
2684 break;
2686 /* Invalidate Address Register, 64-bit */
2687 case DMAR_IVA_REG:
2688 if (size == 4) {
2689 vtd_set_long(s, addr, val);
2690 } else {
2691 vtd_set_quad(s, addr, val);
2693 break;
2695 case DMAR_IVA_REG_HI:
2696 assert(size == 4);
2697 vtd_set_long(s, addr, val);
2698 break;
2700 /* Fault Status Register, 32-bit */
2701 case DMAR_FSTS_REG:
2702 assert(size == 4);
2703 vtd_set_long(s, addr, val);
2704 vtd_handle_fsts_write(s);
2705 break;
2707 /* Fault Event Control Register, 32-bit */
2708 case DMAR_FECTL_REG:
2709 assert(size == 4);
2710 vtd_set_long(s, addr, val);
2711 vtd_handle_fectl_write(s);
2712 break;
2714 /* Fault Event Data Register, 32-bit */
2715 case DMAR_FEDATA_REG:
2716 assert(size == 4);
2717 vtd_set_long(s, addr, val);
2718 break;
2720 /* Fault Event Address Register, 32-bit */
2721 case DMAR_FEADDR_REG:
2722 if (size == 4) {
2723 vtd_set_long(s, addr, val);
2724 } else {
2726 * While the register is 32-bit only, some guests (Xen...) write to
2727 * it with 64-bit.
2729 vtd_set_quad(s, addr, val);
2731 break;
2733 /* Fault Event Upper Address Register, 32-bit */
2734 case DMAR_FEUADDR_REG:
2735 assert(size == 4);
2736 vtd_set_long(s, addr, val);
2737 break;
2739 /* Protected Memory Enable Register, 32-bit */
2740 case DMAR_PMEN_REG:
2741 assert(size == 4);
2742 vtd_set_long(s, addr, val);
2743 break;
2745 /* Root Table Address Register, 64-bit */
2746 case DMAR_RTADDR_REG:
2747 if (size == 4) {
2748 vtd_set_long(s, addr, val);
2749 } else {
2750 vtd_set_quad(s, addr, val);
2752 break;
2754 case DMAR_RTADDR_REG_HI:
2755 assert(size == 4);
2756 vtd_set_long(s, addr, val);
2757 break;
2759 /* Invalidation Queue Tail Register, 64-bit */
2760 case DMAR_IQT_REG:
2761 if (size == 4) {
2762 vtd_set_long(s, addr, val);
2763 } else {
2764 vtd_set_quad(s, addr, val);
2766 vtd_handle_iqt_write(s);
2767 break;
2769 case DMAR_IQT_REG_HI:
2770 assert(size == 4);
2771 vtd_set_long(s, addr, val);
2772 /* 19:63 of IQT_REG is RsvdZ, do nothing here */
2773 break;
2775 /* Invalidation Queue Address Register, 64-bit */
2776 case DMAR_IQA_REG:
2777 if (size == 4) {
2778 vtd_set_long(s, addr, val);
2779 } else {
2780 vtd_set_quad(s, addr, val);
2782 if (s->ecap & VTD_ECAP_SMTS &&
2783 val & VTD_IQA_DW_MASK) {
2784 s->iq_dw = true;
2785 } else {
2786 s->iq_dw = false;
2788 break;
2790 case DMAR_IQA_REG_HI:
2791 assert(size == 4);
2792 vtd_set_long(s, addr, val);
2793 break;
2795 /* Invalidation Completion Status Register, 32-bit */
2796 case DMAR_ICS_REG:
2797 assert(size == 4);
2798 vtd_set_long(s, addr, val);
2799 vtd_handle_ics_write(s);
2800 break;
2802 /* Invalidation Event Control Register, 32-bit */
2803 case DMAR_IECTL_REG:
2804 assert(size == 4);
2805 vtd_set_long(s, addr, val);
2806 vtd_handle_iectl_write(s);
2807 break;
2809 /* Invalidation Event Data Register, 32-bit */
2810 case DMAR_IEDATA_REG:
2811 assert(size == 4);
2812 vtd_set_long(s, addr, val);
2813 break;
2815 /* Invalidation Event Address Register, 32-bit */
2816 case DMAR_IEADDR_REG:
2817 assert(size == 4);
2818 vtd_set_long(s, addr, val);
2819 break;
2821 /* Invalidation Event Upper Address Register, 32-bit */
2822 case DMAR_IEUADDR_REG:
2823 assert(size == 4);
2824 vtd_set_long(s, addr, val);
2825 break;
2827 /* Fault Recording Registers, 128-bit */
2828 case DMAR_FRCD_REG_0_0:
2829 if (size == 4) {
2830 vtd_set_long(s, addr, val);
2831 } else {
2832 vtd_set_quad(s, addr, val);
2834 break;
2836 case DMAR_FRCD_REG_0_1:
2837 assert(size == 4);
2838 vtd_set_long(s, addr, val);
2839 break;
2841 case DMAR_FRCD_REG_0_2:
2842 if (size == 4) {
2843 vtd_set_long(s, addr, val);
2844 } else {
2845 vtd_set_quad(s, addr, val);
2846 /* May clear bit 127 (Fault), update PPF */
2847 vtd_update_fsts_ppf(s);
2849 break;
2851 case DMAR_FRCD_REG_0_3:
2852 assert(size == 4);
2853 vtd_set_long(s, addr, val);
2854 /* May clear bit 127 (Fault), update PPF */
2855 vtd_update_fsts_ppf(s);
2856 break;
2858 case DMAR_IRTA_REG:
2859 if (size == 4) {
2860 vtd_set_long(s, addr, val);
2861 } else {
2862 vtd_set_quad(s, addr, val);
2864 break;
2866 case DMAR_IRTA_REG_HI:
2867 assert(size == 4);
2868 vtd_set_long(s, addr, val);
2869 break;
2871 default:
2872 if (size == 4) {
2873 vtd_set_long(s, addr, val);
2874 } else {
2875 vtd_set_quad(s, addr, val);
2880 static IOMMUTLBEntry vtd_iommu_translate(IOMMUMemoryRegion *iommu, hwaddr addr,
2881 IOMMUAccessFlags flag, int iommu_idx)
2883 VTDAddressSpace *vtd_as = container_of(iommu, VTDAddressSpace, iommu);
2884 IntelIOMMUState *s = vtd_as->iommu_state;
2885 IOMMUTLBEntry iotlb = {
2886 /* We'll fill in the rest later. */
2887 .target_as = &address_space_memory,
2889 bool success;
2891 if (likely(s->dmar_enabled)) {
2892 success = vtd_do_iommu_translate(vtd_as, vtd_as->bus, vtd_as->devfn,
2893 addr, flag & IOMMU_WO, &iotlb);
2894 } else {
2895 /* DMAR disabled, passthrough, use 4k-page*/
2896 iotlb.iova = addr & VTD_PAGE_MASK_4K;
2897 iotlb.translated_addr = addr & VTD_PAGE_MASK_4K;
2898 iotlb.addr_mask = ~VTD_PAGE_MASK_4K;
2899 iotlb.perm = IOMMU_RW;
2900 success = true;
2903 if (likely(success)) {
2904 trace_vtd_dmar_translate(pci_bus_num(vtd_as->bus),
2905 VTD_PCI_SLOT(vtd_as->devfn),
2906 VTD_PCI_FUNC(vtd_as->devfn),
2907 iotlb.iova, iotlb.translated_addr,
2908 iotlb.addr_mask);
2909 } else {
2910 error_report_once("%s: detected translation failure "
2911 "(dev=%02x:%02x:%02x, iova=0x%" PRIx64 ")",
2912 __func__, pci_bus_num(vtd_as->bus),
2913 VTD_PCI_SLOT(vtd_as->devfn),
2914 VTD_PCI_FUNC(vtd_as->devfn),
2915 addr);
2918 return iotlb;
2921 static void vtd_iommu_notify_flag_changed(IOMMUMemoryRegion *iommu,
2922 IOMMUNotifierFlag old,
2923 IOMMUNotifierFlag new)
2925 VTDAddressSpace *vtd_as = container_of(iommu, VTDAddressSpace, iommu);
2926 IntelIOMMUState *s = vtd_as->iommu_state;
2928 if (!s->caching_mode && new & IOMMU_NOTIFIER_MAP) {
2929 error_report("We need to set caching-mode=on for intel-iommu to enable "
2930 "device assignment with IOMMU protection.");
2931 exit(1);
2934 /* Update per-address-space notifier flags */
2935 vtd_as->notifier_flags = new;
2937 if (old == IOMMU_NOTIFIER_NONE) {
2938 QLIST_INSERT_HEAD(&s->vtd_as_with_notifiers, vtd_as, next);
2939 } else if (new == IOMMU_NOTIFIER_NONE) {
2940 QLIST_REMOVE(vtd_as, next);
2944 static int vtd_post_load(void *opaque, int version_id)
2946 IntelIOMMUState *iommu = opaque;
2949 * Memory regions are dynamically turned on/off depending on
2950 * context entry configurations from the guest. After migration,
2951 * we need to make sure the memory regions are still correct.
2953 vtd_switch_address_space_all(iommu);
2956 * We don't need to migrate the root_scalable because we can
2957 * simply do the calculation after the loading is complete. We
2958 * can actually do similar things with root, dmar_enabled, etc.
2959 * however since we've had them already so we'd better keep them
2960 * for compatibility of migration.
2962 vtd_update_scalable_state(iommu);
2964 return 0;
2967 static const VMStateDescription vtd_vmstate = {
2968 .name = "iommu-intel",
2969 .version_id = 1,
2970 .minimum_version_id = 1,
2971 .priority = MIG_PRI_IOMMU,
2972 .post_load = vtd_post_load,
2973 .fields = (VMStateField[]) {
2974 VMSTATE_UINT64(root, IntelIOMMUState),
2975 VMSTATE_UINT64(intr_root, IntelIOMMUState),
2976 VMSTATE_UINT64(iq, IntelIOMMUState),
2977 VMSTATE_UINT32(intr_size, IntelIOMMUState),
2978 VMSTATE_UINT16(iq_head, IntelIOMMUState),
2979 VMSTATE_UINT16(iq_tail, IntelIOMMUState),
2980 VMSTATE_UINT16(iq_size, IntelIOMMUState),
2981 VMSTATE_UINT16(next_frcd_reg, IntelIOMMUState),
2982 VMSTATE_UINT8_ARRAY(csr, IntelIOMMUState, DMAR_REG_SIZE),
2983 VMSTATE_UINT8(iq_last_desc_type, IntelIOMMUState),
2984 VMSTATE_UNUSED(1), /* bool root_extended is obsolete by VT-d */
2985 VMSTATE_BOOL(dmar_enabled, IntelIOMMUState),
2986 VMSTATE_BOOL(qi_enabled, IntelIOMMUState),
2987 VMSTATE_BOOL(intr_enabled, IntelIOMMUState),
2988 VMSTATE_BOOL(intr_eime, IntelIOMMUState),
2989 VMSTATE_END_OF_LIST()
2993 static const MemoryRegionOps vtd_mem_ops = {
2994 .read = vtd_mem_read,
2995 .write = vtd_mem_write,
2996 .endianness = DEVICE_LITTLE_ENDIAN,
2997 .impl = {
2998 .min_access_size = 4,
2999 .max_access_size = 8,
3001 .valid = {
3002 .min_access_size = 4,
3003 .max_access_size = 8,
3007 static Property vtd_properties[] = {
3008 DEFINE_PROP_UINT32("version", IntelIOMMUState, version, 0),
3009 DEFINE_PROP_ON_OFF_AUTO("eim", IntelIOMMUState, intr_eim,
3010 ON_OFF_AUTO_AUTO),
3011 DEFINE_PROP_BOOL("x-buggy-eim", IntelIOMMUState, buggy_eim, false),
3012 DEFINE_PROP_UINT8("aw-bits", IntelIOMMUState, aw_bits,
3013 VTD_HOST_ADDRESS_WIDTH),
3014 DEFINE_PROP_BOOL("caching-mode", IntelIOMMUState, caching_mode, FALSE),
3015 DEFINE_PROP_BOOL("x-scalable-mode", IntelIOMMUState, scalable_mode, FALSE),
3016 DEFINE_PROP_BOOL("dma-drain", IntelIOMMUState, dma_drain, true),
3017 DEFINE_PROP_END_OF_LIST(),
3020 /* Read IRTE entry with specific index */
3021 static int vtd_irte_get(IntelIOMMUState *iommu, uint16_t index,
3022 VTD_IR_TableEntry *entry, uint16_t sid)
3024 static const uint16_t vtd_svt_mask[VTD_SQ_MAX] = \
3025 {0xffff, 0xfffb, 0xfff9, 0xfff8};
3026 dma_addr_t addr = 0x00;
3027 uint16_t mask, source_id;
3028 uint8_t bus, bus_max, bus_min;
3030 addr = iommu->intr_root + index * sizeof(*entry);
3031 if (dma_memory_read(&address_space_memory, addr, entry,
3032 sizeof(*entry))) {
3033 error_report_once("%s: read failed: ind=0x%x addr=0x%" PRIx64,
3034 __func__, index, addr);
3035 return -VTD_FR_IR_ROOT_INVAL;
3038 trace_vtd_ir_irte_get(index, le64_to_cpu(entry->data[1]),
3039 le64_to_cpu(entry->data[0]));
3041 if (!entry->irte.present) {
3042 error_report_once("%s: detected non-present IRTE "
3043 "(index=%u, high=0x%" PRIx64 ", low=0x%" PRIx64 ")",
3044 __func__, index, le64_to_cpu(entry->data[1]),
3045 le64_to_cpu(entry->data[0]));
3046 return -VTD_FR_IR_ENTRY_P;
3049 if (entry->irte.__reserved_0 || entry->irte.__reserved_1 ||
3050 entry->irte.__reserved_2) {
3051 error_report_once("%s: detected non-zero reserved IRTE "
3052 "(index=%u, high=0x%" PRIx64 ", low=0x%" PRIx64 ")",
3053 __func__, index, le64_to_cpu(entry->data[1]),
3054 le64_to_cpu(entry->data[0]));
3055 return -VTD_FR_IR_IRTE_RSVD;
3058 if (sid != X86_IOMMU_SID_INVALID) {
3059 /* Validate IRTE SID */
3060 source_id = le32_to_cpu(entry->irte.source_id);
3061 switch (entry->irte.sid_vtype) {
3062 case VTD_SVT_NONE:
3063 break;
3065 case VTD_SVT_ALL:
3066 mask = vtd_svt_mask[entry->irte.sid_q];
3067 if ((source_id & mask) != (sid & mask)) {
3068 error_report_once("%s: invalid IRTE SID "
3069 "(index=%u, sid=%u, source_id=%u)",
3070 __func__, index, sid, source_id);
3071 return -VTD_FR_IR_SID_ERR;
3073 break;
3075 case VTD_SVT_BUS:
3076 bus_max = source_id >> 8;
3077 bus_min = source_id & 0xff;
3078 bus = sid >> 8;
3079 if (bus > bus_max || bus < bus_min) {
3080 error_report_once("%s: invalid SVT_BUS "
3081 "(index=%u, bus=%u, min=%u, max=%u)",
3082 __func__, index, bus, bus_min, bus_max);
3083 return -VTD_FR_IR_SID_ERR;
3085 break;
3087 default:
3088 error_report_once("%s: detected invalid IRTE SVT "
3089 "(index=%u, type=%d)", __func__,
3090 index, entry->irte.sid_vtype);
3091 /* Take this as verification failure. */
3092 return -VTD_FR_IR_SID_ERR;
3093 break;
3097 return 0;
3100 /* Fetch IRQ information of specific IR index */
3101 static int vtd_remap_irq_get(IntelIOMMUState *iommu, uint16_t index,
3102 X86IOMMUIrq *irq, uint16_t sid)
3104 VTD_IR_TableEntry irte = {};
3105 int ret = 0;
3107 ret = vtd_irte_get(iommu, index, &irte, sid);
3108 if (ret) {
3109 return ret;
3112 irq->trigger_mode = irte.irte.trigger_mode;
3113 irq->vector = irte.irte.vector;
3114 irq->delivery_mode = irte.irte.delivery_mode;
3115 irq->dest = le32_to_cpu(irte.irte.dest_id);
3116 if (!iommu->intr_eime) {
3117 #define VTD_IR_APIC_DEST_MASK (0xff00ULL)
3118 #define VTD_IR_APIC_DEST_SHIFT (8)
3119 irq->dest = (irq->dest & VTD_IR_APIC_DEST_MASK) >>
3120 VTD_IR_APIC_DEST_SHIFT;
3122 irq->dest_mode = irte.irte.dest_mode;
3123 irq->redir_hint = irte.irte.redir_hint;
3125 trace_vtd_ir_remap(index, irq->trigger_mode, irq->vector,
3126 irq->delivery_mode, irq->dest, irq->dest_mode);
3128 return 0;
3131 /* Interrupt remapping for MSI/MSI-X entry */
3132 static int vtd_interrupt_remap_msi(IntelIOMMUState *iommu,
3133 MSIMessage *origin,
3134 MSIMessage *translated,
3135 uint16_t sid)
3137 int ret = 0;
3138 VTD_IR_MSIAddress addr;
3139 uint16_t index;
3140 X86IOMMUIrq irq = {};
3142 assert(origin && translated);
3144 trace_vtd_ir_remap_msi_req(origin->address, origin->data);
3146 if (!iommu || !iommu->intr_enabled) {
3147 memcpy(translated, origin, sizeof(*origin));
3148 goto out;
3151 if (origin->address & VTD_MSI_ADDR_HI_MASK) {
3152 error_report_once("%s: MSI address high 32 bits non-zero detected: "
3153 "address=0x%" PRIx64, __func__, origin->address);
3154 return -VTD_FR_IR_REQ_RSVD;
3157 addr.data = origin->address & VTD_MSI_ADDR_LO_MASK;
3158 if (addr.addr.__head != 0xfee) {
3159 error_report_once("%s: MSI address low 32 bit invalid: 0x%" PRIx32,
3160 __func__, addr.data);
3161 return -VTD_FR_IR_REQ_RSVD;
3164 /* This is compatible mode. */
3165 if (addr.addr.int_mode != VTD_IR_INT_FORMAT_REMAP) {
3166 memcpy(translated, origin, sizeof(*origin));
3167 goto out;
3170 index = addr.addr.index_h << 15 | le16_to_cpu(addr.addr.index_l);
3172 #define VTD_IR_MSI_DATA_SUBHANDLE (0x0000ffff)
3173 #define VTD_IR_MSI_DATA_RESERVED (0xffff0000)
3175 if (addr.addr.sub_valid) {
3176 /* See VT-d spec 5.1.2.2 and 5.1.3 on subhandle */
3177 index += origin->data & VTD_IR_MSI_DATA_SUBHANDLE;
3180 ret = vtd_remap_irq_get(iommu, index, &irq, sid);
3181 if (ret) {
3182 return ret;
3185 if (addr.addr.sub_valid) {
3186 trace_vtd_ir_remap_type("MSI");
3187 if (origin->data & VTD_IR_MSI_DATA_RESERVED) {
3188 error_report_once("%s: invalid IR MSI "
3189 "(sid=%u, address=0x%" PRIx64
3190 ", data=0x%" PRIx32 ")",
3191 __func__, sid, origin->address, origin->data);
3192 return -VTD_FR_IR_REQ_RSVD;
3194 } else {
3195 uint8_t vector = origin->data & 0xff;
3196 uint8_t trigger_mode = (origin->data >> MSI_DATA_TRIGGER_SHIFT) & 0x1;
3198 trace_vtd_ir_remap_type("IOAPIC");
3199 /* IOAPIC entry vector should be aligned with IRTE vector
3200 * (see vt-d spec 5.1.5.1). */
3201 if (vector != irq.vector) {
3202 trace_vtd_warn_ir_vector(sid, index, vector, irq.vector);
3205 /* The Trigger Mode field must match the Trigger Mode in the IRTE.
3206 * (see vt-d spec 5.1.5.1). */
3207 if (trigger_mode != irq.trigger_mode) {
3208 trace_vtd_warn_ir_trigger(sid, index, trigger_mode,
3209 irq.trigger_mode);
3214 * We'd better keep the last two bits, assuming that guest OS
3215 * might modify it. Keep it does not hurt after all.
3217 irq.msi_addr_last_bits = addr.addr.__not_care;
3219 /* Translate X86IOMMUIrq to MSI message */
3220 x86_iommu_irq_to_msi_message(&irq, translated);
3222 out:
3223 trace_vtd_ir_remap_msi(origin->address, origin->data,
3224 translated->address, translated->data);
3225 return 0;
3228 static int vtd_int_remap(X86IOMMUState *iommu, MSIMessage *src,
3229 MSIMessage *dst, uint16_t sid)
3231 return vtd_interrupt_remap_msi(INTEL_IOMMU_DEVICE(iommu),
3232 src, dst, sid);
3235 static MemTxResult vtd_mem_ir_read(void *opaque, hwaddr addr,
3236 uint64_t *data, unsigned size,
3237 MemTxAttrs attrs)
3239 return MEMTX_OK;
3242 static MemTxResult vtd_mem_ir_write(void *opaque, hwaddr addr,
3243 uint64_t value, unsigned size,
3244 MemTxAttrs attrs)
3246 int ret = 0;
3247 MSIMessage from = {}, to = {};
3248 uint16_t sid = X86_IOMMU_SID_INVALID;
3250 from.address = (uint64_t) addr + VTD_INTERRUPT_ADDR_FIRST;
3251 from.data = (uint32_t) value;
3253 if (!attrs.unspecified) {
3254 /* We have explicit Source ID */
3255 sid = attrs.requester_id;
3258 ret = vtd_interrupt_remap_msi(opaque, &from, &to, sid);
3259 if (ret) {
3260 /* TODO: report error */
3261 /* Drop this interrupt */
3262 return MEMTX_ERROR;
3265 apic_get_class()->send_msi(&to);
3267 return MEMTX_OK;
3270 static const MemoryRegionOps vtd_mem_ir_ops = {
3271 .read_with_attrs = vtd_mem_ir_read,
3272 .write_with_attrs = vtd_mem_ir_write,
3273 .endianness = DEVICE_LITTLE_ENDIAN,
3274 .impl = {
3275 .min_access_size = 4,
3276 .max_access_size = 4,
3278 .valid = {
3279 .min_access_size = 4,
3280 .max_access_size = 4,
3284 VTDAddressSpace *vtd_find_add_as(IntelIOMMUState *s, PCIBus *bus, int devfn)
3286 uintptr_t key = (uintptr_t)bus;
3287 VTDBus *vtd_bus = g_hash_table_lookup(s->vtd_as_by_busptr, &key);
3288 VTDAddressSpace *vtd_dev_as;
3289 char name[128];
3291 if (!vtd_bus) {
3292 uintptr_t *new_key = g_malloc(sizeof(*new_key));
3293 *new_key = (uintptr_t)bus;
3294 /* No corresponding free() */
3295 vtd_bus = g_malloc0(sizeof(VTDBus) + sizeof(VTDAddressSpace *) * \
3296 PCI_DEVFN_MAX);
3297 vtd_bus->bus = bus;
3298 g_hash_table_insert(s->vtd_as_by_busptr, new_key, vtd_bus);
3301 vtd_dev_as = vtd_bus->dev_as[devfn];
3303 if (!vtd_dev_as) {
3304 snprintf(name, sizeof(name), "vtd-%02x.%x", PCI_SLOT(devfn),
3305 PCI_FUNC(devfn));
3306 vtd_bus->dev_as[devfn] = vtd_dev_as = g_malloc0(sizeof(VTDAddressSpace));
3308 vtd_dev_as->bus = bus;
3309 vtd_dev_as->devfn = (uint8_t)devfn;
3310 vtd_dev_as->iommu_state = s;
3311 vtd_dev_as->context_cache_entry.context_cache_gen = 0;
3312 vtd_dev_as->iova_tree = iova_tree_new();
3314 memory_region_init(&vtd_dev_as->root, OBJECT(s), name, UINT64_MAX);
3315 address_space_init(&vtd_dev_as->as, &vtd_dev_as->root, "vtd-root");
3318 * Build the DMAR-disabled container with aliases to the
3319 * shared MRs. Note that aliasing to a shared memory region
3320 * could help the memory API to detect same FlatViews so we
3321 * can have devices to share the same FlatView when DMAR is
3322 * disabled (either by not providing "intel_iommu=on" or with
3323 * "iommu=pt"). It will greatly reduce the total number of
3324 * FlatViews of the system hence VM runs faster.
3326 memory_region_init_alias(&vtd_dev_as->nodmar, OBJECT(s),
3327 "vtd-nodmar", &s->mr_nodmar, 0,
3328 memory_region_size(&s->mr_nodmar));
3331 * Build the per-device DMAR-enabled container.
3333 * TODO: currently we have per-device IOMMU memory region only
3334 * because we have per-device IOMMU notifiers for devices. If
3335 * one day we can abstract the IOMMU notifiers out of the
3336 * memory regions then we can also share the same memory
3337 * region here just like what we've done above with the nodmar
3338 * region.
3340 strcat(name, "-dmar");
3341 memory_region_init_iommu(&vtd_dev_as->iommu, sizeof(vtd_dev_as->iommu),
3342 TYPE_INTEL_IOMMU_MEMORY_REGION, OBJECT(s),
3343 name, UINT64_MAX);
3344 memory_region_init_alias(&vtd_dev_as->iommu_ir, OBJECT(s), "vtd-ir",
3345 &s->mr_ir, 0, memory_region_size(&s->mr_ir));
3346 memory_region_add_subregion_overlap(MEMORY_REGION(&vtd_dev_as->iommu),
3347 VTD_INTERRUPT_ADDR_FIRST,
3348 &vtd_dev_as->iommu_ir, 1);
3351 * Hook both the containers under the root container, we
3352 * switch between DMAR & noDMAR by enable/disable
3353 * corresponding sub-containers
3355 memory_region_add_subregion_overlap(&vtd_dev_as->root, 0,
3356 MEMORY_REGION(&vtd_dev_as->iommu),
3358 memory_region_add_subregion_overlap(&vtd_dev_as->root, 0,
3359 &vtd_dev_as->nodmar, 0);
3361 vtd_switch_address_space(vtd_dev_as);
3363 return vtd_dev_as;
3366 /* Unmap the whole range in the notifier's scope. */
3367 static void vtd_address_space_unmap(VTDAddressSpace *as, IOMMUNotifier *n)
3369 IOMMUTLBEntry entry;
3370 hwaddr size;
3371 hwaddr start = n->start;
3372 hwaddr end = n->end;
3373 IntelIOMMUState *s = as->iommu_state;
3374 DMAMap map;
3377 * Note: all the codes in this function has a assumption that IOVA
3378 * bits are no more than VTD_MGAW bits (which is restricted by
3379 * VT-d spec), otherwise we need to consider overflow of 64 bits.
3382 if (end > VTD_ADDRESS_SIZE(s->aw_bits)) {
3384 * Don't need to unmap regions that is bigger than the whole
3385 * VT-d supported address space size
3387 end = VTD_ADDRESS_SIZE(s->aw_bits);
3390 assert(start <= end);
3391 size = end - start;
3393 if (ctpop64(size) != 1) {
3395 * This size cannot format a correct mask. Let's enlarge it to
3396 * suite the minimum available mask.
3398 int n = 64 - clz64(size);
3399 if (n > s->aw_bits) {
3400 /* should not happen, but in case it happens, limit it */
3401 n = s->aw_bits;
3403 size = 1ULL << n;
3406 entry.target_as = &address_space_memory;
3407 /* Adjust iova for the size */
3408 entry.iova = n->start & ~(size - 1);
3409 /* This field is meaningless for unmap */
3410 entry.translated_addr = 0;
3411 entry.perm = IOMMU_NONE;
3412 entry.addr_mask = size - 1;
3414 trace_vtd_as_unmap_whole(pci_bus_num(as->bus),
3415 VTD_PCI_SLOT(as->devfn),
3416 VTD_PCI_FUNC(as->devfn),
3417 entry.iova, size);
3419 map.iova = entry.iova;
3420 map.size = entry.addr_mask;
3421 iova_tree_remove(as->iova_tree, &map);
3423 memory_region_notify_one(n, &entry);
3426 static void vtd_address_space_unmap_all(IntelIOMMUState *s)
3428 VTDAddressSpace *vtd_as;
3429 IOMMUNotifier *n;
3431 QLIST_FOREACH(vtd_as, &s->vtd_as_with_notifiers, next) {
3432 IOMMU_NOTIFIER_FOREACH(n, &vtd_as->iommu) {
3433 vtd_address_space_unmap(vtd_as, n);
3438 static void vtd_address_space_refresh_all(IntelIOMMUState *s)
3440 vtd_address_space_unmap_all(s);
3441 vtd_switch_address_space_all(s);
3444 static int vtd_replay_hook(IOMMUTLBEntry *entry, void *private)
3446 memory_region_notify_one((IOMMUNotifier *)private, entry);
3447 return 0;
3450 static void vtd_iommu_replay(IOMMUMemoryRegion *iommu_mr, IOMMUNotifier *n)
3452 VTDAddressSpace *vtd_as = container_of(iommu_mr, VTDAddressSpace, iommu);
3453 IntelIOMMUState *s = vtd_as->iommu_state;
3454 uint8_t bus_n = pci_bus_num(vtd_as->bus);
3455 VTDContextEntry ce;
3458 * The replay can be triggered by either a invalidation or a newly
3459 * created entry. No matter what, we release existing mappings
3460 * (it means flushing caches for UNMAP-only registers).
3462 vtd_address_space_unmap(vtd_as, n);
3464 if (vtd_dev_to_context_entry(s, bus_n, vtd_as->devfn, &ce) == 0) {
3465 trace_vtd_replay_ce_valid(s->root_scalable ? "scalable mode" :
3466 "legacy mode",
3467 bus_n, PCI_SLOT(vtd_as->devfn),
3468 PCI_FUNC(vtd_as->devfn),
3469 vtd_get_domain_id(s, &ce),
3470 ce.hi, ce.lo);
3471 if (vtd_as_has_map_notifier(vtd_as)) {
3472 /* This is required only for MAP typed notifiers */
3473 vtd_page_walk_info info = {
3474 .hook_fn = vtd_replay_hook,
3475 .private = (void *)n,
3476 .notify_unmap = false,
3477 .aw = s->aw_bits,
3478 .as = vtd_as,
3479 .domain_id = vtd_get_domain_id(s, &ce),
3482 vtd_page_walk(s, &ce, 0, ~0ULL, &info);
3484 } else {
3485 trace_vtd_replay_ce_invalid(bus_n, PCI_SLOT(vtd_as->devfn),
3486 PCI_FUNC(vtd_as->devfn));
3489 return;
3492 /* Do the initialization. It will also be called when reset, so pay
3493 * attention when adding new initialization stuff.
3495 static void vtd_init(IntelIOMMUState *s)
3497 X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
3499 memset(s->csr, 0, DMAR_REG_SIZE);
3500 memset(s->wmask, 0, DMAR_REG_SIZE);
3501 memset(s->w1cmask, 0, DMAR_REG_SIZE);
3502 memset(s->womask, 0, DMAR_REG_SIZE);
3504 s->root = 0;
3505 s->root_scalable = false;
3506 s->dmar_enabled = false;
3507 s->intr_enabled = false;
3508 s->iq_head = 0;
3509 s->iq_tail = 0;
3510 s->iq = 0;
3511 s->iq_size = 0;
3512 s->qi_enabled = false;
3513 s->iq_last_desc_type = VTD_INV_DESC_NONE;
3514 s->iq_dw = false;
3515 s->next_frcd_reg = 0;
3516 s->cap = VTD_CAP_FRO | VTD_CAP_NFR | VTD_CAP_ND |
3517 VTD_CAP_MAMV | VTD_CAP_PSI | VTD_CAP_SLLPS |
3518 VTD_CAP_SAGAW_39bit | VTD_CAP_MGAW(s->aw_bits);
3519 if (s->dma_drain) {
3520 s->cap |= VTD_CAP_DRAIN;
3522 if (s->aw_bits == VTD_HOST_AW_48BIT) {
3523 s->cap |= VTD_CAP_SAGAW_48bit;
3525 s->ecap = VTD_ECAP_QI | VTD_ECAP_IRO;
3528 * Rsvd field masks for spte
3530 vtd_paging_entry_rsvd_field[0] = ~0ULL;
3531 vtd_paging_entry_rsvd_field[1] = VTD_SPTE_PAGE_L1_RSVD_MASK(s->aw_bits);
3532 vtd_paging_entry_rsvd_field[2] = VTD_SPTE_PAGE_L2_RSVD_MASK(s->aw_bits);
3533 vtd_paging_entry_rsvd_field[3] = VTD_SPTE_PAGE_L3_RSVD_MASK(s->aw_bits);
3534 vtd_paging_entry_rsvd_field[4] = VTD_SPTE_PAGE_L4_RSVD_MASK(s->aw_bits);
3535 vtd_paging_entry_rsvd_field[5] = VTD_SPTE_LPAGE_L1_RSVD_MASK(s->aw_bits);
3536 vtd_paging_entry_rsvd_field[6] = VTD_SPTE_LPAGE_L2_RSVD_MASK(s->aw_bits);
3537 vtd_paging_entry_rsvd_field[7] = VTD_SPTE_LPAGE_L3_RSVD_MASK(s->aw_bits);
3538 vtd_paging_entry_rsvd_field[8] = VTD_SPTE_LPAGE_L4_RSVD_MASK(s->aw_bits);
3540 if (x86_iommu_ir_supported(x86_iommu)) {
3541 s->ecap |= VTD_ECAP_IR | VTD_ECAP_MHMV;
3542 if (s->intr_eim == ON_OFF_AUTO_ON) {
3543 s->ecap |= VTD_ECAP_EIM;
3545 assert(s->intr_eim != ON_OFF_AUTO_AUTO);
3548 if (x86_iommu->dt_supported) {
3549 s->ecap |= VTD_ECAP_DT;
3552 if (x86_iommu->pt_supported) {
3553 s->ecap |= VTD_ECAP_PT;
3556 if (s->caching_mode) {
3557 s->cap |= VTD_CAP_CM;
3560 /* TODO: read cap/ecap from host to decide which cap to be exposed. */
3561 if (s->scalable_mode) {
3562 s->ecap |= VTD_ECAP_SMTS | VTD_ECAP_SRS | VTD_ECAP_SLTS;
3565 vtd_reset_caches(s);
3567 /* Define registers with default values and bit semantics */
3568 vtd_define_long(s, DMAR_VER_REG, 0x10UL, 0, 0);
3569 vtd_define_quad(s, DMAR_CAP_REG, s->cap, 0, 0);
3570 vtd_define_quad(s, DMAR_ECAP_REG, s->ecap, 0, 0);
3571 vtd_define_long(s, DMAR_GCMD_REG, 0, 0xff800000UL, 0);
3572 vtd_define_long_wo(s, DMAR_GCMD_REG, 0xff800000UL);
3573 vtd_define_long(s, DMAR_GSTS_REG, 0, 0, 0);
3574 vtd_define_quad(s, DMAR_RTADDR_REG, 0, 0xfffffffffffffc00ULL, 0);
3575 vtd_define_quad(s, DMAR_CCMD_REG, 0, 0xe0000003ffffffffULL, 0);
3576 vtd_define_quad_wo(s, DMAR_CCMD_REG, 0x3ffff0000ULL);
3578 /* Advanced Fault Logging not supported */
3579 vtd_define_long(s, DMAR_FSTS_REG, 0, 0, 0x11UL);
3580 vtd_define_long(s, DMAR_FECTL_REG, 0x80000000UL, 0x80000000UL, 0);
3581 vtd_define_long(s, DMAR_FEDATA_REG, 0, 0x0000ffffUL, 0);
3582 vtd_define_long(s, DMAR_FEADDR_REG, 0, 0xfffffffcUL, 0);
3584 /* Treated as RsvdZ when EIM in ECAP_REG is not supported
3585 * vtd_define_long(s, DMAR_FEUADDR_REG, 0, 0xffffffffUL, 0);
3587 vtd_define_long(s, DMAR_FEUADDR_REG, 0, 0, 0);
3589 /* Treated as RO for implementations that PLMR and PHMR fields reported
3590 * as Clear in the CAP_REG.
3591 * vtd_define_long(s, DMAR_PMEN_REG, 0, 0x80000000UL, 0);
3593 vtd_define_long(s, DMAR_PMEN_REG, 0, 0, 0);
3595 vtd_define_quad(s, DMAR_IQH_REG, 0, 0, 0);
3596 vtd_define_quad(s, DMAR_IQT_REG, 0, 0x7fff0ULL, 0);
3597 vtd_define_quad(s, DMAR_IQA_REG, 0, 0xfffffffffffff807ULL, 0);
3598 vtd_define_long(s, DMAR_ICS_REG, 0, 0, 0x1UL);
3599 vtd_define_long(s, DMAR_IECTL_REG, 0x80000000UL, 0x80000000UL, 0);
3600 vtd_define_long(s, DMAR_IEDATA_REG, 0, 0xffffffffUL, 0);
3601 vtd_define_long(s, DMAR_IEADDR_REG, 0, 0xfffffffcUL, 0);
3602 /* Treadted as RsvdZ when EIM in ECAP_REG is not supported */
3603 vtd_define_long(s, DMAR_IEUADDR_REG, 0, 0, 0);
3605 /* IOTLB registers */
3606 vtd_define_quad(s, DMAR_IOTLB_REG, 0, 0Xb003ffff00000000ULL, 0);
3607 vtd_define_quad(s, DMAR_IVA_REG, 0, 0xfffffffffffff07fULL, 0);
3608 vtd_define_quad_wo(s, DMAR_IVA_REG, 0xfffffffffffff07fULL);
3610 /* Fault Recording Registers, 128-bit */
3611 vtd_define_quad(s, DMAR_FRCD_REG_0_0, 0, 0, 0);
3612 vtd_define_quad(s, DMAR_FRCD_REG_0_2, 0, 0, 0x8000000000000000ULL);
3615 * Interrupt remapping registers.
3617 vtd_define_quad(s, DMAR_IRTA_REG, 0, 0xfffffffffffff80fULL, 0);
3620 /* Should not reset address_spaces when reset because devices will still use
3621 * the address space they got at first (won't ask the bus again).
3623 static void vtd_reset(DeviceState *dev)
3625 IntelIOMMUState *s = INTEL_IOMMU_DEVICE(dev);
3627 vtd_init(s);
3628 vtd_address_space_refresh_all(s);
3631 static AddressSpace *vtd_host_dma_iommu(PCIBus *bus, void *opaque, int devfn)
3633 IntelIOMMUState *s = opaque;
3634 VTDAddressSpace *vtd_as;
3636 assert(0 <= devfn && devfn < PCI_DEVFN_MAX);
3638 vtd_as = vtd_find_add_as(s, bus, devfn);
3639 return &vtd_as->as;
3642 static bool vtd_decide_config(IntelIOMMUState *s, Error **errp)
3644 X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
3646 if (s->intr_eim == ON_OFF_AUTO_ON && !x86_iommu_ir_supported(x86_iommu)) {
3647 error_setg(errp, "eim=on cannot be selected without intremap=on");
3648 return false;
3651 if (s->intr_eim == ON_OFF_AUTO_AUTO) {
3652 s->intr_eim = (kvm_irqchip_in_kernel() || s->buggy_eim)
3653 && x86_iommu_ir_supported(x86_iommu) ?
3654 ON_OFF_AUTO_ON : ON_OFF_AUTO_OFF;
3656 if (s->intr_eim == ON_OFF_AUTO_ON && !s->buggy_eim) {
3657 if (!kvm_irqchip_in_kernel()) {
3658 error_setg(errp, "eim=on requires accel=kvm,kernel-irqchip=split");
3659 return false;
3661 if (!kvm_enable_x2apic()) {
3662 error_setg(errp, "eim=on requires support on the KVM side"
3663 "(X2APIC_API, first shipped in v4.7)");
3664 return false;
3668 /* Currently only address widths supported are 39 and 48 bits */
3669 if ((s->aw_bits != VTD_HOST_AW_39BIT) &&
3670 (s->aw_bits != VTD_HOST_AW_48BIT)) {
3671 error_setg(errp, "Supported values for x-aw-bits are: %d, %d",
3672 VTD_HOST_AW_39BIT, VTD_HOST_AW_48BIT);
3673 return false;
3676 if (s->scalable_mode && !s->dma_drain) {
3677 error_setg(errp, "Need to set dma_drain for scalable mode");
3678 return false;
3681 return true;
3684 static void vtd_realize(DeviceState *dev, Error **errp)
3686 MachineState *ms = MACHINE(qdev_get_machine());
3687 PCMachineState *pcms = PC_MACHINE(ms);
3688 PCIBus *bus = pcms->bus;
3689 IntelIOMMUState *s = INTEL_IOMMU_DEVICE(dev);
3690 X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(dev);
3692 x86_iommu->type = TYPE_INTEL;
3694 if (!vtd_decide_config(s, errp)) {
3695 return;
3698 QLIST_INIT(&s->vtd_as_with_notifiers);
3699 qemu_mutex_init(&s->iommu_lock);
3700 memset(s->vtd_as_by_bus_num, 0, sizeof(s->vtd_as_by_bus_num));
3701 memory_region_init_io(&s->csrmem, OBJECT(s), &vtd_mem_ops, s,
3702 "intel_iommu", DMAR_REG_SIZE);
3704 /* Create the shared memory regions by all devices */
3705 memory_region_init(&s->mr_nodmar, OBJECT(s), "vtd-nodmar",
3706 UINT64_MAX);
3707 memory_region_init_io(&s->mr_ir, OBJECT(s), &vtd_mem_ir_ops,
3708 s, "vtd-ir", VTD_INTERRUPT_ADDR_SIZE);
3709 memory_region_init_alias(&s->mr_sys_alias, OBJECT(s),
3710 "vtd-sys-alias", get_system_memory(), 0,
3711 memory_region_size(get_system_memory()));
3712 memory_region_add_subregion_overlap(&s->mr_nodmar, 0,
3713 &s->mr_sys_alias, 0);
3714 memory_region_add_subregion_overlap(&s->mr_nodmar,
3715 VTD_INTERRUPT_ADDR_FIRST,
3716 &s->mr_ir, 1);
3718 sysbus_init_mmio(SYS_BUS_DEVICE(s), &s->csrmem);
3719 /* No corresponding destroy */
3720 s->iotlb = g_hash_table_new_full(vtd_uint64_hash, vtd_uint64_equal,
3721 g_free, g_free);
3722 s->vtd_as_by_busptr = g_hash_table_new_full(vtd_uint64_hash, vtd_uint64_equal,
3723 g_free, g_free);
3724 vtd_init(s);
3725 sysbus_mmio_map(SYS_BUS_DEVICE(s), 0, Q35_HOST_BRIDGE_IOMMU_ADDR);
3726 pci_setup_iommu(bus, vtd_host_dma_iommu, dev);
3727 /* Pseudo address space under root PCI bus. */
3728 pcms->ioapic_as = vtd_host_dma_iommu(bus, s, Q35_PSEUDO_DEVFN_IOAPIC);
3731 static void vtd_class_init(ObjectClass *klass, void *data)
3733 DeviceClass *dc = DEVICE_CLASS(klass);
3734 X86IOMMUClass *x86_class = X86_IOMMU_CLASS(klass);
3736 dc->reset = vtd_reset;
3737 dc->vmsd = &vtd_vmstate;
3738 dc->props = vtd_properties;
3739 dc->hotpluggable = false;
3740 x86_class->realize = vtd_realize;
3741 x86_class->int_remap = vtd_int_remap;
3742 /* Supported by the pc-q35-* machine types */
3743 dc->user_creatable = true;
3744 set_bit(DEVICE_CATEGORY_MISC, dc->categories);
3745 dc->desc = "Intel IOMMU (VT-d) DMA Remapping device";
3748 static const TypeInfo vtd_info = {
3749 .name = TYPE_INTEL_IOMMU_DEVICE,
3750 .parent = TYPE_X86_IOMMU_DEVICE,
3751 .instance_size = sizeof(IntelIOMMUState),
3752 .class_init = vtd_class_init,
3755 static void vtd_iommu_memory_region_class_init(ObjectClass *klass,
3756 void *data)
3758 IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_CLASS(klass);
3760 imrc->translate = vtd_iommu_translate;
3761 imrc->notify_flag_changed = vtd_iommu_notify_flag_changed;
3762 imrc->replay = vtd_iommu_replay;
3765 static const TypeInfo vtd_iommu_memory_region_info = {
3766 .parent = TYPE_IOMMU_MEMORY_REGION,
3767 .name = TYPE_INTEL_IOMMU_MEMORY_REGION,
3768 .class_init = vtd_iommu_memory_region_class_init,
3771 static void vtd_register_types(void)
3773 type_register_static(&vtd_info);
3774 type_register_static(&vtd_iommu_memory_region_info);
3777 type_init(vtd_register_types)