2 * ARM Generic/Distributed Interrupt Controller
4 * Copyright (c) 2006-2007 CodeSourcery.
5 * Written by Paul Brook
7 * This code is licensed under the GPL.
10 /* This file contains implementation code for the RealView EB interrupt
11 * controller, MPCore distributed interrupt controller and ARMv7-M
12 * Nested Vectored Interrupt Controller.
13 * It is compiled in two ways:
14 * (1) as a standalone file to produce a sysbus device which is a GIC
15 * that can be used on the realview board and as one of the builtin
16 * private peripherals for the ARM MP CPUs (11MPCore, A9, etc)
17 * (2) by being directly #included into armv7m_nvic.c to produce the
21 #include "qemu/osdep.h"
22 #include "hw/sysbus.h"
23 #include "gic_internal.h"
29 #define DPRINTF(fmt, ...) \
30 do { fprintf(stderr, "arm_gic: " fmt , ## __VA_ARGS__); } while (0)
32 #define DPRINTF(fmt, ...) do {} while(0)
35 static const uint8_t gic_id_11mpcore
[] = {
36 0x00, 0x00, 0x00, 0x00, 0x90, 0x13, 0x04, 0x00, 0x0d, 0xf0, 0x05, 0xb1
39 static const uint8_t gic_id_gicv1
[] = {
40 0x04, 0x00, 0x00, 0x00, 0x90, 0xb3, 0x1b, 0x00, 0x0d, 0xf0, 0x05, 0xb1
43 static const uint8_t gic_id_gicv2
[] = {
44 0x04, 0x00, 0x00, 0x00, 0x90, 0xb4, 0x2b, 0x00, 0x0d, 0xf0, 0x05, 0xb1
47 static inline int gic_get_current_cpu(GICState
*s
)
50 return current_cpu
->cpu_index
;
55 /* Return true if this GIC config has interrupt groups, which is
56 * true if we're a GICv2, or a GICv1 with the security extensions.
58 static inline bool gic_has_groups(GICState
*s
)
60 return s
->revision
== 2 || s
->security_extn
;
63 /* TODO: Many places that call this routine could be optimized. */
64 /* Update interrupt status after enabled or pending bits have been changed. */
65 void gic_update(GICState
*s
)
70 int irq_level
, fiq_level
;
74 for (cpu
= 0; cpu
< s
->num_cpu
; cpu
++) {
76 s
->current_pending
[cpu
] = 1023;
77 if (!(s
->ctlr
& (GICD_CTLR_EN_GRP0
| GICD_CTLR_EN_GRP1
))
78 || !(s
->cpu_ctlr
[cpu
] & (GICC_CTLR_EN_GRP0
| GICC_CTLR_EN_GRP1
))) {
79 qemu_irq_lower(s
->parent_irq
[cpu
]);
80 qemu_irq_lower(s
->parent_fiq
[cpu
]);
85 for (irq
= 0; irq
< s
->num_irq
; irq
++) {
86 if (GIC_TEST_ENABLED(irq
, cm
) && gic_test_pending(s
, irq
, cm
) &&
87 (irq
< GIC_INTERNAL
|| GIC_TARGET(irq
) & cm
)) {
88 if (GIC_GET_PRIORITY(irq
, cpu
) < best_prio
) {
89 best_prio
= GIC_GET_PRIORITY(irq
, cpu
);
95 irq_level
= fiq_level
= 0;
97 if (best_prio
< s
->priority_mask
[cpu
]) {
98 s
->current_pending
[cpu
] = best_irq
;
99 if (best_prio
< s
->running_priority
[cpu
]) {
100 int group
= GIC_TEST_GROUP(best_irq
, cm
);
102 if (extract32(s
->ctlr
, group
, 1) &&
103 extract32(s
->cpu_ctlr
[cpu
], group
, 1)) {
104 if (group
== 0 && s
->cpu_ctlr
[cpu
] & GICC_CTLR_FIQ_EN
) {
105 DPRINTF("Raised pending FIQ %d (cpu %d)\n",
109 DPRINTF("Raised pending IRQ %d (cpu %d)\n",
117 qemu_set_irq(s
->parent_irq
[cpu
], irq_level
);
118 qemu_set_irq(s
->parent_fiq
[cpu
], fiq_level
);
122 void gic_set_pending_private(GICState
*s
, int cpu
, int irq
)
126 if (gic_test_pending(s
, irq
, cm
)) {
130 DPRINTF("Set %d pending cpu %d\n", irq
, cpu
);
131 GIC_SET_PENDING(irq
, cm
);
135 static void gic_set_irq_11mpcore(GICState
*s
, int irq
, int level
,
139 GIC_SET_LEVEL(irq
, cm
);
140 if (GIC_TEST_EDGE_TRIGGER(irq
) || GIC_TEST_ENABLED(irq
, cm
)) {
141 DPRINTF("Set %d pending mask %x\n", irq
, target
);
142 GIC_SET_PENDING(irq
, target
);
145 GIC_CLEAR_LEVEL(irq
, cm
);
149 static void gic_set_irq_generic(GICState
*s
, int irq
, int level
,
153 GIC_SET_LEVEL(irq
, cm
);
154 DPRINTF("Set %d pending mask %x\n", irq
, target
);
155 if (GIC_TEST_EDGE_TRIGGER(irq
)) {
156 GIC_SET_PENDING(irq
, target
);
159 GIC_CLEAR_LEVEL(irq
, cm
);
163 /* Process a change in an external IRQ input. */
164 static void gic_set_irq(void *opaque
, int irq
, int level
)
166 /* Meaning of the 'irq' parameter:
167 * [0..N-1] : external interrupts
168 * [N..N+31] : PPI (internal) interrupts for CPU 0
169 * [N+32..N+63] : PPI (internal interrupts for CPU 1
172 GICState
*s
= (GICState
*)opaque
;
174 if (irq
< (s
->num_irq
- GIC_INTERNAL
)) {
175 /* The first external input line is internal interrupt 32. */
178 target
= GIC_TARGET(irq
);
181 irq
-= (s
->num_irq
- GIC_INTERNAL
);
182 cpu
= irq
/ GIC_INTERNAL
;
188 assert(irq
>= GIC_NR_SGIS
);
190 if (level
== GIC_TEST_LEVEL(irq
, cm
)) {
194 if (s
->revision
== REV_11MPCORE
|| s
->revision
== REV_NVIC
) {
195 gic_set_irq_11mpcore(s
, irq
, level
, cm
, target
);
197 gic_set_irq_generic(s
, irq
, level
, cm
, target
);
203 static uint16_t gic_get_current_pending_irq(GICState
*s
, int cpu
,
206 uint16_t pending_irq
= s
->current_pending
[cpu
];
208 if (pending_irq
< GIC_MAXIRQ
&& gic_has_groups(s
)) {
209 int group
= GIC_TEST_GROUP(pending_irq
, (1 << cpu
));
210 /* On a GIC without the security extensions, reading this register
211 * behaves in the same way as a secure access to a GIC with them.
213 bool secure
= !s
->security_extn
|| attrs
.secure
;
215 if (group
== 0 && !secure
) {
216 /* Group0 interrupts hidden from Non-secure access */
219 if (group
== 1 && secure
&& !(s
->cpu_ctlr
[cpu
] & GICC_CTLR_ACK_CTL
)) {
220 /* Group1 interrupts only seen by Secure access if
229 static int gic_get_group_priority(GICState
*s
, int cpu
, int irq
)
231 /* Return the group priority of the specified interrupt
232 * (which is the top bits of its priority, with the number
233 * of bits masked determined by the applicable binary point register).
238 if (gic_has_groups(s
) &&
239 !(s
->cpu_ctlr
[cpu
] & GICC_CTLR_CBPR
) &&
240 GIC_TEST_GROUP(irq
, (1 << cpu
))) {
246 /* a BPR of 0 means the group priority bits are [7:1];
247 * a BPR of 1 means they are [7:2], and so on down to
248 * a BPR of 7 meaning no group priority bits at all.
250 mask
= ~0U << ((bpr
& 7) + 1);
252 return GIC_GET_PRIORITY(irq
, cpu
) & mask
;
255 static void gic_activate_irq(GICState
*s
, int cpu
, int irq
)
257 /* Set the appropriate Active Priority Register bit for this IRQ,
258 * and update the running priority.
260 int prio
= gic_get_group_priority(s
, cpu
, irq
);
261 int preemption_level
= prio
>> (GIC_MIN_BPR
+ 1);
262 int regno
= preemption_level
/ 32;
263 int bitno
= preemption_level
% 32;
265 if (gic_has_groups(s
) && GIC_TEST_GROUP(irq
, (1 << cpu
))) {
266 s
->nsapr
[regno
][cpu
] |= (1 << bitno
);
268 s
->apr
[regno
][cpu
] |= (1 << bitno
);
271 s
->running_priority
[cpu
] = prio
;
272 GIC_SET_ACTIVE(irq
, 1 << cpu
);
275 static int gic_get_prio_from_apr_bits(GICState
*s
, int cpu
)
277 /* Recalculate the current running priority for this CPU based
278 * on the set bits in the Active Priority Registers.
281 for (i
= 0; i
< GIC_NR_APRS
; i
++) {
282 uint32_t apr
= s
->apr
[i
][cpu
] | s
->nsapr
[i
][cpu
];
286 return (i
* 32 + ctz32(apr
)) << (GIC_MIN_BPR
+ 1);
291 static void gic_drop_prio(GICState
*s
, int cpu
, int group
)
293 /* Drop the priority of the currently active interrupt in the
296 * Note that we can guarantee (because of the requirement to nest
297 * GICC_IAR reads [which activate an interrupt and raise priority]
298 * with GICC_EOIR writes [which drop the priority for the interrupt])
299 * that the interrupt we're being called for is the highest priority
300 * active interrupt, meaning that it has the lowest set bit in the
303 * If the guest does not honour the ordering constraints then the
304 * behaviour of the GIC is UNPREDICTABLE, which for us means that
305 * the values of the APR registers might become incorrect and the
306 * running priority will be wrong, so interrupts that should preempt
307 * might not do so, and interrupts that should not preempt might do so.
311 for (i
= 0; i
< GIC_NR_APRS
; i
++) {
312 uint32_t *papr
= group
? &s
->nsapr
[i
][cpu
] : &s
->apr
[i
][cpu
];
316 /* Clear lowest set bit */
321 s
->running_priority
[cpu
] = gic_get_prio_from_apr_bits(s
, cpu
);
324 uint32_t gic_acknowledge_irq(GICState
*s
, int cpu
, MemTxAttrs attrs
)
329 /* gic_get_current_pending_irq() will return 1022 or 1023 appropriately
330 * for the case where this GIC supports grouping and the pending interrupt
331 * is in the wrong group.
333 irq
= gic_get_current_pending_irq(s
, cpu
, attrs
);
335 if (irq
>= GIC_MAXIRQ
) {
336 DPRINTF("ACK, no pending interrupt or it is hidden: %d\n", irq
);
340 if (GIC_GET_PRIORITY(irq
, cpu
) >= s
->running_priority
[cpu
]) {
341 DPRINTF("ACK, pending interrupt (%d) has insufficient priority\n", irq
);
345 if (s
->revision
== REV_11MPCORE
|| s
->revision
== REV_NVIC
) {
346 /* Clear pending flags for both level and edge triggered interrupts.
347 * Level triggered IRQs will be reasserted once they become inactive.
349 GIC_CLEAR_PENDING(irq
, GIC_TEST_MODEL(irq
) ? ALL_CPU_MASK
: cm
);
352 if (irq
< GIC_NR_SGIS
) {
353 /* Lookup the source CPU for the SGI and clear this in the
354 * sgi_pending map. Return the src and clear the overall pending
355 * state on this CPU if the SGI is not pending from any CPUs.
357 assert(s
->sgi_pending
[irq
][cpu
] != 0);
358 src
= ctz32(s
->sgi_pending
[irq
][cpu
]);
359 s
->sgi_pending
[irq
][cpu
] &= ~(1 << src
);
360 if (s
->sgi_pending
[irq
][cpu
] == 0) {
361 GIC_CLEAR_PENDING(irq
, GIC_TEST_MODEL(irq
) ? ALL_CPU_MASK
: cm
);
363 ret
= irq
| ((src
& 0x7) << 10);
365 /* Clear pending state for both level and edge triggered
366 * interrupts. (level triggered interrupts with an active line
367 * remain pending, see gic_test_pending)
369 GIC_CLEAR_PENDING(irq
, GIC_TEST_MODEL(irq
) ? ALL_CPU_MASK
: cm
);
374 gic_activate_irq(s
, cpu
, irq
);
376 DPRINTF("ACK %d\n", irq
);
380 void gic_set_priority(GICState
*s
, int cpu
, int irq
, uint8_t val
,
383 if (s
->security_extn
&& !attrs
.secure
) {
384 if (!GIC_TEST_GROUP(irq
, (1 << cpu
))) {
385 return; /* Ignore Non-secure access of Group0 IRQ */
387 val
= 0x80 | (val
>> 1); /* Non-secure view */
390 if (irq
< GIC_INTERNAL
) {
391 s
->priority1
[irq
][cpu
] = val
;
393 s
->priority2
[(irq
) - GIC_INTERNAL
] = val
;
397 static uint32_t gic_get_priority(GICState
*s
, int cpu
, int irq
,
400 uint32_t prio
= GIC_GET_PRIORITY(irq
, cpu
);
402 if (s
->security_extn
&& !attrs
.secure
) {
403 if (!GIC_TEST_GROUP(irq
, (1 << cpu
))) {
404 return 0; /* Non-secure access cannot read priority of Group0 IRQ */
406 prio
= (prio
<< 1) & 0xff; /* Non-secure view */
411 static void gic_set_priority_mask(GICState
*s
, int cpu
, uint8_t pmask
,
414 if (s
->security_extn
&& !attrs
.secure
) {
415 if (s
->priority_mask
[cpu
] & 0x80) {
416 /* Priority Mask in upper half */
417 pmask
= 0x80 | (pmask
>> 1);
419 /* Non-secure write ignored if priority mask is in lower half */
423 s
->priority_mask
[cpu
] = pmask
;
426 static uint32_t gic_get_priority_mask(GICState
*s
, int cpu
, MemTxAttrs attrs
)
428 uint32_t pmask
= s
->priority_mask
[cpu
];
430 if (s
->security_extn
&& !attrs
.secure
) {
432 /* Priority Mask in upper half, return Non-secure view */
433 pmask
= (pmask
<< 1) & 0xff;
435 /* Priority Mask in lower half, RAZ */
442 static uint32_t gic_get_cpu_control(GICState
*s
, int cpu
, MemTxAttrs attrs
)
444 uint32_t ret
= s
->cpu_ctlr
[cpu
];
446 if (s
->security_extn
&& !attrs
.secure
) {
447 /* Construct the NS banked view of GICC_CTLR from the correct
448 * bits of the S banked view. We don't need to move the bypass
449 * control bits because we don't implement that (IMPDEF) part
450 * of the GIC architecture.
452 ret
= (ret
& (GICC_CTLR_EN_GRP1
| GICC_CTLR_EOIMODE_NS
)) >> 1;
457 static void gic_set_cpu_control(GICState
*s
, int cpu
, uint32_t value
,
462 if (s
->security_extn
&& !attrs
.secure
) {
463 /* The NS view can only write certain bits in the register;
464 * the rest are unchanged
466 mask
= GICC_CTLR_EN_GRP1
;
467 if (s
->revision
== 2) {
468 mask
|= GICC_CTLR_EOIMODE_NS
;
470 s
->cpu_ctlr
[cpu
] &= ~mask
;
471 s
->cpu_ctlr
[cpu
] |= (value
<< 1) & mask
;
473 if (s
->revision
== 2) {
474 mask
= s
->security_extn
? GICC_CTLR_V2_S_MASK
: GICC_CTLR_V2_MASK
;
476 mask
= s
->security_extn
? GICC_CTLR_V1_S_MASK
: GICC_CTLR_V1_MASK
;
478 s
->cpu_ctlr
[cpu
] = value
& mask
;
480 DPRINTF("CPU Interface %d: Group0 Interrupts %sabled, "
481 "Group1 Interrupts %sabled\n", cpu
,
482 (s
->cpu_ctlr
[cpu
] & GICC_CTLR_EN_GRP0
) ? "En" : "Dis",
483 (s
->cpu_ctlr
[cpu
] & GICC_CTLR_EN_GRP1
) ? "En" : "Dis");
486 static uint8_t gic_get_running_priority(GICState
*s
, int cpu
, MemTxAttrs attrs
)
488 if (s
->security_extn
&& !attrs
.secure
) {
489 if (s
->running_priority
[cpu
] & 0x80) {
490 /* Running priority in upper half of range: return the Non-secure
491 * view of the priority.
493 return s
->running_priority
[cpu
] << 1;
495 /* Running priority in lower half of range: RAZ */
499 return s
->running_priority
[cpu
];
503 /* Return true if we should split priority drop and interrupt deactivation,
504 * ie whether the relevant EOIMode bit is set.
506 static bool gic_eoi_split(GICState
*s
, int cpu
, MemTxAttrs attrs
)
508 if (s
->revision
!= 2) {
509 /* Before GICv2 prio-drop and deactivate are not separable */
512 if (s
->security_extn
&& !attrs
.secure
) {
513 return s
->cpu_ctlr
[cpu
] & GICC_CTLR_EOIMODE_NS
;
515 return s
->cpu_ctlr
[cpu
] & GICC_CTLR_EOIMODE
;
518 static void gic_deactivate_irq(GICState
*s
, int cpu
, int irq
, MemTxAttrs attrs
)
521 int group
= gic_has_groups(s
) && GIC_TEST_GROUP(irq
, cm
);
523 if (!gic_eoi_split(s
, cpu
, attrs
)) {
524 /* This is UNPREDICTABLE; we choose to ignore it */
525 qemu_log_mask(LOG_GUEST_ERROR
,
526 "gic_deactivate_irq: GICC_DIR write when EOIMode clear");
530 if (s
->security_extn
&& !attrs
.secure
&& !group
) {
531 DPRINTF("Non-secure DI for Group0 interrupt %d ignored\n", irq
);
535 GIC_CLEAR_ACTIVE(irq
, cm
);
538 void gic_complete_irq(GICState
*s
, int cpu
, int irq
, MemTxAttrs attrs
)
543 DPRINTF("EOI %d\n", irq
);
544 if (irq
>= s
->num_irq
) {
545 /* This handles two cases:
546 * 1. If software writes the ID of a spurious interrupt [ie 1023]
547 * to the GICC_EOIR, the GIC ignores that write.
548 * 2. If software writes the number of a non-existent interrupt
549 * this must be a subcase of "value written does not match the last
550 * valid interrupt value read from the Interrupt Acknowledge
551 * register" and so this is UNPREDICTABLE. We choose to ignore it.
555 if (s
->running_priority
[cpu
] == 0x100) {
556 return; /* No active IRQ. */
559 if (s
->revision
== REV_11MPCORE
|| s
->revision
== REV_NVIC
) {
560 /* Mark level triggered interrupts as pending if they are still
562 if (!GIC_TEST_EDGE_TRIGGER(irq
) && GIC_TEST_ENABLED(irq
, cm
)
563 && GIC_TEST_LEVEL(irq
, cm
) && (GIC_TARGET(irq
) & cm
) != 0) {
564 DPRINTF("Set %d pending mask %x\n", irq
, cm
);
565 GIC_SET_PENDING(irq
, cm
);
569 group
= gic_has_groups(s
) && GIC_TEST_GROUP(irq
, cm
);
571 if (s
->security_extn
&& !attrs
.secure
&& !group
) {
572 DPRINTF("Non-secure EOI for Group0 interrupt %d ignored\n", irq
);
576 /* Secure EOI with GICC_CTLR.AckCtl == 0 when the IRQ is a Group 1
577 * interrupt is UNPREDICTABLE. We choose to handle it as if AckCtl == 1,
578 * i.e. go ahead and complete the irq anyway.
581 gic_drop_prio(s
, cpu
, group
);
583 /* In GICv2 the guest can choose to split priority-drop and deactivate */
584 if (!gic_eoi_split(s
, cpu
, attrs
)) {
585 GIC_CLEAR_ACTIVE(irq
, cm
);
590 static uint32_t gic_dist_readb(void *opaque
, hwaddr offset
, MemTxAttrs attrs
)
592 GICState
*s
= (GICState
*)opaque
;
600 cpu
= gic_get_current_cpu(s
);
602 if (offset
< 0x100) {
603 if (offset
== 0) { /* GICD_CTLR */
604 if (s
->security_extn
&& !attrs
.secure
) {
605 /* The NS bank of this register is just an alias of the
606 * EnableGrp1 bit in the S bank version.
608 return extract32(s
->ctlr
, 1, 1);
614 /* Interrupt Controller Type Register */
615 return ((s
->num_irq
/ 32) - 1)
616 | ((s
->num_cpu
- 1) << 5)
617 | (s
->security_extn
<< 10);
620 if (offset
>= 0x80) {
621 /* Interrupt Group Registers: these RAZ/WI if this is an NS
622 * access to a GIC with the security extensions, or if the GIC
623 * doesn't have groups at all.
626 if (!(s
->security_extn
&& !attrs
.secure
) && gic_has_groups(s
)) {
627 /* Every byte offset holds 8 group status bits */
628 irq
= (offset
- 0x080) * 8 + GIC_BASE_IRQ
;
629 if (irq
>= s
->num_irq
) {
632 for (i
= 0; i
< 8; i
++) {
633 if (GIC_TEST_GROUP(irq
+ i
, cm
)) {
641 } else if (offset
< 0x200) {
642 /* Interrupt Set/Clear Enable. */
644 irq
= (offset
- 0x100) * 8;
646 irq
= (offset
- 0x180) * 8;
648 if (irq
>= s
->num_irq
)
651 for (i
= 0; i
< 8; i
++) {
652 if (GIC_TEST_ENABLED(irq
+ i
, cm
)) {
656 } else if (offset
< 0x300) {
657 /* Interrupt Set/Clear Pending. */
659 irq
= (offset
- 0x200) * 8;
661 irq
= (offset
- 0x280) * 8;
663 if (irq
>= s
->num_irq
)
666 mask
= (irq
< GIC_INTERNAL
) ? cm
: ALL_CPU_MASK
;
667 for (i
= 0; i
< 8; i
++) {
668 if (gic_test_pending(s
, irq
+ i
, mask
)) {
672 } else if (offset
< 0x400) {
673 /* Interrupt Active. */
674 irq
= (offset
- 0x300) * 8 + GIC_BASE_IRQ
;
675 if (irq
>= s
->num_irq
)
678 mask
= (irq
< GIC_INTERNAL
) ? cm
: ALL_CPU_MASK
;
679 for (i
= 0; i
< 8; i
++) {
680 if (GIC_TEST_ACTIVE(irq
+ i
, mask
)) {
684 } else if (offset
< 0x800) {
685 /* Interrupt Priority. */
686 irq
= (offset
- 0x400) + GIC_BASE_IRQ
;
687 if (irq
>= s
->num_irq
)
689 res
= gic_get_priority(s
, cpu
, irq
, attrs
);
690 } else if (offset
< 0xc00) {
691 /* Interrupt CPU Target. */
692 if (s
->num_cpu
== 1 && s
->revision
!= REV_11MPCORE
) {
693 /* For uniprocessor GICs these RAZ/WI */
696 irq
= (offset
- 0x800) + GIC_BASE_IRQ
;
697 if (irq
>= s
->num_irq
) {
700 if (irq
>= 29 && irq
<= 31) {
703 res
= GIC_TARGET(irq
);
706 } else if (offset
< 0xf00) {
707 /* Interrupt Configuration. */
708 irq
= (offset
- 0xc00) * 4 + GIC_BASE_IRQ
;
709 if (irq
>= s
->num_irq
)
712 for (i
= 0; i
< 4; i
++) {
713 if (GIC_TEST_MODEL(irq
+ i
))
714 res
|= (1 << (i
* 2));
715 if (GIC_TEST_EDGE_TRIGGER(irq
+ i
))
716 res
|= (2 << (i
* 2));
718 } else if (offset
< 0xf10) {
720 } else if (offset
< 0xf30) {
721 if (s
->revision
== REV_11MPCORE
|| s
->revision
== REV_NVIC
) {
725 if (offset
< 0xf20) {
726 /* GICD_CPENDSGIRn */
727 irq
= (offset
- 0xf10);
729 irq
= (offset
- 0xf20);
730 /* GICD_SPENDSGIRn */
733 res
= s
->sgi_pending
[irq
][cpu
];
734 } else if (offset
< 0xfd0) {
736 } else if (offset
< 0x1000) {
740 switch (s
->revision
) {
742 res
= gic_id_11mpcore
[(offset
- 0xfd0) >> 2];
745 res
= gic_id_gicv1
[(offset
- 0xfd0) >> 2];
748 res
= gic_id_gicv2
[(offset
- 0xfd0) >> 2];
751 /* Shouldn't be able to get here */
758 g_assert_not_reached();
762 qemu_log_mask(LOG_GUEST_ERROR
,
763 "gic_dist_readb: Bad offset %x\n", (int)offset
);
767 static MemTxResult
gic_dist_read(void *opaque
, hwaddr offset
, uint64_t *data
,
768 unsigned size
, MemTxAttrs attrs
)
772 *data
= gic_dist_readb(opaque
, offset
, attrs
);
775 *data
= gic_dist_readb(opaque
, offset
, attrs
);
776 *data
|= gic_dist_readb(opaque
, offset
+ 1, attrs
) << 8;
779 *data
= gic_dist_readb(opaque
, offset
, attrs
);
780 *data
|= gic_dist_readb(opaque
, offset
+ 1, attrs
) << 8;
781 *data
|= gic_dist_readb(opaque
, offset
+ 2, attrs
) << 16;
782 *data
|= gic_dist_readb(opaque
, offset
+ 3, attrs
) << 24;
789 static void gic_dist_writeb(void *opaque
, hwaddr offset
,
790 uint32_t value
, MemTxAttrs attrs
)
792 GICState
*s
= (GICState
*)opaque
;
797 cpu
= gic_get_current_cpu(s
);
798 if (offset
< 0x100) {
800 if (s
->security_extn
&& !attrs
.secure
) {
801 /* NS version is just an alias of the S version's bit 1 */
802 s
->ctlr
= deposit32(s
->ctlr
, 1, 1, value
);
803 } else if (gic_has_groups(s
)) {
804 s
->ctlr
= value
& (GICD_CTLR_EN_GRP0
| GICD_CTLR_EN_GRP1
);
806 s
->ctlr
= value
& GICD_CTLR_EN_GRP0
;
808 DPRINTF("Distributor: Group0 %sabled; Group 1 %sabled\n",
809 s
->ctlr
& GICD_CTLR_EN_GRP0
? "En" : "Dis",
810 s
->ctlr
& GICD_CTLR_EN_GRP1
? "En" : "Dis");
811 } else if (offset
< 4) {
813 } else if (offset
>= 0x80) {
814 /* Interrupt Group Registers: RAZ/WI for NS access to secure
815 * GIC, or for GICs without groups.
817 if (!(s
->security_extn
&& !attrs
.secure
) && gic_has_groups(s
)) {
818 /* Every byte offset holds 8 group status bits */
819 irq
= (offset
- 0x80) * 8 + GIC_BASE_IRQ
;
820 if (irq
>= s
->num_irq
) {
823 for (i
= 0; i
< 8; i
++) {
824 /* Group bits are banked for private interrupts */
825 int cm
= (irq
< GIC_INTERNAL
) ? (1 << cpu
) : ALL_CPU_MASK
;
826 if (value
& (1 << i
)) {
827 /* Group1 (Non-secure) */
828 GIC_SET_GROUP(irq
+ i
, cm
);
830 /* Group0 (Secure) */
831 GIC_CLEAR_GROUP(irq
+ i
, cm
);
838 } else if (offset
< 0x180) {
839 /* Interrupt Set Enable. */
840 irq
= (offset
- 0x100) * 8 + GIC_BASE_IRQ
;
841 if (irq
>= s
->num_irq
)
843 if (irq
< GIC_NR_SGIS
) {
847 for (i
= 0; i
< 8; i
++) {
848 if (value
& (1 << i
)) {
850 (irq
< GIC_INTERNAL
) ? (1 << cpu
) : GIC_TARGET(irq
+ i
);
851 int cm
= (irq
< GIC_INTERNAL
) ? (1 << cpu
) : ALL_CPU_MASK
;
853 if (!GIC_TEST_ENABLED(irq
+ i
, cm
)) {
854 DPRINTF("Enabled IRQ %d\n", irq
+ i
);
856 GIC_SET_ENABLED(irq
+ i
, cm
);
857 /* If a raised level triggered IRQ enabled then mark
859 if (GIC_TEST_LEVEL(irq
+ i
, mask
)
860 && !GIC_TEST_EDGE_TRIGGER(irq
+ i
)) {
861 DPRINTF("Set %d pending mask %x\n", irq
+ i
, mask
);
862 GIC_SET_PENDING(irq
+ i
, mask
);
866 } else if (offset
< 0x200) {
867 /* Interrupt Clear Enable. */
868 irq
= (offset
- 0x180) * 8 + GIC_BASE_IRQ
;
869 if (irq
>= s
->num_irq
)
871 if (irq
< GIC_NR_SGIS
) {
875 for (i
= 0; i
< 8; i
++) {
876 if (value
& (1 << i
)) {
877 int cm
= (irq
< GIC_INTERNAL
) ? (1 << cpu
) : ALL_CPU_MASK
;
879 if (GIC_TEST_ENABLED(irq
+ i
, cm
)) {
880 DPRINTF("Disabled IRQ %d\n", irq
+ i
);
882 GIC_CLEAR_ENABLED(irq
+ i
, cm
);
885 } else if (offset
< 0x280) {
886 /* Interrupt Set Pending. */
887 irq
= (offset
- 0x200) * 8 + GIC_BASE_IRQ
;
888 if (irq
>= s
->num_irq
)
890 if (irq
< GIC_NR_SGIS
) {
894 for (i
= 0; i
< 8; i
++) {
895 if (value
& (1 << i
)) {
896 GIC_SET_PENDING(irq
+ i
, GIC_TARGET(irq
+ i
));
899 } else if (offset
< 0x300) {
900 /* Interrupt Clear Pending. */
901 irq
= (offset
- 0x280) * 8 + GIC_BASE_IRQ
;
902 if (irq
>= s
->num_irq
)
904 if (irq
< GIC_NR_SGIS
) {
908 for (i
= 0; i
< 8; i
++) {
909 /* ??? This currently clears the pending bit for all CPUs, even
910 for per-CPU interrupts. It's unclear whether this is the
912 if (value
& (1 << i
)) {
913 GIC_CLEAR_PENDING(irq
+ i
, ALL_CPU_MASK
);
916 } else if (offset
< 0x400) {
917 /* Interrupt Active. */
919 } else if (offset
< 0x800) {
920 /* Interrupt Priority. */
921 irq
= (offset
- 0x400) + GIC_BASE_IRQ
;
922 if (irq
>= s
->num_irq
)
924 gic_set_priority(s
, cpu
, irq
, value
, attrs
);
925 } else if (offset
< 0xc00) {
926 /* Interrupt CPU Target. RAZ/WI on uniprocessor GICs, with the
927 * annoying exception of the 11MPCore's GIC.
929 if (s
->num_cpu
!= 1 || s
->revision
== REV_11MPCORE
) {
930 irq
= (offset
- 0x800) + GIC_BASE_IRQ
;
931 if (irq
>= s
->num_irq
) {
936 } else if (irq
< GIC_INTERNAL
) {
937 value
= ALL_CPU_MASK
;
939 s
->irq_target
[irq
] = value
& ALL_CPU_MASK
;
941 } else if (offset
< 0xf00) {
942 /* Interrupt Configuration. */
943 irq
= (offset
- 0xc00) * 4 + GIC_BASE_IRQ
;
944 if (irq
>= s
->num_irq
)
946 if (irq
< GIC_NR_SGIS
)
948 for (i
= 0; i
< 4; i
++) {
949 if (s
->revision
== REV_11MPCORE
|| s
->revision
== REV_NVIC
) {
950 if (value
& (1 << (i
* 2))) {
951 GIC_SET_MODEL(irq
+ i
);
953 GIC_CLEAR_MODEL(irq
+ i
);
956 if (value
& (2 << (i
* 2))) {
957 GIC_SET_EDGE_TRIGGER(irq
+ i
);
959 GIC_CLEAR_EDGE_TRIGGER(irq
+ i
);
962 } else if (offset
< 0xf10) {
963 /* 0xf00 is only handled for 32-bit writes. */
965 } else if (offset
< 0xf20) {
966 /* GICD_CPENDSGIRn */
967 if (s
->revision
== REV_11MPCORE
|| s
->revision
== REV_NVIC
) {
970 irq
= (offset
- 0xf10);
972 s
->sgi_pending
[irq
][cpu
] &= ~value
;
973 if (s
->sgi_pending
[irq
][cpu
] == 0) {
974 GIC_CLEAR_PENDING(irq
, 1 << cpu
);
976 } else if (offset
< 0xf30) {
977 /* GICD_SPENDSGIRn */
978 if (s
->revision
== REV_11MPCORE
|| s
->revision
== REV_NVIC
) {
981 irq
= (offset
- 0xf20);
983 GIC_SET_PENDING(irq
, 1 << cpu
);
984 s
->sgi_pending
[irq
][cpu
] |= value
;
991 qemu_log_mask(LOG_GUEST_ERROR
,
992 "gic_dist_writeb: Bad offset %x\n", (int)offset
);
995 static void gic_dist_writew(void *opaque
, hwaddr offset
,
996 uint32_t value
, MemTxAttrs attrs
)
998 gic_dist_writeb(opaque
, offset
, value
& 0xff, attrs
);
999 gic_dist_writeb(opaque
, offset
+ 1, value
>> 8, attrs
);
1002 static void gic_dist_writel(void *opaque
, hwaddr offset
,
1003 uint32_t value
, MemTxAttrs attrs
)
1005 GICState
*s
= (GICState
*)opaque
;
1006 if (offset
== 0xf00) {
1012 cpu
= gic_get_current_cpu(s
);
1013 irq
= value
& 0x3ff;
1014 switch ((value
>> 24) & 3) {
1016 mask
= (value
>> 16) & ALL_CPU_MASK
;
1019 mask
= ALL_CPU_MASK
^ (1 << cpu
);
1025 DPRINTF("Bad Soft Int target filter\n");
1026 mask
= ALL_CPU_MASK
;
1029 GIC_SET_PENDING(irq
, mask
);
1030 target_cpu
= ctz32(mask
);
1031 while (target_cpu
< GIC_NCPU
) {
1032 s
->sgi_pending
[irq
][target_cpu
] |= (1 << cpu
);
1033 mask
&= ~(1 << target_cpu
);
1034 target_cpu
= ctz32(mask
);
1039 gic_dist_writew(opaque
, offset
, value
& 0xffff, attrs
);
1040 gic_dist_writew(opaque
, offset
+ 2, value
>> 16, attrs
);
1043 static MemTxResult
gic_dist_write(void *opaque
, hwaddr offset
, uint64_t data
,
1044 unsigned size
, MemTxAttrs attrs
)
1048 gic_dist_writeb(opaque
, offset
, data
, attrs
);
1051 gic_dist_writew(opaque
, offset
, data
, attrs
);
1054 gic_dist_writel(opaque
, offset
, data
, attrs
);
1061 static inline uint32_t gic_apr_ns_view(GICState
*s
, int cpu
, int regno
)
1063 /* Return the Nonsecure view of GICC_APR<regno>. This is the
1064 * second half of GICC_NSAPR.
1066 switch (GIC_MIN_BPR
) {
1069 return s
->nsapr
[regno
+ 2][cpu
];
1074 return s
->nsapr
[regno
+ 1][cpu
];
1079 return extract32(s
->nsapr
[0][cpu
], 16, 16);
1084 return extract32(s
->nsapr
[0][cpu
], 8, 8);
1088 g_assert_not_reached();
1093 static inline void gic_apr_write_ns_view(GICState
*s
, int cpu
, int regno
,
1096 /* Write the Nonsecure view of GICC_APR<regno>. */
1097 switch (GIC_MIN_BPR
) {
1100 s
->nsapr
[regno
+ 2][cpu
] = value
;
1105 s
->nsapr
[regno
+ 1][cpu
] = value
;
1110 s
->nsapr
[0][cpu
] = deposit32(s
->nsapr
[0][cpu
], 16, 16, value
);
1115 s
->nsapr
[0][cpu
] = deposit32(s
->nsapr
[0][cpu
], 8, 8, value
);
1119 g_assert_not_reached();
1123 static MemTxResult
gic_cpu_read(GICState
*s
, int cpu
, int offset
,
1124 uint64_t *data
, MemTxAttrs attrs
)
1127 case 0x00: /* Control */
1128 *data
= gic_get_cpu_control(s
, cpu
, attrs
);
1130 case 0x04: /* Priority mask */
1131 *data
= gic_get_priority_mask(s
, cpu
, attrs
);
1133 case 0x08: /* Binary Point */
1134 if (s
->security_extn
&& !attrs
.secure
) {
1135 /* BPR is banked. Non-secure copy stored in ABPR. */
1136 *data
= s
->abpr
[cpu
];
1138 *data
= s
->bpr
[cpu
];
1141 case 0x0c: /* Acknowledge */
1142 *data
= gic_acknowledge_irq(s
, cpu
, attrs
);
1144 case 0x14: /* Running Priority */
1145 *data
= gic_get_running_priority(s
, cpu
, attrs
);
1147 case 0x18: /* Highest Pending Interrupt */
1148 *data
= gic_get_current_pending_irq(s
, cpu
, attrs
);
1150 case 0x1c: /* Aliased Binary Point */
1151 /* GIC v2, no security: ABPR
1152 * GIC v1, no security: not implemented (RAZ/WI)
1153 * With security extensions, secure access: ABPR (alias of NS BPR)
1154 * With security extensions, nonsecure access: RAZ/WI
1156 if (!gic_has_groups(s
) || (s
->security_extn
&& !attrs
.secure
)) {
1159 *data
= s
->abpr
[cpu
];
1162 case 0xd0: case 0xd4: case 0xd8: case 0xdc:
1164 int regno
= (offset
- 0xd0) / 4;
1166 if (regno
>= GIC_NR_APRS
|| s
->revision
!= 2) {
1168 } else if (s
->security_extn
&& !attrs
.secure
) {
1169 /* NS view of GICC_APR<n> is the top half of GIC_NSAPR<n> */
1170 *data
= gic_apr_ns_view(s
, regno
, cpu
);
1172 *data
= s
->apr
[regno
][cpu
];
1176 case 0xe0: case 0xe4: case 0xe8: case 0xec:
1178 int regno
= (offset
- 0xe0) / 4;
1180 if (regno
>= GIC_NR_APRS
|| s
->revision
!= 2 || !gic_has_groups(s
) ||
1181 (s
->security_extn
&& !attrs
.secure
)) {
1184 *data
= s
->nsapr
[regno
][cpu
];
1189 qemu_log_mask(LOG_GUEST_ERROR
,
1190 "gic_cpu_read: Bad offset %x\n", (int)offset
);
1196 static MemTxResult
gic_cpu_write(GICState
*s
, int cpu
, int offset
,
1197 uint32_t value
, MemTxAttrs attrs
)
1200 case 0x00: /* Control */
1201 gic_set_cpu_control(s
, cpu
, value
, attrs
);
1203 case 0x04: /* Priority mask */
1204 gic_set_priority_mask(s
, cpu
, value
, attrs
);
1206 case 0x08: /* Binary Point */
1207 if (s
->security_extn
&& !attrs
.secure
) {
1208 s
->abpr
[cpu
] = MAX(value
& 0x7, GIC_MIN_ABPR
);
1210 s
->bpr
[cpu
] = MAX(value
& 0x7, GIC_MIN_BPR
);
1213 case 0x10: /* End Of Interrupt */
1214 gic_complete_irq(s
, cpu
, value
& 0x3ff, attrs
);
1216 case 0x1c: /* Aliased Binary Point */
1217 if (!gic_has_groups(s
) || (s
->security_extn
&& !attrs
.secure
)) {
1218 /* unimplemented, or NS access: RAZ/WI */
1221 s
->abpr
[cpu
] = MAX(value
& 0x7, GIC_MIN_ABPR
);
1224 case 0xd0: case 0xd4: case 0xd8: case 0xdc:
1226 int regno
= (offset
- 0xd0) / 4;
1228 if (regno
>= GIC_NR_APRS
|| s
->revision
!= 2) {
1231 if (s
->security_extn
&& !attrs
.secure
) {
1232 /* NS view of GICC_APR<n> is the top half of GIC_NSAPR<n> */
1233 gic_apr_write_ns_view(s
, regno
, cpu
, value
);
1235 s
->apr
[regno
][cpu
] = value
;
1239 case 0xe0: case 0xe4: case 0xe8: case 0xec:
1241 int regno
= (offset
- 0xe0) / 4;
1243 if (regno
>= GIC_NR_APRS
|| s
->revision
!= 2) {
1246 if (!gic_has_groups(s
) || (s
->security_extn
&& !attrs
.secure
)) {
1249 s
->nsapr
[regno
][cpu
] = value
;
1254 gic_deactivate_irq(s
, cpu
, value
& 0x3ff, attrs
);
1257 qemu_log_mask(LOG_GUEST_ERROR
,
1258 "gic_cpu_write: Bad offset %x\n", (int)offset
);
1265 /* Wrappers to read/write the GIC CPU interface for the current CPU */
1266 static MemTxResult
gic_thiscpu_read(void *opaque
, hwaddr addr
, uint64_t *data
,
1267 unsigned size
, MemTxAttrs attrs
)
1269 GICState
*s
= (GICState
*)opaque
;
1270 return gic_cpu_read(s
, gic_get_current_cpu(s
), addr
, data
, attrs
);
1273 static MemTxResult
gic_thiscpu_write(void *opaque
, hwaddr addr
,
1274 uint64_t value
, unsigned size
,
1277 GICState
*s
= (GICState
*)opaque
;
1278 return gic_cpu_write(s
, gic_get_current_cpu(s
), addr
, value
, attrs
);
1281 /* Wrappers to read/write the GIC CPU interface for a specific CPU.
1282 * These just decode the opaque pointer into GICState* + cpu id.
1284 static MemTxResult
gic_do_cpu_read(void *opaque
, hwaddr addr
, uint64_t *data
,
1285 unsigned size
, MemTxAttrs attrs
)
1287 GICState
**backref
= (GICState
**)opaque
;
1288 GICState
*s
= *backref
;
1289 int id
= (backref
- s
->backref
);
1290 return gic_cpu_read(s
, id
, addr
, data
, attrs
);
1293 static MemTxResult
gic_do_cpu_write(void *opaque
, hwaddr addr
,
1294 uint64_t value
, unsigned size
,
1297 GICState
**backref
= (GICState
**)opaque
;
1298 GICState
*s
= *backref
;
1299 int id
= (backref
- s
->backref
);
1300 return gic_cpu_write(s
, id
, addr
, value
, attrs
);
1303 static const MemoryRegionOps gic_ops
[2] = {
1305 .read_with_attrs
= gic_dist_read
,
1306 .write_with_attrs
= gic_dist_write
,
1307 .endianness
= DEVICE_NATIVE_ENDIAN
,
1310 .read_with_attrs
= gic_thiscpu_read
,
1311 .write_with_attrs
= gic_thiscpu_write
,
1312 .endianness
= DEVICE_NATIVE_ENDIAN
,
1316 static const MemoryRegionOps gic_cpu_ops
= {
1317 .read_with_attrs
= gic_do_cpu_read
,
1318 .write_with_attrs
= gic_do_cpu_write
,
1319 .endianness
= DEVICE_NATIVE_ENDIAN
,
1322 /* This function is used by nvic model */
1323 void gic_init_irqs_and_distributor(GICState
*s
)
1325 gic_init_irqs_and_mmio(s
, gic_set_irq
, gic_ops
);
1328 static void arm_gic_realize(DeviceState
*dev
, Error
**errp
)
1330 /* Device instance realize function for the GIC sysbus device */
1332 GICState
*s
= ARM_GIC(dev
);
1333 SysBusDevice
*sbd
= SYS_BUS_DEVICE(dev
);
1334 ARMGICClass
*agc
= ARM_GIC_GET_CLASS(s
);
1335 Error
*local_err
= NULL
;
1337 agc
->parent_realize(dev
, &local_err
);
1339 error_propagate(errp
, local_err
);
1343 /* This creates distributor and main CPU interface (s->cpuiomem[0]) */
1344 gic_init_irqs_and_mmio(s
, gic_set_irq
, gic_ops
);
1346 /* Extra core-specific regions for the CPU interfaces. This is
1347 * necessary for "franken-GIC" implementations, for example on
1349 * NB that the memory region size of 0x100 applies for the 11MPCore
1350 * and also cores following the GIC v1 spec (ie A9).
1351 * GIC v2 defines a larger memory region (0x1000) so this will need
1352 * to be extended when we implement A15.
1354 for (i
= 0; i
< s
->num_cpu
; i
++) {
1356 memory_region_init_io(&s
->cpuiomem
[i
+1], OBJECT(s
), &gic_cpu_ops
,
1357 &s
->backref
[i
], "gic_cpu", 0x100);
1358 sysbus_init_mmio(sbd
, &s
->cpuiomem
[i
+1]);
1362 static void arm_gic_class_init(ObjectClass
*klass
, void *data
)
1364 DeviceClass
*dc
= DEVICE_CLASS(klass
);
1365 ARMGICClass
*agc
= ARM_GIC_CLASS(klass
);
1367 agc
->parent_realize
= dc
->realize
;
1368 dc
->realize
= arm_gic_realize
;
1371 static const TypeInfo arm_gic_info
= {
1372 .name
= TYPE_ARM_GIC
,
1373 .parent
= TYPE_ARM_GIC_COMMON
,
1374 .instance_size
= sizeof(GICState
),
1375 .class_init
= arm_gic_class_init
,
1376 .class_size
= sizeof(ARMGICClass
),
1379 static void arm_gic_register_types(void)
1381 type_register_static(&arm_gic_info
);
1384 type_init(arm_gic_register_types
)