intel_iommu: allocate new key when creating new address space
[qemu/ar7.git] / hw / i386 / intel_iommu.c
blobe39b764d75bb3ef3ad87ea72936bc8e335b07d21
1 /*
2 * QEMU emulation of an Intel IOMMU (VT-d)
3 * (DMA Remapping device)
5 * Copyright (C) 2013 Knut Omang, Oracle <knut.omang@oracle.com>
6 * Copyright (C) 2014 Le Tan, <tamlokveer@gmail.com>
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public License along
19 * with this program; if not, see <http://www.gnu.org/licenses/>.
22 #include "qemu/osdep.h"
23 #include "qemu/error-report.h"
24 #include "qapi/error.h"
25 #include "hw/sysbus.h"
26 #include "exec/address-spaces.h"
27 #include "intel_iommu_internal.h"
28 #include "hw/pci/pci.h"
29 #include "hw/pci/pci_bus.h"
30 #include "hw/i386/pc.h"
31 #include "hw/i386/apic-msidef.h"
32 #include "hw/boards.h"
33 #include "hw/i386/x86-iommu.h"
34 #include "hw/pci-host/q35.h"
35 #include "sysemu/kvm.h"
36 #include "hw/i386/apic_internal.h"
37 #include "kvm_i386.h"
39 /*#define DEBUG_INTEL_IOMMU*/
40 #ifdef DEBUG_INTEL_IOMMU
41 enum {
42 DEBUG_GENERAL, DEBUG_CSR, DEBUG_INV, DEBUG_MMU, DEBUG_FLOG,
43 DEBUG_CACHE, DEBUG_IR,
45 #define VTD_DBGBIT(x) (1 << DEBUG_##x)
46 static int vtd_dbgflags = VTD_DBGBIT(GENERAL) | VTD_DBGBIT(CSR);
48 #define VTD_DPRINTF(what, fmt, ...) do { \
49 if (vtd_dbgflags & VTD_DBGBIT(what)) { \
50 fprintf(stderr, "(vtd)%s: " fmt "\n", __func__, \
51 ## __VA_ARGS__); } \
52 } while (0)
53 #else
54 #define VTD_DPRINTF(what, fmt, ...) do {} while (0)
55 #endif
57 static void vtd_define_quad(IntelIOMMUState *s, hwaddr addr, uint64_t val,
58 uint64_t wmask, uint64_t w1cmask)
60 stq_le_p(&s->csr[addr], val);
61 stq_le_p(&s->wmask[addr], wmask);
62 stq_le_p(&s->w1cmask[addr], w1cmask);
65 static void vtd_define_quad_wo(IntelIOMMUState *s, hwaddr addr, uint64_t mask)
67 stq_le_p(&s->womask[addr], mask);
70 static void vtd_define_long(IntelIOMMUState *s, hwaddr addr, uint32_t val,
71 uint32_t wmask, uint32_t w1cmask)
73 stl_le_p(&s->csr[addr], val);
74 stl_le_p(&s->wmask[addr], wmask);
75 stl_le_p(&s->w1cmask[addr], w1cmask);
78 static void vtd_define_long_wo(IntelIOMMUState *s, hwaddr addr, uint32_t mask)
80 stl_le_p(&s->womask[addr], mask);
83 /* "External" get/set operations */
84 static void vtd_set_quad(IntelIOMMUState *s, hwaddr addr, uint64_t val)
86 uint64_t oldval = ldq_le_p(&s->csr[addr]);
87 uint64_t wmask = ldq_le_p(&s->wmask[addr]);
88 uint64_t w1cmask = ldq_le_p(&s->w1cmask[addr]);
89 stq_le_p(&s->csr[addr],
90 ((oldval & ~wmask) | (val & wmask)) & ~(w1cmask & val));
93 static void vtd_set_long(IntelIOMMUState *s, hwaddr addr, uint32_t val)
95 uint32_t oldval = ldl_le_p(&s->csr[addr]);
96 uint32_t wmask = ldl_le_p(&s->wmask[addr]);
97 uint32_t w1cmask = ldl_le_p(&s->w1cmask[addr]);
98 stl_le_p(&s->csr[addr],
99 ((oldval & ~wmask) | (val & wmask)) & ~(w1cmask & val));
102 static uint64_t vtd_get_quad(IntelIOMMUState *s, hwaddr addr)
104 uint64_t val = ldq_le_p(&s->csr[addr]);
105 uint64_t womask = ldq_le_p(&s->womask[addr]);
106 return val & ~womask;
109 static uint32_t vtd_get_long(IntelIOMMUState *s, hwaddr addr)
111 uint32_t val = ldl_le_p(&s->csr[addr]);
112 uint32_t womask = ldl_le_p(&s->womask[addr]);
113 return val & ~womask;
116 /* "Internal" get/set operations */
117 static uint64_t vtd_get_quad_raw(IntelIOMMUState *s, hwaddr addr)
119 return ldq_le_p(&s->csr[addr]);
122 static uint32_t vtd_get_long_raw(IntelIOMMUState *s, hwaddr addr)
124 return ldl_le_p(&s->csr[addr]);
127 static void vtd_set_quad_raw(IntelIOMMUState *s, hwaddr addr, uint64_t val)
129 stq_le_p(&s->csr[addr], val);
132 static uint32_t vtd_set_clear_mask_long(IntelIOMMUState *s, hwaddr addr,
133 uint32_t clear, uint32_t mask)
135 uint32_t new_val = (ldl_le_p(&s->csr[addr]) & ~clear) | mask;
136 stl_le_p(&s->csr[addr], new_val);
137 return new_val;
140 static uint64_t vtd_set_clear_mask_quad(IntelIOMMUState *s, hwaddr addr,
141 uint64_t clear, uint64_t mask)
143 uint64_t new_val = (ldq_le_p(&s->csr[addr]) & ~clear) | mask;
144 stq_le_p(&s->csr[addr], new_val);
145 return new_val;
148 /* GHashTable functions */
149 static gboolean vtd_uint64_equal(gconstpointer v1, gconstpointer v2)
151 return *((const uint64_t *)v1) == *((const uint64_t *)v2);
154 static guint vtd_uint64_hash(gconstpointer v)
156 return (guint)*(const uint64_t *)v;
159 static gboolean vtd_hash_remove_by_domain(gpointer key, gpointer value,
160 gpointer user_data)
162 VTDIOTLBEntry *entry = (VTDIOTLBEntry *)value;
163 uint16_t domain_id = *(uint16_t *)user_data;
164 return entry->domain_id == domain_id;
167 /* The shift of an addr for a certain level of paging structure */
168 static inline uint32_t vtd_slpt_level_shift(uint32_t level)
170 return VTD_PAGE_SHIFT_4K + (level - 1) * VTD_SL_LEVEL_BITS;
173 static inline uint64_t vtd_slpt_level_page_mask(uint32_t level)
175 return ~((1ULL << vtd_slpt_level_shift(level)) - 1);
178 static gboolean vtd_hash_remove_by_page(gpointer key, gpointer value,
179 gpointer user_data)
181 VTDIOTLBEntry *entry = (VTDIOTLBEntry *)value;
182 VTDIOTLBPageInvInfo *info = (VTDIOTLBPageInvInfo *)user_data;
183 uint64_t gfn = (info->addr >> VTD_PAGE_SHIFT_4K) & info->mask;
184 uint64_t gfn_tlb = (info->addr & entry->mask) >> VTD_PAGE_SHIFT_4K;
185 return (entry->domain_id == info->domain_id) &&
186 (((entry->gfn & info->mask) == gfn) ||
187 (entry->gfn == gfn_tlb));
190 /* Reset all the gen of VTDAddressSpace to zero and set the gen of
191 * IntelIOMMUState to 1.
193 static void vtd_reset_context_cache(IntelIOMMUState *s)
195 VTDAddressSpace *vtd_as;
196 VTDBus *vtd_bus;
197 GHashTableIter bus_it;
198 uint32_t devfn_it;
200 g_hash_table_iter_init(&bus_it, s->vtd_as_by_busptr);
202 VTD_DPRINTF(CACHE, "global context_cache_gen=1");
203 while (g_hash_table_iter_next (&bus_it, NULL, (void**)&vtd_bus)) {
204 for (devfn_it = 0; devfn_it < X86_IOMMU_PCI_DEVFN_MAX; ++devfn_it) {
205 vtd_as = vtd_bus->dev_as[devfn_it];
206 if (!vtd_as) {
207 continue;
209 vtd_as->context_cache_entry.context_cache_gen = 0;
212 s->context_cache_gen = 1;
215 static void vtd_reset_iotlb(IntelIOMMUState *s)
217 assert(s->iotlb);
218 g_hash_table_remove_all(s->iotlb);
221 static uint64_t vtd_get_iotlb_key(uint64_t gfn, uint16_t source_id,
222 uint32_t level)
224 return gfn | ((uint64_t)(source_id) << VTD_IOTLB_SID_SHIFT) |
225 ((uint64_t)(level) << VTD_IOTLB_LVL_SHIFT);
228 static uint64_t vtd_get_iotlb_gfn(hwaddr addr, uint32_t level)
230 return (addr & vtd_slpt_level_page_mask(level)) >> VTD_PAGE_SHIFT_4K;
233 static VTDIOTLBEntry *vtd_lookup_iotlb(IntelIOMMUState *s, uint16_t source_id,
234 hwaddr addr)
236 VTDIOTLBEntry *entry;
237 uint64_t key;
238 int level;
240 for (level = VTD_SL_PT_LEVEL; level < VTD_SL_PML4_LEVEL; level++) {
241 key = vtd_get_iotlb_key(vtd_get_iotlb_gfn(addr, level),
242 source_id, level);
243 entry = g_hash_table_lookup(s->iotlb, &key);
244 if (entry) {
245 goto out;
249 out:
250 return entry;
253 static void vtd_update_iotlb(IntelIOMMUState *s, uint16_t source_id,
254 uint16_t domain_id, hwaddr addr, uint64_t slpte,
255 bool read_flags, bool write_flags,
256 uint32_t level)
258 VTDIOTLBEntry *entry = g_malloc(sizeof(*entry));
259 uint64_t *key = g_malloc(sizeof(*key));
260 uint64_t gfn = vtd_get_iotlb_gfn(addr, level);
262 VTD_DPRINTF(CACHE, "update iotlb sid 0x%"PRIx16 " gpa 0x%"PRIx64
263 " slpte 0x%"PRIx64 " did 0x%"PRIx16, source_id, addr, slpte,
264 domain_id);
265 if (g_hash_table_size(s->iotlb) >= VTD_IOTLB_MAX_SIZE) {
266 VTD_DPRINTF(CACHE, "iotlb exceeds size limit, forced to reset");
267 vtd_reset_iotlb(s);
270 entry->gfn = gfn;
271 entry->domain_id = domain_id;
272 entry->slpte = slpte;
273 entry->read_flags = read_flags;
274 entry->write_flags = write_flags;
275 entry->mask = vtd_slpt_level_page_mask(level);
276 *key = vtd_get_iotlb_key(gfn, source_id, level);
277 g_hash_table_replace(s->iotlb, key, entry);
280 /* Given the reg addr of both the message data and address, generate an
281 * interrupt via MSI.
283 static void vtd_generate_interrupt(IntelIOMMUState *s, hwaddr mesg_addr_reg,
284 hwaddr mesg_data_reg)
286 MSIMessage msi;
288 assert(mesg_data_reg < DMAR_REG_SIZE);
289 assert(mesg_addr_reg < DMAR_REG_SIZE);
291 msi.address = vtd_get_long_raw(s, mesg_addr_reg);
292 msi.data = vtd_get_long_raw(s, mesg_data_reg);
294 VTD_DPRINTF(FLOG, "msi: addr 0x%"PRIx64 " data 0x%"PRIx32,
295 msi.address, msi.data);
296 apic_get_class()->send_msi(&msi);
299 /* Generate a fault event to software via MSI if conditions are met.
300 * Notice that the value of FSTS_REG being passed to it should be the one
301 * before any update.
303 static void vtd_generate_fault_event(IntelIOMMUState *s, uint32_t pre_fsts)
305 if (pre_fsts & VTD_FSTS_PPF || pre_fsts & VTD_FSTS_PFO ||
306 pre_fsts & VTD_FSTS_IQE) {
307 VTD_DPRINTF(FLOG, "there are previous interrupt conditions "
308 "to be serviced by software, fault event is not generated "
309 "(FSTS_REG 0x%"PRIx32 ")", pre_fsts);
310 return;
312 vtd_set_clear_mask_long(s, DMAR_FECTL_REG, 0, VTD_FECTL_IP);
313 if (vtd_get_long_raw(s, DMAR_FECTL_REG) & VTD_FECTL_IM) {
314 VTD_DPRINTF(FLOG, "Interrupt Mask set, fault event is not generated");
315 } else {
316 vtd_generate_interrupt(s, DMAR_FEADDR_REG, DMAR_FEDATA_REG);
317 vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
321 /* Check if the Fault (F) field of the Fault Recording Register referenced by
322 * @index is Set.
324 static bool vtd_is_frcd_set(IntelIOMMUState *s, uint16_t index)
326 /* Each reg is 128-bit */
327 hwaddr addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
328 addr += 8; /* Access the high 64-bit half */
330 assert(index < DMAR_FRCD_REG_NR);
332 return vtd_get_quad_raw(s, addr) & VTD_FRCD_F;
335 /* Update the PPF field of Fault Status Register.
336 * Should be called whenever change the F field of any fault recording
337 * registers.
339 static void vtd_update_fsts_ppf(IntelIOMMUState *s)
341 uint32_t i;
342 uint32_t ppf_mask = 0;
344 for (i = 0; i < DMAR_FRCD_REG_NR; i++) {
345 if (vtd_is_frcd_set(s, i)) {
346 ppf_mask = VTD_FSTS_PPF;
347 break;
350 vtd_set_clear_mask_long(s, DMAR_FSTS_REG, VTD_FSTS_PPF, ppf_mask);
351 VTD_DPRINTF(FLOG, "set PPF of FSTS_REG to %d", ppf_mask ? 1 : 0);
354 static void vtd_set_frcd_and_update_ppf(IntelIOMMUState *s, uint16_t index)
356 /* Each reg is 128-bit */
357 hwaddr addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
358 addr += 8; /* Access the high 64-bit half */
360 assert(index < DMAR_FRCD_REG_NR);
362 vtd_set_clear_mask_quad(s, addr, 0, VTD_FRCD_F);
363 vtd_update_fsts_ppf(s);
366 /* Must not update F field now, should be done later */
367 static void vtd_record_frcd(IntelIOMMUState *s, uint16_t index,
368 uint16_t source_id, hwaddr addr,
369 VTDFaultReason fault, bool is_write)
371 uint64_t hi = 0, lo;
372 hwaddr frcd_reg_addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
374 assert(index < DMAR_FRCD_REG_NR);
376 lo = VTD_FRCD_FI(addr);
377 hi = VTD_FRCD_SID(source_id) | VTD_FRCD_FR(fault);
378 if (!is_write) {
379 hi |= VTD_FRCD_T;
381 vtd_set_quad_raw(s, frcd_reg_addr, lo);
382 vtd_set_quad_raw(s, frcd_reg_addr + 8, hi);
383 VTD_DPRINTF(FLOG, "record to FRCD_REG #%"PRIu16 ": hi 0x%"PRIx64
384 ", lo 0x%"PRIx64, index, hi, lo);
387 /* Try to collapse multiple pending faults from the same requester */
388 static bool vtd_try_collapse_fault(IntelIOMMUState *s, uint16_t source_id)
390 uint32_t i;
391 uint64_t frcd_reg;
392 hwaddr addr = DMAR_FRCD_REG_OFFSET + 8; /* The high 64-bit half */
394 for (i = 0; i < DMAR_FRCD_REG_NR; i++) {
395 frcd_reg = vtd_get_quad_raw(s, addr);
396 VTD_DPRINTF(FLOG, "frcd_reg #%d 0x%"PRIx64, i, frcd_reg);
397 if ((frcd_reg & VTD_FRCD_F) &&
398 ((frcd_reg & VTD_FRCD_SID_MASK) == source_id)) {
399 return true;
401 addr += 16; /* 128-bit for each */
403 return false;
406 /* Log and report an DMAR (address translation) fault to software */
407 static void vtd_report_dmar_fault(IntelIOMMUState *s, uint16_t source_id,
408 hwaddr addr, VTDFaultReason fault,
409 bool is_write)
411 uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
413 assert(fault < VTD_FR_MAX);
415 if (fault == VTD_FR_RESERVED_ERR) {
416 /* This is not a normal fault reason case. Drop it. */
417 return;
419 VTD_DPRINTF(FLOG, "sid 0x%"PRIx16 ", fault %d, addr 0x%"PRIx64
420 ", is_write %d", source_id, fault, addr, is_write);
421 if (fsts_reg & VTD_FSTS_PFO) {
422 VTD_DPRINTF(FLOG, "new fault is not recorded due to "
423 "Primary Fault Overflow");
424 return;
426 if (vtd_try_collapse_fault(s, source_id)) {
427 VTD_DPRINTF(FLOG, "new fault is not recorded due to "
428 "compression of faults");
429 return;
431 if (vtd_is_frcd_set(s, s->next_frcd_reg)) {
432 VTD_DPRINTF(FLOG, "Primary Fault Overflow and "
433 "new fault is not recorded, set PFO field");
434 vtd_set_clear_mask_long(s, DMAR_FSTS_REG, 0, VTD_FSTS_PFO);
435 return;
438 vtd_record_frcd(s, s->next_frcd_reg, source_id, addr, fault, is_write);
440 if (fsts_reg & VTD_FSTS_PPF) {
441 VTD_DPRINTF(FLOG, "there are pending faults already, "
442 "fault event is not generated");
443 vtd_set_frcd_and_update_ppf(s, s->next_frcd_reg);
444 s->next_frcd_reg++;
445 if (s->next_frcd_reg == DMAR_FRCD_REG_NR) {
446 s->next_frcd_reg = 0;
448 } else {
449 vtd_set_clear_mask_long(s, DMAR_FSTS_REG, VTD_FSTS_FRI_MASK,
450 VTD_FSTS_FRI(s->next_frcd_reg));
451 vtd_set_frcd_and_update_ppf(s, s->next_frcd_reg); /* Will set PPF */
452 s->next_frcd_reg++;
453 if (s->next_frcd_reg == DMAR_FRCD_REG_NR) {
454 s->next_frcd_reg = 0;
456 /* This case actually cause the PPF to be Set.
457 * So generate fault event (interrupt).
459 vtd_generate_fault_event(s, fsts_reg);
463 /* Handle Invalidation Queue Errors of queued invalidation interface error
464 * conditions.
466 static void vtd_handle_inv_queue_error(IntelIOMMUState *s)
468 uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
470 vtd_set_clear_mask_long(s, DMAR_FSTS_REG, 0, VTD_FSTS_IQE);
471 vtd_generate_fault_event(s, fsts_reg);
474 /* Set the IWC field and try to generate an invalidation completion interrupt */
475 static void vtd_generate_completion_event(IntelIOMMUState *s)
477 VTD_DPRINTF(INV, "completes an invalidation wait command with "
478 "Interrupt Flag");
479 if (vtd_get_long_raw(s, DMAR_ICS_REG) & VTD_ICS_IWC) {
480 VTD_DPRINTF(INV, "there is a previous interrupt condition to be "
481 "serviced by software, "
482 "new invalidation event is not generated");
483 return;
485 vtd_set_clear_mask_long(s, DMAR_ICS_REG, 0, VTD_ICS_IWC);
486 vtd_set_clear_mask_long(s, DMAR_IECTL_REG, 0, VTD_IECTL_IP);
487 if (vtd_get_long_raw(s, DMAR_IECTL_REG) & VTD_IECTL_IM) {
488 VTD_DPRINTF(INV, "IM filed in IECTL_REG is set, new invalidation "
489 "event is not generated");
490 return;
491 } else {
492 /* Generate the interrupt event */
493 vtd_generate_interrupt(s, DMAR_IEADDR_REG, DMAR_IEDATA_REG);
494 vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
498 static inline bool vtd_root_entry_present(VTDRootEntry *root)
500 return root->val & VTD_ROOT_ENTRY_P;
503 static int vtd_get_root_entry(IntelIOMMUState *s, uint8_t index,
504 VTDRootEntry *re)
506 dma_addr_t addr;
508 addr = s->root + index * sizeof(*re);
509 if (dma_memory_read(&address_space_memory, addr, re, sizeof(*re))) {
510 VTD_DPRINTF(GENERAL, "error: fail to access root-entry at 0x%"PRIx64
511 " + %"PRIu8, s->root, index);
512 re->val = 0;
513 return -VTD_FR_ROOT_TABLE_INV;
515 re->val = le64_to_cpu(re->val);
516 return 0;
519 static inline bool vtd_context_entry_present(VTDContextEntry *context)
521 return context->lo & VTD_CONTEXT_ENTRY_P;
524 static int vtd_get_context_entry_from_root(VTDRootEntry *root, uint8_t index,
525 VTDContextEntry *ce)
527 dma_addr_t addr;
529 if (!vtd_root_entry_present(root)) {
530 VTD_DPRINTF(GENERAL, "error: root-entry is not present");
531 return -VTD_FR_ROOT_ENTRY_P;
533 addr = (root->val & VTD_ROOT_ENTRY_CTP) + index * sizeof(*ce);
534 if (dma_memory_read(&address_space_memory, addr, ce, sizeof(*ce))) {
535 VTD_DPRINTF(GENERAL, "error: fail to access context-entry at 0x%"PRIx64
536 " + %"PRIu8,
537 (uint64_t)(root->val & VTD_ROOT_ENTRY_CTP), index);
538 return -VTD_FR_CONTEXT_TABLE_INV;
540 ce->lo = le64_to_cpu(ce->lo);
541 ce->hi = le64_to_cpu(ce->hi);
542 return 0;
545 static inline dma_addr_t vtd_get_slpt_base_from_context(VTDContextEntry *ce)
547 return ce->lo & VTD_CONTEXT_ENTRY_SLPTPTR;
550 static inline uint64_t vtd_get_slpte_addr(uint64_t slpte)
552 return slpte & VTD_SL_PT_BASE_ADDR_MASK;
555 /* Whether the pte indicates the address of the page frame */
556 static inline bool vtd_is_last_slpte(uint64_t slpte, uint32_t level)
558 return level == VTD_SL_PT_LEVEL || (slpte & VTD_SL_PT_PAGE_SIZE_MASK);
561 /* Get the content of a spte located in @base_addr[@index] */
562 static uint64_t vtd_get_slpte(dma_addr_t base_addr, uint32_t index)
564 uint64_t slpte;
566 assert(index < VTD_SL_PT_ENTRY_NR);
568 if (dma_memory_read(&address_space_memory,
569 base_addr + index * sizeof(slpte), &slpte,
570 sizeof(slpte))) {
571 slpte = (uint64_t)-1;
572 return slpte;
574 slpte = le64_to_cpu(slpte);
575 return slpte;
578 /* Given a gpa and the level of paging structure, return the offset of current
579 * level.
581 static inline uint32_t vtd_gpa_level_offset(uint64_t gpa, uint32_t level)
583 return (gpa >> vtd_slpt_level_shift(level)) &
584 ((1ULL << VTD_SL_LEVEL_BITS) - 1);
587 /* Check Capability Register to see if the @level of page-table is supported */
588 static inline bool vtd_is_level_supported(IntelIOMMUState *s, uint32_t level)
590 return VTD_CAP_SAGAW_MASK & s->cap &
591 (1ULL << (level - 2 + VTD_CAP_SAGAW_SHIFT));
594 /* Get the page-table level that hardware should use for the second-level
595 * page-table walk from the Address Width field of context-entry.
597 static inline uint32_t vtd_get_level_from_context_entry(VTDContextEntry *ce)
599 return 2 + (ce->hi & VTD_CONTEXT_ENTRY_AW);
602 static inline uint32_t vtd_get_agaw_from_context_entry(VTDContextEntry *ce)
604 return 30 + (ce->hi & VTD_CONTEXT_ENTRY_AW) * 9;
607 static const uint64_t vtd_paging_entry_rsvd_field[] = {
608 [0] = ~0ULL,
609 /* For not large page */
610 [1] = 0x800ULL | ~(VTD_HAW_MASK | VTD_SL_IGN_COM),
611 [2] = 0x800ULL | ~(VTD_HAW_MASK | VTD_SL_IGN_COM),
612 [3] = 0x800ULL | ~(VTD_HAW_MASK | VTD_SL_IGN_COM),
613 [4] = 0x880ULL | ~(VTD_HAW_MASK | VTD_SL_IGN_COM),
614 /* For large page */
615 [5] = 0x800ULL | ~(VTD_HAW_MASK | VTD_SL_IGN_COM),
616 [6] = 0x1ff800ULL | ~(VTD_HAW_MASK | VTD_SL_IGN_COM),
617 [7] = 0x3ffff800ULL | ~(VTD_HAW_MASK | VTD_SL_IGN_COM),
618 [8] = 0x880ULL | ~(VTD_HAW_MASK | VTD_SL_IGN_COM),
621 static bool vtd_slpte_nonzero_rsvd(uint64_t slpte, uint32_t level)
623 if (slpte & VTD_SL_PT_PAGE_SIZE_MASK) {
624 /* Maybe large page */
625 return slpte & vtd_paging_entry_rsvd_field[level + 4];
626 } else {
627 return slpte & vtd_paging_entry_rsvd_field[level];
631 /* Given the @gpa, get relevant @slptep. @slpte_level will be the last level
632 * of the translation, can be used for deciding the size of large page.
634 static int vtd_gpa_to_slpte(VTDContextEntry *ce, uint64_t gpa, bool is_write,
635 uint64_t *slptep, uint32_t *slpte_level,
636 bool *reads, bool *writes)
638 dma_addr_t addr = vtd_get_slpt_base_from_context(ce);
639 uint32_t level = vtd_get_level_from_context_entry(ce);
640 uint32_t offset;
641 uint64_t slpte;
642 uint32_t ce_agaw = vtd_get_agaw_from_context_entry(ce);
643 uint64_t access_right_check;
645 /* Check if @gpa is above 2^X-1, where X is the minimum of MGAW in CAP_REG
646 * and AW in context-entry.
648 if (gpa & ~((1ULL << MIN(ce_agaw, VTD_MGAW)) - 1)) {
649 VTD_DPRINTF(GENERAL, "error: gpa 0x%"PRIx64 " exceeds limits", gpa);
650 return -VTD_FR_ADDR_BEYOND_MGAW;
653 /* FIXME: what is the Atomics request here? */
654 access_right_check = is_write ? VTD_SL_W : VTD_SL_R;
656 while (true) {
657 offset = vtd_gpa_level_offset(gpa, level);
658 slpte = vtd_get_slpte(addr, offset);
660 if (slpte == (uint64_t)-1) {
661 VTD_DPRINTF(GENERAL, "error: fail to access second-level paging "
662 "entry at level %"PRIu32 " for gpa 0x%"PRIx64,
663 level, gpa);
664 if (level == vtd_get_level_from_context_entry(ce)) {
665 /* Invalid programming of context-entry */
666 return -VTD_FR_CONTEXT_ENTRY_INV;
667 } else {
668 return -VTD_FR_PAGING_ENTRY_INV;
671 *reads = (*reads) && (slpte & VTD_SL_R);
672 *writes = (*writes) && (slpte & VTD_SL_W);
673 if (!(slpte & access_right_check)) {
674 VTD_DPRINTF(GENERAL, "error: lack of %s permission for "
675 "gpa 0x%"PRIx64 " slpte 0x%"PRIx64,
676 (is_write ? "write" : "read"), gpa, slpte);
677 return is_write ? -VTD_FR_WRITE : -VTD_FR_READ;
679 if (vtd_slpte_nonzero_rsvd(slpte, level)) {
680 VTD_DPRINTF(GENERAL, "error: non-zero reserved field in second "
681 "level paging entry level %"PRIu32 " slpte 0x%"PRIx64,
682 level, slpte);
683 return -VTD_FR_PAGING_ENTRY_RSVD;
686 if (vtd_is_last_slpte(slpte, level)) {
687 *slptep = slpte;
688 *slpte_level = level;
689 return 0;
691 addr = vtd_get_slpte_addr(slpte);
692 level--;
696 /* Map a device to its corresponding domain (context-entry) */
697 static int vtd_dev_to_context_entry(IntelIOMMUState *s, uint8_t bus_num,
698 uint8_t devfn, VTDContextEntry *ce)
700 VTDRootEntry re;
701 int ret_fr;
703 ret_fr = vtd_get_root_entry(s, bus_num, &re);
704 if (ret_fr) {
705 return ret_fr;
708 if (!vtd_root_entry_present(&re)) {
709 VTD_DPRINTF(GENERAL, "error: root-entry #%"PRIu8 " is not present",
710 bus_num);
711 return -VTD_FR_ROOT_ENTRY_P;
712 } else if (re.rsvd || (re.val & VTD_ROOT_ENTRY_RSVD)) {
713 VTD_DPRINTF(GENERAL, "error: non-zero reserved field in root-entry "
714 "hi 0x%"PRIx64 " lo 0x%"PRIx64, re.rsvd, re.val);
715 return -VTD_FR_ROOT_ENTRY_RSVD;
718 ret_fr = vtd_get_context_entry_from_root(&re, devfn, ce);
719 if (ret_fr) {
720 return ret_fr;
723 if (!vtd_context_entry_present(ce)) {
724 VTD_DPRINTF(GENERAL,
725 "error: context-entry #%"PRIu8 "(bus #%"PRIu8 ") "
726 "is not present", devfn, bus_num);
727 return -VTD_FR_CONTEXT_ENTRY_P;
728 } else if ((ce->hi & VTD_CONTEXT_ENTRY_RSVD_HI) ||
729 (ce->lo & VTD_CONTEXT_ENTRY_RSVD_LO)) {
730 VTD_DPRINTF(GENERAL,
731 "error: non-zero reserved field in context-entry "
732 "hi 0x%"PRIx64 " lo 0x%"PRIx64, ce->hi, ce->lo);
733 return -VTD_FR_CONTEXT_ENTRY_RSVD;
735 /* Check if the programming of context-entry is valid */
736 if (!vtd_is_level_supported(s, vtd_get_level_from_context_entry(ce))) {
737 VTD_DPRINTF(GENERAL, "error: unsupported Address Width value in "
738 "context-entry hi 0x%"PRIx64 " lo 0x%"PRIx64,
739 ce->hi, ce->lo);
740 return -VTD_FR_CONTEXT_ENTRY_INV;
741 } else if (ce->lo & VTD_CONTEXT_ENTRY_TT) {
742 VTD_DPRINTF(GENERAL, "error: unsupported Translation Type in "
743 "context-entry hi 0x%"PRIx64 " lo 0x%"PRIx64,
744 ce->hi, ce->lo);
745 return -VTD_FR_CONTEXT_ENTRY_INV;
747 return 0;
750 static inline uint16_t vtd_make_source_id(uint8_t bus_num, uint8_t devfn)
752 return ((bus_num & 0xffUL) << 8) | (devfn & 0xffUL);
755 static const bool vtd_qualified_faults[] = {
756 [VTD_FR_RESERVED] = false,
757 [VTD_FR_ROOT_ENTRY_P] = false,
758 [VTD_FR_CONTEXT_ENTRY_P] = true,
759 [VTD_FR_CONTEXT_ENTRY_INV] = true,
760 [VTD_FR_ADDR_BEYOND_MGAW] = true,
761 [VTD_FR_WRITE] = true,
762 [VTD_FR_READ] = true,
763 [VTD_FR_PAGING_ENTRY_INV] = true,
764 [VTD_FR_ROOT_TABLE_INV] = false,
765 [VTD_FR_CONTEXT_TABLE_INV] = false,
766 [VTD_FR_ROOT_ENTRY_RSVD] = false,
767 [VTD_FR_PAGING_ENTRY_RSVD] = true,
768 [VTD_FR_CONTEXT_ENTRY_TT] = true,
769 [VTD_FR_RESERVED_ERR] = false,
770 [VTD_FR_MAX] = false,
773 /* To see if a fault condition is "qualified", which is reported to software
774 * only if the FPD field in the context-entry used to process the faulting
775 * request is 0.
777 static inline bool vtd_is_qualified_fault(VTDFaultReason fault)
779 return vtd_qualified_faults[fault];
782 static inline bool vtd_is_interrupt_addr(hwaddr addr)
784 return VTD_INTERRUPT_ADDR_FIRST <= addr && addr <= VTD_INTERRUPT_ADDR_LAST;
787 /* Map dev to context-entry then do a paging-structures walk to do a iommu
788 * translation.
790 * Called from RCU critical section.
792 * @bus_num: The bus number
793 * @devfn: The devfn, which is the combined of device and function number
794 * @is_write: The access is a write operation
795 * @entry: IOMMUTLBEntry that contain the addr to be translated and result
797 static void vtd_do_iommu_translate(VTDAddressSpace *vtd_as, PCIBus *bus,
798 uint8_t devfn, hwaddr addr, bool is_write,
799 IOMMUTLBEntry *entry)
801 IntelIOMMUState *s = vtd_as->iommu_state;
802 VTDContextEntry ce;
803 uint8_t bus_num = pci_bus_num(bus);
804 VTDContextCacheEntry *cc_entry = &vtd_as->context_cache_entry;
805 uint64_t slpte, page_mask;
806 uint32_t level;
807 uint16_t source_id = vtd_make_source_id(bus_num, devfn);
808 int ret_fr;
809 bool is_fpd_set = false;
810 bool reads = true;
811 bool writes = true;
812 VTDIOTLBEntry *iotlb_entry;
814 /* Check if the request is in interrupt address range */
815 if (vtd_is_interrupt_addr(addr)) {
816 if (is_write) {
817 /* FIXME: since we don't know the length of the access here, we
818 * treat Non-DWORD length write requests without PASID as
819 * interrupt requests, too. Withoud interrupt remapping support,
820 * we just use 1:1 mapping.
822 VTD_DPRINTF(MMU, "write request to interrupt address "
823 "gpa 0x%"PRIx64, addr);
824 entry->iova = addr & VTD_PAGE_MASK_4K;
825 entry->translated_addr = addr & VTD_PAGE_MASK_4K;
826 entry->addr_mask = ~VTD_PAGE_MASK_4K;
827 entry->perm = IOMMU_WO;
828 return;
829 } else {
830 VTD_DPRINTF(GENERAL, "error: read request from interrupt address "
831 "gpa 0x%"PRIx64, addr);
832 vtd_report_dmar_fault(s, source_id, addr, VTD_FR_READ, is_write);
833 return;
836 /* Try to fetch slpte form IOTLB */
837 iotlb_entry = vtd_lookup_iotlb(s, source_id, addr);
838 if (iotlb_entry) {
839 VTD_DPRINTF(CACHE, "hit iotlb sid 0x%"PRIx16 " gpa 0x%"PRIx64
840 " slpte 0x%"PRIx64 " did 0x%"PRIx16, source_id, addr,
841 iotlb_entry->slpte, iotlb_entry->domain_id);
842 slpte = iotlb_entry->slpte;
843 reads = iotlb_entry->read_flags;
844 writes = iotlb_entry->write_flags;
845 page_mask = iotlb_entry->mask;
846 goto out;
848 /* Try to fetch context-entry from cache first */
849 if (cc_entry->context_cache_gen == s->context_cache_gen) {
850 VTD_DPRINTF(CACHE, "hit context-cache bus %d devfn %d "
851 "(hi %"PRIx64 " lo %"PRIx64 " gen %"PRIu32 ")",
852 bus_num, devfn, cc_entry->context_entry.hi,
853 cc_entry->context_entry.lo, cc_entry->context_cache_gen);
854 ce = cc_entry->context_entry;
855 is_fpd_set = ce.lo & VTD_CONTEXT_ENTRY_FPD;
856 } else {
857 ret_fr = vtd_dev_to_context_entry(s, bus_num, devfn, &ce);
858 is_fpd_set = ce.lo & VTD_CONTEXT_ENTRY_FPD;
859 if (ret_fr) {
860 ret_fr = -ret_fr;
861 if (is_fpd_set && vtd_is_qualified_fault(ret_fr)) {
862 VTD_DPRINTF(FLOG, "fault processing is disabled for DMA "
863 "requests through this context-entry "
864 "(with FPD Set)");
865 } else {
866 vtd_report_dmar_fault(s, source_id, addr, ret_fr, is_write);
868 return;
870 /* Update context-cache */
871 VTD_DPRINTF(CACHE, "update context-cache bus %d devfn %d "
872 "(hi %"PRIx64 " lo %"PRIx64 " gen %"PRIu32 "->%"PRIu32 ")",
873 bus_num, devfn, ce.hi, ce.lo,
874 cc_entry->context_cache_gen, s->context_cache_gen);
875 cc_entry->context_entry = ce;
876 cc_entry->context_cache_gen = s->context_cache_gen;
879 ret_fr = vtd_gpa_to_slpte(&ce, addr, is_write, &slpte, &level,
880 &reads, &writes);
881 if (ret_fr) {
882 ret_fr = -ret_fr;
883 if (is_fpd_set && vtd_is_qualified_fault(ret_fr)) {
884 VTD_DPRINTF(FLOG, "fault processing is disabled for DMA requests "
885 "through this context-entry (with FPD Set)");
886 } else {
887 vtd_report_dmar_fault(s, source_id, addr, ret_fr, is_write);
889 return;
892 page_mask = vtd_slpt_level_page_mask(level);
893 vtd_update_iotlb(s, source_id, VTD_CONTEXT_ENTRY_DID(ce.hi), addr, slpte,
894 reads, writes, level);
895 out:
896 entry->iova = addr & page_mask;
897 entry->translated_addr = vtd_get_slpte_addr(slpte) & page_mask;
898 entry->addr_mask = ~page_mask;
899 entry->perm = (writes ? 2 : 0) + (reads ? 1 : 0);
902 static void vtd_root_table_setup(IntelIOMMUState *s)
904 s->root = vtd_get_quad_raw(s, DMAR_RTADDR_REG);
905 s->root_extended = s->root & VTD_RTADDR_RTT;
906 s->root &= VTD_RTADDR_ADDR_MASK;
908 VTD_DPRINTF(CSR, "root_table addr 0x%"PRIx64 " %s", s->root,
909 (s->root_extended ? "(extended)" : ""));
912 static void vtd_iec_notify_all(IntelIOMMUState *s, bool global,
913 uint32_t index, uint32_t mask)
915 x86_iommu_iec_notify_all(X86_IOMMU_DEVICE(s), global, index, mask);
918 static void vtd_interrupt_remap_table_setup(IntelIOMMUState *s)
920 uint64_t value = 0;
921 value = vtd_get_quad_raw(s, DMAR_IRTA_REG);
922 s->intr_size = 1UL << ((value & VTD_IRTA_SIZE_MASK) + 1);
923 s->intr_root = value & VTD_IRTA_ADDR_MASK;
924 s->intr_eime = value & VTD_IRTA_EIME;
926 /* Notify global invalidation */
927 vtd_iec_notify_all(s, true, 0, 0);
929 VTD_DPRINTF(CSR, "int remap table addr 0x%"PRIx64 " size %"PRIu32,
930 s->intr_root, s->intr_size);
933 static void vtd_context_global_invalidate(IntelIOMMUState *s)
935 s->context_cache_gen++;
936 if (s->context_cache_gen == VTD_CONTEXT_CACHE_GEN_MAX) {
937 vtd_reset_context_cache(s);
942 /* Find the VTD address space currently associated with a given bus number,
944 static VTDBus *vtd_find_as_from_bus_num(IntelIOMMUState *s, uint8_t bus_num)
946 VTDBus *vtd_bus = s->vtd_as_by_bus_num[bus_num];
947 if (!vtd_bus) {
948 /* Iterate over the registered buses to find the one
949 * which currently hold this bus number, and update the bus_num lookup table:
951 GHashTableIter iter;
953 g_hash_table_iter_init(&iter, s->vtd_as_by_busptr);
954 while (g_hash_table_iter_next (&iter, NULL, (void**)&vtd_bus)) {
955 if (pci_bus_num(vtd_bus->bus) == bus_num) {
956 s->vtd_as_by_bus_num[bus_num] = vtd_bus;
957 return vtd_bus;
961 return vtd_bus;
964 /* Do a context-cache device-selective invalidation.
965 * @func_mask: FM field after shifting
967 static void vtd_context_device_invalidate(IntelIOMMUState *s,
968 uint16_t source_id,
969 uint16_t func_mask)
971 uint16_t mask;
972 VTDBus *vtd_bus;
973 VTDAddressSpace *vtd_as;
974 uint16_t devfn;
975 uint16_t devfn_it;
977 switch (func_mask & 3) {
978 case 0:
979 mask = 0; /* No bits in the SID field masked */
980 break;
981 case 1:
982 mask = 4; /* Mask bit 2 in the SID field */
983 break;
984 case 2:
985 mask = 6; /* Mask bit 2:1 in the SID field */
986 break;
987 case 3:
988 mask = 7; /* Mask bit 2:0 in the SID field */
989 break;
991 mask = ~mask;
992 VTD_DPRINTF(INV, "device-selective invalidation source 0x%"PRIx16
993 " mask %"PRIu16, source_id, mask);
994 vtd_bus = vtd_find_as_from_bus_num(s, VTD_SID_TO_BUS(source_id));
995 if (vtd_bus) {
996 devfn = VTD_SID_TO_DEVFN(source_id);
997 for (devfn_it = 0; devfn_it < X86_IOMMU_PCI_DEVFN_MAX; ++devfn_it) {
998 vtd_as = vtd_bus->dev_as[devfn_it];
999 if (vtd_as && ((devfn_it & mask) == (devfn & mask))) {
1000 VTD_DPRINTF(INV, "invalidate context-cahce of devfn 0x%"PRIx16,
1001 devfn_it);
1002 vtd_as->context_cache_entry.context_cache_gen = 0;
1008 /* Context-cache invalidation
1009 * Returns the Context Actual Invalidation Granularity.
1010 * @val: the content of the CCMD_REG
1012 static uint64_t vtd_context_cache_invalidate(IntelIOMMUState *s, uint64_t val)
1014 uint64_t caig;
1015 uint64_t type = val & VTD_CCMD_CIRG_MASK;
1017 switch (type) {
1018 case VTD_CCMD_DOMAIN_INVL:
1019 VTD_DPRINTF(INV, "domain-selective invalidation domain 0x%"PRIx16,
1020 (uint16_t)VTD_CCMD_DID(val));
1021 /* Fall through */
1022 case VTD_CCMD_GLOBAL_INVL:
1023 VTD_DPRINTF(INV, "global invalidation");
1024 caig = VTD_CCMD_GLOBAL_INVL_A;
1025 vtd_context_global_invalidate(s);
1026 break;
1028 case VTD_CCMD_DEVICE_INVL:
1029 caig = VTD_CCMD_DEVICE_INVL_A;
1030 vtd_context_device_invalidate(s, VTD_CCMD_SID(val), VTD_CCMD_FM(val));
1031 break;
1033 default:
1034 VTD_DPRINTF(GENERAL, "error: invalid granularity");
1035 caig = 0;
1037 return caig;
1040 static void vtd_iotlb_global_invalidate(IntelIOMMUState *s)
1042 vtd_reset_iotlb(s);
1045 static void vtd_iotlb_domain_invalidate(IntelIOMMUState *s, uint16_t domain_id)
1047 g_hash_table_foreach_remove(s->iotlb, vtd_hash_remove_by_domain,
1048 &domain_id);
1051 static void vtd_iotlb_page_invalidate(IntelIOMMUState *s, uint16_t domain_id,
1052 hwaddr addr, uint8_t am)
1054 VTDIOTLBPageInvInfo info;
1056 assert(am <= VTD_MAMV);
1057 info.domain_id = domain_id;
1058 info.addr = addr;
1059 info.mask = ~((1 << am) - 1);
1060 g_hash_table_foreach_remove(s->iotlb, vtd_hash_remove_by_page, &info);
1063 /* Flush IOTLB
1064 * Returns the IOTLB Actual Invalidation Granularity.
1065 * @val: the content of the IOTLB_REG
1067 static uint64_t vtd_iotlb_flush(IntelIOMMUState *s, uint64_t val)
1069 uint64_t iaig;
1070 uint64_t type = val & VTD_TLB_FLUSH_GRANU_MASK;
1071 uint16_t domain_id;
1072 hwaddr addr;
1073 uint8_t am;
1075 switch (type) {
1076 case VTD_TLB_GLOBAL_FLUSH:
1077 VTD_DPRINTF(INV, "global invalidation");
1078 iaig = VTD_TLB_GLOBAL_FLUSH_A;
1079 vtd_iotlb_global_invalidate(s);
1080 break;
1082 case VTD_TLB_DSI_FLUSH:
1083 domain_id = VTD_TLB_DID(val);
1084 VTD_DPRINTF(INV, "domain-selective invalidation domain 0x%"PRIx16,
1085 domain_id);
1086 iaig = VTD_TLB_DSI_FLUSH_A;
1087 vtd_iotlb_domain_invalidate(s, domain_id);
1088 break;
1090 case VTD_TLB_PSI_FLUSH:
1091 domain_id = VTD_TLB_DID(val);
1092 addr = vtd_get_quad_raw(s, DMAR_IVA_REG);
1093 am = VTD_IVA_AM(addr);
1094 addr = VTD_IVA_ADDR(addr);
1095 VTD_DPRINTF(INV, "page-selective invalidation domain 0x%"PRIx16
1096 " addr 0x%"PRIx64 " mask %"PRIu8, domain_id, addr, am);
1097 if (am > VTD_MAMV) {
1098 VTD_DPRINTF(GENERAL, "error: supported max address mask value is "
1099 "%"PRIu8, (uint8_t)VTD_MAMV);
1100 iaig = 0;
1101 break;
1103 iaig = VTD_TLB_PSI_FLUSH_A;
1104 vtd_iotlb_page_invalidate(s, domain_id, addr, am);
1105 break;
1107 default:
1108 VTD_DPRINTF(GENERAL, "error: invalid granularity");
1109 iaig = 0;
1111 return iaig;
1114 static inline bool vtd_queued_inv_enable_check(IntelIOMMUState *s)
1116 return s->iq_tail == 0;
1119 static inline bool vtd_queued_inv_disable_check(IntelIOMMUState *s)
1121 return s->qi_enabled && (s->iq_tail == s->iq_head) &&
1122 (s->iq_last_desc_type == VTD_INV_DESC_WAIT);
1125 static void vtd_handle_gcmd_qie(IntelIOMMUState *s, bool en)
1127 uint64_t iqa_val = vtd_get_quad_raw(s, DMAR_IQA_REG);
1129 VTD_DPRINTF(INV, "Queued Invalidation Enable %s", (en ? "on" : "off"));
1130 if (en) {
1131 if (vtd_queued_inv_enable_check(s)) {
1132 s->iq = iqa_val & VTD_IQA_IQA_MASK;
1133 /* 2^(x+8) entries */
1134 s->iq_size = 1UL << ((iqa_val & VTD_IQA_QS) + 8);
1135 s->qi_enabled = true;
1136 VTD_DPRINTF(INV, "DMAR_IQA_REG 0x%"PRIx64, iqa_val);
1137 VTD_DPRINTF(INV, "Invalidation Queue addr 0x%"PRIx64 " size %d",
1138 s->iq, s->iq_size);
1139 /* Ok - report back to driver */
1140 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_QIES);
1141 } else {
1142 VTD_DPRINTF(GENERAL, "error: can't enable Queued Invalidation: "
1143 "tail %"PRIu16, s->iq_tail);
1145 } else {
1146 if (vtd_queued_inv_disable_check(s)) {
1147 /* disable Queued Invalidation */
1148 vtd_set_quad_raw(s, DMAR_IQH_REG, 0);
1149 s->iq_head = 0;
1150 s->qi_enabled = false;
1151 /* Ok - report back to driver */
1152 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_QIES, 0);
1153 } else {
1154 VTD_DPRINTF(GENERAL, "error: can't disable Queued Invalidation: "
1155 "head %"PRIu16 ", tail %"PRIu16
1156 ", last_descriptor %"PRIu8,
1157 s->iq_head, s->iq_tail, s->iq_last_desc_type);
1162 /* Set Root Table Pointer */
1163 static void vtd_handle_gcmd_srtp(IntelIOMMUState *s)
1165 VTD_DPRINTF(CSR, "set Root Table Pointer");
1167 vtd_root_table_setup(s);
1168 /* Ok - report back to driver */
1169 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_RTPS);
1172 /* Set Interrupt Remap Table Pointer */
1173 static void vtd_handle_gcmd_sirtp(IntelIOMMUState *s)
1175 VTD_DPRINTF(CSR, "set Interrupt Remap Table Pointer");
1177 vtd_interrupt_remap_table_setup(s);
1178 /* Ok - report back to driver */
1179 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_IRTPS);
1182 /* Handle Translation Enable/Disable */
1183 static void vtd_handle_gcmd_te(IntelIOMMUState *s, bool en)
1185 VTD_DPRINTF(CSR, "Translation Enable %s", (en ? "on" : "off"));
1187 if (en) {
1188 s->dmar_enabled = true;
1189 /* Ok - report back to driver */
1190 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_TES);
1191 } else {
1192 s->dmar_enabled = false;
1194 /* Clear the index of Fault Recording Register */
1195 s->next_frcd_reg = 0;
1196 /* Ok - report back to driver */
1197 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_TES, 0);
1201 /* Handle Interrupt Remap Enable/Disable */
1202 static void vtd_handle_gcmd_ire(IntelIOMMUState *s, bool en)
1204 VTD_DPRINTF(CSR, "Interrupt Remap Enable %s", (en ? "on" : "off"));
1206 if (en) {
1207 s->intr_enabled = true;
1208 /* Ok - report back to driver */
1209 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_IRES);
1210 } else {
1211 s->intr_enabled = false;
1212 /* Ok - report back to driver */
1213 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_IRES, 0);
1217 /* Handle write to Global Command Register */
1218 static void vtd_handle_gcmd_write(IntelIOMMUState *s)
1220 uint32_t status = vtd_get_long_raw(s, DMAR_GSTS_REG);
1221 uint32_t val = vtd_get_long_raw(s, DMAR_GCMD_REG);
1222 uint32_t changed = status ^ val;
1224 VTD_DPRINTF(CSR, "value 0x%"PRIx32 " status 0x%"PRIx32, val, status);
1225 if (changed & VTD_GCMD_TE) {
1226 /* Translation enable/disable */
1227 vtd_handle_gcmd_te(s, val & VTD_GCMD_TE);
1229 if (val & VTD_GCMD_SRTP) {
1230 /* Set/update the root-table pointer */
1231 vtd_handle_gcmd_srtp(s);
1233 if (changed & VTD_GCMD_QIE) {
1234 /* Queued Invalidation Enable */
1235 vtd_handle_gcmd_qie(s, val & VTD_GCMD_QIE);
1237 if (val & VTD_GCMD_SIRTP) {
1238 /* Set/update the interrupt remapping root-table pointer */
1239 vtd_handle_gcmd_sirtp(s);
1241 if (changed & VTD_GCMD_IRE) {
1242 /* Interrupt remap enable/disable */
1243 vtd_handle_gcmd_ire(s, val & VTD_GCMD_IRE);
1247 /* Handle write to Context Command Register */
1248 static void vtd_handle_ccmd_write(IntelIOMMUState *s)
1250 uint64_t ret;
1251 uint64_t val = vtd_get_quad_raw(s, DMAR_CCMD_REG);
1253 /* Context-cache invalidation request */
1254 if (val & VTD_CCMD_ICC) {
1255 if (s->qi_enabled) {
1256 VTD_DPRINTF(GENERAL, "error: Queued Invalidation enabled, "
1257 "should not use register-based invalidation");
1258 return;
1260 ret = vtd_context_cache_invalidate(s, val);
1261 /* Invalidation completed. Change something to show */
1262 vtd_set_clear_mask_quad(s, DMAR_CCMD_REG, VTD_CCMD_ICC, 0ULL);
1263 ret = vtd_set_clear_mask_quad(s, DMAR_CCMD_REG, VTD_CCMD_CAIG_MASK,
1264 ret);
1265 VTD_DPRINTF(INV, "CCMD_REG write-back val: 0x%"PRIx64, ret);
1269 /* Handle write to IOTLB Invalidation Register */
1270 static void vtd_handle_iotlb_write(IntelIOMMUState *s)
1272 uint64_t ret;
1273 uint64_t val = vtd_get_quad_raw(s, DMAR_IOTLB_REG);
1275 /* IOTLB invalidation request */
1276 if (val & VTD_TLB_IVT) {
1277 if (s->qi_enabled) {
1278 VTD_DPRINTF(GENERAL, "error: Queued Invalidation enabled, "
1279 "should not use register-based invalidation");
1280 return;
1282 ret = vtd_iotlb_flush(s, val);
1283 /* Invalidation completed. Change something to show */
1284 vtd_set_clear_mask_quad(s, DMAR_IOTLB_REG, VTD_TLB_IVT, 0ULL);
1285 ret = vtd_set_clear_mask_quad(s, DMAR_IOTLB_REG,
1286 VTD_TLB_FLUSH_GRANU_MASK_A, ret);
1287 VTD_DPRINTF(INV, "IOTLB_REG write-back val: 0x%"PRIx64, ret);
1291 /* Fetch an Invalidation Descriptor from the Invalidation Queue */
1292 static bool vtd_get_inv_desc(dma_addr_t base_addr, uint32_t offset,
1293 VTDInvDesc *inv_desc)
1295 dma_addr_t addr = base_addr + offset * sizeof(*inv_desc);
1296 if (dma_memory_read(&address_space_memory, addr, inv_desc,
1297 sizeof(*inv_desc))) {
1298 VTD_DPRINTF(GENERAL, "error: fail to fetch Invalidation Descriptor "
1299 "base_addr 0x%"PRIx64 " offset %"PRIu32, base_addr, offset);
1300 inv_desc->lo = 0;
1301 inv_desc->hi = 0;
1303 return false;
1305 inv_desc->lo = le64_to_cpu(inv_desc->lo);
1306 inv_desc->hi = le64_to_cpu(inv_desc->hi);
1307 return true;
1310 static bool vtd_process_wait_desc(IntelIOMMUState *s, VTDInvDesc *inv_desc)
1312 if ((inv_desc->hi & VTD_INV_DESC_WAIT_RSVD_HI) ||
1313 (inv_desc->lo & VTD_INV_DESC_WAIT_RSVD_LO)) {
1314 VTD_DPRINTF(GENERAL, "error: non-zero reserved field in Invalidation "
1315 "Wait Descriptor hi 0x%"PRIx64 " lo 0x%"PRIx64,
1316 inv_desc->hi, inv_desc->lo);
1317 return false;
1319 if (inv_desc->lo & VTD_INV_DESC_WAIT_SW) {
1320 /* Status Write */
1321 uint32_t status_data = (uint32_t)(inv_desc->lo >>
1322 VTD_INV_DESC_WAIT_DATA_SHIFT);
1324 assert(!(inv_desc->lo & VTD_INV_DESC_WAIT_IF));
1326 /* FIXME: need to be masked with HAW? */
1327 dma_addr_t status_addr = inv_desc->hi;
1328 VTD_DPRINTF(INV, "status data 0x%x, status addr 0x%"PRIx64,
1329 status_data, status_addr);
1330 status_data = cpu_to_le32(status_data);
1331 if (dma_memory_write(&address_space_memory, status_addr, &status_data,
1332 sizeof(status_data))) {
1333 VTD_DPRINTF(GENERAL, "error: fail to perform a coherent write");
1334 return false;
1336 } else if (inv_desc->lo & VTD_INV_DESC_WAIT_IF) {
1337 /* Interrupt flag */
1338 VTD_DPRINTF(INV, "Invalidation Wait Descriptor interrupt completion");
1339 vtd_generate_completion_event(s);
1340 } else {
1341 VTD_DPRINTF(GENERAL, "error: invalid Invalidation Wait Descriptor: "
1342 "hi 0x%"PRIx64 " lo 0x%"PRIx64, inv_desc->hi, inv_desc->lo);
1343 return false;
1345 return true;
1348 static bool vtd_process_context_cache_desc(IntelIOMMUState *s,
1349 VTDInvDesc *inv_desc)
1351 if ((inv_desc->lo & VTD_INV_DESC_CC_RSVD) || inv_desc->hi) {
1352 VTD_DPRINTF(GENERAL, "error: non-zero reserved field in Context-cache "
1353 "Invalidate Descriptor");
1354 return false;
1356 switch (inv_desc->lo & VTD_INV_DESC_CC_G) {
1357 case VTD_INV_DESC_CC_DOMAIN:
1358 VTD_DPRINTF(INV, "domain-selective invalidation domain 0x%"PRIx16,
1359 (uint16_t)VTD_INV_DESC_CC_DID(inv_desc->lo));
1360 /* Fall through */
1361 case VTD_INV_DESC_CC_GLOBAL:
1362 VTD_DPRINTF(INV, "global invalidation");
1363 vtd_context_global_invalidate(s);
1364 break;
1366 case VTD_INV_DESC_CC_DEVICE:
1367 vtd_context_device_invalidate(s, VTD_INV_DESC_CC_SID(inv_desc->lo),
1368 VTD_INV_DESC_CC_FM(inv_desc->lo));
1369 break;
1371 default:
1372 VTD_DPRINTF(GENERAL, "error: invalid granularity in Context-cache "
1373 "Invalidate Descriptor hi 0x%"PRIx64 " lo 0x%"PRIx64,
1374 inv_desc->hi, inv_desc->lo);
1375 return false;
1377 return true;
1380 static bool vtd_process_iotlb_desc(IntelIOMMUState *s, VTDInvDesc *inv_desc)
1382 uint16_t domain_id;
1383 uint8_t am;
1384 hwaddr addr;
1386 if ((inv_desc->lo & VTD_INV_DESC_IOTLB_RSVD_LO) ||
1387 (inv_desc->hi & VTD_INV_DESC_IOTLB_RSVD_HI)) {
1388 VTD_DPRINTF(GENERAL, "error: non-zero reserved field in IOTLB "
1389 "Invalidate Descriptor hi 0x%"PRIx64 " lo 0x%"PRIx64,
1390 inv_desc->hi, inv_desc->lo);
1391 return false;
1394 switch (inv_desc->lo & VTD_INV_DESC_IOTLB_G) {
1395 case VTD_INV_DESC_IOTLB_GLOBAL:
1396 VTD_DPRINTF(INV, "global invalidation");
1397 vtd_iotlb_global_invalidate(s);
1398 break;
1400 case VTD_INV_DESC_IOTLB_DOMAIN:
1401 domain_id = VTD_INV_DESC_IOTLB_DID(inv_desc->lo);
1402 VTD_DPRINTF(INV, "domain-selective invalidation domain 0x%"PRIx16,
1403 domain_id);
1404 vtd_iotlb_domain_invalidate(s, domain_id);
1405 break;
1407 case VTD_INV_DESC_IOTLB_PAGE:
1408 domain_id = VTD_INV_DESC_IOTLB_DID(inv_desc->lo);
1409 addr = VTD_INV_DESC_IOTLB_ADDR(inv_desc->hi);
1410 am = VTD_INV_DESC_IOTLB_AM(inv_desc->hi);
1411 VTD_DPRINTF(INV, "page-selective invalidation domain 0x%"PRIx16
1412 " addr 0x%"PRIx64 " mask %"PRIu8, domain_id, addr, am);
1413 if (am > VTD_MAMV) {
1414 VTD_DPRINTF(GENERAL, "error: supported max address mask value is "
1415 "%"PRIu8, (uint8_t)VTD_MAMV);
1416 return false;
1418 vtd_iotlb_page_invalidate(s, domain_id, addr, am);
1419 break;
1421 default:
1422 VTD_DPRINTF(GENERAL, "error: invalid granularity in IOTLB Invalidate "
1423 "Descriptor hi 0x%"PRIx64 " lo 0x%"PRIx64,
1424 inv_desc->hi, inv_desc->lo);
1425 return false;
1427 return true;
1430 static bool vtd_process_inv_iec_desc(IntelIOMMUState *s,
1431 VTDInvDesc *inv_desc)
1433 VTD_DPRINTF(INV, "inv ir glob %d index %d mask %d",
1434 inv_desc->iec.granularity,
1435 inv_desc->iec.index,
1436 inv_desc->iec.index_mask);
1438 vtd_iec_notify_all(s, !inv_desc->iec.granularity,
1439 inv_desc->iec.index,
1440 inv_desc->iec.index_mask);
1442 return true;
1445 static bool vtd_process_inv_desc(IntelIOMMUState *s)
1447 VTDInvDesc inv_desc;
1448 uint8_t desc_type;
1450 VTD_DPRINTF(INV, "iq head %"PRIu16, s->iq_head);
1451 if (!vtd_get_inv_desc(s->iq, s->iq_head, &inv_desc)) {
1452 s->iq_last_desc_type = VTD_INV_DESC_NONE;
1453 return false;
1455 desc_type = inv_desc.lo & VTD_INV_DESC_TYPE;
1456 /* FIXME: should update at first or at last? */
1457 s->iq_last_desc_type = desc_type;
1459 switch (desc_type) {
1460 case VTD_INV_DESC_CC:
1461 VTD_DPRINTF(INV, "Context-cache Invalidate Descriptor hi 0x%"PRIx64
1462 " lo 0x%"PRIx64, inv_desc.hi, inv_desc.lo);
1463 if (!vtd_process_context_cache_desc(s, &inv_desc)) {
1464 return false;
1466 break;
1468 case VTD_INV_DESC_IOTLB:
1469 VTD_DPRINTF(INV, "IOTLB Invalidate Descriptor hi 0x%"PRIx64
1470 " lo 0x%"PRIx64, inv_desc.hi, inv_desc.lo);
1471 if (!vtd_process_iotlb_desc(s, &inv_desc)) {
1472 return false;
1474 break;
1476 case VTD_INV_DESC_WAIT:
1477 VTD_DPRINTF(INV, "Invalidation Wait Descriptor hi 0x%"PRIx64
1478 " lo 0x%"PRIx64, inv_desc.hi, inv_desc.lo);
1479 if (!vtd_process_wait_desc(s, &inv_desc)) {
1480 return false;
1482 break;
1484 case VTD_INV_DESC_IEC:
1485 VTD_DPRINTF(INV, "Invalidation Interrupt Entry Cache "
1486 "Descriptor hi 0x%"PRIx64 " lo 0x%"PRIx64,
1487 inv_desc.hi, inv_desc.lo);
1488 if (!vtd_process_inv_iec_desc(s, &inv_desc)) {
1489 return false;
1491 break;
1493 default:
1494 VTD_DPRINTF(GENERAL, "error: unkonw Invalidation Descriptor type "
1495 "hi 0x%"PRIx64 " lo 0x%"PRIx64 " type %"PRIu8,
1496 inv_desc.hi, inv_desc.lo, desc_type);
1497 return false;
1499 s->iq_head++;
1500 if (s->iq_head == s->iq_size) {
1501 s->iq_head = 0;
1503 return true;
1506 /* Try to fetch and process more Invalidation Descriptors */
1507 static void vtd_fetch_inv_desc(IntelIOMMUState *s)
1509 VTD_DPRINTF(INV, "fetch Invalidation Descriptors");
1510 if (s->iq_tail >= s->iq_size) {
1511 /* Detects an invalid Tail pointer */
1512 VTD_DPRINTF(GENERAL, "error: iq_tail is %"PRIu16
1513 " while iq_size is %"PRIu16, s->iq_tail, s->iq_size);
1514 vtd_handle_inv_queue_error(s);
1515 return;
1517 while (s->iq_head != s->iq_tail) {
1518 if (!vtd_process_inv_desc(s)) {
1519 /* Invalidation Queue Errors */
1520 vtd_handle_inv_queue_error(s);
1521 break;
1523 /* Must update the IQH_REG in time */
1524 vtd_set_quad_raw(s, DMAR_IQH_REG,
1525 (((uint64_t)(s->iq_head)) << VTD_IQH_QH_SHIFT) &
1526 VTD_IQH_QH_MASK);
1530 /* Handle write to Invalidation Queue Tail Register */
1531 static void vtd_handle_iqt_write(IntelIOMMUState *s)
1533 uint64_t val = vtd_get_quad_raw(s, DMAR_IQT_REG);
1535 s->iq_tail = VTD_IQT_QT(val);
1536 VTD_DPRINTF(INV, "set iq tail %"PRIu16, s->iq_tail);
1537 if (s->qi_enabled && !(vtd_get_long_raw(s, DMAR_FSTS_REG) & VTD_FSTS_IQE)) {
1538 /* Process Invalidation Queue here */
1539 vtd_fetch_inv_desc(s);
1543 static void vtd_handle_fsts_write(IntelIOMMUState *s)
1545 uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
1546 uint32_t fectl_reg = vtd_get_long_raw(s, DMAR_FECTL_REG);
1547 uint32_t status_fields = VTD_FSTS_PFO | VTD_FSTS_PPF | VTD_FSTS_IQE;
1549 if ((fectl_reg & VTD_FECTL_IP) && !(fsts_reg & status_fields)) {
1550 vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
1551 VTD_DPRINTF(FLOG, "all pending interrupt conditions serviced, clear "
1552 "IP field of FECTL_REG");
1554 /* FIXME: when IQE is Clear, should we try to fetch some Invalidation
1555 * Descriptors if there are any when Queued Invalidation is enabled?
1559 static void vtd_handle_fectl_write(IntelIOMMUState *s)
1561 uint32_t fectl_reg;
1562 /* FIXME: when software clears the IM field, check the IP field. But do we
1563 * need to compare the old value and the new value to conclude that
1564 * software clears the IM field? Or just check if the IM field is zero?
1566 fectl_reg = vtd_get_long_raw(s, DMAR_FECTL_REG);
1567 if ((fectl_reg & VTD_FECTL_IP) && !(fectl_reg & VTD_FECTL_IM)) {
1568 vtd_generate_interrupt(s, DMAR_FEADDR_REG, DMAR_FEDATA_REG);
1569 vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
1570 VTD_DPRINTF(FLOG, "IM field is cleared, generate "
1571 "fault event interrupt");
1575 static void vtd_handle_ics_write(IntelIOMMUState *s)
1577 uint32_t ics_reg = vtd_get_long_raw(s, DMAR_ICS_REG);
1578 uint32_t iectl_reg = vtd_get_long_raw(s, DMAR_IECTL_REG);
1580 if ((iectl_reg & VTD_IECTL_IP) && !(ics_reg & VTD_ICS_IWC)) {
1581 vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
1582 VTD_DPRINTF(INV, "pending completion interrupt condition serviced, "
1583 "clear IP field of IECTL_REG");
1587 static void vtd_handle_iectl_write(IntelIOMMUState *s)
1589 uint32_t iectl_reg;
1590 /* FIXME: when software clears the IM field, check the IP field. But do we
1591 * need to compare the old value and the new value to conclude that
1592 * software clears the IM field? Or just check if the IM field is zero?
1594 iectl_reg = vtd_get_long_raw(s, DMAR_IECTL_REG);
1595 if ((iectl_reg & VTD_IECTL_IP) && !(iectl_reg & VTD_IECTL_IM)) {
1596 vtd_generate_interrupt(s, DMAR_IEADDR_REG, DMAR_IEDATA_REG);
1597 vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
1598 VTD_DPRINTF(INV, "IM field is cleared, generate "
1599 "invalidation event interrupt");
1603 static uint64_t vtd_mem_read(void *opaque, hwaddr addr, unsigned size)
1605 IntelIOMMUState *s = opaque;
1606 uint64_t val;
1608 if (addr + size > DMAR_REG_SIZE) {
1609 VTD_DPRINTF(GENERAL, "error: addr outside region: max 0x%"PRIx64
1610 ", got 0x%"PRIx64 " %d",
1611 (uint64_t)DMAR_REG_SIZE, addr, size);
1612 return (uint64_t)-1;
1615 switch (addr) {
1616 /* Root Table Address Register, 64-bit */
1617 case DMAR_RTADDR_REG:
1618 if (size == 4) {
1619 val = s->root & ((1ULL << 32) - 1);
1620 } else {
1621 val = s->root;
1623 break;
1625 case DMAR_RTADDR_REG_HI:
1626 assert(size == 4);
1627 val = s->root >> 32;
1628 break;
1630 /* Invalidation Queue Address Register, 64-bit */
1631 case DMAR_IQA_REG:
1632 val = s->iq | (vtd_get_quad(s, DMAR_IQA_REG) & VTD_IQA_QS);
1633 if (size == 4) {
1634 val = val & ((1ULL << 32) - 1);
1636 break;
1638 case DMAR_IQA_REG_HI:
1639 assert(size == 4);
1640 val = s->iq >> 32;
1641 break;
1643 default:
1644 if (size == 4) {
1645 val = vtd_get_long(s, addr);
1646 } else {
1647 val = vtd_get_quad(s, addr);
1650 VTD_DPRINTF(CSR, "addr 0x%"PRIx64 " size %d val 0x%"PRIx64,
1651 addr, size, val);
1652 return val;
1655 static void vtd_mem_write(void *opaque, hwaddr addr,
1656 uint64_t val, unsigned size)
1658 IntelIOMMUState *s = opaque;
1660 if (addr + size > DMAR_REG_SIZE) {
1661 VTD_DPRINTF(GENERAL, "error: addr outside region: max 0x%"PRIx64
1662 ", got 0x%"PRIx64 " %d",
1663 (uint64_t)DMAR_REG_SIZE, addr, size);
1664 return;
1667 switch (addr) {
1668 /* Global Command Register, 32-bit */
1669 case DMAR_GCMD_REG:
1670 VTD_DPRINTF(CSR, "DMAR_GCMD_REG write addr 0x%"PRIx64
1671 ", size %d, val 0x%"PRIx64, addr, size, val);
1672 vtd_set_long(s, addr, val);
1673 vtd_handle_gcmd_write(s);
1674 break;
1676 /* Context Command Register, 64-bit */
1677 case DMAR_CCMD_REG:
1678 VTD_DPRINTF(CSR, "DMAR_CCMD_REG write addr 0x%"PRIx64
1679 ", size %d, val 0x%"PRIx64, addr, size, val);
1680 if (size == 4) {
1681 vtd_set_long(s, addr, val);
1682 } else {
1683 vtd_set_quad(s, addr, val);
1684 vtd_handle_ccmd_write(s);
1686 break;
1688 case DMAR_CCMD_REG_HI:
1689 VTD_DPRINTF(CSR, "DMAR_CCMD_REG_HI write addr 0x%"PRIx64
1690 ", size %d, val 0x%"PRIx64, addr, size, val);
1691 assert(size == 4);
1692 vtd_set_long(s, addr, val);
1693 vtd_handle_ccmd_write(s);
1694 break;
1696 /* IOTLB Invalidation Register, 64-bit */
1697 case DMAR_IOTLB_REG:
1698 VTD_DPRINTF(INV, "DMAR_IOTLB_REG write addr 0x%"PRIx64
1699 ", size %d, val 0x%"PRIx64, addr, size, val);
1700 if (size == 4) {
1701 vtd_set_long(s, addr, val);
1702 } else {
1703 vtd_set_quad(s, addr, val);
1704 vtd_handle_iotlb_write(s);
1706 break;
1708 case DMAR_IOTLB_REG_HI:
1709 VTD_DPRINTF(INV, "DMAR_IOTLB_REG_HI write addr 0x%"PRIx64
1710 ", size %d, val 0x%"PRIx64, addr, size, val);
1711 assert(size == 4);
1712 vtd_set_long(s, addr, val);
1713 vtd_handle_iotlb_write(s);
1714 break;
1716 /* Invalidate Address Register, 64-bit */
1717 case DMAR_IVA_REG:
1718 VTD_DPRINTF(INV, "DMAR_IVA_REG write addr 0x%"PRIx64
1719 ", size %d, val 0x%"PRIx64, addr, size, val);
1720 if (size == 4) {
1721 vtd_set_long(s, addr, val);
1722 } else {
1723 vtd_set_quad(s, addr, val);
1725 break;
1727 case DMAR_IVA_REG_HI:
1728 VTD_DPRINTF(INV, "DMAR_IVA_REG_HI write addr 0x%"PRIx64
1729 ", size %d, val 0x%"PRIx64, addr, size, val);
1730 assert(size == 4);
1731 vtd_set_long(s, addr, val);
1732 break;
1734 /* Fault Status Register, 32-bit */
1735 case DMAR_FSTS_REG:
1736 VTD_DPRINTF(FLOG, "DMAR_FSTS_REG write addr 0x%"PRIx64
1737 ", size %d, val 0x%"PRIx64, addr, size, val);
1738 assert(size == 4);
1739 vtd_set_long(s, addr, val);
1740 vtd_handle_fsts_write(s);
1741 break;
1743 /* Fault Event Control Register, 32-bit */
1744 case DMAR_FECTL_REG:
1745 VTD_DPRINTF(FLOG, "DMAR_FECTL_REG write addr 0x%"PRIx64
1746 ", size %d, val 0x%"PRIx64, addr, size, val);
1747 assert(size == 4);
1748 vtd_set_long(s, addr, val);
1749 vtd_handle_fectl_write(s);
1750 break;
1752 /* Fault Event Data Register, 32-bit */
1753 case DMAR_FEDATA_REG:
1754 VTD_DPRINTF(FLOG, "DMAR_FEDATA_REG write addr 0x%"PRIx64
1755 ", size %d, val 0x%"PRIx64, addr, size, val);
1756 assert(size == 4);
1757 vtd_set_long(s, addr, val);
1758 break;
1760 /* Fault Event Address Register, 32-bit */
1761 case DMAR_FEADDR_REG:
1762 VTD_DPRINTF(FLOG, "DMAR_FEADDR_REG write addr 0x%"PRIx64
1763 ", size %d, val 0x%"PRIx64, addr, size, val);
1764 assert(size == 4);
1765 vtd_set_long(s, addr, val);
1766 break;
1768 /* Fault Event Upper Address Register, 32-bit */
1769 case DMAR_FEUADDR_REG:
1770 VTD_DPRINTF(FLOG, "DMAR_FEUADDR_REG write addr 0x%"PRIx64
1771 ", size %d, val 0x%"PRIx64, addr, size, val);
1772 assert(size == 4);
1773 vtd_set_long(s, addr, val);
1774 break;
1776 /* Protected Memory Enable Register, 32-bit */
1777 case DMAR_PMEN_REG:
1778 VTD_DPRINTF(CSR, "DMAR_PMEN_REG write addr 0x%"PRIx64
1779 ", size %d, val 0x%"PRIx64, addr, size, val);
1780 assert(size == 4);
1781 vtd_set_long(s, addr, val);
1782 break;
1784 /* Root Table Address Register, 64-bit */
1785 case DMAR_RTADDR_REG:
1786 VTD_DPRINTF(CSR, "DMAR_RTADDR_REG write addr 0x%"PRIx64
1787 ", size %d, val 0x%"PRIx64, addr, size, val);
1788 if (size == 4) {
1789 vtd_set_long(s, addr, val);
1790 } else {
1791 vtd_set_quad(s, addr, val);
1793 break;
1795 case DMAR_RTADDR_REG_HI:
1796 VTD_DPRINTF(CSR, "DMAR_RTADDR_REG_HI write addr 0x%"PRIx64
1797 ", size %d, val 0x%"PRIx64, addr, size, val);
1798 assert(size == 4);
1799 vtd_set_long(s, addr, val);
1800 break;
1802 /* Invalidation Queue Tail Register, 64-bit */
1803 case DMAR_IQT_REG:
1804 VTD_DPRINTF(INV, "DMAR_IQT_REG write addr 0x%"PRIx64
1805 ", size %d, val 0x%"PRIx64, addr, size, val);
1806 if (size == 4) {
1807 vtd_set_long(s, addr, val);
1808 } else {
1809 vtd_set_quad(s, addr, val);
1811 vtd_handle_iqt_write(s);
1812 break;
1814 case DMAR_IQT_REG_HI:
1815 VTD_DPRINTF(INV, "DMAR_IQT_REG_HI write addr 0x%"PRIx64
1816 ", size %d, val 0x%"PRIx64, addr, size, val);
1817 assert(size == 4);
1818 vtd_set_long(s, addr, val);
1819 /* 19:63 of IQT_REG is RsvdZ, do nothing here */
1820 break;
1822 /* Invalidation Queue Address Register, 64-bit */
1823 case DMAR_IQA_REG:
1824 VTD_DPRINTF(INV, "DMAR_IQA_REG write addr 0x%"PRIx64
1825 ", size %d, val 0x%"PRIx64, addr, size, val);
1826 if (size == 4) {
1827 vtd_set_long(s, addr, val);
1828 } else {
1829 vtd_set_quad(s, addr, val);
1831 break;
1833 case DMAR_IQA_REG_HI:
1834 VTD_DPRINTF(INV, "DMAR_IQA_REG_HI write addr 0x%"PRIx64
1835 ", size %d, val 0x%"PRIx64, addr, size, val);
1836 assert(size == 4);
1837 vtd_set_long(s, addr, val);
1838 break;
1840 /* Invalidation Completion Status Register, 32-bit */
1841 case DMAR_ICS_REG:
1842 VTD_DPRINTF(INV, "DMAR_ICS_REG write addr 0x%"PRIx64
1843 ", size %d, val 0x%"PRIx64, addr, size, val);
1844 assert(size == 4);
1845 vtd_set_long(s, addr, val);
1846 vtd_handle_ics_write(s);
1847 break;
1849 /* Invalidation Event Control Register, 32-bit */
1850 case DMAR_IECTL_REG:
1851 VTD_DPRINTF(INV, "DMAR_IECTL_REG write addr 0x%"PRIx64
1852 ", size %d, val 0x%"PRIx64, addr, size, val);
1853 assert(size == 4);
1854 vtd_set_long(s, addr, val);
1855 vtd_handle_iectl_write(s);
1856 break;
1858 /* Invalidation Event Data Register, 32-bit */
1859 case DMAR_IEDATA_REG:
1860 VTD_DPRINTF(INV, "DMAR_IEDATA_REG write addr 0x%"PRIx64
1861 ", size %d, val 0x%"PRIx64, addr, size, val);
1862 assert(size == 4);
1863 vtd_set_long(s, addr, val);
1864 break;
1866 /* Invalidation Event Address Register, 32-bit */
1867 case DMAR_IEADDR_REG:
1868 VTD_DPRINTF(INV, "DMAR_IEADDR_REG write addr 0x%"PRIx64
1869 ", size %d, val 0x%"PRIx64, addr, size, val);
1870 assert(size == 4);
1871 vtd_set_long(s, addr, val);
1872 break;
1874 /* Invalidation Event Upper Address Register, 32-bit */
1875 case DMAR_IEUADDR_REG:
1876 VTD_DPRINTF(INV, "DMAR_IEUADDR_REG write addr 0x%"PRIx64
1877 ", size %d, val 0x%"PRIx64, addr, size, val);
1878 assert(size == 4);
1879 vtd_set_long(s, addr, val);
1880 break;
1882 /* Fault Recording Registers, 128-bit */
1883 case DMAR_FRCD_REG_0_0:
1884 VTD_DPRINTF(FLOG, "DMAR_FRCD_REG_0_0 write addr 0x%"PRIx64
1885 ", size %d, val 0x%"PRIx64, addr, size, val);
1886 if (size == 4) {
1887 vtd_set_long(s, addr, val);
1888 } else {
1889 vtd_set_quad(s, addr, val);
1891 break;
1893 case DMAR_FRCD_REG_0_1:
1894 VTD_DPRINTF(FLOG, "DMAR_FRCD_REG_0_1 write addr 0x%"PRIx64
1895 ", size %d, val 0x%"PRIx64, addr, size, val);
1896 assert(size == 4);
1897 vtd_set_long(s, addr, val);
1898 break;
1900 case DMAR_FRCD_REG_0_2:
1901 VTD_DPRINTF(FLOG, "DMAR_FRCD_REG_0_2 write addr 0x%"PRIx64
1902 ", size %d, val 0x%"PRIx64, addr, size, val);
1903 if (size == 4) {
1904 vtd_set_long(s, addr, val);
1905 } else {
1906 vtd_set_quad(s, addr, val);
1907 /* May clear bit 127 (Fault), update PPF */
1908 vtd_update_fsts_ppf(s);
1910 break;
1912 case DMAR_FRCD_REG_0_3:
1913 VTD_DPRINTF(FLOG, "DMAR_FRCD_REG_0_3 write addr 0x%"PRIx64
1914 ", size %d, val 0x%"PRIx64, addr, size, val);
1915 assert(size == 4);
1916 vtd_set_long(s, addr, val);
1917 /* May clear bit 127 (Fault), update PPF */
1918 vtd_update_fsts_ppf(s);
1919 break;
1921 case DMAR_IRTA_REG:
1922 VTD_DPRINTF(IR, "DMAR_IRTA_REG write addr 0x%"PRIx64
1923 ", size %d, val 0x%"PRIx64, addr, size, val);
1924 if (size == 4) {
1925 vtd_set_long(s, addr, val);
1926 } else {
1927 vtd_set_quad(s, addr, val);
1929 break;
1931 case DMAR_IRTA_REG_HI:
1932 VTD_DPRINTF(IR, "DMAR_IRTA_REG_HI write addr 0x%"PRIx64
1933 ", size %d, val 0x%"PRIx64, addr, size, val);
1934 assert(size == 4);
1935 vtd_set_long(s, addr, val);
1936 break;
1938 default:
1939 VTD_DPRINTF(GENERAL, "error: unhandled reg write addr 0x%"PRIx64
1940 ", size %d, val 0x%"PRIx64, addr, size, val);
1941 if (size == 4) {
1942 vtd_set_long(s, addr, val);
1943 } else {
1944 vtd_set_quad(s, addr, val);
1949 static IOMMUTLBEntry vtd_iommu_translate(MemoryRegion *iommu, hwaddr addr,
1950 bool is_write)
1952 VTDAddressSpace *vtd_as = container_of(iommu, VTDAddressSpace, iommu);
1953 IntelIOMMUState *s = vtd_as->iommu_state;
1954 IOMMUTLBEntry ret = {
1955 .target_as = &address_space_memory,
1956 .iova = addr,
1957 .translated_addr = 0,
1958 .addr_mask = ~(hwaddr)0,
1959 .perm = IOMMU_NONE,
1962 if (!s->dmar_enabled) {
1963 /* DMAR disabled, passthrough, use 4k-page*/
1964 ret.iova = addr & VTD_PAGE_MASK_4K;
1965 ret.translated_addr = addr & VTD_PAGE_MASK_4K;
1966 ret.addr_mask = ~VTD_PAGE_MASK_4K;
1967 ret.perm = IOMMU_RW;
1968 return ret;
1971 vtd_do_iommu_translate(vtd_as, vtd_as->bus, vtd_as->devfn, addr,
1972 is_write, &ret);
1973 VTD_DPRINTF(MMU,
1974 "bus %"PRIu8 " slot %"PRIu8 " func %"PRIu8 " devfn %"PRIu8
1975 " gpa 0x%"PRIx64 " hpa 0x%"PRIx64, pci_bus_num(vtd_as->bus),
1976 VTD_PCI_SLOT(vtd_as->devfn), VTD_PCI_FUNC(vtd_as->devfn),
1977 vtd_as->devfn, addr, ret.translated_addr);
1978 return ret;
1981 static void vtd_iommu_notify_flag_changed(MemoryRegion *iommu,
1982 IOMMUNotifierFlag old,
1983 IOMMUNotifierFlag new)
1985 VTDAddressSpace *vtd_as = container_of(iommu, VTDAddressSpace, iommu);
1987 if (new & IOMMU_NOTIFIER_MAP) {
1988 error_report("Device at bus %s addr %02x.%d requires iommu "
1989 "notifier which is currently not supported by "
1990 "intel-iommu emulation",
1991 vtd_as->bus->qbus.name, PCI_SLOT(vtd_as->devfn),
1992 PCI_FUNC(vtd_as->devfn));
1993 exit(1);
1997 static const VMStateDescription vtd_vmstate = {
1998 .name = "iommu-intel",
1999 .version_id = 1,
2000 .minimum_version_id = 1,
2001 .priority = MIG_PRI_IOMMU,
2002 .fields = (VMStateField[]) {
2003 VMSTATE_UINT64(root, IntelIOMMUState),
2004 VMSTATE_UINT64(intr_root, IntelIOMMUState),
2005 VMSTATE_UINT64(iq, IntelIOMMUState),
2006 VMSTATE_UINT32(intr_size, IntelIOMMUState),
2007 VMSTATE_UINT16(iq_head, IntelIOMMUState),
2008 VMSTATE_UINT16(iq_tail, IntelIOMMUState),
2009 VMSTATE_UINT16(iq_size, IntelIOMMUState),
2010 VMSTATE_UINT16(next_frcd_reg, IntelIOMMUState),
2011 VMSTATE_UINT8_ARRAY(csr, IntelIOMMUState, DMAR_REG_SIZE),
2012 VMSTATE_UINT8(iq_last_desc_type, IntelIOMMUState),
2013 VMSTATE_BOOL(root_extended, IntelIOMMUState),
2014 VMSTATE_BOOL(dmar_enabled, IntelIOMMUState),
2015 VMSTATE_BOOL(qi_enabled, IntelIOMMUState),
2016 VMSTATE_BOOL(intr_enabled, IntelIOMMUState),
2017 VMSTATE_BOOL(intr_eime, IntelIOMMUState),
2018 VMSTATE_END_OF_LIST()
2022 static const MemoryRegionOps vtd_mem_ops = {
2023 .read = vtd_mem_read,
2024 .write = vtd_mem_write,
2025 .endianness = DEVICE_LITTLE_ENDIAN,
2026 .impl = {
2027 .min_access_size = 4,
2028 .max_access_size = 8,
2030 .valid = {
2031 .min_access_size = 4,
2032 .max_access_size = 8,
2036 static Property vtd_properties[] = {
2037 DEFINE_PROP_UINT32("version", IntelIOMMUState, version, 0),
2038 DEFINE_PROP_ON_OFF_AUTO("eim", IntelIOMMUState, intr_eim,
2039 ON_OFF_AUTO_AUTO),
2040 DEFINE_PROP_BOOL("x-buggy-eim", IntelIOMMUState, buggy_eim, false),
2041 DEFINE_PROP_END_OF_LIST(),
2044 /* Read IRTE entry with specific index */
2045 static int vtd_irte_get(IntelIOMMUState *iommu, uint16_t index,
2046 VTD_IR_TableEntry *entry, uint16_t sid)
2048 static const uint16_t vtd_svt_mask[VTD_SQ_MAX] = \
2049 {0xffff, 0xfffb, 0xfff9, 0xfff8};
2050 dma_addr_t addr = 0x00;
2051 uint16_t mask, source_id;
2052 uint8_t bus, bus_max, bus_min;
2054 addr = iommu->intr_root + index * sizeof(*entry);
2055 if (dma_memory_read(&address_space_memory, addr, entry,
2056 sizeof(*entry))) {
2057 VTD_DPRINTF(GENERAL, "error: fail to access IR root at 0x%"PRIx64
2058 " + %"PRIu16, iommu->intr_root, index);
2059 return -VTD_FR_IR_ROOT_INVAL;
2062 if (!entry->irte.present) {
2063 VTD_DPRINTF(GENERAL, "error: present flag not set in IRTE"
2064 " entry index %u value 0x%"PRIx64 " 0x%"PRIx64,
2065 index, le64_to_cpu(entry->data[1]),
2066 le64_to_cpu(entry->data[0]));
2067 return -VTD_FR_IR_ENTRY_P;
2070 if (entry->irte.__reserved_0 || entry->irte.__reserved_1 ||
2071 entry->irte.__reserved_2) {
2072 VTD_DPRINTF(GENERAL, "error: IRTE entry index %"PRIu16
2073 " reserved fields non-zero: 0x%"PRIx64 " 0x%"PRIx64,
2074 index, le64_to_cpu(entry->data[1]),
2075 le64_to_cpu(entry->data[0]));
2076 return -VTD_FR_IR_IRTE_RSVD;
2079 if (sid != X86_IOMMU_SID_INVALID) {
2080 /* Validate IRTE SID */
2081 source_id = le32_to_cpu(entry->irte.source_id);
2082 switch (entry->irte.sid_vtype) {
2083 case VTD_SVT_NONE:
2084 VTD_DPRINTF(IR, "No SID validation for IRTE index %d", index);
2085 break;
2087 case VTD_SVT_ALL:
2088 mask = vtd_svt_mask[entry->irte.sid_q];
2089 if ((source_id & mask) != (sid & mask)) {
2090 VTD_DPRINTF(GENERAL, "SID validation for IRTE index "
2091 "%d failed (reqid 0x%04x sid 0x%04x)", index,
2092 sid, source_id);
2093 return -VTD_FR_IR_SID_ERR;
2095 break;
2097 case VTD_SVT_BUS:
2098 bus_max = source_id >> 8;
2099 bus_min = source_id & 0xff;
2100 bus = sid >> 8;
2101 if (bus > bus_max || bus < bus_min) {
2102 VTD_DPRINTF(GENERAL, "SID validation for IRTE index %d "
2103 "failed (bus %d outside %d-%d)", index, bus,
2104 bus_min, bus_max);
2105 return -VTD_FR_IR_SID_ERR;
2107 break;
2109 default:
2110 VTD_DPRINTF(GENERAL, "Invalid SVT bits (0x%x) in IRTE index "
2111 "%d", entry->irte.sid_vtype, index);
2112 /* Take this as verification failure. */
2113 return -VTD_FR_IR_SID_ERR;
2114 break;
2118 return 0;
2121 /* Fetch IRQ information of specific IR index */
2122 static int vtd_remap_irq_get(IntelIOMMUState *iommu, uint16_t index,
2123 VTDIrq *irq, uint16_t sid)
2125 VTD_IR_TableEntry irte = {};
2126 int ret = 0;
2128 ret = vtd_irte_get(iommu, index, &irte, sid);
2129 if (ret) {
2130 return ret;
2133 irq->trigger_mode = irte.irte.trigger_mode;
2134 irq->vector = irte.irte.vector;
2135 irq->delivery_mode = irte.irte.delivery_mode;
2136 irq->dest = le32_to_cpu(irte.irte.dest_id);
2137 if (!iommu->intr_eime) {
2138 #define VTD_IR_APIC_DEST_MASK (0xff00ULL)
2139 #define VTD_IR_APIC_DEST_SHIFT (8)
2140 irq->dest = (irq->dest & VTD_IR_APIC_DEST_MASK) >>
2141 VTD_IR_APIC_DEST_SHIFT;
2143 irq->dest_mode = irte.irte.dest_mode;
2144 irq->redir_hint = irte.irte.redir_hint;
2146 VTD_DPRINTF(IR, "remapping interrupt index %d: trig:%u,vec:%u,"
2147 "deliver:%u,dest:%u,dest_mode:%u", index,
2148 irq->trigger_mode, irq->vector, irq->delivery_mode,
2149 irq->dest, irq->dest_mode);
2151 return 0;
2154 /* Generate one MSI message from VTDIrq info */
2155 static void vtd_generate_msi_message(VTDIrq *irq, MSIMessage *msg_out)
2157 VTD_MSIMessage msg = {};
2159 /* Generate address bits */
2160 msg.dest_mode = irq->dest_mode;
2161 msg.redir_hint = irq->redir_hint;
2162 msg.dest = irq->dest;
2163 msg.__addr_hi = irq->dest & 0xffffff00;
2164 msg.__addr_head = cpu_to_le32(0xfee);
2165 /* Keep this from original MSI address bits */
2166 msg.__not_used = irq->msi_addr_last_bits;
2168 /* Generate data bits */
2169 msg.vector = irq->vector;
2170 msg.delivery_mode = irq->delivery_mode;
2171 msg.level = 1;
2172 msg.trigger_mode = irq->trigger_mode;
2174 msg_out->address = msg.msi_addr;
2175 msg_out->data = msg.msi_data;
2178 /* Interrupt remapping for MSI/MSI-X entry */
2179 static int vtd_interrupt_remap_msi(IntelIOMMUState *iommu,
2180 MSIMessage *origin,
2181 MSIMessage *translated,
2182 uint16_t sid)
2184 int ret = 0;
2185 VTD_IR_MSIAddress addr;
2186 uint16_t index;
2187 VTDIrq irq = {};
2189 assert(origin && translated);
2191 if (!iommu || !iommu->intr_enabled) {
2192 goto do_not_translate;
2195 if (origin->address & VTD_MSI_ADDR_HI_MASK) {
2196 VTD_DPRINTF(GENERAL, "error: MSI addr high 32 bits nonzero"
2197 " during interrupt remapping: 0x%"PRIx32,
2198 (uint32_t)((origin->address & VTD_MSI_ADDR_HI_MASK) >> \
2199 VTD_MSI_ADDR_HI_SHIFT));
2200 return -VTD_FR_IR_REQ_RSVD;
2203 addr.data = origin->address & VTD_MSI_ADDR_LO_MASK;
2204 if (addr.addr.__head != 0xfee) {
2205 VTD_DPRINTF(GENERAL, "error: MSI addr low 32 bits invalid: "
2206 "0x%"PRIx32, addr.data);
2207 return -VTD_FR_IR_REQ_RSVD;
2210 /* This is compatible mode. */
2211 if (addr.addr.int_mode != VTD_IR_INT_FORMAT_REMAP) {
2212 goto do_not_translate;
2215 index = addr.addr.index_h << 15 | le16_to_cpu(addr.addr.index_l);
2217 #define VTD_IR_MSI_DATA_SUBHANDLE (0x0000ffff)
2218 #define VTD_IR_MSI_DATA_RESERVED (0xffff0000)
2220 if (addr.addr.sub_valid) {
2221 /* See VT-d spec 5.1.2.2 and 5.1.3 on subhandle */
2222 index += origin->data & VTD_IR_MSI_DATA_SUBHANDLE;
2225 ret = vtd_remap_irq_get(iommu, index, &irq, sid);
2226 if (ret) {
2227 return ret;
2230 if (addr.addr.sub_valid) {
2231 VTD_DPRINTF(IR, "received MSI interrupt");
2232 if (origin->data & VTD_IR_MSI_DATA_RESERVED) {
2233 VTD_DPRINTF(GENERAL, "error: MSI data bits non-zero for "
2234 "interrupt remappable entry: 0x%"PRIx32,
2235 origin->data);
2236 return -VTD_FR_IR_REQ_RSVD;
2238 } else {
2239 uint8_t vector = origin->data & 0xff;
2240 uint8_t trigger_mode = (origin->data >> MSI_DATA_TRIGGER_SHIFT) & 0x1;
2242 VTD_DPRINTF(IR, "received IOAPIC interrupt");
2243 /* IOAPIC entry vector should be aligned with IRTE vector
2244 * (see vt-d spec 5.1.5.1). */
2245 if (vector != irq.vector) {
2246 VTD_DPRINTF(GENERAL, "IOAPIC vector inconsistent: "
2247 "entry: %d, IRTE: %d, index: %d",
2248 vector, irq.vector, index);
2251 /* The Trigger Mode field must match the Trigger Mode in the IRTE.
2252 * (see vt-d spec 5.1.5.1). */
2253 if (trigger_mode != irq.trigger_mode) {
2254 VTD_DPRINTF(GENERAL, "IOAPIC trigger mode inconsistent: "
2255 "entry: %u, IRTE: %u, index: %d",
2256 trigger_mode, irq.trigger_mode, index);
2262 * We'd better keep the last two bits, assuming that guest OS
2263 * might modify it. Keep it does not hurt after all.
2265 irq.msi_addr_last_bits = addr.addr.__not_care;
2267 /* Translate VTDIrq to MSI message */
2268 vtd_generate_msi_message(&irq, translated);
2270 VTD_DPRINTF(IR, "mapping MSI 0x%"PRIx64":0x%"PRIx32 " -> "
2271 "0x%"PRIx64":0x%"PRIx32, origin->address, origin->data,
2272 translated->address, translated->data);
2273 return 0;
2275 do_not_translate:
2276 memcpy(translated, origin, sizeof(*origin));
2277 return 0;
2280 static int vtd_int_remap(X86IOMMUState *iommu, MSIMessage *src,
2281 MSIMessage *dst, uint16_t sid)
2283 return vtd_interrupt_remap_msi(INTEL_IOMMU_DEVICE(iommu),
2284 src, dst, sid);
2287 static MemTxResult vtd_mem_ir_read(void *opaque, hwaddr addr,
2288 uint64_t *data, unsigned size,
2289 MemTxAttrs attrs)
2291 return MEMTX_OK;
2294 static MemTxResult vtd_mem_ir_write(void *opaque, hwaddr addr,
2295 uint64_t value, unsigned size,
2296 MemTxAttrs attrs)
2298 int ret = 0;
2299 MSIMessage from = {}, to = {};
2300 uint16_t sid = X86_IOMMU_SID_INVALID;
2302 from.address = (uint64_t) addr + VTD_INTERRUPT_ADDR_FIRST;
2303 from.data = (uint32_t) value;
2305 if (!attrs.unspecified) {
2306 /* We have explicit Source ID */
2307 sid = attrs.requester_id;
2310 ret = vtd_interrupt_remap_msi(opaque, &from, &to, sid);
2311 if (ret) {
2312 /* TODO: report error */
2313 VTD_DPRINTF(GENERAL, "int remap fail for addr 0x%"PRIx64
2314 " data 0x%"PRIx32, from.address, from.data);
2315 /* Drop this interrupt */
2316 return MEMTX_ERROR;
2319 VTD_DPRINTF(IR, "delivering MSI 0x%"PRIx64":0x%"PRIx32
2320 " for device sid 0x%04x",
2321 to.address, to.data, sid);
2323 apic_get_class()->send_msi(&to);
2325 return MEMTX_OK;
2328 static const MemoryRegionOps vtd_mem_ir_ops = {
2329 .read_with_attrs = vtd_mem_ir_read,
2330 .write_with_attrs = vtd_mem_ir_write,
2331 .endianness = DEVICE_LITTLE_ENDIAN,
2332 .impl = {
2333 .min_access_size = 4,
2334 .max_access_size = 4,
2336 .valid = {
2337 .min_access_size = 4,
2338 .max_access_size = 4,
2342 VTDAddressSpace *vtd_find_add_as(IntelIOMMUState *s, PCIBus *bus, int devfn)
2344 uintptr_t key = (uintptr_t)bus;
2345 VTDBus *vtd_bus = g_hash_table_lookup(s->vtd_as_by_busptr, &key);
2346 VTDAddressSpace *vtd_dev_as;
2347 char name[128];
2349 if (!vtd_bus) {
2350 uintptr_t *new_key = g_malloc(sizeof(*new_key));
2351 *new_key = (uintptr_t)bus;
2352 /* No corresponding free() */
2353 vtd_bus = g_malloc0(sizeof(VTDBus) + sizeof(VTDAddressSpace *) * \
2354 X86_IOMMU_PCI_DEVFN_MAX);
2355 vtd_bus->bus = bus;
2356 g_hash_table_insert(s->vtd_as_by_busptr, new_key, vtd_bus);
2359 vtd_dev_as = vtd_bus->dev_as[devfn];
2361 if (!vtd_dev_as) {
2362 snprintf(name, sizeof(name), "intel_iommu_devfn_%d", devfn);
2363 vtd_bus->dev_as[devfn] = vtd_dev_as = g_malloc0(sizeof(VTDAddressSpace));
2365 vtd_dev_as->bus = bus;
2366 vtd_dev_as->devfn = (uint8_t)devfn;
2367 vtd_dev_as->iommu_state = s;
2368 vtd_dev_as->context_cache_entry.context_cache_gen = 0;
2369 memory_region_init_iommu(&vtd_dev_as->iommu, OBJECT(s),
2370 &s->iommu_ops, "intel_iommu", UINT64_MAX);
2371 memory_region_init_io(&vtd_dev_as->iommu_ir, OBJECT(s),
2372 &vtd_mem_ir_ops, s, "intel_iommu_ir",
2373 VTD_INTERRUPT_ADDR_SIZE);
2374 memory_region_add_subregion(&vtd_dev_as->iommu, VTD_INTERRUPT_ADDR_FIRST,
2375 &vtd_dev_as->iommu_ir);
2376 address_space_init(&vtd_dev_as->as,
2377 &vtd_dev_as->iommu, name);
2379 return vtd_dev_as;
2382 /* Do the initialization. It will also be called when reset, so pay
2383 * attention when adding new initialization stuff.
2385 static void vtd_init(IntelIOMMUState *s)
2387 X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
2389 memset(s->csr, 0, DMAR_REG_SIZE);
2390 memset(s->wmask, 0, DMAR_REG_SIZE);
2391 memset(s->w1cmask, 0, DMAR_REG_SIZE);
2392 memset(s->womask, 0, DMAR_REG_SIZE);
2394 s->iommu_ops.translate = vtd_iommu_translate;
2395 s->iommu_ops.notify_flag_changed = vtd_iommu_notify_flag_changed;
2396 s->root = 0;
2397 s->root_extended = false;
2398 s->dmar_enabled = false;
2399 s->iq_head = 0;
2400 s->iq_tail = 0;
2401 s->iq = 0;
2402 s->iq_size = 0;
2403 s->qi_enabled = false;
2404 s->iq_last_desc_type = VTD_INV_DESC_NONE;
2405 s->next_frcd_reg = 0;
2406 s->cap = VTD_CAP_FRO | VTD_CAP_NFR | VTD_CAP_ND | VTD_CAP_MGAW |
2407 VTD_CAP_SAGAW | VTD_CAP_MAMV | VTD_CAP_PSI | VTD_CAP_SLLPS;
2408 s->ecap = VTD_ECAP_QI | VTD_ECAP_IRO;
2410 if (x86_iommu->intr_supported) {
2411 s->ecap |= VTD_ECAP_IR | VTD_ECAP_MHMV;
2412 if (s->intr_eim == ON_OFF_AUTO_ON) {
2413 s->ecap |= VTD_ECAP_EIM;
2415 assert(s->intr_eim != ON_OFF_AUTO_AUTO);
2418 vtd_reset_context_cache(s);
2419 vtd_reset_iotlb(s);
2421 /* Define registers with default values and bit semantics */
2422 vtd_define_long(s, DMAR_VER_REG, 0x10UL, 0, 0);
2423 vtd_define_quad(s, DMAR_CAP_REG, s->cap, 0, 0);
2424 vtd_define_quad(s, DMAR_ECAP_REG, s->ecap, 0, 0);
2425 vtd_define_long(s, DMAR_GCMD_REG, 0, 0xff800000UL, 0);
2426 vtd_define_long_wo(s, DMAR_GCMD_REG, 0xff800000UL);
2427 vtd_define_long(s, DMAR_GSTS_REG, 0, 0, 0);
2428 vtd_define_quad(s, DMAR_RTADDR_REG, 0, 0xfffffffffffff000ULL, 0);
2429 vtd_define_quad(s, DMAR_CCMD_REG, 0, 0xe0000003ffffffffULL, 0);
2430 vtd_define_quad_wo(s, DMAR_CCMD_REG, 0x3ffff0000ULL);
2432 /* Advanced Fault Logging not supported */
2433 vtd_define_long(s, DMAR_FSTS_REG, 0, 0, 0x11UL);
2434 vtd_define_long(s, DMAR_FECTL_REG, 0x80000000UL, 0x80000000UL, 0);
2435 vtd_define_long(s, DMAR_FEDATA_REG, 0, 0x0000ffffUL, 0);
2436 vtd_define_long(s, DMAR_FEADDR_REG, 0, 0xfffffffcUL, 0);
2438 /* Treated as RsvdZ when EIM in ECAP_REG is not supported
2439 * vtd_define_long(s, DMAR_FEUADDR_REG, 0, 0xffffffffUL, 0);
2441 vtd_define_long(s, DMAR_FEUADDR_REG, 0, 0, 0);
2443 /* Treated as RO for implementations that PLMR and PHMR fields reported
2444 * as Clear in the CAP_REG.
2445 * vtd_define_long(s, DMAR_PMEN_REG, 0, 0x80000000UL, 0);
2447 vtd_define_long(s, DMAR_PMEN_REG, 0, 0, 0);
2449 vtd_define_quad(s, DMAR_IQH_REG, 0, 0, 0);
2450 vtd_define_quad(s, DMAR_IQT_REG, 0, 0x7fff0ULL, 0);
2451 vtd_define_quad(s, DMAR_IQA_REG, 0, 0xfffffffffffff007ULL, 0);
2452 vtd_define_long(s, DMAR_ICS_REG, 0, 0, 0x1UL);
2453 vtd_define_long(s, DMAR_IECTL_REG, 0x80000000UL, 0x80000000UL, 0);
2454 vtd_define_long(s, DMAR_IEDATA_REG, 0, 0xffffffffUL, 0);
2455 vtd_define_long(s, DMAR_IEADDR_REG, 0, 0xfffffffcUL, 0);
2456 /* Treadted as RsvdZ when EIM in ECAP_REG is not supported */
2457 vtd_define_long(s, DMAR_IEUADDR_REG, 0, 0, 0);
2459 /* IOTLB registers */
2460 vtd_define_quad(s, DMAR_IOTLB_REG, 0, 0Xb003ffff00000000ULL, 0);
2461 vtd_define_quad(s, DMAR_IVA_REG, 0, 0xfffffffffffff07fULL, 0);
2462 vtd_define_quad_wo(s, DMAR_IVA_REG, 0xfffffffffffff07fULL);
2464 /* Fault Recording Registers, 128-bit */
2465 vtd_define_quad(s, DMAR_FRCD_REG_0_0, 0, 0, 0);
2466 vtd_define_quad(s, DMAR_FRCD_REG_0_2, 0, 0, 0x8000000000000000ULL);
2469 * Interrupt remapping registers.
2471 vtd_define_quad(s, DMAR_IRTA_REG, 0, 0xfffffffffffff80fULL, 0);
2474 /* Should not reset address_spaces when reset because devices will still use
2475 * the address space they got at first (won't ask the bus again).
2477 static void vtd_reset(DeviceState *dev)
2479 IntelIOMMUState *s = INTEL_IOMMU_DEVICE(dev);
2481 VTD_DPRINTF(GENERAL, "");
2482 vtd_init(s);
2485 static AddressSpace *vtd_host_dma_iommu(PCIBus *bus, void *opaque, int devfn)
2487 IntelIOMMUState *s = opaque;
2488 VTDAddressSpace *vtd_as;
2490 assert(0 <= devfn && devfn < X86_IOMMU_PCI_DEVFN_MAX);
2492 vtd_as = vtd_find_add_as(s, bus, devfn);
2493 return &vtd_as->as;
2496 static bool vtd_decide_config(IntelIOMMUState *s, Error **errp)
2498 X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
2500 /* Currently Intel IOMMU IR only support "kernel-irqchip={off|split}" */
2501 if (x86_iommu->intr_supported && kvm_irqchip_in_kernel() &&
2502 !kvm_irqchip_is_split()) {
2503 error_setg(errp, "Intel Interrupt Remapping cannot work with "
2504 "kernel-irqchip=on, please use 'split|off'.");
2505 return false;
2507 if (s->intr_eim == ON_OFF_AUTO_ON && !x86_iommu->intr_supported) {
2508 error_setg(errp, "eim=on cannot be selected without intremap=on");
2509 return false;
2512 if (s->intr_eim == ON_OFF_AUTO_AUTO) {
2513 s->intr_eim = (kvm_irqchip_in_kernel() || s->buggy_eim)
2514 && x86_iommu->intr_supported ?
2515 ON_OFF_AUTO_ON : ON_OFF_AUTO_OFF;
2517 if (s->intr_eim == ON_OFF_AUTO_ON && !s->buggy_eim) {
2518 if (!kvm_irqchip_in_kernel()) {
2519 error_setg(errp, "eim=on requires accel=kvm,kernel-irqchip=split");
2520 return false;
2522 if (!kvm_enable_x2apic()) {
2523 error_setg(errp, "eim=on requires support on the KVM side"
2524 "(X2APIC_API, first shipped in v4.7)");
2525 return false;
2529 return true;
2532 static void vtd_realize(DeviceState *dev, Error **errp)
2534 PCMachineState *pcms = PC_MACHINE(qdev_get_machine());
2535 PCIBus *bus = pcms->bus;
2536 IntelIOMMUState *s = INTEL_IOMMU_DEVICE(dev);
2537 X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(dev);
2539 VTD_DPRINTF(GENERAL, "");
2540 x86_iommu->type = TYPE_INTEL;
2542 if (!vtd_decide_config(s, errp)) {
2543 return;
2546 memset(s->vtd_as_by_bus_num, 0, sizeof(s->vtd_as_by_bus_num));
2547 memory_region_init_io(&s->csrmem, OBJECT(s), &vtd_mem_ops, s,
2548 "intel_iommu", DMAR_REG_SIZE);
2549 sysbus_init_mmio(SYS_BUS_DEVICE(s), &s->csrmem);
2550 /* No corresponding destroy */
2551 s->iotlb = g_hash_table_new_full(vtd_uint64_hash, vtd_uint64_equal,
2552 g_free, g_free);
2553 s->vtd_as_by_busptr = g_hash_table_new_full(vtd_uint64_hash, vtd_uint64_equal,
2554 g_free, g_free);
2555 vtd_init(s);
2556 sysbus_mmio_map(SYS_BUS_DEVICE(s), 0, Q35_HOST_BRIDGE_IOMMU_ADDR);
2557 pci_setup_iommu(bus, vtd_host_dma_iommu, dev);
2558 /* Pseudo address space under root PCI bus. */
2559 pcms->ioapic_as = vtd_host_dma_iommu(bus, s, Q35_PSEUDO_DEVFN_IOAPIC);
2562 static void vtd_class_init(ObjectClass *klass, void *data)
2564 DeviceClass *dc = DEVICE_CLASS(klass);
2565 X86IOMMUClass *x86_class = X86_IOMMU_CLASS(klass);
2567 dc->reset = vtd_reset;
2568 dc->vmsd = &vtd_vmstate;
2569 dc->props = vtd_properties;
2570 dc->hotpluggable = false;
2571 x86_class->realize = vtd_realize;
2572 x86_class->int_remap = vtd_int_remap;
2575 static const TypeInfo vtd_info = {
2576 .name = TYPE_INTEL_IOMMU_DEVICE,
2577 .parent = TYPE_X86_IOMMU_DEVICE,
2578 .instance_size = sizeof(IntelIOMMUState),
2579 .class_init = vtd_class_init,
2582 static void vtd_register_types(void)
2584 VTD_DPRINTF(GENERAL, "");
2585 type_register_static(&vtd_info);
2588 type_init(vtd_register_types)