macio-ide: add to storage category
[qemu/ar7.git] / hw / arm / virt.c
blob5d38c47444c85a0552a835fab3f58ad9cf628e1c
1 /*
2 * ARM mach-virt emulation
4 * Copyright (c) 2013 Linaro Limited
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2 or later, as published by the Free Software Foundation.
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
15 * You should have received a copy of the GNU General Public License along with
16 * this program. If not, see <http://www.gnu.org/licenses/>.
18 * Emulate a virtual board which works by passing Linux all the information
19 * it needs about what devices are present via the device tree.
20 * There are some restrictions about what we can do here:
21 * + we can only present devices whose Linux drivers will work based
22 * purely on the device tree with no platform data at all
23 * + we want to present a very stripped-down minimalist platform,
24 * both because this reduces the security attack surface from the guest
25 * and also because it reduces our exposure to being broken when
26 * the kernel updates its device tree bindings and requires further
27 * information in a device binding that we aren't providing.
28 * This is essentially the same approach kvmtool uses.
31 #include "hw/sysbus.h"
32 #include "hw/arm/arm.h"
33 #include "hw/arm/primecell.h"
34 #include "hw/arm/virt.h"
35 #include "hw/devices.h"
36 #include "net/net.h"
37 #include "sysemu/block-backend.h"
38 #include "sysemu/device_tree.h"
39 #include "sysemu/sysemu.h"
40 #include "sysemu/kvm.h"
41 #include "hw/boards.h"
42 #include "hw/loader.h"
43 #include "exec/address-spaces.h"
44 #include "qemu/bitops.h"
45 #include "qemu/error-report.h"
46 #include "hw/pci-host/gpex.h"
47 #include "hw/arm/virt-acpi-build.h"
48 #include "hw/arm/sysbus-fdt.h"
49 #include "hw/platform-bus.h"
50 #include "hw/arm/fdt.h"
51 #include "hw/intc/arm_gic_common.h"
52 #include "kvm_arm.h"
53 #include "hw/smbios/smbios.h"
54 #include "qapi/visitor.h"
56 /* Number of external interrupt lines to configure the GIC with */
57 #define NUM_IRQS 256
59 #define PLATFORM_BUS_NUM_IRQS 64
61 static ARMPlatformBusSystemParams platform_bus_params;
63 typedef struct VirtBoardInfo {
64 struct arm_boot_info bootinfo;
65 const char *cpu_model;
66 const MemMapEntry *memmap;
67 const int *irqmap;
68 int smp_cpus;
69 void *fdt;
70 int fdt_size;
71 uint32_t clock_phandle;
72 uint32_t gic_phandle;
73 uint32_t v2m_phandle;
74 } VirtBoardInfo;
76 typedef struct {
77 MachineClass parent;
78 VirtBoardInfo *daughterboard;
79 } VirtMachineClass;
81 typedef struct {
82 MachineState parent;
83 bool secure;
84 bool highmem;
85 int32_t gic_version;
86 } VirtMachineState;
88 #define TYPE_VIRT_MACHINE MACHINE_TYPE_NAME("virt")
89 #define VIRT_MACHINE(obj) \
90 OBJECT_CHECK(VirtMachineState, (obj), TYPE_VIRT_MACHINE)
91 #define VIRT_MACHINE_GET_CLASS(obj) \
92 OBJECT_GET_CLASS(VirtMachineClass, obj, TYPE_VIRT_MACHINE)
93 #define VIRT_MACHINE_CLASS(klass) \
94 OBJECT_CLASS_CHECK(VirtMachineClass, klass, TYPE_VIRT_MACHINE)
96 /* Addresses and sizes of our components.
97 * 0..128MB is space for a flash device so we can run bootrom code such as UEFI.
98 * 128MB..256MB is used for miscellaneous device I/O.
99 * 256MB..1GB is reserved for possible future PCI support (ie where the
100 * PCI memory window will go if we add a PCI host controller).
101 * 1GB and up is RAM (which may happily spill over into the
102 * high memory region beyond 4GB).
103 * This represents a compromise between how much RAM can be given to
104 * a 32 bit VM and leaving space for expansion and in particular for PCI.
105 * Note that devices should generally be placed at multiples of 0x10000,
106 * to accommodate guests using 64K pages.
108 static const MemMapEntry a15memmap[] = {
109 /* Space up to 0x8000000 is reserved for a boot ROM */
110 [VIRT_FLASH] = { 0, 0x08000000 },
111 [VIRT_CPUPERIPHS] = { 0x08000000, 0x00020000 },
112 /* GIC distributor and CPU interfaces sit inside the CPU peripheral space */
113 [VIRT_GIC_DIST] = { 0x08000000, 0x00010000 },
114 [VIRT_GIC_CPU] = { 0x08010000, 0x00010000 },
115 [VIRT_GIC_V2M] = { 0x08020000, 0x00001000 },
116 /* The space in between here is reserved for GICv3 CPU/vCPU/HYP */
117 [VIRT_GIC_ITS] = { 0x08080000, 0x00020000 },
118 /* This redistributor space allows up to 2*64kB*123 CPUs */
119 [VIRT_GIC_REDIST] = { 0x080A0000, 0x00F60000 },
120 [VIRT_UART] = { 0x09000000, 0x00001000 },
121 [VIRT_RTC] = { 0x09010000, 0x00001000 },
122 [VIRT_FW_CFG] = { 0x09020000, 0x00000018 },
123 [VIRT_MMIO] = { 0x0a000000, 0x00000200 },
124 /* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */
125 [VIRT_PLATFORM_BUS] = { 0x0c000000, 0x02000000 },
126 [VIRT_PCIE_MMIO] = { 0x10000000, 0x2eff0000 },
127 [VIRT_PCIE_PIO] = { 0x3eff0000, 0x00010000 },
128 [VIRT_PCIE_ECAM] = { 0x3f000000, 0x01000000 },
129 [VIRT_MEM] = { 0x40000000, 30ULL * 1024 * 1024 * 1024 },
130 /* Second PCIe window, 512GB wide at the 512GB boundary */
131 [VIRT_PCIE_MMIO_HIGH] = { 0x8000000000ULL, 0x8000000000ULL },
134 static const int a15irqmap[] = {
135 [VIRT_UART] = 1,
136 [VIRT_RTC] = 2,
137 [VIRT_PCIE] = 3, /* ... to 6 */
138 [VIRT_MMIO] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */
139 [VIRT_GIC_V2M] = 48, /* ...to 48 + NUM_GICV2M_SPIS - 1 */
140 [VIRT_PLATFORM_BUS] = 112, /* ...to 112 + PLATFORM_BUS_NUM_IRQS -1 */
143 static VirtBoardInfo machines[] = {
145 .cpu_model = "cortex-a15",
146 .memmap = a15memmap,
147 .irqmap = a15irqmap,
150 .cpu_model = "cortex-a53",
151 .memmap = a15memmap,
152 .irqmap = a15irqmap,
155 .cpu_model = "cortex-a57",
156 .memmap = a15memmap,
157 .irqmap = a15irqmap,
160 .cpu_model = "host",
161 .memmap = a15memmap,
162 .irqmap = a15irqmap,
166 static VirtBoardInfo *find_machine_info(const char *cpu)
168 int i;
170 for (i = 0; i < ARRAY_SIZE(machines); i++) {
171 if (strcmp(cpu, machines[i].cpu_model) == 0) {
172 return &machines[i];
175 return NULL;
178 static void create_fdt(VirtBoardInfo *vbi)
180 void *fdt = create_device_tree(&vbi->fdt_size);
182 if (!fdt) {
183 error_report("create_device_tree() failed");
184 exit(1);
187 vbi->fdt = fdt;
189 /* Header */
190 qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,dummy-virt");
191 qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2);
192 qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2);
195 * /chosen and /memory nodes must exist for load_dtb
196 * to fill in necessary properties later
198 qemu_fdt_add_subnode(fdt, "/chosen");
199 qemu_fdt_add_subnode(fdt, "/memory");
200 qemu_fdt_setprop_string(fdt, "/memory", "device_type", "memory");
202 /* Clock node, for the benefit of the UART. The kernel device tree
203 * binding documentation claims the PL011 node clock properties are
204 * optional but in practice if you omit them the kernel refuses to
205 * probe for the device.
207 vbi->clock_phandle = qemu_fdt_alloc_phandle(fdt);
208 qemu_fdt_add_subnode(fdt, "/apb-pclk");
209 qemu_fdt_setprop_string(fdt, "/apb-pclk", "compatible", "fixed-clock");
210 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "#clock-cells", 0x0);
211 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "clock-frequency", 24000000);
212 qemu_fdt_setprop_string(fdt, "/apb-pclk", "clock-output-names",
213 "clk24mhz");
214 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "phandle", vbi->clock_phandle);
218 static void fdt_add_psci_node(const VirtBoardInfo *vbi)
220 uint32_t cpu_suspend_fn;
221 uint32_t cpu_off_fn;
222 uint32_t cpu_on_fn;
223 uint32_t migrate_fn;
224 void *fdt = vbi->fdt;
225 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(0));
227 qemu_fdt_add_subnode(fdt, "/psci");
228 if (armcpu->psci_version == 2) {
229 const char comp[] = "arm,psci-0.2\0arm,psci";
230 qemu_fdt_setprop(fdt, "/psci", "compatible", comp, sizeof(comp));
232 cpu_off_fn = QEMU_PSCI_0_2_FN_CPU_OFF;
233 if (arm_feature(&armcpu->env, ARM_FEATURE_AARCH64)) {
234 cpu_suspend_fn = QEMU_PSCI_0_2_FN64_CPU_SUSPEND;
235 cpu_on_fn = QEMU_PSCI_0_2_FN64_CPU_ON;
236 migrate_fn = QEMU_PSCI_0_2_FN64_MIGRATE;
237 } else {
238 cpu_suspend_fn = QEMU_PSCI_0_2_FN_CPU_SUSPEND;
239 cpu_on_fn = QEMU_PSCI_0_2_FN_CPU_ON;
240 migrate_fn = QEMU_PSCI_0_2_FN_MIGRATE;
242 } else {
243 qemu_fdt_setprop_string(fdt, "/psci", "compatible", "arm,psci");
245 cpu_suspend_fn = QEMU_PSCI_0_1_FN_CPU_SUSPEND;
246 cpu_off_fn = QEMU_PSCI_0_1_FN_CPU_OFF;
247 cpu_on_fn = QEMU_PSCI_0_1_FN_CPU_ON;
248 migrate_fn = QEMU_PSCI_0_1_FN_MIGRATE;
251 /* We adopt the PSCI spec's nomenclature, and use 'conduit' to refer
252 * to the instruction that should be used to invoke PSCI functions.
253 * However, the device tree binding uses 'method' instead, so that is
254 * what we should use here.
256 qemu_fdt_setprop_string(fdt, "/psci", "method", "hvc");
258 qemu_fdt_setprop_cell(fdt, "/psci", "cpu_suspend", cpu_suspend_fn);
259 qemu_fdt_setprop_cell(fdt, "/psci", "cpu_off", cpu_off_fn);
260 qemu_fdt_setprop_cell(fdt, "/psci", "cpu_on", cpu_on_fn);
261 qemu_fdt_setprop_cell(fdt, "/psci", "migrate", migrate_fn);
264 static void fdt_add_timer_nodes(const VirtBoardInfo *vbi, int gictype)
266 /* Note that on A15 h/w these interrupts are level-triggered,
267 * but for the GIC implementation provided by both QEMU and KVM
268 * they are edge-triggered.
270 ARMCPU *armcpu;
271 uint32_t irqflags = GIC_FDT_IRQ_FLAGS_EDGE_LO_HI;
273 if (gictype == 2) {
274 irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
275 GIC_FDT_IRQ_PPI_CPU_WIDTH,
276 (1 << vbi->smp_cpus) - 1);
279 qemu_fdt_add_subnode(vbi->fdt, "/timer");
281 armcpu = ARM_CPU(qemu_get_cpu(0));
282 if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
283 const char compat[] = "arm,armv8-timer\0arm,armv7-timer";
284 qemu_fdt_setprop(vbi->fdt, "/timer", "compatible",
285 compat, sizeof(compat));
286 } else {
287 qemu_fdt_setprop_string(vbi->fdt, "/timer", "compatible",
288 "arm,armv7-timer");
290 qemu_fdt_setprop_cells(vbi->fdt, "/timer", "interrupts",
291 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_S_EL1_IRQ, irqflags,
292 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL1_IRQ, irqflags,
293 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_VIRT_IRQ, irqflags,
294 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL2_IRQ, irqflags);
297 static void fdt_add_cpu_nodes(const VirtBoardInfo *vbi)
299 int cpu;
300 int addr_cells = 1;
303 * From Documentation/devicetree/bindings/arm/cpus.txt
304 * On ARM v8 64-bit systems value should be set to 2,
305 * that corresponds to the MPIDR_EL1 register size.
306 * If MPIDR_EL1[63:32] value is equal to 0 on all CPUs
307 * in the system, #address-cells can be set to 1, since
308 * MPIDR_EL1[63:32] bits are not used for CPUs
309 * identification.
311 * Here we actually don't know whether our system is 32- or 64-bit one.
312 * The simplest way to go is to examine affinity IDs of all our CPUs. If
313 * at least one of them has Aff3 populated, we set #address-cells to 2.
315 for (cpu = 0; cpu < vbi->smp_cpus; cpu++) {
316 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
318 if (armcpu->mp_affinity & ARM_AFF3_MASK) {
319 addr_cells = 2;
320 break;
324 qemu_fdt_add_subnode(vbi->fdt, "/cpus");
325 qemu_fdt_setprop_cell(vbi->fdt, "/cpus", "#address-cells", addr_cells);
326 qemu_fdt_setprop_cell(vbi->fdt, "/cpus", "#size-cells", 0x0);
328 for (cpu = vbi->smp_cpus - 1; cpu >= 0; cpu--) {
329 char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu);
330 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
332 qemu_fdt_add_subnode(vbi->fdt, nodename);
333 qemu_fdt_setprop_string(vbi->fdt, nodename, "device_type", "cpu");
334 qemu_fdt_setprop_string(vbi->fdt, nodename, "compatible",
335 armcpu->dtb_compatible);
337 if (vbi->smp_cpus > 1) {
338 qemu_fdt_setprop_string(vbi->fdt, nodename,
339 "enable-method", "psci");
342 if (addr_cells == 2) {
343 qemu_fdt_setprop_u64(vbi->fdt, nodename, "reg",
344 armcpu->mp_affinity);
345 } else {
346 qemu_fdt_setprop_cell(vbi->fdt, nodename, "reg",
347 armcpu->mp_affinity);
350 g_free(nodename);
354 static void fdt_add_v2m_gic_node(VirtBoardInfo *vbi)
356 vbi->v2m_phandle = qemu_fdt_alloc_phandle(vbi->fdt);
357 qemu_fdt_add_subnode(vbi->fdt, "/intc/v2m");
358 qemu_fdt_setprop_string(vbi->fdt, "/intc/v2m", "compatible",
359 "arm,gic-v2m-frame");
360 qemu_fdt_setprop(vbi->fdt, "/intc/v2m", "msi-controller", NULL, 0);
361 qemu_fdt_setprop_sized_cells(vbi->fdt, "/intc/v2m", "reg",
362 2, vbi->memmap[VIRT_GIC_V2M].base,
363 2, vbi->memmap[VIRT_GIC_V2M].size);
364 qemu_fdt_setprop_cell(vbi->fdt, "/intc/v2m", "phandle", vbi->v2m_phandle);
367 static void fdt_add_gic_node(VirtBoardInfo *vbi, int type)
369 vbi->gic_phandle = qemu_fdt_alloc_phandle(vbi->fdt);
370 qemu_fdt_setprop_cell(vbi->fdt, "/", "interrupt-parent", vbi->gic_phandle);
372 qemu_fdt_add_subnode(vbi->fdt, "/intc");
373 qemu_fdt_setprop_cell(vbi->fdt, "/intc", "#interrupt-cells", 3);
374 qemu_fdt_setprop(vbi->fdt, "/intc", "interrupt-controller", NULL, 0);
375 qemu_fdt_setprop_cell(vbi->fdt, "/intc", "#address-cells", 0x2);
376 qemu_fdt_setprop_cell(vbi->fdt, "/intc", "#size-cells", 0x2);
377 qemu_fdt_setprop(vbi->fdt, "/intc", "ranges", NULL, 0);
378 if (type == 3) {
379 qemu_fdt_setprop_string(vbi->fdt, "/intc", "compatible",
380 "arm,gic-v3");
381 qemu_fdt_setprop_sized_cells(vbi->fdt, "/intc", "reg",
382 2, vbi->memmap[VIRT_GIC_DIST].base,
383 2, vbi->memmap[VIRT_GIC_DIST].size,
384 2, vbi->memmap[VIRT_GIC_REDIST].base,
385 2, vbi->memmap[VIRT_GIC_REDIST].size);
386 } else {
387 /* 'cortex-a15-gic' means 'GIC v2' */
388 qemu_fdt_setprop_string(vbi->fdt, "/intc", "compatible",
389 "arm,cortex-a15-gic");
390 qemu_fdt_setprop_sized_cells(vbi->fdt, "/intc", "reg",
391 2, vbi->memmap[VIRT_GIC_DIST].base,
392 2, vbi->memmap[VIRT_GIC_DIST].size,
393 2, vbi->memmap[VIRT_GIC_CPU].base,
394 2, vbi->memmap[VIRT_GIC_CPU].size);
397 qemu_fdt_setprop_cell(vbi->fdt, "/intc", "phandle", vbi->gic_phandle);
400 static void create_v2m(VirtBoardInfo *vbi, qemu_irq *pic)
402 int i;
403 int irq = vbi->irqmap[VIRT_GIC_V2M];
404 DeviceState *dev;
406 dev = qdev_create(NULL, "arm-gicv2m");
407 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vbi->memmap[VIRT_GIC_V2M].base);
408 qdev_prop_set_uint32(dev, "base-spi", irq);
409 qdev_prop_set_uint32(dev, "num-spi", NUM_GICV2M_SPIS);
410 qdev_init_nofail(dev);
412 for (i = 0; i < NUM_GICV2M_SPIS; i++) {
413 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]);
416 fdt_add_v2m_gic_node(vbi);
419 static void create_gic(VirtBoardInfo *vbi, qemu_irq *pic, int type, bool secure)
421 /* We create a standalone GIC */
422 DeviceState *gicdev;
423 SysBusDevice *gicbusdev;
424 const char *gictype;
425 int i;
427 gictype = (type == 3) ? gicv3_class_name() : gic_class_name();
429 gicdev = qdev_create(NULL, gictype);
430 qdev_prop_set_uint32(gicdev, "revision", type);
431 qdev_prop_set_uint32(gicdev, "num-cpu", smp_cpus);
432 /* Note that the num-irq property counts both internal and external
433 * interrupts; there are always 32 of the former (mandated by GIC spec).
435 qdev_prop_set_uint32(gicdev, "num-irq", NUM_IRQS + 32);
436 if (!kvm_irqchip_in_kernel()) {
437 qdev_prop_set_bit(gicdev, "has-security-extensions", secure);
439 qdev_init_nofail(gicdev);
440 gicbusdev = SYS_BUS_DEVICE(gicdev);
441 sysbus_mmio_map(gicbusdev, 0, vbi->memmap[VIRT_GIC_DIST].base);
442 if (type == 3) {
443 sysbus_mmio_map(gicbusdev, 1, vbi->memmap[VIRT_GIC_REDIST].base);
444 } else {
445 sysbus_mmio_map(gicbusdev, 1, vbi->memmap[VIRT_GIC_CPU].base);
448 /* Wire the outputs from each CPU's generic timer to the
449 * appropriate GIC PPI inputs, and the GIC's IRQ output to
450 * the CPU's IRQ input.
452 for (i = 0; i < smp_cpus; i++) {
453 DeviceState *cpudev = DEVICE(qemu_get_cpu(i));
454 int ppibase = NUM_IRQS + i * GIC_INTERNAL + GIC_NR_SGIS;
455 int irq;
456 /* Mapping from the output timer irq lines from the CPU to the
457 * GIC PPI inputs we use for the virt board.
459 const int timer_irq[] = {
460 [GTIMER_PHYS] = ARCH_TIMER_NS_EL1_IRQ,
461 [GTIMER_VIRT] = ARCH_TIMER_VIRT_IRQ,
462 [GTIMER_HYP] = ARCH_TIMER_NS_EL2_IRQ,
463 [GTIMER_SEC] = ARCH_TIMER_S_EL1_IRQ,
466 for (irq = 0; irq < ARRAY_SIZE(timer_irq); irq++) {
467 qdev_connect_gpio_out(cpudev, irq,
468 qdev_get_gpio_in(gicdev,
469 ppibase + timer_irq[irq]));
472 sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ));
473 sysbus_connect_irq(gicbusdev, i + smp_cpus,
474 qdev_get_gpio_in(cpudev, ARM_CPU_FIQ));
477 for (i = 0; i < NUM_IRQS; i++) {
478 pic[i] = qdev_get_gpio_in(gicdev, i);
481 fdt_add_gic_node(vbi, type);
483 if (type == 2) {
484 create_v2m(vbi, pic);
488 static void create_uart(const VirtBoardInfo *vbi, qemu_irq *pic)
490 char *nodename;
491 hwaddr base = vbi->memmap[VIRT_UART].base;
492 hwaddr size = vbi->memmap[VIRT_UART].size;
493 int irq = vbi->irqmap[VIRT_UART];
494 const char compat[] = "arm,pl011\0arm,primecell";
495 const char clocknames[] = "uartclk\0apb_pclk";
497 sysbus_create_simple("pl011", base, pic[irq]);
499 nodename = g_strdup_printf("/pl011@%" PRIx64, base);
500 qemu_fdt_add_subnode(vbi->fdt, nodename);
501 /* Note that we can't use setprop_string because of the embedded NUL */
502 qemu_fdt_setprop(vbi->fdt, nodename, "compatible",
503 compat, sizeof(compat));
504 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
505 2, base, 2, size);
506 qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts",
507 GIC_FDT_IRQ_TYPE_SPI, irq,
508 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
509 qemu_fdt_setprop_cells(vbi->fdt, nodename, "clocks",
510 vbi->clock_phandle, vbi->clock_phandle);
511 qemu_fdt_setprop(vbi->fdt, nodename, "clock-names",
512 clocknames, sizeof(clocknames));
514 qemu_fdt_setprop_string(vbi->fdt, "/chosen", "stdout-path", nodename);
515 g_free(nodename);
518 static void create_rtc(const VirtBoardInfo *vbi, qemu_irq *pic)
520 char *nodename;
521 hwaddr base = vbi->memmap[VIRT_RTC].base;
522 hwaddr size = vbi->memmap[VIRT_RTC].size;
523 int irq = vbi->irqmap[VIRT_RTC];
524 const char compat[] = "arm,pl031\0arm,primecell";
526 sysbus_create_simple("pl031", base, pic[irq]);
528 nodename = g_strdup_printf("/pl031@%" PRIx64, base);
529 qemu_fdt_add_subnode(vbi->fdt, nodename);
530 qemu_fdt_setprop(vbi->fdt, nodename, "compatible", compat, sizeof(compat));
531 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
532 2, base, 2, size);
533 qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts",
534 GIC_FDT_IRQ_TYPE_SPI, irq,
535 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
536 qemu_fdt_setprop_cell(vbi->fdt, nodename, "clocks", vbi->clock_phandle);
537 qemu_fdt_setprop_string(vbi->fdt, nodename, "clock-names", "apb_pclk");
538 g_free(nodename);
541 static void create_virtio_devices(const VirtBoardInfo *vbi, qemu_irq *pic)
543 int i;
544 hwaddr size = vbi->memmap[VIRT_MMIO].size;
546 /* We create the transports in forwards order. Since qbus_realize()
547 * prepends (not appends) new child buses, the incrementing loop below will
548 * create a list of virtio-mmio buses with decreasing base addresses.
550 * When a -device option is processed from the command line,
551 * qbus_find_recursive() picks the next free virtio-mmio bus in forwards
552 * order. The upshot is that -device options in increasing command line
553 * order are mapped to virtio-mmio buses with decreasing base addresses.
555 * When this code was originally written, that arrangement ensured that the
556 * guest Linux kernel would give the lowest "name" (/dev/vda, eth0, etc) to
557 * the first -device on the command line. (The end-to-end order is a
558 * function of this loop, qbus_realize(), qbus_find_recursive(), and the
559 * guest kernel's name-to-address assignment strategy.)
561 * Meanwhile, the kernel's traversal seems to have been reversed; see eg.
562 * the message, if not necessarily the code, of commit 70161ff336.
563 * Therefore the loop now establishes the inverse of the original intent.
565 * Unfortunately, we can't counteract the kernel change by reversing the
566 * loop; it would break existing command lines.
568 * In any case, the kernel makes no guarantee about the stability of
569 * enumeration order of virtio devices (as demonstrated by it changing
570 * between kernel versions). For reliable and stable identification
571 * of disks users must use UUIDs or similar mechanisms.
573 for (i = 0; i < NUM_VIRTIO_TRANSPORTS; i++) {
574 int irq = vbi->irqmap[VIRT_MMIO] + i;
575 hwaddr base = vbi->memmap[VIRT_MMIO].base + i * size;
577 sysbus_create_simple("virtio-mmio", base, pic[irq]);
580 /* We add dtb nodes in reverse order so that they appear in the finished
581 * device tree lowest address first.
583 * Note that this mapping is independent of the loop above. The previous
584 * loop influences virtio device to virtio transport assignment, whereas
585 * this loop controls how virtio transports are laid out in the dtb.
587 for (i = NUM_VIRTIO_TRANSPORTS - 1; i >= 0; i--) {
588 char *nodename;
589 int irq = vbi->irqmap[VIRT_MMIO] + i;
590 hwaddr base = vbi->memmap[VIRT_MMIO].base + i * size;
592 nodename = g_strdup_printf("/virtio_mmio@%" PRIx64, base);
593 qemu_fdt_add_subnode(vbi->fdt, nodename);
594 qemu_fdt_setprop_string(vbi->fdt, nodename,
595 "compatible", "virtio,mmio");
596 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
597 2, base, 2, size);
598 qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts",
599 GIC_FDT_IRQ_TYPE_SPI, irq,
600 GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
601 g_free(nodename);
605 static void create_one_flash(const char *name, hwaddr flashbase,
606 hwaddr flashsize)
608 /* Create and map a single flash device. We use the same
609 * parameters as the flash devices on the Versatile Express board.
611 DriveInfo *dinfo = drive_get_next(IF_PFLASH);
612 DeviceState *dev = qdev_create(NULL, "cfi.pflash01");
613 const uint64_t sectorlength = 256 * 1024;
615 if (dinfo) {
616 qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
617 &error_abort);
620 qdev_prop_set_uint32(dev, "num-blocks", flashsize / sectorlength);
621 qdev_prop_set_uint64(dev, "sector-length", sectorlength);
622 qdev_prop_set_uint8(dev, "width", 4);
623 qdev_prop_set_uint8(dev, "device-width", 2);
624 qdev_prop_set_bit(dev, "big-endian", false);
625 qdev_prop_set_uint16(dev, "id0", 0x89);
626 qdev_prop_set_uint16(dev, "id1", 0x18);
627 qdev_prop_set_uint16(dev, "id2", 0x00);
628 qdev_prop_set_uint16(dev, "id3", 0x00);
629 qdev_prop_set_string(dev, "name", name);
630 qdev_init_nofail(dev);
632 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, flashbase);
635 static void create_flash(const VirtBoardInfo *vbi)
637 /* Create two flash devices to fill the VIRT_FLASH space in the memmap.
638 * Any file passed via -bios goes in the first of these.
640 hwaddr flashsize = vbi->memmap[VIRT_FLASH].size / 2;
641 hwaddr flashbase = vbi->memmap[VIRT_FLASH].base;
642 char *nodename;
644 if (bios_name) {
645 char *fn;
646 int image_size;
648 if (drive_get(IF_PFLASH, 0, 0)) {
649 error_report("The contents of the first flash device may be "
650 "specified with -bios or with -drive if=pflash... "
651 "but you cannot use both options at once");
652 exit(1);
654 fn = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
655 if (!fn) {
656 error_report("Could not find ROM image '%s'", bios_name);
657 exit(1);
659 image_size = load_image_targphys(fn, flashbase, flashsize);
660 g_free(fn);
661 if (image_size < 0) {
662 error_report("Could not load ROM image '%s'", bios_name);
663 exit(1);
667 create_one_flash("virt.flash0", flashbase, flashsize);
668 create_one_flash("virt.flash1", flashbase + flashsize, flashsize);
670 nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
671 qemu_fdt_add_subnode(vbi->fdt, nodename);
672 qemu_fdt_setprop_string(vbi->fdt, nodename, "compatible", "cfi-flash");
673 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
674 2, flashbase, 2, flashsize,
675 2, flashbase + flashsize, 2, flashsize);
676 qemu_fdt_setprop_cell(vbi->fdt, nodename, "bank-width", 4);
677 g_free(nodename);
680 static void create_fw_cfg(const VirtBoardInfo *vbi, AddressSpace *as)
682 hwaddr base = vbi->memmap[VIRT_FW_CFG].base;
683 hwaddr size = vbi->memmap[VIRT_FW_CFG].size;
684 char *nodename;
686 fw_cfg_init_mem_wide(base + 8, base, 8, base + 16, as);
688 nodename = g_strdup_printf("/fw-cfg@%" PRIx64, base);
689 qemu_fdt_add_subnode(vbi->fdt, nodename);
690 qemu_fdt_setprop_string(vbi->fdt, nodename,
691 "compatible", "qemu,fw-cfg-mmio");
692 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
693 2, base, 2, size);
694 g_free(nodename);
697 static void create_pcie_irq_map(const VirtBoardInfo *vbi, uint32_t gic_phandle,
698 int first_irq, const char *nodename)
700 int devfn, pin;
701 uint32_t full_irq_map[4 * 4 * 10] = { 0 };
702 uint32_t *irq_map = full_irq_map;
704 for (devfn = 0; devfn <= 0x18; devfn += 0x8) {
705 for (pin = 0; pin < 4; pin++) {
706 int irq_type = GIC_FDT_IRQ_TYPE_SPI;
707 int irq_nr = first_irq + ((pin + PCI_SLOT(devfn)) % PCI_NUM_PINS);
708 int irq_level = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
709 int i;
711 uint32_t map[] = {
712 devfn << 8, 0, 0, /* devfn */
713 pin + 1, /* PCI pin */
714 gic_phandle, 0, 0, irq_type, irq_nr, irq_level }; /* GIC irq */
716 /* Convert map to big endian */
717 for (i = 0; i < 10; i++) {
718 irq_map[i] = cpu_to_be32(map[i]);
720 irq_map += 10;
724 qemu_fdt_setprop(vbi->fdt, nodename, "interrupt-map",
725 full_irq_map, sizeof(full_irq_map));
727 qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupt-map-mask",
728 0x1800, 0, 0, /* devfn (PCI_SLOT(3)) */
729 0x7 /* PCI irq */);
732 static void create_pcie(const VirtBoardInfo *vbi, qemu_irq *pic,
733 bool use_highmem)
735 hwaddr base_mmio = vbi->memmap[VIRT_PCIE_MMIO].base;
736 hwaddr size_mmio = vbi->memmap[VIRT_PCIE_MMIO].size;
737 hwaddr base_mmio_high = vbi->memmap[VIRT_PCIE_MMIO_HIGH].base;
738 hwaddr size_mmio_high = vbi->memmap[VIRT_PCIE_MMIO_HIGH].size;
739 hwaddr base_pio = vbi->memmap[VIRT_PCIE_PIO].base;
740 hwaddr size_pio = vbi->memmap[VIRT_PCIE_PIO].size;
741 hwaddr base_ecam = vbi->memmap[VIRT_PCIE_ECAM].base;
742 hwaddr size_ecam = vbi->memmap[VIRT_PCIE_ECAM].size;
743 hwaddr base = base_mmio;
744 int nr_pcie_buses = size_ecam / PCIE_MMCFG_SIZE_MIN;
745 int irq = vbi->irqmap[VIRT_PCIE];
746 MemoryRegion *mmio_alias;
747 MemoryRegion *mmio_reg;
748 MemoryRegion *ecam_alias;
749 MemoryRegion *ecam_reg;
750 DeviceState *dev;
751 char *nodename;
752 int i;
754 dev = qdev_create(NULL, TYPE_GPEX_HOST);
755 qdev_init_nofail(dev);
757 /* Map only the first size_ecam bytes of ECAM space */
758 ecam_alias = g_new0(MemoryRegion, 1);
759 ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0);
760 memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam",
761 ecam_reg, 0, size_ecam);
762 memory_region_add_subregion(get_system_memory(), base_ecam, ecam_alias);
764 /* Map the MMIO window into system address space so as to expose
765 * the section of PCI MMIO space which starts at the same base address
766 * (ie 1:1 mapping for that part of PCI MMIO space visible through
767 * the window).
769 mmio_alias = g_new0(MemoryRegion, 1);
770 mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1);
771 memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio",
772 mmio_reg, base_mmio, size_mmio);
773 memory_region_add_subregion(get_system_memory(), base_mmio, mmio_alias);
775 if (use_highmem) {
776 /* Map high MMIO space */
777 MemoryRegion *high_mmio_alias = g_new0(MemoryRegion, 1);
779 memory_region_init_alias(high_mmio_alias, OBJECT(dev), "pcie-mmio-high",
780 mmio_reg, base_mmio_high, size_mmio_high);
781 memory_region_add_subregion(get_system_memory(), base_mmio_high,
782 high_mmio_alias);
785 /* Map IO port space */
786 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, base_pio);
788 for (i = 0; i < GPEX_NUM_IRQS; i++) {
789 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]);
792 nodename = g_strdup_printf("/pcie@%" PRIx64, base);
793 qemu_fdt_add_subnode(vbi->fdt, nodename);
794 qemu_fdt_setprop_string(vbi->fdt, nodename,
795 "compatible", "pci-host-ecam-generic");
796 qemu_fdt_setprop_string(vbi->fdt, nodename, "device_type", "pci");
797 qemu_fdt_setprop_cell(vbi->fdt, nodename, "#address-cells", 3);
798 qemu_fdt_setprop_cell(vbi->fdt, nodename, "#size-cells", 2);
799 qemu_fdt_setprop_cells(vbi->fdt, nodename, "bus-range", 0,
800 nr_pcie_buses - 1);
802 if (vbi->v2m_phandle) {
803 qemu_fdt_setprop_cells(vbi->fdt, nodename, "msi-parent",
804 vbi->v2m_phandle);
807 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
808 2, base_ecam, 2, size_ecam);
810 if (use_highmem) {
811 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "ranges",
812 1, FDT_PCI_RANGE_IOPORT, 2, 0,
813 2, base_pio, 2, size_pio,
814 1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
815 2, base_mmio, 2, size_mmio,
816 1, FDT_PCI_RANGE_MMIO_64BIT,
817 2, base_mmio_high,
818 2, base_mmio_high, 2, size_mmio_high);
819 } else {
820 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "ranges",
821 1, FDT_PCI_RANGE_IOPORT, 2, 0,
822 2, base_pio, 2, size_pio,
823 1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
824 2, base_mmio, 2, size_mmio);
827 qemu_fdt_setprop_cell(vbi->fdt, nodename, "#interrupt-cells", 1);
828 create_pcie_irq_map(vbi, vbi->gic_phandle, irq, nodename);
830 g_free(nodename);
833 static void create_platform_bus(VirtBoardInfo *vbi, qemu_irq *pic)
835 DeviceState *dev;
836 SysBusDevice *s;
837 int i;
838 ARMPlatformBusFDTParams *fdt_params = g_new(ARMPlatformBusFDTParams, 1);
839 MemoryRegion *sysmem = get_system_memory();
841 platform_bus_params.platform_bus_base = vbi->memmap[VIRT_PLATFORM_BUS].base;
842 platform_bus_params.platform_bus_size = vbi->memmap[VIRT_PLATFORM_BUS].size;
843 platform_bus_params.platform_bus_first_irq = vbi->irqmap[VIRT_PLATFORM_BUS];
844 platform_bus_params.platform_bus_num_irqs = PLATFORM_BUS_NUM_IRQS;
846 fdt_params->system_params = &platform_bus_params;
847 fdt_params->binfo = &vbi->bootinfo;
848 fdt_params->intc = "/intc";
850 * register a machine init done notifier that creates the device tree
851 * nodes of the platform bus and its children dynamic sysbus devices
853 arm_register_platform_bus_fdt_creator(fdt_params);
855 dev = qdev_create(NULL, TYPE_PLATFORM_BUS_DEVICE);
856 dev->id = TYPE_PLATFORM_BUS_DEVICE;
857 qdev_prop_set_uint32(dev, "num_irqs",
858 platform_bus_params.platform_bus_num_irqs);
859 qdev_prop_set_uint32(dev, "mmio_size",
860 platform_bus_params.platform_bus_size);
861 qdev_init_nofail(dev);
862 s = SYS_BUS_DEVICE(dev);
864 for (i = 0; i < platform_bus_params.platform_bus_num_irqs; i++) {
865 int irqn = platform_bus_params.platform_bus_first_irq + i;
866 sysbus_connect_irq(s, i, pic[irqn]);
869 memory_region_add_subregion(sysmem,
870 platform_bus_params.platform_bus_base,
871 sysbus_mmio_get_region(s, 0));
874 static void *machvirt_dtb(const struct arm_boot_info *binfo, int *fdt_size)
876 const VirtBoardInfo *board = (const VirtBoardInfo *)binfo;
878 *fdt_size = board->fdt_size;
879 return board->fdt;
882 static void virt_build_smbios(VirtGuestInfo *guest_info)
884 FWCfgState *fw_cfg = guest_info->fw_cfg;
885 uint8_t *smbios_tables, *smbios_anchor;
886 size_t smbios_tables_len, smbios_anchor_len;
887 const char *product = "QEMU Virtual Machine";
889 if (!fw_cfg) {
890 return;
893 if (kvm_enabled()) {
894 product = "KVM Virtual Machine";
897 smbios_set_defaults("QEMU", product,
898 "1.0", false, true, SMBIOS_ENTRY_POINT_30);
900 smbios_get_tables(NULL, 0, &smbios_tables, &smbios_tables_len,
901 &smbios_anchor, &smbios_anchor_len);
903 if (smbios_anchor) {
904 fw_cfg_add_file(fw_cfg, "etc/smbios/smbios-tables",
905 smbios_tables, smbios_tables_len);
906 fw_cfg_add_file(fw_cfg, "etc/smbios/smbios-anchor",
907 smbios_anchor, smbios_anchor_len);
911 static
912 void virt_guest_info_machine_done(Notifier *notifier, void *data)
914 VirtGuestInfoState *guest_info_state = container_of(notifier,
915 VirtGuestInfoState, machine_done);
916 virt_acpi_setup(&guest_info_state->info);
917 virt_build_smbios(&guest_info_state->info);
920 static void machvirt_init(MachineState *machine)
922 VirtMachineState *vms = VIRT_MACHINE(machine);
923 qemu_irq pic[NUM_IRQS];
924 MemoryRegion *sysmem = get_system_memory();
925 int gic_version = vms->gic_version;
926 int n;
927 MemoryRegion *ram = g_new(MemoryRegion, 1);
928 const char *cpu_model = machine->cpu_model;
929 VirtBoardInfo *vbi;
930 VirtGuestInfoState *guest_info_state = g_malloc0(sizeof *guest_info_state);
931 VirtGuestInfo *guest_info = &guest_info_state->info;
932 char **cpustr;
934 if (!cpu_model) {
935 cpu_model = "cortex-a15";
938 /* We can probe only here because during property set
939 * KVM is not available yet
941 if (!gic_version) {
942 gic_version = kvm_arm_vgic_probe();
943 if (!gic_version) {
944 error_report("Unable to determine GIC version supported by host\n"
945 "Probably KVM acceleration is not supported\n");
946 exit(1);
950 /* Separate the actual CPU model name from any appended features */
951 cpustr = g_strsplit(cpu_model, ",", 2);
953 vbi = find_machine_info(cpustr[0]);
955 if (!vbi) {
956 error_report("mach-virt: CPU %s not supported", cpustr[0]);
957 exit(1);
960 vbi->smp_cpus = smp_cpus;
962 if (machine->ram_size > vbi->memmap[VIRT_MEM].size) {
963 error_report("mach-virt: cannot model more than 30GB RAM");
964 exit(1);
967 create_fdt(vbi);
969 for (n = 0; n < smp_cpus; n++) {
970 ObjectClass *oc = cpu_class_by_name(TYPE_ARM_CPU, cpustr[0]);
971 CPUClass *cc = CPU_CLASS(oc);
972 Object *cpuobj;
973 Error *err = NULL;
974 char *cpuopts = g_strdup(cpustr[1]);
976 if (!oc) {
977 fprintf(stderr, "Unable to find CPU definition\n");
978 exit(1);
980 cpuobj = object_new(object_class_get_name(oc));
982 /* Handle any CPU options specified by the user */
983 cc->parse_features(CPU(cpuobj), cpuopts, &err);
984 g_free(cpuopts);
985 if (err) {
986 error_report_err(err);
987 exit(1);
990 if (!vms->secure) {
991 object_property_set_bool(cpuobj, false, "has_el3", NULL);
994 object_property_set_int(cpuobj, QEMU_PSCI_CONDUIT_HVC, "psci-conduit",
995 NULL);
997 /* Secondary CPUs start in PSCI powered-down state */
998 if (n > 0) {
999 object_property_set_bool(cpuobj, true, "start-powered-off", NULL);
1002 if (object_property_find(cpuobj, "reset-cbar", NULL)) {
1003 object_property_set_int(cpuobj, vbi->memmap[VIRT_CPUPERIPHS].base,
1004 "reset-cbar", &error_abort);
1007 object_property_set_bool(cpuobj, true, "realized", NULL);
1009 g_strfreev(cpustr);
1010 fdt_add_timer_nodes(vbi, gic_version);
1011 fdt_add_cpu_nodes(vbi);
1012 fdt_add_psci_node(vbi);
1014 memory_region_allocate_system_memory(ram, NULL, "mach-virt.ram",
1015 machine->ram_size);
1016 memory_region_add_subregion(sysmem, vbi->memmap[VIRT_MEM].base, ram);
1018 create_flash(vbi);
1020 create_gic(vbi, pic, gic_version, vms->secure);
1022 create_uart(vbi, pic);
1024 create_rtc(vbi, pic);
1026 create_pcie(vbi, pic, vms->highmem);
1028 /* Create mmio transports, so the user can create virtio backends
1029 * (which will be automatically plugged in to the transports). If
1030 * no backend is created the transport will just sit harmlessly idle.
1032 create_virtio_devices(vbi, pic);
1034 create_fw_cfg(vbi, &address_space_memory);
1035 rom_set_fw(fw_cfg_find());
1037 guest_info->smp_cpus = smp_cpus;
1038 guest_info->fw_cfg = fw_cfg_find();
1039 guest_info->memmap = vbi->memmap;
1040 guest_info->irqmap = vbi->irqmap;
1041 guest_info->use_highmem = vms->highmem;
1042 guest_info->gic_version = gic_version;
1043 guest_info_state->machine_done.notify = virt_guest_info_machine_done;
1044 qemu_add_machine_init_done_notifier(&guest_info_state->machine_done);
1046 vbi->bootinfo.ram_size = machine->ram_size;
1047 vbi->bootinfo.kernel_filename = machine->kernel_filename;
1048 vbi->bootinfo.kernel_cmdline = machine->kernel_cmdline;
1049 vbi->bootinfo.initrd_filename = machine->initrd_filename;
1050 vbi->bootinfo.nb_cpus = smp_cpus;
1051 vbi->bootinfo.board_id = -1;
1052 vbi->bootinfo.loader_start = vbi->memmap[VIRT_MEM].base;
1053 vbi->bootinfo.get_dtb = machvirt_dtb;
1054 vbi->bootinfo.firmware_loaded = bios_name || drive_get(IF_PFLASH, 0, 0);
1055 arm_load_kernel(ARM_CPU(first_cpu), &vbi->bootinfo);
1058 * arm_load_kernel machine init done notifier registration must
1059 * happen before the platform_bus_create call. In this latter,
1060 * another notifier is registered which adds platform bus nodes.
1061 * Notifiers are executed in registration reverse order.
1063 create_platform_bus(vbi, pic);
1066 static bool virt_get_secure(Object *obj, Error **errp)
1068 VirtMachineState *vms = VIRT_MACHINE(obj);
1070 return vms->secure;
1073 static void virt_set_secure(Object *obj, bool value, Error **errp)
1075 VirtMachineState *vms = VIRT_MACHINE(obj);
1077 vms->secure = value;
1080 static bool virt_get_highmem(Object *obj, Error **errp)
1082 VirtMachineState *vms = VIRT_MACHINE(obj);
1084 return vms->highmem;
1087 static void virt_set_highmem(Object *obj, bool value, Error **errp)
1089 VirtMachineState *vms = VIRT_MACHINE(obj);
1091 vms->highmem = value;
1094 static char *virt_get_gic_version(Object *obj, Error **errp)
1096 VirtMachineState *vms = VIRT_MACHINE(obj);
1097 const char *val = vms->gic_version == 3 ? "3" : "2";
1099 return g_strdup(val);
1102 static void virt_set_gic_version(Object *obj, const char *value, Error **errp)
1104 VirtMachineState *vms = VIRT_MACHINE(obj);
1106 if (!strcmp(value, "3")) {
1107 vms->gic_version = 3;
1108 } else if (!strcmp(value, "2")) {
1109 vms->gic_version = 2;
1110 } else if (!strcmp(value, "host")) {
1111 vms->gic_version = 0; /* Will probe later */
1112 } else {
1113 error_report("Invalid gic-version option value\n"
1114 "Allowed values are: 3, 2, host\n");
1115 exit(1);
1119 static void virt_instance_init(Object *obj)
1121 VirtMachineState *vms = VIRT_MACHINE(obj);
1123 /* EL3 is disabled by default on virt: this makes us consistent
1124 * between KVM and TCG for this board, and it also allows us to
1125 * boot UEFI blobs which assume no TrustZone support.
1127 vms->secure = false;
1128 object_property_add_bool(obj, "secure", virt_get_secure,
1129 virt_set_secure, NULL);
1130 object_property_set_description(obj, "secure",
1131 "Set on/off to enable/disable the ARM "
1132 "Security Extensions (TrustZone)",
1133 NULL);
1135 /* High memory is enabled by default */
1136 vms->highmem = true;
1137 object_property_add_bool(obj, "highmem", virt_get_highmem,
1138 virt_set_highmem, NULL);
1139 object_property_set_description(obj, "highmem",
1140 "Set on/off to enable/disable using "
1141 "physical address space above 32 bits",
1142 NULL);
1143 /* Default GIC type is v2 */
1144 vms->gic_version = 2;
1145 object_property_add_str(obj, "gic-version", virt_get_gic_version,
1146 virt_set_gic_version, NULL);
1147 object_property_set_description(obj, "gic-version",
1148 "Set GIC version. "
1149 "Valid values are 2, 3 and host", NULL);
1152 static void virt_class_init(ObjectClass *oc, void *data)
1154 MachineClass *mc = MACHINE_CLASS(oc);
1156 mc->desc = "ARM Virtual Machine",
1157 mc->init = machvirt_init;
1158 /* Our maximum number of CPUs depends on how many redistributors
1159 * we can fit into memory map
1161 mc->max_cpus = a15memmap[VIRT_GIC_REDIST].size / 0x20000;
1162 mc->has_dynamic_sysbus = true;
1163 mc->block_default_type = IF_VIRTIO;
1164 mc->no_cdrom = 1;
1165 mc->pci_allow_0_address = true;
1168 static const TypeInfo machvirt_info = {
1169 .name = TYPE_VIRT_MACHINE,
1170 .parent = TYPE_MACHINE,
1171 .instance_size = sizeof(VirtMachineState),
1172 .instance_init = virt_instance_init,
1173 .class_size = sizeof(VirtMachineClass),
1174 .class_init = virt_class_init,
1177 static void machvirt_machine_init(void)
1179 type_register_static(&machvirt_info);
1182 machine_init(machvirt_machine_init);