hw/arm/musca: Add MPCs
[qemu/ar7.git] / target / ppc / machine.c
blob756b6d29712da48a53ceb86940fcc5e30ce92013
1 #include "qemu/osdep.h"
2 #include "qemu-common.h"
3 #include "cpu.h"
4 #include "exec/exec-all.h"
5 #include "hw/hw.h"
6 #include "hw/boards.h"
7 #include "sysemu/kvm.h"
8 #include "helper_regs.h"
9 #include "mmu-hash64.h"
10 #include "migration/cpu.h"
11 #include "qapi/error.h"
12 #include "kvm_ppc.h"
13 #include "exec/helper-proto.h"
15 static int cpu_load_old(QEMUFile *f, void *opaque, int version_id)
17 PowerPCCPU *cpu = opaque;
18 CPUPPCState *env = &cpu->env;
19 unsigned int i, j;
20 target_ulong sdr1;
21 uint32_t fpscr, vscr;
22 #if defined(TARGET_PPC64)
23 int32_t slb_nr;
24 #endif
25 target_ulong xer;
27 for (i = 0; i < 32; i++)
28 qemu_get_betls(f, &env->gpr[i]);
29 #if !defined(TARGET_PPC64)
30 for (i = 0; i < 32; i++)
31 qemu_get_betls(f, &env->gprh[i]);
32 #endif
33 qemu_get_betls(f, &env->lr);
34 qemu_get_betls(f, &env->ctr);
35 for (i = 0; i < 8; i++)
36 qemu_get_be32s(f, &env->crf[i]);
37 qemu_get_betls(f, &xer);
38 cpu_write_xer(env, xer);
39 qemu_get_betls(f, &env->reserve_addr);
40 qemu_get_betls(f, &env->msr);
41 for (i = 0; i < 4; i++)
42 qemu_get_betls(f, &env->tgpr[i]);
43 for (i = 0; i < 32; i++) {
44 union {
45 float64 d;
46 uint64_t l;
47 } u;
48 u.l = qemu_get_be64(f);
49 *cpu_fpr_ptr(env, i) = u.d;
51 qemu_get_be32s(f, &fpscr);
52 env->fpscr = fpscr;
53 qemu_get_sbe32s(f, &env->access_type);
54 #if defined(TARGET_PPC64)
55 qemu_get_betls(f, &env->spr[SPR_ASR]);
56 qemu_get_sbe32s(f, &slb_nr);
57 #endif
58 qemu_get_betls(f, &sdr1);
59 for (i = 0; i < 32; i++)
60 qemu_get_betls(f, &env->sr[i]);
61 for (i = 0; i < 2; i++)
62 for (j = 0; j < 8; j++)
63 qemu_get_betls(f, &env->DBAT[i][j]);
64 for (i = 0; i < 2; i++)
65 for (j = 0; j < 8; j++)
66 qemu_get_betls(f, &env->IBAT[i][j]);
67 qemu_get_sbe32s(f, &env->nb_tlb);
68 qemu_get_sbe32s(f, &env->tlb_per_way);
69 qemu_get_sbe32s(f, &env->nb_ways);
70 qemu_get_sbe32s(f, &env->last_way);
71 qemu_get_sbe32s(f, &env->id_tlbs);
72 qemu_get_sbe32s(f, &env->nb_pids);
73 if (env->tlb.tlb6) {
74 // XXX assumes 6xx
75 for (i = 0; i < env->nb_tlb; i++) {
76 qemu_get_betls(f, &env->tlb.tlb6[i].pte0);
77 qemu_get_betls(f, &env->tlb.tlb6[i].pte1);
78 qemu_get_betls(f, &env->tlb.tlb6[i].EPN);
81 for (i = 0; i < 4; i++)
82 qemu_get_betls(f, &env->pb[i]);
83 for (i = 0; i < 1024; i++)
84 qemu_get_betls(f, &env->spr[i]);
85 if (!cpu->vhyp) {
86 ppc_store_sdr1(env, sdr1);
88 qemu_get_be32s(f, &vscr);
89 helper_mtvscr(env, vscr);
90 qemu_get_be64s(f, &env->spe_acc);
91 qemu_get_be32s(f, &env->spe_fscr);
92 qemu_get_betls(f, &env->msr_mask);
93 qemu_get_be32s(f, &env->flags);
94 qemu_get_sbe32s(f, &env->error_code);
95 qemu_get_be32s(f, &env->pending_interrupts);
96 qemu_get_be32s(f, &env->irq_input_state);
97 for (i = 0; i < POWERPC_EXCP_NB; i++)
98 qemu_get_betls(f, &env->excp_vectors[i]);
99 qemu_get_betls(f, &env->excp_prefix);
100 qemu_get_betls(f, &env->ivor_mask);
101 qemu_get_betls(f, &env->ivpr_mask);
102 qemu_get_betls(f, &env->hreset_vector);
103 qemu_get_betls(f, &env->nip);
104 qemu_get_betls(f, &env->hflags);
105 qemu_get_betls(f, &env->hflags_nmsr);
106 qemu_get_sbe32(f); /* Discard unused mmu_idx */
107 qemu_get_sbe32(f); /* Discard unused power_mode */
109 /* Recompute mmu indices */
110 hreg_compute_mem_idx(env);
112 return 0;
115 static int get_avr(QEMUFile *f, void *pv, size_t size,
116 const VMStateField *field)
118 ppc_avr_t *v = pv;
120 v->u64[0] = qemu_get_be64(f);
121 v->u64[1] = qemu_get_be64(f);
123 return 0;
126 static int put_avr(QEMUFile *f, void *pv, size_t size,
127 const VMStateField *field, QJSON *vmdesc)
129 ppc_avr_t *v = pv;
131 qemu_put_be64(f, v->u64[0]);
132 qemu_put_be64(f, v->u64[1]);
133 return 0;
136 static const VMStateInfo vmstate_info_avr = {
137 .name = "avr",
138 .get = get_avr,
139 .put = put_avr,
142 #define VMSTATE_AVR_ARRAY_V(_f, _s, _n, _v) \
143 VMSTATE_SUB_ARRAY(_f, _s, 32, _n, _v, vmstate_info_avr, ppc_avr_t)
145 #define VMSTATE_AVR_ARRAY(_f, _s, _n) \
146 VMSTATE_AVR_ARRAY_V(_f, _s, _n, 0)
148 static int get_fpr(QEMUFile *f, void *pv, size_t size,
149 const VMStateField *field)
151 ppc_vsr_t *v = pv;
153 v->u64[0] = qemu_get_be64(f);
155 return 0;
158 static int put_fpr(QEMUFile *f, void *pv, size_t size,
159 const VMStateField *field, QJSON *vmdesc)
161 ppc_vsr_t *v = pv;
163 qemu_put_be64(f, v->u64[0]);
164 return 0;
167 static const VMStateInfo vmstate_info_fpr = {
168 .name = "fpr",
169 .get = get_fpr,
170 .put = put_fpr,
173 #define VMSTATE_FPR_ARRAY_V(_f, _s, _n, _v) \
174 VMSTATE_SUB_ARRAY(_f, _s, 0, _n, _v, vmstate_info_fpr, ppc_vsr_t)
176 #define VMSTATE_FPR_ARRAY(_f, _s, _n) \
177 VMSTATE_FPR_ARRAY_V(_f, _s, _n, 0)
179 static int get_vsr(QEMUFile *f, void *pv, size_t size,
180 const VMStateField *field)
182 ppc_vsr_t *v = pv;
184 v->u64[1] = qemu_get_be64(f);
186 return 0;
189 static int put_vsr(QEMUFile *f, void *pv, size_t size,
190 const VMStateField *field, QJSON *vmdesc)
192 ppc_vsr_t *v = pv;
194 qemu_put_be64(f, v->u64[1]);
195 return 0;
198 static const VMStateInfo vmstate_info_vsr = {
199 .name = "vsr",
200 .get = get_vsr,
201 .put = put_vsr,
204 #define VMSTATE_VSR_ARRAY_V(_f, _s, _n, _v) \
205 VMSTATE_SUB_ARRAY(_f, _s, 0, _n, _v, vmstate_info_vsr, ppc_vsr_t)
207 #define VMSTATE_VSR_ARRAY(_f, _s, _n) \
208 VMSTATE_VSR_ARRAY_V(_f, _s, _n, 0)
210 static bool cpu_pre_2_8_migration(void *opaque, int version_id)
212 PowerPCCPU *cpu = opaque;
214 return cpu->pre_2_8_migration;
217 #if defined(TARGET_PPC64)
218 static bool cpu_pre_3_0_migration(void *opaque, int version_id)
220 PowerPCCPU *cpu = opaque;
222 return cpu->pre_3_0_migration;
224 #endif
226 static int cpu_pre_save(void *opaque)
228 PowerPCCPU *cpu = opaque;
229 CPUPPCState *env = &cpu->env;
230 int i;
231 uint64_t insns_compat_mask =
232 PPC_INSNS_BASE | PPC_ISEL | PPC_STRING | PPC_MFTB
233 | PPC_FLOAT | PPC_FLOAT_FSEL | PPC_FLOAT_FRES
234 | PPC_FLOAT_FSQRT | PPC_FLOAT_FRSQRTE | PPC_FLOAT_FRSQRTES
235 | PPC_FLOAT_STFIWX | PPC_FLOAT_EXT
236 | PPC_CACHE | PPC_CACHE_ICBI | PPC_CACHE_DCBZ
237 | PPC_MEM_SYNC | PPC_MEM_EIEIO | PPC_MEM_TLBIE | PPC_MEM_TLBSYNC
238 | PPC_64B | PPC_64BX | PPC_ALTIVEC
239 | PPC_SEGMENT_64B | PPC_SLBI | PPC_POPCNTB | PPC_POPCNTWD;
240 uint64_t insns_compat_mask2 = PPC2_VSX | PPC2_VSX207 | PPC2_DFP | PPC2_DBRX
241 | PPC2_PERM_ISA206 | PPC2_DIVE_ISA206
242 | PPC2_ATOMIC_ISA206 | PPC2_FP_CVT_ISA206
243 | PPC2_FP_TST_ISA206 | PPC2_BCTAR_ISA207
244 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207
245 | PPC2_ISA205 | PPC2_ISA207S | PPC2_FP_CVT_S64 | PPC2_TM;
247 env->spr[SPR_LR] = env->lr;
248 env->spr[SPR_CTR] = env->ctr;
249 env->spr[SPR_XER] = cpu_read_xer(env);
250 #if defined(TARGET_PPC64)
251 env->spr[SPR_CFAR] = env->cfar;
252 #endif
253 env->spr[SPR_BOOKE_SPEFSCR] = env->spe_fscr;
255 for (i = 0; (i < 4) && (i < env->nb_BATs); i++) {
256 env->spr[SPR_DBAT0U + 2*i] = env->DBAT[0][i];
257 env->spr[SPR_DBAT0U + 2*i + 1] = env->DBAT[1][i];
258 env->spr[SPR_IBAT0U + 2*i] = env->IBAT[0][i];
259 env->spr[SPR_IBAT0U + 2*i + 1] = env->IBAT[1][i];
261 for (i = 0; (i < 4) && ((i+4) < env->nb_BATs); i++) {
262 env->spr[SPR_DBAT4U + 2*i] = env->DBAT[0][i+4];
263 env->spr[SPR_DBAT4U + 2*i + 1] = env->DBAT[1][i+4];
264 env->spr[SPR_IBAT4U + 2*i] = env->IBAT[0][i+4];
265 env->spr[SPR_IBAT4U + 2*i + 1] = env->IBAT[1][i+4];
268 /* Hacks for migration compatibility between 2.6, 2.7 & 2.8 */
269 if (cpu->pre_2_8_migration) {
270 /* Mask out bits that got added to msr_mask since the versions
271 * which stupidly included it in the migration stream. */
272 target_ulong metamask = 0
273 #if defined(TARGET_PPC64)
274 | (1ULL << MSR_TS0)
275 | (1ULL << MSR_TS1)
276 #endif
278 cpu->mig_msr_mask = env->msr_mask & ~metamask;
279 cpu->mig_insns_flags = env->insns_flags & insns_compat_mask;
280 /* CPU models supported by old machines all have PPC_MEM_TLBIE,
281 * so we set it unconditionally to allow backward migration from
282 * a POWER9 host to a POWER8 host.
284 cpu->mig_insns_flags |= PPC_MEM_TLBIE;
285 cpu->mig_insns_flags2 = env->insns_flags2 & insns_compat_mask2;
286 cpu->mig_nb_BATs = env->nb_BATs;
288 if (cpu->pre_3_0_migration) {
289 if (cpu->hash64_opts) {
290 cpu->mig_slb_nr = cpu->hash64_opts->slb_size;
294 return 0;
298 * Determine if a given PVR is a "close enough" match to the CPU
299 * object. For TCG and KVM PR it would probably be sufficient to
300 * require an exact PVR match. However for KVM HV the user is
301 * restricted to a PVR exactly matching the host CPU. The correct way
302 * to handle this is to put the guest into an architected
303 * compatibility mode. However, to allow a more forgiving transition
304 * and migration from before this was widely done, we allow migration
305 * between sufficiently similar PVRs, as determined by the CPU class's
306 * pvr_match() hook.
308 static bool pvr_match(PowerPCCPU *cpu, uint32_t pvr)
310 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu);
312 if (pvr == pcc->pvr) {
313 return true;
315 return pcc->pvr_match(pcc, pvr);
318 static int cpu_post_load(void *opaque, int version_id)
320 PowerPCCPU *cpu = opaque;
321 CPUPPCState *env = &cpu->env;
322 int i;
323 target_ulong msr;
326 * If we're operating in compat mode, we should be ok as long as
327 * the destination supports the same compatiblity mode.
329 * Otherwise, however, we require that the destination has exactly
330 * the same CPU model as the source.
333 #if defined(TARGET_PPC64)
334 if (cpu->compat_pvr) {
335 uint32_t compat_pvr = cpu->compat_pvr;
336 Error *local_err = NULL;
338 cpu->compat_pvr = 0;
339 ppc_set_compat(cpu, compat_pvr, &local_err);
340 if (local_err) {
341 error_report_err(local_err);
342 return -1;
344 } else
345 #endif
347 if (!pvr_match(cpu, env->spr[SPR_PVR])) {
348 return -1;
353 * If we're running with KVM HV, there is a chance that the guest
354 * is running with KVM HV and its kernel does not have the
355 * capability of dealing with a different PVR other than this
356 * exact host PVR in KVM_SET_SREGS. If that happens, the
357 * guest freezes after migration.
359 * The function kvmppc_pvr_workaround_required does this verification
360 * by first checking if the kernel has the cap, returning true immediately
361 * if that is the case. Otherwise, it checks if we're running in KVM PR.
362 * If the guest kernel does not have the cap and we're not running KVM-PR
363 * (so, it is running KVM-HV), we need to ensure that KVM_SET_SREGS will
364 * receive the PVR it expects as a workaround.
367 #if defined(CONFIG_KVM)
368 if (kvmppc_pvr_workaround_required(cpu)) {
369 env->spr[SPR_PVR] = env->spr_cb[SPR_PVR].default_value;
371 #endif
373 env->lr = env->spr[SPR_LR];
374 env->ctr = env->spr[SPR_CTR];
375 cpu_write_xer(env, env->spr[SPR_XER]);
376 #if defined(TARGET_PPC64)
377 env->cfar = env->spr[SPR_CFAR];
378 #endif
379 env->spe_fscr = env->spr[SPR_BOOKE_SPEFSCR];
381 for (i = 0; (i < 4) && (i < env->nb_BATs); i++) {
382 env->DBAT[0][i] = env->spr[SPR_DBAT0U + 2*i];
383 env->DBAT[1][i] = env->spr[SPR_DBAT0U + 2*i + 1];
384 env->IBAT[0][i] = env->spr[SPR_IBAT0U + 2*i];
385 env->IBAT[1][i] = env->spr[SPR_IBAT0U + 2*i + 1];
387 for (i = 0; (i < 4) && ((i+4) < env->nb_BATs); i++) {
388 env->DBAT[0][i+4] = env->spr[SPR_DBAT4U + 2*i];
389 env->DBAT[1][i+4] = env->spr[SPR_DBAT4U + 2*i + 1];
390 env->IBAT[0][i+4] = env->spr[SPR_IBAT4U + 2*i];
391 env->IBAT[1][i+4] = env->spr[SPR_IBAT4U + 2*i + 1];
394 if (!cpu->vhyp) {
395 ppc_store_sdr1(env, env->spr[SPR_SDR1]);
398 /* Invalidate all supported msr bits except MSR_TGPR/MSR_HVB before restoring */
399 msr = env->msr;
400 env->msr ^= env->msr_mask & ~((1ULL << MSR_TGPR) | MSR_HVB);
401 ppc_store_msr(env, msr);
403 hreg_compute_mem_idx(env);
405 return 0;
408 static bool fpu_needed(void *opaque)
410 PowerPCCPU *cpu = opaque;
412 return (cpu->env.insns_flags & PPC_FLOAT);
415 static const VMStateDescription vmstate_fpu = {
416 .name = "cpu/fpu",
417 .version_id = 1,
418 .minimum_version_id = 1,
419 .needed = fpu_needed,
420 .fields = (VMStateField[]) {
421 VMSTATE_FPR_ARRAY(env.vsr, PowerPCCPU, 32),
422 VMSTATE_UINTTL(env.fpscr, PowerPCCPU),
423 VMSTATE_END_OF_LIST()
427 static bool altivec_needed(void *opaque)
429 PowerPCCPU *cpu = opaque;
431 return (cpu->env.insns_flags & PPC_ALTIVEC);
434 static int get_vscr(QEMUFile *f, void *opaque, size_t size,
435 const VMStateField *field)
437 PowerPCCPU *cpu = opaque;
438 helper_mtvscr(&cpu->env, qemu_get_be32(f));
439 return 0;
442 static int put_vscr(QEMUFile *f, void *opaque, size_t size,
443 const VMStateField *field, QJSON *vmdesc)
445 PowerPCCPU *cpu = opaque;
446 qemu_put_be32(f, helper_mfvscr(&cpu->env));
447 return 0;
450 static const VMStateInfo vmstate_vscr = {
451 .name = "cpu/altivec/vscr",
452 .get = get_vscr,
453 .put = put_vscr,
456 static const VMStateDescription vmstate_altivec = {
457 .name = "cpu/altivec",
458 .version_id = 1,
459 .minimum_version_id = 1,
460 .needed = altivec_needed,
461 .fields = (VMStateField[]) {
462 VMSTATE_AVR_ARRAY(env.vsr, PowerPCCPU, 32),
464 * Save the architecture value of the vscr, not the internally
465 * expanded version. Since this architecture value does not
466 * exist in memory to be stored, this requires a but of hoop
467 * jumping. We want OFFSET=0 so that we effectively pass CPU
468 * to the helper functions.
471 .name = "vscr",
472 .version_id = 0,
473 .size = sizeof(uint32_t),
474 .info = &vmstate_vscr,
475 .flags = VMS_SINGLE,
476 .offset = 0
478 VMSTATE_END_OF_LIST()
482 static bool vsx_needed(void *opaque)
484 PowerPCCPU *cpu = opaque;
486 return (cpu->env.insns_flags2 & PPC2_VSX);
489 static const VMStateDescription vmstate_vsx = {
490 .name = "cpu/vsx",
491 .version_id = 1,
492 .minimum_version_id = 1,
493 .needed = vsx_needed,
494 .fields = (VMStateField[]) {
495 VMSTATE_VSR_ARRAY(env.vsr, PowerPCCPU, 32),
496 VMSTATE_END_OF_LIST()
500 #ifdef TARGET_PPC64
501 /* Transactional memory state */
502 static bool tm_needed(void *opaque)
504 PowerPCCPU *cpu = opaque;
505 CPUPPCState *env = &cpu->env;
506 return msr_ts;
509 static const VMStateDescription vmstate_tm = {
510 .name = "cpu/tm",
511 .version_id = 1,
512 .minimum_version_id = 1,
513 .minimum_version_id_old = 1,
514 .needed = tm_needed,
515 .fields = (VMStateField []) {
516 VMSTATE_UINTTL_ARRAY(env.tm_gpr, PowerPCCPU, 32),
517 VMSTATE_AVR_ARRAY(env.tm_vsr, PowerPCCPU, 64),
518 VMSTATE_UINT64(env.tm_cr, PowerPCCPU),
519 VMSTATE_UINT64(env.tm_lr, PowerPCCPU),
520 VMSTATE_UINT64(env.tm_ctr, PowerPCCPU),
521 VMSTATE_UINT64(env.tm_fpscr, PowerPCCPU),
522 VMSTATE_UINT64(env.tm_amr, PowerPCCPU),
523 VMSTATE_UINT64(env.tm_ppr, PowerPCCPU),
524 VMSTATE_UINT64(env.tm_vrsave, PowerPCCPU),
525 VMSTATE_UINT32(env.tm_vscr, PowerPCCPU),
526 VMSTATE_UINT64(env.tm_dscr, PowerPCCPU),
527 VMSTATE_UINT64(env.tm_tar, PowerPCCPU),
528 VMSTATE_END_OF_LIST()
531 #endif
533 static bool sr_needed(void *opaque)
535 #ifdef TARGET_PPC64
536 PowerPCCPU *cpu = opaque;
538 return !(cpu->env.mmu_model & POWERPC_MMU_64);
539 #else
540 return true;
541 #endif
544 static const VMStateDescription vmstate_sr = {
545 .name = "cpu/sr",
546 .version_id = 1,
547 .minimum_version_id = 1,
548 .needed = sr_needed,
549 .fields = (VMStateField[]) {
550 VMSTATE_UINTTL_ARRAY(env.sr, PowerPCCPU, 32),
551 VMSTATE_END_OF_LIST()
555 #ifdef TARGET_PPC64
556 static int get_slbe(QEMUFile *f, void *pv, size_t size,
557 const VMStateField *field)
559 ppc_slb_t *v = pv;
561 v->esid = qemu_get_be64(f);
562 v->vsid = qemu_get_be64(f);
564 return 0;
567 static int put_slbe(QEMUFile *f, void *pv, size_t size,
568 const VMStateField *field, QJSON *vmdesc)
570 ppc_slb_t *v = pv;
572 qemu_put_be64(f, v->esid);
573 qemu_put_be64(f, v->vsid);
574 return 0;
577 static const VMStateInfo vmstate_info_slbe = {
578 .name = "slbe",
579 .get = get_slbe,
580 .put = put_slbe,
583 #define VMSTATE_SLB_ARRAY_V(_f, _s, _n, _v) \
584 VMSTATE_ARRAY(_f, _s, _n, _v, vmstate_info_slbe, ppc_slb_t)
586 #define VMSTATE_SLB_ARRAY(_f, _s, _n) \
587 VMSTATE_SLB_ARRAY_V(_f, _s, _n, 0)
589 static bool slb_needed(void *opaque)
591 PowerPCCPU *cpu = opaque;
593 /* We don't support any of the old segment table based 64-bit CPUs */
594 return (cpu->env.mmu_model & POWERPC_MMU_64);
597 static int slb_post_load(void *opaque, int version_id)
599 PowerPCCPU *cpu = opaque;
600 CPUPPCState *env = &cpu->env;
601 int i;
603 /* We've pulled in the raw esid and vsid values from the migration
604 * stream, but we need to recompute the page size pointers */
605 for (i = 0; i < cpu->hash64_opts->slb_size; i++) {
606 if (ppc_store_slb(cpu, i, env->slb[i].esid, env->slb[i].vsid) < 0) {
607 /* Migration source had bad values in its SLB */
608 return -1;
612 return 0;
615 static const VMStateDescription vmstate_slb = {
616 .name = "cpu/slb",
617 .version_id = 1,
618 .minimum_version_id = 1,
619 .needed = slb_needed,
620 .post_load = slb_post_load,
621 .fields = (VMStateField[]) {
622 VMSTATE_INT32_TEST(mig_slb_nr, PowerPCCPU, cpu_pre_3_0_migration),
623 VMSTATE_SLB_ARRAY(env.slb, PowerPCCPU, MAX_SLB_ENTRIES),
624 VMSTATE_END_OF_LIST()
627 #endif /* TARGET_PPC64 */
629 static const VMStateDescription vmstate_tlb6xx_entry = {
630 .name = "cpu/tlb6xx_entry",
631 .version_id = 1,
632 .minimum_version_id = 1,
633 .fields = (VMStateField[]) {
634 VMSTATE_UINTTL(pte0, ppc6xx_tlb_t),
635 VMSTATE_UINTTL(pte1, ppc6xx_tlb_t),
636 VMSTATE_UINTTL(EPN, ppc6xx_tlb_t),
637 VMSTATE_END_OF_LIST()
641 static bool tlb6xx_needed(void *opaque)
643 PowerPCCPU *cpu = opaque;
644 CPUPPCState *env = &cpu->env;
646 return env->nb_tlb && (env->tlb_type == TLB_6XX);
649 static const VMStateDescription vmstate_tlb6xx = {
650 .name = "cpu/tlb6xx",
651 .version_id = 1,
652 .minimum_version_id = 1,
653 .needed = tlb6xx_needed,
654 .fields = (VMStateField[]) {
655 VMSTATE_INT32_EQUAL(env.nb_tlb, PowerPCCPU, NULL),
656 VMSTATE_STRUCT_VARRAY_POINTER_INT32(env.tlb.tlb6, PowerPCCPU,
657 env.nb_tlb,
658 vmstate_tlb6xx_entry,
659 ppc6xx_tlb_t),
660 VMSTATE_UINTTL_ARRAY(env.tgpr, PowerPCCPU, 4),
661 VMSTATE_END_OF_LIST()
665 static const VMStateDescription vmstate_tlbemb_entry = {
666 .name = "cpu/tlbemb_entry",
667 .version_id = 1,
668 .minimum_version_id = 1,
669 .fields = (VMStateField[]) {
670 VMSTATE_UINT64(RPN, ppcemb_tlb_t),
671 VMSTATE_UINTTL(EPN, ppcemb_tlb_t),
672 VMSTATE_UINTTL(PID, ppcemb_tlb_t),
673 VMSTATE_UINTTL(size, ppcemb_tlb_t),
674 VMSTATE_UINT32(prot, ppcemb_tlb_t),
675 VMSTATE_UINT32(attr, ppcemb_tlb_t),
676 VMSTATE_END_OF_LIST()
680 static bool tlbemb_needed(void *opaque)
682 PowerPCCPU *cpu = opaque;
683 CPUPPCState *env = &cpu->env;
685 return env->nb_tlb && (env->tlb_type == TLB_EMB);
688 static bool pbr403_needed(void *opaque)
690 PowerPCCPU *cpu = opaque;
691 uint32_t pvr = cpu->env.spr[SPR_PVR];
693 return (pvr & 0xffff0000) == 0x00200000;
696 static const VMStateDescription vmstate_pbr403 = {
697 .name = "cpu/pbr403",
698 .version_id = 1,
699 .minimum_version_id = 1,
700 .needed = pbr403_needed,
701 .fields = (VMStateField[]) {
702 VMSTATE_UINTTL_ARRAY(env.pb, PowerPCCPU, 4),
703 VMSTATE_END_OF_LIST()
707 static const VMStateDescription vmstate_tlbemb = {
708 .name = "cpu/tlb6xx",
709 .version_id = 1,
710 .minimum_version_id = 1,
711 .needed = tlbemb_needed,
712 .fields = (VMStateField[]) {
713 VMSTATE_INT32_EQUAL(env.nb_tlb, PowerPCCPU, NULL),
714 VMSTATE_STRUCT_VARRAY_POINTER_INT32(env.tlb.tlbe, PowerPCCPU,
715 env.nb_tlb,
716 vmstate_tlbemb_entry,
717 ppcemb_tlb_t),
718 /* 403 protection registers */
719 VMSTATE_END_OF_LIST()
721 .subsections = (const VMStateDescription*[]) {
722 &vmstate_pbr403,
723 NULL
727 static const VMStateDescription vmstate_tlbmas_entry = {
728 .name = "cpu/tlbmas_entry",
729 .version_id = 1,
730 .minimum_version_id = 1,
731 .fields = (VMStateField[]) {
732 VMSTATE_UINT32(mas8, ppcmas_tlb_t),
733 VMSTATE_UINT32(mas1, ppcmas_tlb_t),
734 VMSTATE_UINT64(mas2, ppcmas_tlb_t),
735 VMSTATE_UINT64(mas7_3, ppcmas_tlb_t),
736 VMSTATE_END_OF_LIST()
740 static bool tlbmas_needed(void *opaque)
742 PowerPCCPU *cpu = opaque;
743 CPUPPCState *env = &cpu->env;
745 return env->nb_tlb && (env->tlb_type == TLB_MAS);
748 static const VMStateDescription vmstate_tlbmas = {
749 .name = "cpu/tlbmas",
750 .version_id = 1,
751 .minimum_version_id = 1,
752 .needed = tlbmas_needed,
753 .fields = (VMStateField[]) {
754 VMSTATE_INT32_EQUAL(env.nb_tlb, PowerPCCPU, NULL),
755 VMSTATE_STRUCT_VARRAY_POINTER_INT32(env.tlb.tlbm, PowerPCCPU,
756 env.nb_tlb,
757 vmstate_tlbmas_entry,
758 ppcmas_tlb_t),
759 VMSTATE_END_OF_LIST()
763 static bool compat_needed(void *opaque)
765 PowerPCCPU *cpu = opaque;
767 assert(!(cpu->compat_pvr && !cpu->vhyp));
768 return !cpu->pre_2_10_migration && cpu->compat_pvr != 0;
771 static const VMStateDescription vmstate_compat = {
772 .name = "cpu/compat",
773 .version_id = 1,
774 .minimum_version_id = 1,
775 .needed = compat_needed,
776 .fields = (VMStateField[]) {
777 VMSTATE_UINT32(compat_pvr, PowerPCCPU),
778 VMSTATE_END_OF_LIST()
782 const VMStateDescription vmstate_ppc_cpu = {
783 .name = "cpu",
784 .version_id = 5,
785 .minimum_version_id = 5,
786 .minimum_version_id_old = 4,
787 .load_state_old = cpu_load_old,
788 .pre_save = cpu_pre_save,
789 .post_load = cpu_post_load,
790 .fields = (VMStateField[]) {
791 VMSTATE_UNUSED(sizeof(target_ulong)), /* was _EQUAL(env.spr[SPR_PVR]) */
793 /* User mode architected state */
794 VMSTATE_UINTTL_ARRAY(env.gpr, PowerPCCPU, 32),
795 #if !defined(TARGET_PPC64)
796 VMSTATE_UINTTL_ARRAY(env.gprh, PowerPCCPU, 32),
797 #endif
798 VMSTATE_UINT32_ARRAY(env.crf, PowerPCCPU, 8),
799 VMSTATE_UINTTL(env.nip, PowerPCCPU),
801 /* SPRs */
802 VMSTATE_UINTTL_ARRAY(env.spr, PowerPCCPU, 1024),
803 VMSTATE_UINT64(env.spe_acc, PowerPCCPU),
805 /* Reservation */
806 VMSTATE_UINTTL(env.reserve_addr, PowerPCCPU),
808 /* Supervisor mode architected state */
809 VMSTATE_UINTTL(env.msr, PowerPCCPU),
811 /* Internal state */
812 VMSTATE_UINTTL(env.hflags_nmsr, PowerPCCPU),
813 /* FIXME: access_type? */
815 /* Sanity checking */
816 VMSTATE_UINTTL_TEST(mig_msr_mask, PowerPCCPU, cpu_pre_2_8_migration),
817 VMSTATE_UINT64_TEST(mig_insns_flags, PowerPCCPU, cpu_pre_2_8_migration),
818 VMSTATE_UINT64_TEST(mig_insns_flags2, PowerPCCPU,
819 cpu_pre_2_8_migration),
820 VMSTATE_UINT32_TEST(mig_nb_BATs, PowerPCCPU, cpu_pre_2_8_migration),
821 VMSTATE_END_OF_LIST()
823 .subsections = (const VMStateDescription*[]) {
824 &vmstate_fpu,
825 &vmstate_altivec,
826 &vmstate_vsx,
827 &vmstate_sr,
828 #ifdef TARGET_PPC64
829 &vmstate_tm,
830 &vmstate_slb,
831 #endif /* TARGET_PPC64 */
832 &vmstate_tlb6xx,
833 &vmstate_tlbemb,
834 &vmstate_tlbmas,
835 &vmstate_compat,
836 NULL