2 * ARM mach-virt emulation
4 * Copyright (c) 2013 Linaro Limited
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2 or later, as published by the Free Software Foundation.
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 * You should have received a copy of the GNU General Public License along with
16 * this program. If not, see <http://www.gnu.org/licenses/>.
18 * Emulate a virtual board which works by passing Linux all the information
19 * it needs about what devices are present via the device tree.
20 * There are some restrictions about what we can do here:
21 * + we can only present devices whose Linux drivers will work based
22 * purely on the device tree with no platform data at all
23 * + we want to present a very stripped-down minimalist platform,
24 * both because this reduces the security attack surface from the guest
25 * and also because it reduces our exposure to being broken when
26 * the kernel updates its device tree bindings and requires further
27 * information in a device binding that we aren't providing.
28 * This is essentially the same approach kvmtool uses.
31 #include "qemu/osdep.h"
32 #include "qapi/error.h"
33 #include "hw/sysbus.h"
34 #include "hw/arm/arm.h"
35 #include "hw/arm/primecell.h"
36 #include "hw/arm/virt.h"
37 #include "hw/devices.h"
39 #include "sysemu/block-backend.h"
40 #include "sysemu/device_tree.h"
41 #include "sysemu/numa.h"
42 #include "sysemu/sysemu.h"
43 #include "sysemu/kvm.h"
44 #include "hw/compat.h"
45 #include "hw/loader.h"
46 #include "exec/address-spaces.h"
47 #include "qemu/bitops.h"
48 #include "qemu/error-report.h"
49 #include "hw/pci-host/gpex.h"
50 #include "hw/arm/sysbus-fdt.h"
51 #include "hw/platform-bus.h"
52 #include "hw/arm/fdt.h"
53 #include "hw/intc/arm_gic.h"
54 #include "hw/intc/arm_gicv3_common.h"
56 #include "hw/smbios/smbios.h"
57 #include "qapi/visitor.h"
58 #include "standard-headers/linux/input.h"
60 #define DEFINE_VIRT_MACHINE_LATEST(major, minor, latest) \
61 static void virt_##major##_##minor##_class_init(ObjectClass *oc, \
64 MachineClass *mc = MACHINE_CLASS(oc); \
65 virt_machine_##major##_##minor##_options(mc); \
66 mc->desc = "QEMU " # major "." # minor " ARM Virtual Machine"; \
71 static const TypeInfo machvirt_##major##_##minor##_info = { \
72 .name = MACHINE_TYPE_NAME("virt-" # major "." # minor), \
73 .parent = TYPE_VIRT_MACHINE, \
74 .instance_init = virt_##major##_##minor##_instance_init, \
75 .class_init = virt_##major##_##minor##_class_init, \
77 static void machvirt_machine_##major##_##minor##_init(void) \
79 type_register_static(&machvirt_##major##_##minor##_info); \
81 type_init(machvirt_machine_##major##_##minor##_init);
83 #define DEFINE_VIRT_MACHINE_AS_LATEST(major, minor) \
84 DEFINE_VIRT_MACHINE_LATEST(major, minor, true)
85 #define DEFINE_VIRT_MACHINE(major, minor) \
86 DEFINE_VIRT_MACHINE_LATEST(major, minor, false)
89 /* Number of external interrupt lines to configure the GIC with */
92 #define PLATFORM_BUS_NUM_IRQS 64
94 static ARMPlatformBusSystemParams platform_bus_params
;
96 /* RAM limit in GB. Since VIRT_MEM starts at the 1GB mark, this means
97 * RAM can go up to the 256GB mark, leaving 256GB of the physical
98 * address space unallocated and free for future use between 256G and 512G.
99 * If we need to provide more RAM to VMs in the future then we need to:
100 * * allocate a second bank of RAM starting at 2TB and working up
101 * * fix the DT and ACPI table generation code in QEMU to correctly
102 * report two split lumps of RAM to the guest
103 * * fix KVM in the host kernel to allow guests with >40 bit address spaces
104 * (We don't want to fill all the way up to 512GB with RAM because
105 * we might want it for non-RAM purposes later. Conversely it seems
106 * reasonable to assume that anybody configuring a VM with a quarter
107 * of a terabyte of RAM will be doing it on a host with more than a
108 * terabyte of physical address space.)
110 #define RAMLIMIT_GB 255
111 #define RAMLIMIT_BYTES (RAMLIMIT_GB * 1024ULL * 1024 * 1024)
113 /* Addresses and sizes of our components.
114 * 0..128MB is space for a flash device so we can run bootrom code such as UEFI.
115 * 128MB..256MB is used for miscellaneous device I/O.
116 * 256MB..1GB is reserved for possible future PCI support (ie where the
117 * PCI memory window will go if we add a PCI host controller).
118 * 1GB and up is RAM (which may happily spill over into the
119 * high memory region beyond 4GB).
120 * This represents a compromise between how much RAM can be given to
121 * a 32 bit VM and leaving space for expansion and in particular for PCI.
122 * Note that devices should generally be placed at multiples of 0x10000,
123 * to accommodate guests using 64K pages.
125 static const MemMapEntry a15memmap
[] = {
126 /* Space up to 0x8000000 is reserved for a boot ROM */
127 [VIRT_FLASH
] = { 0, 0x08000000 },
128 [VIRT_CPUPERIPHS
] = { 0x08000000, 0x00020000 },
129 /* GIC distributor and CPU interfaces sit inside the CPU peripheral space */
130 [VIRT_GIC_DIST
] = { 0x08000000, 0x00010000 },
131 [VIRT_GIC_CPU
] = { 0x08010000, 0x00010000 },
132 [VIRT_GIC_V2M
] = { 0x08020000, 0x00001000 },
133 /* The space in between here is reserved for GICv3 CPU/vCPU/HYP */
134 [VIRT_GIC_ITS
] = { 0x08080000, 0x00020000 },
135 /* This redistributor space allows up to 2*64kB*123 CPUs */
136 [VIRT_GIC_REDIST
] = { 0x080A0000, 0x00F60000 },
137 [VIRT_UART
] = { 0x09000000, 0x00001000 },
138 [VIRT_RTC
] = { 0x09010000, 0x00001000 },
139 [VIRT_FW_CFG
] = { 0x09020000, 0x00000018 },
140 [VIRT_GPIO
] = { 0x09030000, 0x00001000 },
141 [VIRT_SECURE_UART
] = { 0x09040000, 0x00001000 },
142 [VIRT_MMIO
] = { 0x0a000000, 0x00000200 },
143 /* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */
144 [VIRT_PLATFORM_BUS
] = { 0x0c000000, 0x02000000 },
145 [VIRT_SECURE_MEM
] = { 0x0e000000, 0x01000000 },
146 [VIRT_PCIE_MMIO
] = { 0x10000000, 0x2eff0000 },
147 [VIRT_PCIE_PIO
] = { 0x3eff0000, 0x00010000 },
148 [VIRT_PCIE_ECAM
] = { 0x3f000000, 0x01000000 },
149 [VIRT_MEM
] = { 0x40000000, RAMLIMIT_BYTES
},
150 /* Second PCIe window, 512GB wide at the 512GB boundary */
151 [VIRT_PCIE_MMIO_HIGH
] = { 0x8000000000ULL
, 0x8000000000ULL
},
154 static const int a15irqmap
[] = {
157 [VIRT_PCIE
] = 3, /* ... to 6 */
159 [VIRT_SECURE_UART
] = 8,
160 [VIRT_MMIO
] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */
161 [VIRT_GIC_V2M
] = 48, /* ...to 48 + NUM_GICV2M_SPIS - 1 */
162 [VIRT_PLATFORM_BUS
] = 112, /* ...to 112 + PLATFORM_BUS_NUM_IRQS -1 */
165 static const char *valid_cpus
[] = {
172 static bool cpuname_valid(const char *cpu
)
176 for (i
= 0; i
< ARRAY_SIZE(valid_cpus
); i
++) {
177 if (strcmp(cpu
, valid_cpus
[i
]) == 0) {
184 static void create_fdt(VirtMachineState
*vms
)
186 void *fdt
= create_device_tree(&vms
->fdt_size
);
189 error_report("create_device_tree() failed");
196 qemu_fdt_setprop_string(fdt
, "/", "compatible", "linux,dummy-virt");
197 qemu_fdt_setprop_cell(fdt
, "/", "#address-cells", 0x2);
198 qemu_fdt_setprop_cell(fdt
, "/", "#size-cells", 0x2);
201 * /chosen and /memory nodes must exist for load_dtb
202 * to fill in necessary properties later
204 qemu_fdt_add_subnode(fdt
, "/chosen");
205 qemu_fdt_add_subnode(fdt
, "/memory");
206 qemu_fdt_setprop_string(fdt
, "/memory", "device_type", "memory");
208 /* Clock node, for the benefit of the UART. The kernel device tree
209 * binding documentation claims the PL011 node clock properties are
210 * optional but in practice if you omit them the kernel refuses to
211 * probe for the device.
213 vms
->clock_phandle
= qemu_fdt_alloc_phandle(fdt
);
214 qemu_fdt_add_subnode(fdt
, "/apb-pclk");
215 qemu_fdt_setprop_string(fdt
, "/apb-pclk", "compatible", "fixed-clock");
216 qemu_fdt_setprop_cell(fdt
, "/apb-pclk", "#clock-cells", 0x0);
217 qemu_fdt_setprop_cell(fdt
, "/apb-pclk", "clock-frequency", 24000000);
218 qemu_fdt_setprop_string(fdt
, "/apb-pclk", "clock-output-names",
220 qemu_fdt_setprop_cell(fdt
, "/apb-pclk", "phandle", vms
->clock_phandle
);
224 static void fdt_add_psci_node(const VirtMachineState
*vms
)
226 uint32_t cpu_suspend_fn
;
230 void *fdt
= vms
->fdt
;
231 ARMCPU
*armcpu
= ARM_CPU(qemu_get_cpu(0));
232 const char *psci_method
;
234 switch (vms
->psci_conduit
) {
235 case QEMU_PSCI_CONDUIT_DISABLED
:
237 case QEMU_PSCI_CONDUIT_HVC
:
240 case QEMU_PSCI_CONDUIT_SMC
:
244 g_assert_not_reached();
247 qemu_fdt_add_subnode(fdt
, "/psci");
248 if (armcpu
->psci_version
== 2) {
249 const char comp
[] = "arm,psci-0.2\0arm,psci";
250 qemu_fdt_setprop(fdt
, "/psci", "compatible", comp
, sizeof(comp
));
252 cpu_off_fn
= QEMU_PSCI_0_2_FN_CPU_OFF
;
253 if (arm_feature(&armcpu
->env
, ARM_FEATURE_AARCH64
)) {
254 cpu_suspend_fn
= QEMU_PSCI_0_2_FN64_CPU_SUSPEND
;
255 cpu_on_fn
= QEMU_PSCI_0_2_FN64_CPU_ON
;
256 migrate_fn
= QEMU_PSCI_0_2_FN64_MIGRATE
;
258 cpu_suspend_fn
= QEMU_PSCI_0_2_FN_CPU_SUSPEND
;
259 cpu_on_fn
= QEMU_PSCI_0_2_FN_CPU_ON
;
260 migrate_fn
= QEMU_PSCI_0_2_FN_MIGRATE
;
263 qemu_fdt_setprop_string(fdt
, "/psci", "compatible", "arm,psci");
265 cpu_suspend_fn
= QEMU_PSCI_0_1_FN_CPU_SUSPEND
;
266 cpu_off_fn
= QEMU_PSCI_0_1_FN_CPU_OFF
;
267 cpu_on_fn
= QEMU_PSCI_0_1_FN_CPU_ON
;
268 migrate_fn
= QEMU_PSCI_0_1_FN_MIGRATE
;
271 /* We adopt the PSCI spec's nomenclature, and use 'conduit' to refer
272 * to the instruction that should be used to invoke PSCI functions.
273 * However, the device tree binding uses 'method' instead, so that is
274 * what we should use here.
276 qemu_fdt_setprop_string(fdt
, "/psci", "method", psci_method
);
278 qemu_fdt_setprop_cell(fdt
, "/psci", "cpu_suspend", cpu_suspend_fn
);
279 qemu_fdt_setprop_cell(fdt
, "/psci", "cpu_off", cpu_off_fn
);
280 qemu_fdt_setprop_cell(fdt
, "/psci", "cpu_on", cpu_on_fn
);
281 qemu_fdt_setprop_cell(fdt
, "/psci", "migrate", migrate_fn
);
284 static void fdt_add_timer_nodes(const VirtMachineState
*vms
)
286 /* On real hardware these interrupts are level-triggered.
287 * On KVM they were edge-triggered before host kernel version 4.4,
288 * and level-triggered afterwards.
289 * On emulated QEMU they are level-triggered.
291 * Getting the DTB info about them wrong is awkward for some
293 * pre-4.8 ignore the DT and leave the interrupt configured
294 * with whatever the GIC reset value (or the bootloader) left it at
295 * 4.8 before rc6 honour the incorrect data by programming it back
296 * into the GIC, causing problems
297 * 4.8rc6 and later ignore the DT and always write "level triggered"
300 * For backwards-compatibility, virt-2.8 and earlier will continue
301 * to say these are edge-triggered, but later machines will report
302 * the correct information.
305 VirtMachineClass
*vmc
= VIRT_MACHINE_GET_CLASS(vms
);
306 uint32_t irqflags
= GIC_FDT_IRQ_FLAGS_LEVEL_HI
;
308 if (vmc
->claim_edge_triggered_timers
) {
309 irqflags
= GIC_FDT_IRQ_FLAGS_EDGE_LO_HI
;
312 if (vms
->gic_version
== 2) {
313 irqflags
= deposit32(irqflags
, GIC_FDT_IRQ_PPI_CPU_START
,
314 GIC_FDT_IRQ_PPI_CPU_WIDTH
,
315 (1 << vms
->smp_cpus
) - 1);
318 qemu_fdt_add_subnode(vms
->fdt
, "/timer");
320 armcpu
= ARM_CPU(qemu_get_cpu(0));
321 if (arm_feature(&armcpu
->env
, ARM_FEATURE_V8
)) {
322 const char compat
[] = "arm,armv8-timer\0arm,armv7-timer";
323 qemu_fdt_setprop(vms
->fdt
, "/timer", "compatible",
324 compat
, sizeof(compat
));
326 qemu_fdt_setprop_string(vms
->fdt
, "/timer", "compatible",
329 qemu_fdt_setprop(vms
->fdt
, "/timer", "always-on", NULL
, 0);
330 qemu_fdt_setprop_cells(vms
->fdt
, "/timer", "interrupts",
331 GIC_FDT_IRQ_TYPE_PPI
, ARCH_TIMER_S_EL1_IRQ
, irqflags
,
332 GIC_FDT_IRQ_TYPE_PPI
, ARCH_TIMER_NS_EL1_IRQ
, irqflags
,
333 GIC_FDT_IRQ_TYPE_PPI
, ARCH_TIMER_VIRT_IRQ
, irqflags
,
334 GIC_FDT_IRQ_TYPE_PPI
, ARCH_TIMER_NS_EL2_IRQ
, irqflags
);
337 static void fdt_add_cpu_nodes(const VirtMachineState
*vms
)
344 * From Documentation/devicetree/bindings/arm/cpus.txt
345 * On ARM v8 64-bit systems value should be set to 2,
346 * that corresponds to the MPIDR_EL1 register size.
347 * If MPIDR_EL1[63:32] value is equal to 0 on all CPUs
348 * in the system, #address-cells can be set to 1, since
349 * MPIDR_EL1[63:32] bits are not used for CPUs
352 * Here we actually don't know whether our system is 32- or 64-bit one.
353 * The simplest way to go is to examine affinity IDs of all our CPUs. If
354 * at least one of them has Aff3 populated, we set #address-cells to 2.
356 for (cpu
= 0; cpu
< vms
->smp_cpus
; cpu
++) {
357 ARMCPU
*armcpu
= ARM_CPU(qemu_get_cpu(cpu
));
359 if (armcpu
->mp_affinity
& ARM_AFF3_MASK
) {
365 qemu_fdt_add_subnode(vms
->fdt
, "/cpus");
366 qemu_fdt_setprop_cell(vms
->fdt
, "/cpus", "#address-cells", addr_cells
);
367 qemu_fdt_setprop_cell(vms
->fdt
, "/cpus", "#size-cells", 0x0);
369 for (cpu
= vms
->smp_cpus
- 1; cpu
>= 0; cpu
--) {
370 char *nodename
= g_strdup_printf("/cpus/cpu@%d", cpu
);
371 ARMCPU
*armcpu
= ARM_CPU(qemu_get_cpu(cpu
));
373 qemu_fdt_add_subnode(vms
->fdt
, nodename
);
374 qemu_fdt_setprop_string(vms
->fdt
, nodename
, "device_type", "cpu");
375 qemu_fdt_setprop_string(vms
->fdt
, nodename
, "compatible",
376 armcpu
->dtb_compatible
);
378 if (vms
->psci_conduit
!= QEMU_PSCI_CONDUIT_DISABLED
379 && vms
->smp_cpus
> 1) {
380 qemu_fdt_setprop_string(vms
->fdt
, nodename
,
381 "enable-method", "psci");
384 if (addr_cells
== 2) {
385 qemu_fdt_setprop_u64(vms
->fdt
, nodename
, "reg",
386 armcpu
->mp_affinity
);
388 qemu_fdt_setprop_cell(vms
->fdt
, nodename
, "reg",
389 armcpu
->mp_affinity
);
392 i
= numa_get_node_for_cpu(cpu
);
393 if (i
< nb_numa_nodes
) {
394 qemu_fdt_setprop_cell(vms
->fdt
, nodename
, "numa-node-id", i
);
401 static void fdt_add_its_gic_node(VirtMachineState
*vms
)
403 vms
->msi_phandle
= qemu_fdt_alloc_phandle(vms
->fdt
);
404 qemu_fdt_add_subnode(vms
->fdt
, "/intc/its");
405 qemu_fdt_setprop_string(vms
->fdt
, "/intc/its", "compatible",
407 qemu_fdt_setprop(vms
->fdt
, "/intc/its", "msi-controller", NULL
, 0);
408 qemu_fdt_setprop_sized_cells(vms
->fdt
, "/intc/its", "reg",
409 2, vms
->memmap
[VIRT_GIC_ITS
].base
,
410 2, vms
->memmap
[VIRT_GIC_ITS
].size
);
411 qemu_fdt_setprop_cell(vms
->fdt
, "/intc/its", "phandle", vms
->msi_phandle
);
414 static void fdt_add_v2m_gic_node(VirtMachineState
*vms
)
416 vms
->msi_phandle
= qemu_fdt_alloc_phandle(vms
->fdt
);
417 qemu_fdt_add_subnode(vms
->fdt
, "/intc/v2m");
418 qemu_fdt_setprop_string(vms
->fdt
, "/intc/v2m", "compatible",
419 "arm,gic-v2m-frame");
420 qemu_fdt_setprop(vms
->fdt
, "/intc/v2m", "msi-controller", NULL
, 0);
421 qemu_fdt_setprop_sized_cells(vms
->fdt
, "/intc/v2m", "reg",
422 2, vms
->memmap
[VIRT_GIC_V2M
].base
,
423 2, vms
->memmap
[VIRT_GIC_V2M
].size
);
424 qemu_fdt_setprop_cell(vms
->fdt
, "/intc/v2m", "phandle", vms
->msi_phandle
);
427 static void fdt_add_gic_node(VirtMachineState
*vms
)
429 vms
->gic_phandle
= qemu_fdt_alloc_phandle(vms
->fdt
);
430 qemu_fdt_setprop_cell(vms
->fdt
, "/", "interrupt-parent", vms
->gic_phandle
);
432 qemu_fdt_add_subnode(vms
->fdt
, "/intc");
433 qemu_fdt_setprop_cell(vms
->fdt
, "/intc", "#interrupt-cells", 3);
434 qemu_fdt_setprop(vms
->fdt
, "/intc", "interrupt-controller", NULL
, 0);
435 qemu_fdt_setprop_cell(vms
->fdt
, "/intc", "#address-cells", 0x2);
436 qemu_fdt_setprop_cell(vms
->fdt
, "/intc", "#size-cells", 0x2);
437 qemu_fdt_setprop(vms
->fdt
, "/intc", "ranges", NULL
, 0);
438 if (vms
->gic_version
== 3) {
439 qemu_fdt_setprop_string(vms
->fdt
, "/intc", "compatible",
441 qemu_fdt_setprop_sized_cells(vms
->fdt
, "/intc", "reg",
442 2, vms
->memmap
[VIRT_GIC_DIST
].base
,
443 2, vms
->memmap
[VIRT_GIC_DIST
].size
,
444 2, vms
->memmap
[VIRT_GIC_REDIST
].base
,
445 2, vms
->memmap
[VIRT_GIC_REDIST
].size
);
447 qemu_fdt_setprop_cells(vms
->fdt
, "/intc", "interrupts",
448 GIC_FDT_IRQ_TYPE_PPI
, ARCH_GICV3_MAINT_IRQ
,
449 GIC_FDT_IRQ_FLAGS_LEVEL_HI
);
452 /* 'cortex-a15-gic' means 'GIC v2' */
453 qemu_fdt_setprop_string(vms
->fdt
, "/intc", "compatible",
454 "arm,cortex-a15-gic");
455 qemu_fdt_setprop_sized_cells(vms
->fdt
, "/intc", "reg",
456 2, vms
->memmap
[VIRT_GIC_DIST
].base
,
457 2, vms
->memmap
[VIRT_GIC_DIST
].size
,
458 2, vms
->memmap
[VIRT_GIC_CPU
].base
,
459 2, vms
->memmap
[VIRT_GIC_CPU
].size
);
462 qemu_fdt_setprop_cell(vms
->fdt
, "/intc", "phandle", vms
->gic_phandle
);
465 static void fdt_add_pmu_nodes(const VirtMachineState
*vms
)
469 uint32_t irqflags
= GIC_FDT_IRQ_FLAGS_LEVEL_HI
;
472 armcpu
= ARM_CPU(cpu
);
473 if (!arm_feature(&armcpu
->env
, ARM_FEATURE_PMU
) ||
474 (kvm_enabled() && !kvm_arm_pmu_create(cpu
, PPI(VIRTUAL_PMU_IRQ
)))) {
479 if (vms
->gic_version
== 2) {
480 irqflags
= deposit32(irqflags
, GIC_FDT_IRQ_PPI_CPU_START
,
481 GIC_FDT_IRQ_PPI_CPU_WIDTH
,
482 (1 << vms
->smp_cpus
) - 1);
485 armcpu
= ARM_CPU(qemu_get_cpu(0));
486 qemu_fdt_add_subnode(vms
->fdt
, "/pmu");
487 if (arm_feature(&armcpu
->env
, ARM_FEATURE_V8
)) {
488 const char compat
[] = "arm,armv8-pmuv3";
489 qemu_fdt_setprop(vms
->fdt
, "/pmu", "compatible",
490 compat
, sizeof(compat
));
491 qemu_fdt_setprop_cells(vms
->fdt
, "/pmu", "interrupts",
492 GIC_FDT_IRQ_TYPE_PPI
, VIRTUAL_PMU_IRQ
, irqflags
);
496 static void create_its(VirtMachineState
*vms
, DeviceState
*gicdev
)
498 const char *itsclass
= its_class_name();
502 /* Do nothing if not supported */
506 dev
= qdev_create(NULL
, itsclass
);
508 object_property_set_link(OBJECT(dev
), OBJECT(gicdev
), "parent-gicv3",
510 qdev_init_nofail(dev
);
511 sysbus_mmio_map(SYS_BUS_DEVICE(dev
), 0, vms
->memmap
[VIRT_GIC_ITS
].base
);
513 fdt_add_its_gic_node(vms
);
516 static void create_v2m(VirtMachineState
*vms
, qemu_irq
*pic
)
519 int irq
= vms
->irqmap
[VIRT_GIC_V2M
];
522 dev
= qdev_create(NULL
, "arm-gicv2m");
523 sysbus_mmio_map(SYS_BUS_DEVICE(dev
), 0, vms
->memmap
[VIRT_GIC_V2M
].base
);
524 qdev_prop_set_uint32(dev
, "base-spi", irq
);
525 qdev_prop_set_uint32(dev
, "num-spi", NUM_GICV2M_SPIS
);
526 qdev_init_nofail(dev
);
528 for (i
= 0; i
< NUM_GICV2M_SPIS
; i
++) {
529 sysbus_connect_irq(SYS_BUS_DEVICE(dev
), i
, pic
[irq
+ i
]);
532 fdt_add_v2m_gic_node(vms
);
535 static void create_gic(VirtMachineState
*vms
, qemu_irq
*pic
)
537 /* We create a standalone GIC */
539 SysBusDevice
*gicbusdev
;
541 int type
= vms
->gic_version
, i
;
543 gictype
= (type
== 3) ? gicv3_class_name() : gic_class_name();
545 gicdev
= qdev_create(NULL
, gictype
);
546 qdev_prop_set_uint32(gicdev
, "revision", type
);
547 qdev_prop_set_uint32(gicdev
, "num-cpu", smp_cpus
);
548 /* Note that the num-irq property counts both internal and external
549 * interrupts; there are always 32 of the former (mandated by GIC spec).
551 qdev_prop_set_uint32(gicdev
, "num-irq", NUM_IRQS
+ 32);
552 if (!kvm_irqchip_in_kernel()) {
553 qdev_prop_set_bit(gicdev
, "has-security-extensions", vms
->secure
);
555 qdev_init_nofail(gicdev
);
556 gicbusdev
= SYS_BUS_DEVICE(gicdev
);
557 sysbus_mmio_map(gicbusdev
, 0, vms
->memmap
[VIRT_GIC_DIST
].base
);
559 sysbus_mmio_map(gicbusdev
, 1, vms
->memmap
[VIRT_GIC_REDIST
].base
);
561 sysbus_mmio_map(gicbusdev
, 1, vms
->memmap
[VIRT_GIC_CPU
].base
);
564 /* Wire the outputs from each CPU's generic timer and the GICv3
565 * maintenance interrupt signal to the appropriate GIC PPI inputs,
566 * and the GIC's IRQ/FIQ/VIRQ/VFIQ interrupt outputs to the CPU's inputs.
568 for (i
= 0; i
< smp_cpus
; i
++) {
569 DeviceState
*cpudev
= DEVICE(qemu_get_cpu(i
));
570 int ppibase
= NUM_IRQS
+ i
* GIC_INTERNAL
+ GIC_NR_SGIS
;
572 /* Mapping from the output timer irq lines from the CPU to the
573 * GIC PPI inputs we use for the virt board.
575 const int timer_irq
[] = {
576 [GTIMER_PHYS
] = ARCH_TIMER_NS_EL1_IRQ
,
577 [GTIMER_VIRT
] = ARCH_TIMER_VIRT_IRQ
,
578 [GTIMER_HYP
] = ARCH_TIMER_NS_EL2_IRQ
,
579 [GTIMER_SEC
] = ARCH_TIMER_S_EL1_IRQ
,
582 for (irq
= 0; irq
< ARRAY_SIZE(timer_irq
); irq
++) {
583 qdev_connect_gpio_out(cpudev
, irq
,
584 qdev_get_gpio_in(gicdev
,
585 ppibase
+ timer_irq
[irq
]));
588 qdev_connect_gpio_out_named(cpudev
, "gicv3-maintenance-interrupt", 0,
589 qdev_get_gpio_in(gicdev
, ppibase
590 + ARCH_GICV3_MAINT_IRQ
));
592 sysbus_connect_irq(gicbusdev
, i
, qdev_get_gpio_in(cpudev
, ARM_CPU_IRQ
));
593 sysbus_connect_irq(gicbusdev
, i
+ smp_cpus
,
594 qdev_get_gpio_in(cpudev
, ARM_CPU_FIQ
));
595 sysbus_connect_irq(gicbusdev
, i
+ 2 * smp_cpus
,
596 qdev_get_gpio_in(cpudev
, ARM_CPU_VIRQ
));
597 sysbus_connect_irq(gicbusdev
, i
+ 3 * smp_cpus
,
598 qdev_get_gpio_in(cpudev
, ARM_CPU_VFIQ
));
601 for (i
= 0; i
< NUM_IRQS
; i
++) {
602 pic
[i
] = qdev_get_gpio_in(gicdev
, i
);
605 fdt_add_gic_node(vms
);
607 if (type
== 3 && vms
->its
) {
608 create_its(vms
, gicdev
);
609 } else if (type
== 2) {
610 create_v2m(vms
, pic
);
614 static void create_uart(const VirtMachineState
*vms
, qemu_irq
*pic
, int uart
,
615 MemoryRegion
*mem
, Chardev
*chr
)
618 hwaddr base
= vms
->memmap
[uart
].base
;
619 hwaddr size
= vms
->memmap
[uart
].size
;
620 int irq
= vms
->irqmap
[uart
];
621 const char compat
[] = "arm,pl011\0arm,primecell";
622 const char clocknames
[] = "uartclk\0apb_pclk";
623 DeviceState
*dev
= qdev_create(NULL
, "pl011");
624 SysBusDevice
*s
= SYS_BUS_DEVICE(dev
);
626 qdev_prop_set_chr(dev
, "chardev", chr
);
627 qdev_init_nofail(dev
);
628 memory_region_add_subregion(mem
, base
,
629 sysbus_mmio_get_region(s
, 0));
630 sysbus_connect_irq(s
, 0, pic
[irq
]);
632 nodename
= g_strdup_printf("/pl011@%" PRIx64
, base
);
633 qemu_fdt_add_subnode(vms
->fdt
, nodename
);
634 /* Note that we can't use setprop_string because of the embedded NUL */
635 qemu_fdt_setprop(vms
->fdt
, nodename
, "compatible",
636 compat
, sizeof(compat
));
637 qemu_fdt_setprop_sized_cells(vms
->fdt
, nodename
, "reg",
639 qemu_fdt_setprop_cells(vms
->fdt
, nodename
, "interrupts",
640 GIC_FDT_IRQ_TYPE_SPI
, irq
,
641 GIC_FDT_IRQ_FLAGS_LEVEL_HI
);
642 qemu_fdt_setprop_cells(vms
->fdt
, nodename
, "clocks",
643 vms
->clock_phandle
, vms
->clock_phandle
);
644 qemu_fdt_setprop(vms
->fdt
, nodename
, "clock-names",
645 clocknames
, sizeof(clocknames
));
647 if (uart
== VIRT_UART
) {
648 qemu_fdt_setprop_string(vms
->fdt
, "/chosen", "stdout-path", nodename
);
650 /* Mark as not usable by the normal world */
651 qemu_fdt_setprop_string(vms
->fdt
, nodename
, "status", "disabled");
652 qemu_fdt_setprop_string(vms
->fdt
, nodename
, "secure-status", "okay");
658 static void create_rtc(const VirtMachineState
*vms
, qemu_irq
*pic
)
661 hwaddr base
= vms
->memmap
[VIRT_RTC
].base
;
662 hwaddr size
= vms
->memmap
[VIRT_RTC
].size
;
663 int irq
= vms
->irqmap
[VIRT_RTC
];
664 const char compat
[] = "arm,pl031\0arm,primecell";
666 sysbus_create_simple("pl031", base
, pic
[irq
]);
668 nodename
= g_strdup_printf("/pl031@%" PRIx64
, base
);
669 qemu_fdt_add_subnode(vms
->fdt
, nodename
);
670 qemu_fdt_setprop(vms
->fdt
, nodename
, "compatible", compat
, sizeof(compat
));
671 qemu_fdt_setprop_sized_cells(vms
->fdt
, nodename
, "reg",
673 qemu_fdt_setprop_cells(vms
->fdt
, nodename
, "interrupts",
674 GIC_FDT_IRQ_TYPE_SPI
, irq
,
675 GIC_FDT_IRQ_FLAGS_LEVEL_HI
);
676 qemu_fdt_setprop_cell(vms
->fdt
, nodename
, "clocks", vms
->clock_phandle
);
677 qemu_fdt_setprop_string(vms
->fdt
, nodename
, "clock-names", "apb_pclk");
681 static DeviceState
*gpio_key_dev
;
682 static void virt_powerdown_req(Notifier
*n
, void *opaque
)
684 /* use gpio Pin 3 for power button event */
685 qemu_set_irq(qdev_get_gpio_in(gpio_key_dev
, 0), 1);
688 static Notifier virt_system_powerdown_notifier
= {
689 .notify
= virt_powerdown_req
692 static void create_gpio(const VirtMachineState
*vms
, qemu_irq
*pic
)
695 DeviceState
*pl061_dev
;
696 hwaddr base
= vms
->memmap
[VIRT_GPIO
].base
;
697 hwaddr size
= vms
->memmap
[VIRT_GPIO
].size
;
698 int irq
= vms
->irqmap
[VIRT_GPIO
];
699 const char compat
[] = "arm,pl061\0arm,primecell";
701 pl061_dev
= sysbus_create_simple("pl061", base
, pic
[irq
]);
703 uint32_t phandle
= qemu_fdt_alloc_phandle(vms
->fdt
);
704 nodename
= g_strdup_printf("/pl061@%" PRIx64
, base
);
705 qemu_fdt_add_subnode(vms
->fdt
, nodename
);
706 qemu_fdt_setprop_sized_cells(vms
->fdt
, nodename
, "reg",
708 qemu_fdt_setprop(vms
->fdt
, nodename
, "compatible", compat
, sizeof(compat
));
709 qemu_fdt_setprop_cell(vms
->fdt
, nodename
, "#gpio-cells", 2);
710 qemu_fdt_setprop(vms
->fdt
, nodename
, "gpio-controller", NULL
, 0);
711 qemu_fdt_setprop_cells(vms
->fdt
, nodename
, "interrupts",
712 GIC_FDT_IRQ_TYPE_SPI
, irq
,
713 GIC_FDT_IRQ_FLAGS_LEVEL_HI
);
714 qemu_fdt_setprop_cell(vms
->fdt
, nodename
, "clocks", vms
->clock_phandle
);
715 qemu_fdt_setprop_string(vms
->fdt
, nodename
, "clock-names", "apb_pclk");
716 qemu_fdt_setprop_cell(vms
->fdt
, nodename
, "phandle", phandle
);
718 gpio_key_dev
= sysbus_create_simple("gpio-key", -1,
719 qdev_get_gpio_in(pl061_dev
, 3));
720 qemu_fdt_add_subnode(vms
->fdt
, "/gpio-keys");
721 qemu_fdt_setprop_string(vms
->fdt
, "/gpio-keys", "compatible", "gpio-keys");
722 qemu_fdt_setprop_cell(vms
->fdt
, "/gpio-keys", "#size-cells", 0);
723 qemu_fdt_setprop_cell(vms
->fdt
, "/gpio-keys", "#address-cells", 1);
725 qemu_fdt_add_subnode(vms
->fdt
, "/gpio-keys/poweroff");
726 qemu_fdt_setprop_string(vms
->fdt
, "/gpio-keys/poweroff",
727 "label", "GPIO Key Poweroff");
728 qemu_fdt_setprop_cell(vms
->fdt
, "/gpio-keys/poweroff", "linux,code",
730 qemu_fdt_setprop_cells(vms
->fdt
, "/gpio-keys/poweroff",
731 "gpios", phandle
, 3, 0);
733 /* connect powerdown request */
734 qemu_register_powerdown_notifier(&virt_system_powerdown_notifier
);
739 static void create_virtio_devices(const VirtMachineState
*vms
, qemu_irq
*pic
)
742 hwaddr size
= vms
->memmap
[VIRT_MMIO
].size
;
744 /* We create the transports in forwards order. Since qbus_realize()
745 * prepends (not appends) new child buses, the incrementing loop below will
746 * create a list of virtio-mmio buses with decreasing base addresses.
748 * When a -device option is processed from the command line,
749 * qbus_find_recursive() picks the next free virtio-mmio bus in forwards
750 * order. The upshot is that -device options in increasing command line
751 * order are mapped to virtio-mmio buses with decreasing base addresses.
753 * When this code was originally written, that arrangement ensured that the
754 * guest Linux kernel would give the lowest "name" (/dev/vda, eth0, etc) to
755 * the first -device on the command line. (The end-to-end order is a
756 * function of this loop, qbus_realize(), qbus_find_recursive(), and the
757 * guest kernel's name-to-address assignment strategy.)
759 * Meanwhile, the kernel's traversal seems to have been reversed; see eg.
760 * the message, if not necessarily the code, of commit 70161ff336.
761 * Therefore the loop now establishes the inverse of the original intent.
763 * Unfortunately, we can't counteract the kernel change by reversing the
764 * loop; it would break existing command lines.
766 * In any case, the kernel makes no guarantee about the stability of
767 * enumeration order of virtio devices (as demonstrated by it changing
768 * between kernel versions). For reliable and stable identification
769 * of disks users must use UUIDs or similar mechanisms.
771 for (i
= 0; i
< NUM_VIRTIO_TRANSPORTS
; i
++) {
772 int irq
= vms
->irqmap
[VIRT_MMIO
] + i
;
773 hwaddr base
= vms
->memmap
[VIRT_MMIO
].base
+ i
* size
;
775 sysbus_create_simple("virtio-mmio", base
, pic
[irq
]);
778 /* We add dtb nodes in reverse order so that they appear in the finished
779 * device tree lowest address first.
781 * Note that this mapping is independent of the loop above. The previous
782 * loop influences virtio device to virtio transport assignment, whereas
783 * this loop controls how virtio transports are laid out in the dtb.
785 for (i
= NUM_VIRTIO_TRANSPORTS
- 1; i
>= 0; i
--) {
787 int irq
= vms
->irqmap
[VIRT_MMIO
] + i
;
788 hwaddr base
= vms
->memmap
[VIRT_MMIO
].base
+ i
* size
;
790 nodename
= g_strdup_printf("/virtio_mmio@%" PRIx64
, base
);
791 qemu_fdt_add_subnode(vms
->fdt
, nodename
);
792 qemu_fdt_setprop_string(vms
->fdt
, nodename
,
793 "compatible", "virtio,mmio");
794 qemu_fdt_setprop_sized_cells(vms
->fdt
, nodename
, "reg",
796 qemu_fdt_setprop_cells(vms
->fdt
, nodename
, "interrupts",
797 GIC_FDT_IRQ_TYPE_SPI
, irq
,
798 GIC_FDT_IRQ_FLAGS_EDGE_LO_HI
);
799 qemu_fdt_setprop(vms
->fdt
, nodename
, "dma-coherent", NULL
, 0);
804 static void create_one_flash(const char *name
, hwaddr flashbase
,
805 hwaddr flashsize
, const char *file
,
806 MemoryRegion
*sysmem
)
808 /* Create and map a single flash device. We use the same
809 * parameters as the flash devices on the Versatile Express board.
811 DriveInfo
*dinfo
= drive_get_next(IF_PFLASH
);
812 DeviceState
*dev
= qdev_create(NULL
, "cfi.pflash01");
813 SysBusDevice
*sbd
= SYS_BUS_DEVICE(dev
);
814 const uint64_t sectorlength
= 256 * 1024;
817 qdev_prop_set_drive(dev
, "drive", blk_by_legacy_dinfo(dinfo
),
821 qdev_prop_set_uint32(dev
, "num-blocks", flashsize
/ sectorlength
);
822 qdev_prop_set_uint64(dev
, "sector-length", sectorlength
);
823 qdev_prop_set_uint8(dev
, "width", 4);
824 qdev_prop_set_uint8(dev
, "device-width", 2);
825 qdev_prop_set_bit(dev
, "big-endian", false);
826 qdev_prop_set_uint16(dev
, "id0", 0x89);
827 qdev_prop_set_uint16(dev
, "id1", 0x18);
828 qdev_prop_set_uint16(dev
, "id2", 0x00);
829 qdev_prop_set_uint16(dev
, "id3", 0x00);
830 qdev_prop_set_string(dev
, "name", name
);
831 qdev_init_nofail(dev
);
833 memory_region_add_subregion(sysmem
, flashbase
,
834 sysbus_mmio_get_region(SYS_BUS_DEVICE(dev
), 0));
840 if (drive_get(IF_PFLASH
, 0, 0)) {
841 error_report("The contents of the first flash device may be "
842 "specified with -bios or with -drive if=pflash... "
843 "but you cannot use both options at once");
846 fn
= qemu_find_file(QEMU_FILE_TYPE_BIOS
, file
);
848 error_report("Could not find ROM image '%s'", file
);
851 image_size
= load_image_mr(fn
, sysbus_mmio_get_region(sbd
, 0));
853 if (image_size
< 0) {
854 error_report("Could not load ROM image '%s'", file
);
860 static void create_flash(const VirtMachineState
*vms
,
861 MemoryRegion
*sysmem
,
862 MemoryRegion
*secure_sysmem
)
864 /* Create two flash devices to fill the VIRT_FLASH space in the memmap.
865 * Any file passed via -bios goes in the first of these.
866 * sysmem is the system memory space. secure_sysmem is the secure view
867 * of the system, and the first flash device should be made visible only
868 * there. The second flash device is visible to both secure and nonsecure.
869 * If sysmem == secure_sysmem this means there is no separate Secure
870 * address space and both flash devices are generally visible.
872 hwaddr flashsize
= vms
->memmap
[VIRT_FLASH
].size
/ 2;
873 hwaddr flashbase
= vms
->memmap
[VIRT_FLASH
].base
;
876 create_one_flash("virt.flash0", flashbase
, flashsize
,
877 bios_name
, secure_sysmem
);
878 create_one_flash("virt.flash1", flashbase
+ flashsize
, flashsize
,
881 if (sysmem
== secure_sysmem
) {
882 /* Report both flash devices as a single node in the DT */
883 nodename
= g_strdup_printf("/flash@%" PRIx64
, flashbase
);
884 qemu_fdt_add_subnode(vms
->fdt
, nodename
);
885 qemu_fdt_setprop_string(vms
->fdt
, nodename
, "compatible", "cfi-flash");
886 qemu_fdt_setprop_sized_cells(vms
->fdt
, nodename
, "reg",
887 2, flashbase
, 2, flashsize
,
888 2, flashbase
+ flashsize
, 2, flashsize
);
889 qemu_fdt_setprop_cell(vms
->fdt
, nodename
, "bank-width", 4);
892 /* Report the devices as separate nodes so we can mark one as
893 * only visible to the secure world.
895 nodename
= g_strdup_printf("/secflash@%" PRIx64
, flashbase
);
896 qemu_fdt_add_subnode(vms
->fdt
, nodename
);
897 qemu_fdt_setprop_string(vms
->fdt
, nodename
, "compatible", "cfi-flash");
898 qemu_fdt_setprop_sized_cells(vms
->fdt
, nodename
, "reg",
899 2, flashbase
, 2, flashsize
);
900 qemu_fdt_setprop_cell(vms
->fdt
, nodename
, "bank-width", 4);
901 qemu_fdt_setprop_string(vms
->fdt
, nodename
, "status", "disabled");
902 qemu_fdt_setprop_string(vms
->fdt
, nodename
, "secure-status", "okay");
905 nodename
= g_strdup_printf("/flash@%" PRIx64
, flashbase
);
906 qemu_fdt_add_subnode(vms
->fdt
, nodename
);
907 qemu_fdt_setprop_string(vms
->fdt
, nodename
, "compatible", "cfi-flash");
908 qemu_fdt_setprop_sized_cells(vms
->fdt
, nodename
, "reg",
909 2, flashbase
+ flashsize
, 2, flashsize
);
910 qemu_fdt_setprop_cell(vms
->fdt
, nodename
, "bank-width", 4);
915 static FWCfgState
*create_fw_cfg(const VirtMachineState
*vms
, AddressSpace
*as
)
917 hwaddr base
= vms
->memmap
[VIRT_FW_CFG
].base
;
918 hwaddr size
= vms
->memmap
[VIRT_FW_CFG
].size
;
922 fw_cfg
= fw_cfg_init_mem_wide(base
+ 8, base
, 8, base
+ 16, as
);
923 fw_cfg_add_i16(fw_cfg
, FW_CFG_NB_CPUS
, (uint16_t)smp_cpus
);
925 nodename
= g_strdup_printf("/fw-cfg@%" PRIx64
, base
);
926 qemu_fdt_add_subnode(vms
->fdt
, nodename
);
927 qemu_fdt_setprop_string(vms
->fdt
, nodename
,
928 "compatible", "qemu,fw-cfg-mmio");
929 qemu_fdt_setprop_sized_cells(vms
->fdt
, nodename
, "reg",
931 qemu_fdt_setprop(vms
->fdt
, nodename
, "dma-coherent", NULL
, 0);
936 static void create_pcie_irq_map(const VirtMachineState
*vms
,
937 uint32_t gic_phandle
,
938 int first_irq
, const char *nodename
)
941 uint32_t full_irq_map
[4 * 4 * 10] = { 0 };
942 uint32_t *irq_map
= full_irq_map
;
944 for (devfn
= 0; devfn
<= 0x18; devfn
+= 0x8) {
945 for (pin
= 0; pin
< 4; pin
++) {
946 int irq_type
= GIC_FDT_IRQ_TYPE_SPI
;
947 int irq_nr
= first_irq
+ ((pin
+ PCI_SLOT(devfn
)) % PCI_NUM_PINS
);
948 int irq_level
= GIC_FDT_IRQ_FLAGS_LEVEL_HI
;
952 devfn
<< 8, 0, 0, /* devfn */
953 pin
+ 1, /* PCI pin */
954 gic_phandle
, 0, 0, irq_type
, irq_nr
, irq_level
}; /* GIC irq */
956 /* Convert map to big endian */
957 for (i
= 0; i
< 10; i
++) {
958 irq_map
[i
] = cpu_to_be32(map
[i
]);
964 qemu_fdt_setprop(vms
->fdt
, nodename
, "interrupt-map",
965 full_irq_map
, sizeof(full_irq_map
));
967 qemu_fdt_setprop_cells(vms
->fdt
, nodename
, "interrupt-map-mask",
968 0x1800, 0, 0, /* devfn (PCI_SLOT(3)) */
972 static void create_pcie(const VirtMachineState
*vms
, qemu_irq
*pic
)
974 hwaddr base_mmio
= vms
->memmap
[VIRT_PCIE_MMIO
].base
;
975 hwaddr size_mmio
= vms
->memmap
[VIRT_PCIE_MMIO
].size
;
976 hwaddr base_mmio_high
= vms
->memmap
[VIRT_PCIE_MMIO_HIGH
].base
;
977 hwaddr size_mmio_high
= vms
->memmap
[VIRT_PCIE_MMIO_HIGH
].size
;
978 hwaddr base_pio
= vms
->memmap
[VIRT_PCIE_PIO
].base
;
979 hwaddr size_pio
= vms
->memmap
[VIRT_PCIE_PIO
].size
;
980 hwaddr base_ecam
= vms
->memmap
[VIRT_PCIE_ECAM
].base
;
981 hwaddr size_ecam
= vms
->memmap
[VIRT_PCIE_ECAM
].size
;
982 hwaddr base
= base_mmio
;
983 int nr_pcie_buses
= size_ecam
/ PCIE_MMCFG_SIZE_MIN
;
984 int irq
= vms
->irqmap
[VIRT_PCIE
];
985 MemoryRegion
*mmio_alias
;
986 MemoryRegion
*mmio_reg
;
987 MemoryRegion
*ecam_alias
;
988 MemoryRegion
*ecam_reg
;
994 dev
= qdev_create(NULL
, TYPE_GPEX_HOST
);
995 qdev_init_nofail(dev
);
997 /* Map only the first size_ecam bytes of ECAM space */
998 ecam_alias
= g_new0(MemoryRegion
, 1);
999 ecam_reg
= sysbus_mmio_get_region(SYS_BUS_DEVICE(dev
), 0);
1000 memory_region_init_alias(ecam_alias
, OBJECT(dev
), "pcie-ecam",
1001 ecam_reg
, 0, size_ecam
);
1002 memory_region_add_subregion(get_system_memory(), base_ecam
, ecam_alias
);
1004 /* Map the MMIO window into system address space so as to expose
1005 * the section of PCI MMIO space which starts at the same base address
1006 * (ie 1:1 mapping for that part of PCI MMIO space visible through
1009 mmio_alias
= g_new0(MemoryRegion
, 1);
1010 mmio_reg
= sysbus_mmio_get_region(SYS_BUS_DEVICE(dev
), 1);
1011 memory_region_init_alias(mmio_alias
, OBJECT(dev
), "pcie-mmio",
1012 mmio_reg
, base_mmio
, size_mmio
);
1013 memory_region_add_subregion(get_system_memory(), base_mmio
, mmio_alias
);
1016 /* Map high MMIO space */
1017 MemoryRegion
*high_mmio_alias
= g_new0(MemoryRegion
, 1);
1019 memory_region_init_alias(high_mmio_alias
, OBJECT(dev
), "pcie-mmio-high",
1020 mmio_reg
, base_mmio_high
, size_mmio_high
);
1021 memory_region_add_subregion(get_system_memory(), base_mmio_high
,
1025 /* Map IO port space */
1026 sysbus_mmio_map(SYS_BUS_DEVICE(dev
), 2, base_pio
);
1028 for (i
= 0; i
< GPEX_NUM_IRQS
; i
++) {
1029 sysbus_connect_irq(SYS_BUS_DEVICE(dev
), i
, pic
[irq
+ i
]);
1032 pci
= PCI_HOST_BRIDGE(dev
);
1034 for (i
= 0; i
< nb_nics
; i
++) {
1035 NICInfo
*nd
= &nd_table
[i
];
1038 nd
->model
= g_strdup("virtio");
1041 pci_nic_init_nofail(nd
, pci
->bus
, nd
->model
, NULL
);
1045 nodename
= g_strdup_printf("/pcie@%" PRIx64
, base
);
1046 qemu_fdt_add_subnode(vms
->fdt
, nodename
);
1047 qemu_fdt_setprop_string(vms
->fdt
, nodename
,
1048 "compatible", "pci-host-ecam-generic");
1049 qemu_fdt_setprop_string(vms
->fdt
, nodename
, "device_type", "pci");
1050 qemu_fdt_setprop_cell(vms
->fdt
, nodename
, "#address-cells", 3);
1051 qemu_fdt_setprop_cell(vms
->fdt
, nodename
, "#size-cells", 2);
1052 qemu_fdt_setprop_cells(vms
->fdt
, nodename
, "bus-range", 0,
1054 qemu_fdt_setprop(vms
->fdt
, nodename
, "dma-coherent", NULL
, 0);
1056 if (vms
->msi_phandle
) {
1057 qemu_fdt_setprop_cells(vms
->fdt
, nodename
, "msi-parent",
1061 qemu_fdt_setprop_sized_cells(vms
->fdt
, nodename
, "reg",
1062 2, base_ecam
, 2, size_ecam
);
1065 qemu_fdt_setprop_sized_cells(vms
->fdt
, nodename
, "ranges",
1066 1, FDT_PCI_RANGE_IOPORT
, 2, 0,
1067 2, base_pio
, 2, size_pio
,
1068 1, FDT_PCI_RANGE_MMIO
, 2, base_mmio
,
1069 2, base_mmio
, 2, size_mmio
,
1070 1, FDT_PCI_RANGE_MMIO_64BIT
,
1072 2, base_mmio_high
, 2, size_mmio_high
);
1074 qemu_fdt_setprop_sized_cells(vms
->fdt
, nodename
, "ranges",
1075 1, FDT_PCI_RANGE_IOPORT
, 2, 0,
1076 2, base_pio
, 2, size_pio
,
1077 1, FDT_PCI_RANGE_MMIO
, 2, base_mmio
,
1078 2, base_mmio
, 2, size_mmio
);
1081 qemu_fdt_setprop_cell(vms
->fdt
, nodename
, "#interrupt-cells", 1);
1082 create_pcie_irq_map(vms
, vms
->gic_phandle
, irq
, nodename
);
1087 static void create_platform_bus(VirtMachineState
*vms
, qemu_irq
*pic
)
1092 ARMPlatformBusFDTParams
*fdt_params
= g_new(ARMPlatformBusFDTParams
, 1);
1093 MemoryRegion
*sysmem
= get_system_memory();
1095 platform_bus_params
.platform_bus_base
= vms
->memmap
[VIRT_PLATFORM_BUS
].base
;
1096 platform_bus_params
.platform_bus_size
= vms
->memmap
[VIRT_PLATFORM_BUS
].size
;
1097 platform_bus_params
.platform_bus_first_irq
= vms
->irqmap
[VIRT_PLATFORM_BUS
];
1098 platform_bus_params
.platform_bus_num_irqs
= PLATFORM_BUS_NUM_IRQS
;
1100 fdt_params
->system_params
= &platform_bus_params
;
1101 fdt_params
->binfo
= &vms
->bootinfo
;
1102 fdt_params
->intc
= "/intc";
1104 * register a machine init done notifier that creates the device tree
1105 * nodes of the platform bus and its children dynamic sysbus devices
1107 arm_register_platform_bus_fdt_creator(fdt_params
);
1109 dev
= qdev_create(NULL
, TYPE_PLATFORM_BUS_DEVICE
);
1110 dev
->id
= TYPE_PLATFORM_BUS_DEVICE
;
1111 qdev_prop_set_uint32(dev
, "num_irqs",
1112 platform_bus_params
.platform_bus_num_irqs
);
1113 qdev_prop_set_uint32(dev
, "mmio_size",
1114 platform_bus_params
.platform_bus_size
);
1115 qdev_init_nofail(dev
);
1116 s
= SYS_BUS_DEVICE(dev
);
1118 for (i
= 0; i
< platform_bus_params
.platform_bus_num_irqs
; i
++) {
1119 int irqn
= platform_bus_params
.platform_bus_first_irq
+ i
;
1120 sysbus_connect_irq(s
, i
, pic
[irqn
]);
1123 memory_region_add_subregion(sysmem
,
1124 platform_bus_params
.platform_bus_base
,
1125 sysbus_mmio_get_region(s
, 0));
1128 static void create_secure_ram(VirtMachineState
*vms
,
1129 MemoryRegion
*secure_sysmem
)
1131 MemoryRegion
*secram
= g_new(MemoryRegion
, 1);
1133 hwaddr base
= vms
->memmap
[VIRT_SECURE_MEM
].base
;
1134 hwaddr size
= vms
->memmap
[VIRT_SECURE_MEM
].size
;
1136 memory_region_init_ram(secram
, NULL
, "virt.secure-ram", size
, &error_fatal
);
1137 vmstate_register_ram_global(secram
);
1138 memory_region_add_subregion(secure_sysmem
, base
, secram
);
1140 nodename
= g_strdup_printf("/secram@%" PRIx64
, base
);
1141 qemu_fdt_add_subnode(vms
->fdt
, nodename
);
1142 qemu_fdt_setprop_string(vms
->fdt
, nodename
, "device_type", "memory");
1143 qemu_fdt_setprop_sized_cells(vms
->fdt
, nodename
, "reg", 2, base
, 2, size
);
1144 qemu_fdt_setprop_string(vms
->fdt
, nodename
, "status", "disabled");
1145 qemu_fdt_setprop_string(vms
->fdt
, nodename
, "secure-status", "okay");
1150 static void *machvirt_dtb(const struct arm_boot_info
*binfo
, int *fdt_size
)
1152 const VirtMachineState
*board
= container_of(binfo
, VirtMachineState
,
1155 *fdt_size
= board
->fdt_size
;
1159 static void virt_build_smbios(VirtMachineState
*vms
)
1161 uint8_t *smbios_tables
, *smbios_anchor
;
1162 size_t smbios_tables_len
, smbios_anchor_len
;
1163 const char *product
= "QEMU Virtual Machine";
1169 if (kvm_enabled()) {
1170 product
= "KVM Virtual Machine";
1173 smbios_set_defaults("QEMU", product
,
1174 "1.0", false, true, SMBIOS_ENTRY_POINT_30
);
1176 smbios_get_tables(NULL
, 0, &smbios_tables
, &smbios_tables_len
,
1177 &smbios_anchor
, &smbios_anchor_len
);
1179 if (smbios_anchor
) {
1180 fw_cfg_add_file(vms
->fw_cfg
, "etc/smbios/smbios-tables",
1181 smbios_tables
, smbios_tables_len
);
1182 fw_cfg_add_file(vms
->fw_cfg
, "etc/smbios/smbios-anchor",
1183 smbios_anchor
, smbios_anchor_len
);
1188 void virt_machine_done(Notifier
*notifier
, void *data
)
1190 VirtMachineState
*vms
= container_of(notifier
, VirtMachineState
,
1193 virt_acpi_setup(vms
);
1194 virt_build_smbios(vms
);
1197 static void machvirt_init(MachineState
*machine
)
1199 VirtMachineState
*vms
= VIRT_MACHINE(machine
);
1200 VirtMachineClass
*vmc
= VIRT_MACHINE_GET_CLASS(machine
);
1201 qemu_irq pic
[NUM_IRQS
];
1202 MemoryRegion
*sysmem
= get_system_memory();
1203 MemoryRegion
*secure_sysmem
= NULL
;
1204 int n
, virt_max_cpus
;
1205 MemoryRegion
*ram
= g_new(MemoryRegion
, 1);
1206 const char *cpu_model
= machine
->cpu_model
;
1209 const char *typename
;
1212 bool firmware_loaded
= bios_name
|| drive_get(IF_PFLASH
, 0, 0);
1216 cpu_model
= "cortex-a15";
1219 /* We can probe only here because during property set
1220 * KVM is not available yet
1222 if (!vms
->gic_version
) {
1223 if (!kvm_enabled()) {
1224 error_report("gic-version=host requires KVM");
1228 vms
->gic_version
= kvm_arm_vgic_probe();
1229 if (!vms
->gic_version
) {
1230 error_report("Unable to determine GIC version supported by host");
1235 /* Separate the actual CPU model name from any appended features */
1236 cpustr
= g_strsplit(cpu_model
, ",", 2);
1238 if (!cpuname_valid(cpustr
[0])) {
1239 error_report("mach-virt: CPU %s not supported", cpustr
[0]);
1243 /* If we have an EL3 boot ROM then the assumption is that it will
1244 * implement PSCI itself, so disable QEMU's internal implementation
1245 * so it doesn't get in the way. Instead of starting secondary
1246 * CPUs in PSCI powerdown state we will start them all running and
1247 * let the boot ROM sort them out.
1248 * The usual case is that we do use QEMU's PSCI implementation;
1249 * if the guest has EL2 then we will use SMC as the conduit,
1250 * and otherwise we will use HVC (for backwards compatibility and
1251 * because if we're using KVM then we must use HVC).
1253 if (vms
->secure
&& firmware_loaded
) {
1254 vms
->psci_conduit
= QEMU_PSCI_CONDUIT_DISABLED
;
1255 } else if (vms
->virt
) {
1256 vms
->psci_conduit
= QEMU_PSCI_CONDUIT_SMC
;
1258 vms
->psci_conduit
= QEMU_PSCI_CONDUIT_HVC
;
1261 /* The maximum number of CPUs depends on the GIC version, or on how
1262 * many redistributors we can fit into the memory map.
1264 if (vms
->gic_version
== 3) {
1265 virt_max_cpus
= vms
->memmap
[VIRT_GIC_REDIST
].size
/ 0x20000;
1266 clustersz
= GICV3_TARGETLIST_BITS
;
1268 virt_max_cpus
= GIC_NCPU
;
1269 clustersz
= GIC_TARGETLIST_BITS
;
1272 if (max_cpus
> virt_max_cpus
) {
1273 error_report("Number of SMP CPUs requested (%d) exceeds max CPUs "
1274 "supported by machine 'mach-virt' (%d)",
1275 max_cpus
, virt_max_cpus
);
1279 vms
->smp_cpus
= smp_cpus
;
1281 if (machine
->ram_size
> vms
->memmap
[VIRT_MEM
].size
) {
1282 error_report("mach-virt: cannot model more than %dGB RAM", RAMLIMIT_GB
);
1286 if (vms
->virt
&& kvm_enabled()) {
1287 error_report("mach-virt: KVM does not support providing "
1288 "Virtualization extensions to the guest CPU");
1293 if (kvm_enabled()) {
1294 error_report("mach-virt: KVM does not support Security extensions");
1298 /* The Secure view of the world is the same as the NonSecure,
1299 * but with a few extra devices. Create it as a container region
1300 * containing the system memory at low priority; any secure-only
1301 * devices go in at higher priority and take precedence.
1303 secure_sysmem
= g_new(MemoryRegion
, 1);
1304 memory_region_init(secure_sysmem
, OBJECT(machine
), "secure-memory",
1306 memory_region_add_subregion_overlap(secure_sysmem
, 0, sysmem
, -1);
1311 oc
= cpu_class_by_name(TYPE_ARM_CPU
, cpustr
[0]);
1313 error_report("Unable to find CPU definition");
1316 typename
= object_class_get_name(oc
);
1318 /* convert -smp CPU options specified by the user into global props */
1320 cc
->parse_features(typename
, cpustr
[1], &err
);
1323 error_report_err(err
);
1327 for (n
= 0; n
< smp_cpus
; n
++) {
1328 Object
*cpuobj
= object_new(typename
);
1329 if (!vmc
->disallow_affinity_adjustment
) {
1330 /* Adjust MPIDR like 64-bit KVM hosts, which incorporate the
1331 * GIC's target-list limitations. 32-bit KVM hosts currently
1332 * always create clusters of 4 CPUs, but that is expected to
1333 * change when they gain support for gicv3. When KVM is enabled
1334 * it will override the changes we make here, therefore our
1335 * purposes are to make TCG consistent (with 64-bit KVM hosts)
1336 * and to improve SGI efficiency.
1338 uint8_t aff1
= n
/ clustersz
;
1339 uint8_t aff0
= n
% clustersz
;
1340 object_property_set_int(cpuobj
, (aff1
<< ARM_AFF1_SHIFT
) | aff0
,
1341 "mp-affinity", NULL
);
1345 object_property_set_bool(cpuobj
, false, "has_el3", NULL
);
1348 if (!vms
->virt
&& object_property_find(cpuobj
, "has_el2", NULL
)) {
1349 object_property_set_bool(cpuobj
, false, "has_el2", NULL
);
1352 if (vms
->psci_conduit
!= QEMU_PSCI_CONDUIT_DISABLED
) {
1353 object_property_set_int(cpuobj
, vms
->psci_conduit
,
1354 "psci-conduit", NULL
);
1356 /* Secondary CPUs start in PSCI powered-down state */
1358 object_property_set_bool(cpuobj
, true,
1359 "start-powered-off", NULL
);
1363 if (vmc
->no_pmu
&& object_property_find(cpuobj
, "pmu", NULL
)) {
1364 object_property_set_bool(cpuobj
, false, "pmu", NULL
);
1367 if (object_property_find(cpuobj
, "reset-cbar", NULL
)) {
1368 object_property_set_int(cpuobj
, vms
->memmap
[VIRT_CPUPERIPHS
].base
,
1369 "reset-cbar", &error_abort
);
1372 object_property_set_link(cpuobj
, OBJECT(sysmem
), "memory",
1375 object_property_set_link(cpuobj
, OBJECT(secure_sysmem
),
1376 "secure-memory", &error_abort
);
1379 object_property_set_bool(cpuobj
, true, "realized", NULL
);
1380 object_unref(cpuobj
);
1382 fdt_add_timer_nodes(vms
);
1383 fdt_add_cpu_nodes(vms
);
1384 fdt_add_psci_node(vms
);
1386 memory_region_allocate_system_memory(ram
, NULL
, "mach-virt.ram",
1388 memory_region_add_subregion(sysmem
, vms
->memmap
[VIRT_MEM
].base
, ram
);
1390 create_flash(vms
, sysmem
, secure_sysmem
? secure_sysmem
: sysmem
);
1392 create_gic(vms
, pic
);
1394 fdt_add_pmu_nodes(vms
);
1396 create_uart(vms
, pic
, VIRT_UART
, sysmem
, serial_hds
[0]);
1399 create_secure_ram(vms
, secure_sysmem
);
1400 create_uart(vms
, pic
, VIRT_SECURE_UART
, secure_sysmem
, serial_hds
[1]);
1403 create_rtc(vms
, pic
);
1405 create_pcie(vms
, pic
);
1407 create_gpio(vms
, pic
);
1409 /* Create mmio transports, so the user can create virtio backends
1410 * (which will be automatically plugged in to the transports). If
1411 * no backend is created the transport will just sit harmlessly idle.
1413 create_virtio_devices(vms
, pic
);
1415 vms
->fw_cfg
= create_fw_cfg(vms
, &address_space_memory
);
1416 rom_set_fw(vms
->fw_cfg
);
1418 vms
->machine_done
.notify
= virt_machine_done
;
1419 qemu_add_machine_init_done_notifier(&vms
->machine_done
);
1421 vms
->bootinfo
.ram_size
= machine
->ram_size
;
1422 vms
->bootinfo
.kernel_filename
= machine
->kernel_filename
;
1423 vms
->bootinfo
.kernel_cmdline
= machine
->kernel_cmdline
;
1424 vms
->bootinfo
.initrd_filename
= machine
->initrd_filename
;
1425 vms
->bootinfo
.nb_cpus
= smp_cpus
;
1426 vms
->bootinfo
.board_id
= -1;
1427 vms
->bootinfo
.loader_start
= vms
->memmap
[VIRT_MEM
].base
;
1428 vms
->bootinfo
.get_dtb
= machvirt_dtb
;
1429 vms
->bootinfo
.firmware_loaded
= firmware_loaded
;
1430 arm_load_kernel(ARM_CPU(first_cpu
), &vms
->bootinfo
);
1433 * arm_load_kernel machine init done notifier registration must
1434 * happen before the platform_bus_create call. In this latter,
1435 * another notifier is registered which adds platform bus nodes.
1436 * Notifiers are executed in registration reverse order.
1438 create_platform_bus(vms
, pic
);
1441 static bool virt_get_secure(Object
*obj
, Error
**errp
)
1443 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
1448 static void virt_set_secure(Object
*obj
, bool value
, Error
**errp
)
1450 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
1452 vms
->secure
= value
;
1455 static bool virt_get_virt(Object
*obj
, Error
**errp
)
1457 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
1462 static void virt_set_virt(Object
*obj
, bool value
, Error
**errp
)
1464 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
1469 static bool virt_get_highmem(Object
*obj
, Error
**errp
)
1471 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
1473 return vms
->highmem
;
1476 static void virt_set_highmem(Object
*obj
, bool value
, Error
**errp
)
1478 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
1480 vms
->highmem
= value
;
1483 static bool virt_get_its(Object
*obj
, Error
**errp
)
1485 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
1490 static void virt_set_its(Object
*obj
, bool value
, Error
**errp
)
1492 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
1497 static char *virt_get_gic_version(Object
*obj
, Error
**errp
)
1499 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
1500 const char *val
= vms
->gic_version
== 3 ? "3" : "2";
1502 return g_strdup(val
);
1505 static void virt_set_gic_version(Object
*obj
, const char *value
, Error
**errp
)
1507 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
1509 if (!strcmp(value
, "3")) {
1510 vms
->gic_version
= 3;
1511 } else if (!strcmp(value
, "2")) {
1512 vms
->gic_version
= 2;
1513 } else if (!strcmp(value
, "host")) {
1514 vms
->gic_version
= 0; /* Will probe later */
1516 error_setg(errp
, "Invalid gic-version value");
1517 error_append_hint(errp
, "Valid values are 3, 2, host.\n");
1521 static void virt_machine_class_init(ObjectClass
*oc
, void *data
)
1523 MachineClass
*mc
= MACHINE_CLASS(oc
);
1525 mc
->init
= machvirt_init
;
1526 /* Start max_cpus at the maximum QEMU supports. We'll further restrict
1527 * it later in machvirt_init, where we have more information about the
1528 * configuration of the particular instance.
1531 mc
->has_dynamic_sysbus
= true;
1532 mc
->block_default_type
= IF_VIRTIO
;
1534 mc
->pci_allow_0_address
= true;
1535 /* We know we will never create a pre-ARMv7 CPU which needs 1K pages */
1536 mc
->minimum_page_bits
= 12;
1539 static const TypeInfo virt_machine_info
= {
1540 .name
= TYPE_VIRT_MACHINE
,
1541 .parent
= TYPE_MACHINE
,
1543 .instance_size
= sizeof(VirtMachineState
),
1544 .class_size
= sizeof(VirtMachineClass
),
1545 .class_init
= virt_machine_class_init
,
1548 static void machvirt_machine_init(void)
1550 type_register_static(&virt_machine_info
);
1552 type_init(machvirt_machine_init
);
1554 static void virt_2_9_instance_init(Object
*obj
)
1556 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
1557 VirtMachineClass
*vmc
= VIRT_MACHINE_GET_CLASS(vms
);
1559 /* EL3 is disabled by default on virt: this makes us consistent
1560 * between KVM and TCG for this board, and it also allows us to
1561 * boot UEFI blobs which assume no TrustZone support.
1563 vms
->secure
= false;
1564 object_property_add_bool(obj
, "secure", virt_get_secure
,
1565 virt_set_secure
, NULL
);
1566 object_property_set_description(obj
, "secure",
1567 "Set on/off to enable/disable the ARM "
1568 "Security Extensions (TrustZone)",
1571 /* EL2 is also disabled by default, for similar reasons */
1573 object_property_add_bool(obj
, "virtualization", virt_get_virt
,
1574 virt_set_virt
, NULL
);
1575 object_property_set_description(obj
, "virtualization",
1576 "Set on/off to enable/disable emulating a "
1577 "guest CPU which implements the ARM "
1578 "Virtualization Extensions",
1581 /* High memory is enabled by default */
1582 vms
->highmem
= true;
1583 object_property_add_bool(obj
, "highmem", virt_get_highmem
,
1584 virt_set_highmem
, NULL
);
1585 object_property_set_description(obj
, "highmem",
1586 "Set on/off to enable/disable using "
1587 "physical address space above 32 bits",
1589 /* Default GIC type is v2 */
1590 vms
->gic_version
= 2;
1591 object_property_add_str(obj
, "gic-version", virt_get_gic_version
,
1592 virt_set_gic_version
, NULL
);
1593 object_property_set_description(obj
, "gic-version",
1595 "Valid values are 2, 3 and host", NULL
);
1600 /* Default allows ITS instantiation */
1602 object_property_add_bool(obj
, "its", virt_get_its
,
1603 virt_set_its
, NULL
);
1604 object_property_set_description(obj
, "its",
1605 "Set on/off to enable/disable "
1606 "ITS instantiation",
1610 vms
->memmap
= a15memmap
;
1611 vms
->irqmap
= a15irqmap
;
1614 static void virt_machine_2_9_options(MachineClass
*mc
)
1617 DEFINE_VIRT_MACHINE_AS_LATEST(2, 9)
1619 #define VIRT_COMPAT_2_8 \
1622 static void virt_2_8_instance_init(Object
*obj
)
1624 virt_2_9_instance_init(obj
);
1627 static void virt_machine_2_8_options(MachineClass
*mc
)
1629 VirtMachineClass
*vmc
= VIRT_MACHINE_CLASS(OBJECT_CLASS(mc
));
1631 virt_machine_2_9_options(mc
);
1632 SET_MACHINE_COMPAT(mc
, VIRT_COMPAT_2_8
);
1633 /* For 2.8 and earlier we falsely claimed in the DT that
1634 * our timers were edge-triggered, not level-triggered.
1636 vmc
->claim_edge_triggered_timers
= true;
1638 DEFINE_VIRT_MACHINE(2, 8)
1640 #define VIRT_COMPAT_2_7 \
1643 static void virt_2_7_instance_init(Object
*obj
)
1645 virt_2_8_instance_init(obj
);
1648 static void virt_machine_2_7_options(MachineClass
*mc
)
1650 VirtMachineClass
*vmc
= VIRT_MACHINE_CLASS(OBJECT_CLASS(mc
));
1652 virt_machine_2_8_options(mc
);
1653 SET_MACHINE_COMPAT(mc
, VIRT_COMPAT_2_7
);
1654 /* ITS was introduced with 2.8 */
1656 /* Stick with 1K pages for migration compatibility */
1657 mc
->minimum_page_bits
= 0;
1659 DEFINE_VIRT_MACHINE(2, 7)
1661 #define VIRT_COMPAT_2_6 \
1664 static void virt_2_6_instance_init(Object
*obj
)
1666 virt_2_7_instance_init(obj
);
1669 static void virt_machine_2_6_options(MachineClass
*mc
)
1671 VirtMachineClass
*vmc
= VIRT_MACHINE_CLASS(OBJECT_CLASS(mc
));
1673 virt_machine_2_7_options(mc
);
1674 SET_MACHINE_COMPAT(mc
, VIRT_COMPAT_2_6
);
1675 vmc
->disallow_affinity_adjustment
= true;
1676 /* Disable PMU for 2.6 as PMU support was first introduced in 2.7 */
1679 DEFINE_VIRT_MACHINE(2, 6)