target/riscv: add support for svnapot extension
[qemu/ar7.git] / target / riscv / cpu_helper.c
blob437c9488a69ea86c7d63289988233fd204cfc498
1 /*
2 * RISC-V CPU helpers for qemu.
4 * Copyright (c) 2016-2017 Sagar Karandikar, sagark@eecs.berkeley.edu
5 * Copyright (c) 2017-2018 SiFive, Inc.
7 * This program is free software; you can redistribute it and/or modify it
8 * under the terms and conditions of the GNU General Public License,
9 * version 2 or later, as published by the Free Software Foundation.
11 * This program is distributed in the hope it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 * more details.
16 * You should have received a copy of the GNU General Public License along with
17 * this program. If not, see <http://www.gnu.org/licenses/>.
20 #include "qemu/osdep.h"
21 #include "qemu/log.h"
22 #include "qemu/main-loop.h"
23 #include "cpu.h"
24 #include "exec/exec-all.h"
25 #include "tcg/tcg-op.h"
26 #include "trace.h"
27 #include "semihosting/common-semi.h"
29 int riscv_cpu_mmu_index(CPURISCVState *env, bool ifetch)
31 #ifdef CONFIG_USER_ONLY
32 return 0;
33 #else
34 return env->priv;
35 #endif
38 void cpu_get_tb_cpu_state(CPURISCVState *env, target_ulong *pc,
39 target_ulong *cs_base, uint32_t *pflags)
41 CPUState *cs = env_cpu(env);
42 RISCVCPU *cpu = RISCV_CPU(cs);
44 uint32_t flags = 0;
46 *pc = env->xl == MXL_RV32 ? env->pc & UINT32_MAX : env->pc;
47 *cs_base = 0;
49 if (riscv_has_ext(env, RVV) || cpu->cfg.ext_zve32f || cpu->cfg.ext_zve64f) {
51 * If env->vl equals to VLMAX, we can use generic vector operation
52 * expanders (GVEC) to accerlate the vector operations.
53 * However, as LMUL could be a fractional number. The maximum
54 * vector size can be operated might be less than 8 bytes,
55 * which is not supported by GVEC. So we set vl_eq_vlmax flag to true
56 * only when maxsz >= 8 bytes.
58 uint32_t vlmax = vext_get_vlmax(env_archcpu(env), env->vtype);
59 uint32_t sew = FIELD_EX64(env->vtype, VTYPE, VSEW);
60 uint32_t maxsz = vlmax << sew;
61 bool vl_eq_vlmax = (env->vstart == 0) && (vlmax == env->vl) &&
62 (maxsz >= 8);
63 flags = FIELD_DP32(flags, TB_FLAGS, VILL, env->vill);
64 flags = FIELD_DP32(flags, TB_FLAGS, SEW, sew);
65 flags = FIELD_DP32(flags, TB_FLAGS, LMUL,
66 FIELD_EX64(env->vtype, VTYPE, VLMUL));
67 flags = FIELD_DP32(flags, TB_FLAGS, VL_EQ_VLMAX, vl_eq_vlmax);
68 } else {
69 flags = FIELD_DP32(flags, TB_FLAGS, VILL, 1);
72 #ifdef CONFIG_USER_ONLY
73 flags |= TB_FLAGS_MSTATUS_FS;
74 flags |= TB_FLAGS_MSTATUS_VS;
75 #else
76 flags |= cpu_mmu_index(env, 0);
77 if (riscv_cpu_fp_enabled(env)) {
78 flags |= env->mstatus & MSTATUS_FS;
81 if (riscv_cpu_vector_enabled(env)) {
82 flags |= env->mstatus & MSTATUS_VS;
85 if (riscv_has_ext(env, RVH)) {
86 if (env->priv == PRV_M ||
87 (env->priv == PRV_S && !riscv_cpu_virt_enabled(env)) ||
88 (env->priv == PRV_U && !riscv_cpu_virt_enabled(env) &&
89 get_field(env->hstatus, HSTATUS_HU))) {
90 flags = FIELD_DP32(flags, TB_FLAGS, HLSX, 1);
93 flags = FIELD_DP32(flags, TB_FLAGS, MSTATUS_HS_FS,
94 get_field(env->mstatus_hs, MSTATUS_FS));
96 flags = FIELD_DP32(flags, TB_FLAGS, MSTATUS_HS_VS,
97 get_field(env->mstatus_hs, MSTATUS_VS));
99 #endif
101 flags = FIELD_DP32(flags, TB_FLAGS, XL, env->xl);
102 if (env->cur_pmmask < (env->xl == MXL_RV32 ? UINT32_MAX : UINT64_MAX)) {
103 flags = FIELD_DP32(flags, TB_FLAGS, PM_MASK_ENABLED, 1);
105 if (env->cur_pmbase != 0) {
106 flags = FIELD_DP32(flags, TB_FLAGS, PM_BASE_ENABLED, 1);
109 *pflags = flags;
112 void riscv_cpu_update_mask(CPURISCVState *env)
114 target_ulong mask = -1, base = 0;
116 * TODO: Current RVJ spec does not specify
117 * how the extension interacts with XLEN.
119 #ifndef CONFIG_USER_ONLY
120 if (riscv_has_ext(env, RVJ)) {
121 switch (env->priv) {
122 case PRV_M:
123 if (env->mmte & M_PM_ENABLE) {
124 mask = env->mpmmask;
125 base = env->mpmbase;
127 break;
128 case PRV_S:
129 if (env->mmte & S_PM_ENABLE) {
130 mask = env->spmmask;
131 base = env->spmbase;
133 break;
134 case PRV_U:
135 if (env->mmte & U_PM_ENABLE) {
136 mask = env->upmmask;
137 base = env->upmbase;
139 break;
140 default:
141 g_assert_not_reached();
144 #endif
145 if (env->xl == MXL_RV32) {
146 env->cur_pmmask = mask & UINT32_MAX;
147 env->cur_pmbase = base & UINT32_MAX;
148 } else {
149 env->cur_pmmask = mask;
150 env->cur_pmbase = base;
154 #ifndef CONFIG_USER_ONLY
157 * The HS-mode is allowed to configure priority only for the
158 * following VS-mode local interrupts:
160 * 0 (Reserved interrupt, reads as zero)
161 * 1 Supervisor software interrupt
162 * 4 (Reserved interrupt, reads as zero)
163 * 5 Supervisor timer interrupt
164 * 8 (Reserved interrupt, reads as zero)
165 * 13 (Reserved interrupt)
166 * 14 "
167 * 15 "
168 * 16 "
169 * 18 Debug/trace interrupt
170 * 20 (Reserved interrupt)
171 * 22 "
172 * 24 "
173 * 26 "
174 * 28 "
175 * 30 (Reserved for standard reporting of bus or system errors)
178 static const int hviprio_index2irq[] = {
179 0, 1, 4, 5, 8, 13, 14, 15, 16, 18, 20, 22, 24, 26, 28, 30 };
180 static const int hviprio_index2rdzero[] = {
181 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
183 int riscv_cpu_hviprio_index2irq(int index, int *out_irq, int *out_rdzero)
185 if (index < 0 || ARRAY_SIZE(hviprio_index2irq) <= index) {
186 return -EINVAL;
189 if (out_irq) {
190 *out_irq = hviprio_index2irq[index];
193 if (out_rdzero) {
194 *out_rdzero = hviprio_index2rdzero[index];
197 return 0;
201 * Default priorities of local interrupts are defined in the
202 * RISC-V Advanced Interrupt Architecture specification.
204 * ----------------------------------------------------------------
205 * Default |
206 * Priority | Major Interrupt Numbers
207 * ----------------------------------------------------------------
208 * Highest | 63 (3f), 62 (3e), 31 (1f), 30 (1e), 61 (3d), 60 (3c),
209 * | 59 (3b), 58 (3a), 29 (1d), 28 (1c), 57 (39), 56 (38),
210 * | 55 (37), 54 (36), 27 (1b), 26 (1a), 53 (35), 52 (34),
211 * | 51 (33), 50 (32), 25 (19), 24 (18), 49 (31), 48 (30)
213 * | 11 (0b), 3 (03), 7 (07)
214 * | 9 (09), 1 (01), 5 (05)
215 * | 12 (0c)
216 * | 10 (0a), 2 (02), 6 (06)
218 * | 47 (2f), 46 (2e), 23 (17), 22 (16), 45 (2d), 44 (2c),
219 * | 43 (2b), 42 (2a), 21 (15), 20 (14), 41 (29), 40 (28),
220 * | 39 (27), 38 (26), 19 (13), 18 (12), 37 (25), 36 (24),
221 * Lowest | 35 (23), 34 (22), 17 (11), 16 (10), 33 (21), 32 (20)
222 * ----------------------------------------------------------------
224 static const uint8_t default_iprio[64] = {
225 [63] = IPRIO_DEFAULT_UPPER,
226 [62] = IPRIO_DEFAULT_UPPER + 1,
227 [31] = IPRIO_DEFAULT_UPPER + 2,
228 [30] = IPRIO_DEFAULT_UPPER + 3,
229 [61] = IPRIO_DEFAULT_UPPER + 4,
230 [60] = IPRIO_DEFAULT_UPPER + 5,
232 [59] = IPRIO_DEFAULT_UPPER + 6,
233 [58] = IPRIO_DEFAULT_UPPER + 7,
234 [29] = IPRIO_DEFAULT_UPPER + 8,
235 [28] = IPRIO_DEFAULT_UPPER + 9,
236 [57] = IPRIO_DEFAULT_UPPER + 10,
237 [56] = IPRIO_DEFAULT_UPPER + 11,
239 [55] = IPRIO_DEFAULT_UPPER + 12,
240 [54] = IPRIO_DEFAULT_UPPER + 13,
241 [27] = IPRIO_DEFAULT_UPPER + 14,
242 [26] = IPRIO_DEFAULT_UPPER + 15,
243 [53] = IPRIO_DEFAULT_UPPER + 16,
244 [52] = IPRIO_DEFAULT_UPPER + 17,
246 [51] = IPRIO_DEFAULT_UPPER + 18,
247 [50] = IPRIO_DEFAULT_UPPER + 19,
248 [25] = IPRIO_DEFAULT_UPPER + 20,
249 [24] = IPRIO_DEFAULT_UPPER + 21,
250 [49] = IPRIO_DEFAULT_UPPER + 22,
251 [48] = IPRIO_DEFAULT_UPPER + 23,
253 [11] = IPRIO_DEFAULT_M,
254 [3] = IPRIO_DEFAULT_M + 1,
255 [7] = IPRIO_DEFAULT_M + 2,
257 [9] = IPRIO_DEFAULT_S,
258 [1] = IPRIO_DEFAULT_S + 1,
259 [5] = IPRIO_DEFAULT_S + 2,
261 [12] = IPRIO_DEFAULT_SGEXT,
263 [10] = IPRIO_DEFAULT_VS,
264 [2] = IPRIO_DEFAULT_VS + 1,
265 [6] = IPRIO_DEFAULT_VS + 2,
267 [47] = IPRIO_DEFAULT_LOWER,
268 [46] = IPRIO_DEFAULT_LOWER + 1,
269 [23] = IPRIO_DEFAULT_LOWER + 2,
270 [22] = IPRIO_DEFAULT_LOWER + 3,
271 [45] = IPRIO_DEFAULT_LOWER + 4,
272 [44] = IPRIO_DEFAULT_LOWER + 5,
274 [43] = IPRIO_DEFAULT_LOWER + 6,
275 [42] = IPRIO_DEFAULT_LOWER + 7,
276 [21] = IPRIO_DEFAULT_LOWER + 8,
277 [20] = IPRIO_DEFAULT_LOWER + 9,
278 [41] = IPRIO_DEFAULT_LOWER + 10,
279 [40] = IPRIO_DEFAULT_LOWER + 11,
281 [39] = IPRIO_DEFAULT_LOWER + 12,
282 [38] = IPRIO_DEFAULT_LOWER + 13,
283 [19] = IPRIO_DEFAULT_LOWER + 14,
284 [18] = IPRIO_DEFAULT_LOWER + 15,
285 [37] = IPRIO_DEFAULT_LOWER + 16,
286 [36] = IPRIO_DEFAULT_LOWER + 17,
288 [35] = IPRIO_DEFAULT_LOWER + 18,
289 [34] = IPRIO_DEFAULT_LOWER + 19,
290 [17] = IPRIO_DEFAULT_LOWER + 20,
291 [16] = IPRIO_DEFAULT_LOWER + 21,
292 [33] = IPRIO_DEFAULT_LOWER + 22,
293 [32] = IPRIO_DEFAULT_LOWER + 23,
296 uint8_t riscv_cpu_default_priority(int irq)
298 if (irq < 0 || irq > 63) {
299 return IPRIO_MMAXIPRIO;
302 return default_iprio[irq] ? default_iprio[irq] : IPRIO_MMAXIPRIO;
305 static int riscv_cpu_pending_to_irq(CPURISCVState *env,
306 int extirq, unsigned int extirq_def_prio,
307 uint64_t pending, uint8_t *iprio)
309 int irq, best_irq = RISCV_EXCP_NONE;
310 unsigned int prio, best_prio = UINT_MAX;
312 if (!pending) {
313 return RISCV_EXCP_NONE;
316 irq = ctz64(pending);
317 if (!riscv_feature(env, RISCV_FEATURE_AIA)) {
318 return irq;
321 pending = pending >> irq;
322 while (pending) {
323 prio = iprio[irq];
324 if (!prio) {
325 if (irq == extirq) {
326 prio = extirq_def_prio;
327 } else {
328 prio = (riscv_cpu_default_priority(irq) < extirq_def_prio) ?
329 1 : IPRIO_MMAXIPRIO;
332 if ((pending & 0x1) && (prio <= best_prio)) {
333 best_irq = irq;
334 best_prio = prio;
336 irq++;
337 pending = pending >> 1;
340 return best_irq;
343 static uint64_t riscv_cpu_all_pending(CPURISCVState *env)
345 uint32_t gein = get_field(env->hstatus, HSTATUS_VGEIN);
346 uint64_t vsgein = (env->hgeip & (1ULL << gein)) ? MIP_VSEIP : 0;
348 return (env->mip | vsgein) & env->mie;
351 int riscv_cpu_mirq_pending(CPURISCVState *env)
353 uint64_t irqs = riscv_cpu_all_pending(env) & ~env->mideleg &
354 ~(MIP_SGEIP | MIP_VSSIP | MIP_VSTIP | MIP_VSEIP);
356 return riscv_cpu_pending_to_irq(env, IRQ_M_EXT, IPRIO_DEFAULT_M,
357 irqs, env->miprio);
360 int riscv_cpu_sirq_pending(CPURISCVState *env)
362 uint64_t irqs = riscv_cpu_all_pending(env) & env->mideleg &
363 ~(MIP_VSSIP | MIP_VSTIP | MIP_VSEIP);
365 return riscv_cpu_pending_to_irq(env, IRQ_S_EXT, IPRIO_DEFAULT_S,
366 irqs, env->siprio);
369 int riscv_cpu_vsirq_pending(CPURISCVState *env)
371 uint64_t irqs = riscv_cpu_all_pending(env) & env->mideleg &
372 (MIP_VSSIP | MIP_VSTIP | MIP_VSEIP);
374 return riscv_cpu_pending_to_irq(env, IRQ_S_EXT, IPRIO_DEFAULT_S,
375 irqs >> 1, env->hviprio);
378 static int riscv_cpu_local_irq_pending(CPURISCVState *env)
380 int virq;
381 uint64_t irqs, pending, mie, hsie, vsie;
383 /* Determine interrupt enable state of all privilege modes */
384 if (riscv_cpu_virt_enabled(env)) {
385 mie = 1;
386 hsie = 1;
387 vsie = (env->priv < PRV_S) ||
388 (env->priv == PRV_S && get_field(env->mstatus, MSTATUS_SIE));
389 } else {
390 mie = (env->priv < PRV_M) ||
391 (env->priv == PRV_M && get_field(env->mstatus, MSTATUS_MIE));
392 hsie = (env->priv < PRV_S) ||
393 (env->priv == PRV_S && get_field(env->mstatus, MSTATUS_SIE));
394 vsie = 0;
397 /* Determine all pending interrupts */
398 pending = riscv_cpu_all_pending(env);
400 /* Check M-mode interrupts */
401 irqs = pending & ~env->mideleg & -mie;
402 if (irqs) {
403 return riscv_cpu_pending_to_irq(env, IRQ_M_EXT, IPRIO_DEFAULT_M,
404 irqs, env->miprio);
407 /* Check HS-mode interrupts */
408 irqs = pending & env->mideleg & ~env->hideleg & -hsie;
409 if (irqs) {
410 return riscv_cpu_pending_to_irq(env, IRQ_S_EXT, IPRIO_DEFAULT_S,
411 irqs, env->siprio);
414 /* Check VS-mode interrupts */
415 irqs = pending & env->mideleg & env->hideleg & -vsie;
416 if (irqs) {
417 virq = riscv_cpu_pending_to_irq(env, IRQ_S_EXT, IPRIO_DEFAULT_S,
418 irqs >> 1, env->hviprio);
419 return (virq <= 0) ? virq : virq + 1;
422 /* Indicate no pending interrupt */
423 return RISCV_EXCP_NONE;
426 bool riscv_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
428 if (interrupt_request & CPU_INTERRUPT_HARD) {
429 RISCVCPU *cpu = RISCV_CPU(cs);
430 CPURISCVState *env = &cpu->env;
431 int interruptno = riscv_cpu_local_irq_pending(env);
432 if (interruptno >= 0) {
433 cs->exception_index = RISCV_EXCP_INT_FLAG | interruptno;
434 riscv_cpu_do_interrupt(cs);
435 return true;
438 return false;
441 /* Return true is floating point support is currently enabled */
442 bool riscv_cpu_fp_enabled(CPURISCVState *env)
444 if (env->mstatus & MSTATUS_FS) {
445 if (riscv_cpu_virt_enabled(env) && !(env->mstatus_hs & MSTATUS_FS)) {
446 return false;
448 return true;
451 return false;
454 /* Return true is vector support is currently enabled */
455 bool riscv_cpu_vector_enabled(CPURISCVState *env)
457 if (env->mstatus & MSTATUS_VS) {
458 if (riscv_cpu_virt_enabled(env) && !(env->mstatus_hs & MSTATUS_VS)) {
459 return false;
461 return true;
464 return false;
467 void riscv_cpu_swap_hypervisor_regs(CPURISCVState *env)
469 uint64_t mstatus_mask = MSTATUS_MXR | MSTATUS_SUM | MSTATUS_FS |
470 MSTATUS_SPP | MSTATUS_SPIE | MSTATUS_SIE |
471 MSTATUS64_UXL | MSTATUS_VS;
472 bool current_virt = riscv_cpu_virt_enabled(env);
474 g_assert(riscv_has_ext(env, RVH));
476 if (current_virt) {
477 /* Current V=1 and we are about to change to V=0 */
478 env->vsstatus = env->mstatus & mstatus_mask;
479 env->mstatus &= ~mstatus_mask;
480 env->mstatus |= env->mstatus_hs;
482 env->vstvec = env->stvec;
483 env->stvec = env->stvec_hs;
485 env->vsscratch = env->sscratch;
486 env->sscratch = env->sscratch_hs;
488 env->vsepc = env->sepc;
489 env->sepc = env->sepc_hs;
491 env->vscause = env->scause;
492 env->scause = env->scause_hs;
494 env->vstval = env->stval;
495 env->stval = env->stval_hs;
497 env->vsatp = env->satp;
498 env->satp = env->satp_hs;
499 } else {
500 /* Current V=0 and we are about to change to V=1 */
501 env->mstatus_hs = env->mstatus & mstatus_mask;
502 env->mstatus &= ~mstatus_mask;
503 env->mstatus |= env->vsstatus;
505 env->stvec_hs = env->stvec;
506 env->stvec = env->vstvec;
508 env->sscratch_hs = env->sscratch;
509 env->sscratch = env->vsscratch;
511 env->sepc_hs = env->sepc;
512 env->sepc = env->vsepc;
514 env->scause_hs = env->scause;
515 env->scause = env->vscause;
517 env->stval_hs = env->stval;
518 env->stval = env->vstval;
520 env->satp_hs = env->satp;
521 env->satp = env->vsatp;
525 target_ulong riscv_cpu_get_geilen(CPURISCVState *env)
527 if (!riscv_has_ext(env, RVH)) {
528 return 0;
531 return env->geilen;
534 void riscv_cpu_set_geilen(CPURISCVState *env, target_ulong geilen)
536 if (!riscv_has_ext(env, RVH)) {
537 return;
540 if (geilen > (TARGET_LONG_BITS - 1)) {
541 return;
544 env->geilen = geilen;
547 bool riscv_cpu_virt_enabled(CPURISCVState *env)
549 if (!riscv_has_ext(env, RVH)) {
550 return false;
553 return get_field(env->virt, VIRT_ONOFF);
556 void riscv_cpu_set_virt_enabled(CPURISCVState *env, bool enable)
558 if (!riscv_has_ext(env, RVH)) {
559 return;
562 /* Flush the TLB on all virt mode changes. */
563 if (get_field(env->virt, VIRT_ONOFF) != enable) {
564 tlb_flush(env_cpu(env));
567 env->virt = set_field(env->virt, VIRT_ONOFF, enable);
569 if (enable) {
571 * The guest external interrupts from an interrupt controller are
572 * delivered only when the Guest/VM is running (i.e. V=1). This means
573 * any guest external interrupt which is triggered while the Guest/VM
574 * is not running (i.e. V=0) will be missed on QEMU resulting in guest
575 * with sluggish response to serial console input and other I/O events.
577 * To solve this, we check and inject interrupt after setting V=1.
579 riscv_cpu_update_mip(env_archcpu(env), 0, 0);
583 bool riscv_cpu_two_stage_lookup(int mmu_idx)
585 return mmu_idx & TB_FLAGS_PRIV_HYP_ACCESS_MASK;
588 int riscv_cpu_claim_interrupts(RISCVCPU *cpu, uint64_t interrupts)
590 CPURISCVState *env = &cpu->env;
591 if (env->miclaim & interrupts) {
592 return -1;
593 } else {
594 env->miclaim |= interrupts;
595 return 0;
599 uint64_t riscv_cpu_update_mip(RISCVCPU *cpu, uint64_t mask, uint64_t value)
601 CPURISCVState *env = &cpu->env;
602 CPUState *cs = CPU(cpu);
603 uint64_t gein, vsgein = 0, old = env->mip;
604 bool locked = false;
606 if (riscv_cpu_virt_enabled(env)) {
607 gein = get_field(env->hstatus, HSTATUS_VGEIN);
608 vsgein = (env->hgeip & (1ULL << gein)) ? MIP_VSEIP : 0;
611 if (!qemu_mutex_iothread_locked()) {
612 locked = true;
613 qemu_mutex_lock_iothread();
616 env->mip = (env->mip & ~mask) | (value & mask);
618 if (env->mip | vsgein) {
619 cpu_interrupt(cs, CPU_INTERRUPT_HARD);
620 } else {
621 cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
624 if (locked) {
625 qemu_mutex_unlock_iothread();
628 return old;
631 void riscv_cpu_set_rdtime_fn(CPURISCVState *env, uint64_t (*fn)(uint32_t),
632 uint32_t arg)
634 env->rdtime_fn = fn;
635 env->rdtime_fn_arg = arg;
638 void riscv_cpu_set_aia_ireg_rmw_fn(CPURISCVState *env, uint32_t priv,
639 int (*rmw_fn)(void *arg,
640 target_ulong reg,
641 target_ulong *val,
642 target_ulong new_val,
643 target_ulong write_mask),
644 void *rmw_fn_arg)
646 if (priv <= PRV_M) {
647 env->aia_ireg_rmw_fn[priv] = rmw_fn;
648 env->aia_ireg_rmw_fn_arg[priv] = rmw_fn_arg;
652 void riscv_cpu_set_mode(CPURISCVState *env, target_ulong newpriv)
654 if (newpriv > PRV_M) {
655 g_assert_not_reached();
657 if (newpriv == PRV_H) {
658 newpriv = PRV_U;
660 /* tlb_flush is unnecessary as mode is contained in mmu_idx */
661 env->priv = newpriv;
662 env->xl = cpu_recompute_xl(env);
663 riscv_cpu_update_mask(env);
666 * Clear the load reservation - otherwise a reservation placed in one
667 * context/process can be used by another, resulting in an SC succeeding
668 * incorrectly. Version 2.2 of the ISA specification explicitly requires
669 * this behaviour, while later revisions say that the kernel "should" use
670 * an SC instruction to force the yielding of a load reservation on a
671 * preemptive context switch. As a result, do both.
673 env->load_res = -1;
677 * get_physical_address_pmp - check PMP permission for this physical address
679 * Match the PMP region and check permission for this physical address and it's
680 * TLB page. Returns 0 if the permission checking was successful
682 * @env: CPURISCVState
683 * @prot: The returned protection attributes
684 * @tlb_size: TLB page size containing addr. It could be modified after PMP
685 * permission checking. NULL if not set TLB page for addr.
686 * @addr: The physical address to be checked permission
687 * @access_type: The type of MMU access
688 * @mode: Indicates current privilege level.
690 static int get_physical_address_pmp(CPURISCVState *env, int *prot,
691 target_ulong *tlb_size, hwaddr addr,
692 int size, MMUAccessType access_type,
693 int mode)
695 pmp_priv_t pmp_priv;
696 target_ulong tlb_size_pmp = 0;
698 if (!riscv_feature(env, RISCV_FEATURE_PMP)) {
699 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
700 return TRANSLATE_SUCCESS;
703 if (!pmp_hart_has_privs(env, addr, size, 1 << access_type, &pmp_priv,
704 mode)) {
705 *prot = 0;
706 return TRANSLATE_PMP_FAIL;
709 *prot = pmp_priv_to_page_prot(pmp_priv);
710 if (tlb_size != NULL) {
711 if (pmp_is_range_in_tlb(env, addr & ~(*tlb_size - 1), &tlb_size_pmp)) {
712 *tlb_size = tlb_size_pmp;
716 return TRANSLATE_SUCCESS;
719 /* get_physical_address - get the physical address for this virtual address
721 * Do a page table walk to obtain the physical address corresponding to a
722 * virtual address. Returns 0 if the translation was successful
724 * Adapted from Spike's mmu_t::translate and mmu_t::walk
726 * @env: CPURISCVState
727 * @physical: This will be set to the calculated physical address
728 * @prot: The returned protection attributes
729 * @addr: The virtual address to be translated
730 * @fault_pte_addr: If not NULL, this will be set to fault pte address
731 * when a error occurs on pte address translation.
732 * This will already be shifted to match htval.
733 * @access_type: The type of MMU access
734 * @mmu_idx: Indicates current privilege level
735 * @first_stage: Are we in first stage translation?
736 * Second stage is used for hypervisor guest translation
737 * @two_stage: Are we going to perform two stage translation
738 * @is_debug: Is this access from a debugger or the monitor?
740 static int get_physical_address(CPURISCVState *env, hwaddr *physical,
741 int *prot, target_ulong addr,
742 target_ulong *fault_pte_addr,
743 int access_type, int mmu_idx,
744 bool first_stage, bool two_stage,
745 bool is_debug)
747 /* NOTE: the env->pc value visible here will not be
748 * correct, but the value visible to the exception handler
749 * (riscv_cpu_do_interrupt) is correct */
750 MemTxResult res;
751 MemTxAttrs attrs = MEMTXATTRS_UNSPECIFIED;
752 int mode = mmu_idx & TB_FLAGS_PRIV_MMU_MASK;
753 bool use_background = false;
754 hwaddr ppn;
755 RISCVCPU *cpu = env_archcpu(env);
756 int napot_bits = 0;
757 target_ulong napot_mask;
760 * Check if we should use the background registers for the two
761 * stage translation. We don't need to check if we actually need
762 * two stage translation as that happened before this function
763 * was called. Background registers will be used if the guest has
764 * forced a two stage translation to be on (in HS or M mode).
766 if (!riscv_cpu_virt_enabled(env) && two_stage) {
767 use_background = true;
770 /* MPRV does not affect the virtual-machine load/store
771 instructions, HLV, HLVX, and HSV. */
772 if (riscv_cpu_two_stage_lookup(mmu_idx)) {
773 mode = get_field(env->hstatus, HSTATUS_SPVP);
774 } else if (mode == PRV_M && access_type != MMU_INST_FETCH) {
775 if (get_field(env->mstatus, MSTATUS_MPRV)) {
776 mode = get_field(env->mstatus, MSTATUS_MPP);
780 if (first_stage == false) {
781 /* We are in stage 2 translation, this is similar to stage 1. */
782 /* Stage 2 is always taken as U-mode */
783 mode = PRV_U;
786 if (mode == PRV_M || !riscv_feature(env, RISCV_FEATURE_MMU)) {
787 *physical = addr;
788 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
789 return TRANSLATE_SUCCESS;
792 *prot = 0;
794 hwaddr base;
795 int levels, ptidxbits, ptesize, vm, sum, mxr, widened;
797 if (first_stage == true) {
798 mxr = get_field(env->mstatus, MSTATUS_MXR);
799 } else {
800 mxr = get_field(env->vsstatus, MSTATUS_MXR);
803 if (first_stage == true) {
804 if (use_background) {
805 if (riscv_cpu_mxl(env) == MXL_RV32) {
806 base = (hwaddr)get_field(env->vsatp, SATP32_PPN) << PGSHIFT;
807 vm = get_field(env->vsatp, SATP32_MODE);
808 } else {
809 base = (hwaddr)get_field(env->vsatp, SATP64_PPN) << PGSHIFT;
810 vm = get_field(env->vsatp, SATP64_MODE);
812 } else {
813 if (riscv_cpu_mxl(env) == MXL_RV32) {
814 base = (hwaddr)get_field(env->satp, SATP32_PPN) << PGSHIFT;
815 vm = get_field(env->satp, SATP32_MODE);
816 } else {
817 base = (hwaddr)get_field(env->satp, SATP64_PPN) << PGSHIFT;
818 vm = get_field(env->satp, SATP64_MODE);
821 widened = 0;
822 } else {
823 if (riscv_cpu_mxl(env) == MXL_RV32) {
824 base = (hwaddr)get_field(env->hgatp, SATP32_PPN) << PGSHIFT;
825 vm = get_field(env->hgatp, SATP32_MODE);
826 } else {
827 base = (hwaddr)get_field(env->hgatp, SATP64_PPN) << PGSHIFT;
828 vm = get_field(env->hgatp, SATP64_MODE);
830 widened = 2;
832 /* status.SUM will be ignored if execute on background */
833 sum = get_field(env->mstatus, MSTATUS_SUM) || use_background || is_debug;
834 switch (vm) {
835 case VM_1_10_SV32:
836 levels = 2; ptidxbits = 10; ptesize = 4; break;
837 case VM_1_10_SV39:
838 levels = 3; ptidxbits = 9; ptesize = 8; break;
839 case VM_1_10_SV48:
840 levels = 4; ptidxbits = 9; ptesize = 8; break;
841 case VM_1_10_SV57:
842 levels = 5; ptidxbits = 9; ptesize = 8; break;
843 case VM_1_10_MBARE:
844 *physical = addr;
845 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
846 return TRANSLATE_SUCCESS;
847 default:
848 g_assert_not_reached();
851 CPUState *cs = env_cpu(env);
852 int va_bits = PGSHIFT + levels * ptidxbits + widened;
853 target_ulong mask, masked_msbs;
855 if (TARGET_LONG_BITS > (va_bits - 1)) {
856 mask = (1L << (TARGET_LONG_BITS - (va_bits - 1))) - 1;
857 } else {
858 mask = 0;
860 masked_msbs = (addr >> (va_bits - 1)) & mask;
862 if (masked_msbs != 0 && masked_msbs != mask) {
863 return TRANSLATE_FAIL;
866 int ptshift = (levels - 1) * ptidxbits;
867 int i;
869 #if !TCG_OVERSIZED_GUEST
870 restart:
871 #endif
872 for (i = 0; i < levels; i++, ptshift -= ptidxbits) {
873 target_ulong idx;
874 if (i == 0) {
875 idx = (addr >> (PGSHIFT + ptshift)) &
876 ((1 << (ptidxbits + widened)) - 1);
877 } else {
878 idx = (addr >> (PGSHIFT + ptshift)) &
879 ((1 << ptidxbits) - 1);
882 /* check that physical address of PTE is legal */
883 hwaddr pte_addr;
885 if (two_stage && first_stage) {
886 int vbase_prot;
887 hwaddr vbase;
889 /* Do the second stage translation on the base PTE address. */
890 int vbase_ret = get_physical_address(env, &vbase, &vbase_prot,
891 base, NULL, MMU_DATA_LOAD,
892 mmu_idx, false, true,
893 is_debug);
895 if (vbase_ret != TRANSLATE_SUCCESS) {
896 if (fault_pte_addr) {
897 *fault_pte_addr = (base + idx * ptesize) >> 2;
899 return TRANSLATE_G_STAGE_FAIL;
902 pte_addr = vbase + idx * ptesize;
903 } else {
904 pte_addr = base + idx * ptesize;
907 int pmp_prot;
908 int pmp_ret = get_physical_address_pmp(env, &pmp_prot, NULL, pte_addr,
909 sizeof(target_ulong),
910 MMU_DATA_LOAD, PRV_S);
911 if (pmp_ret != TRANSLATE_SUCCESS) {
912 return TRANSLATE_PMP_FAIL;
915 target_ulong pte;
916 if (riscv_cpu_mxl(env) == MXL_RV32) {
917 pte = address_space_ldl(cs->as, pte_addr, attrs, &res);
918 } else {
919 pte = address_space_ldq(cs->as, pte_addr, attrs, &res);
922 if (res != MEMTX_OK) {
923 return TRANSLATE_FAIL;
926 if (riscv_cpu_sxl(env) == MXL_RV32) {
927 ppn = pte >> PTE_PPN_SHIFT;
928 } else if (cpu->cfg.ext_svpbmt || cpu->cfg.ext_svnapot) {
929 ppn = (pte & (target_ulong)PTE_PPN_MASK) >> PTE_PPN_SHIFT;
930 } else {
931 ppn = pte >> PTE_PPN_SHIFT;
932 if ((pte & ~(target_ulong)PTE_PPN_MASK) >> PTE_PPN_SHIFT) {
933 return TRANSLATE_FAIL;
937 if (!(pte & PTE_V)) {
938 /* Invalid PTE */
939 return TRANSLATE_FAIL;
940 } else if (!(pte & (PTE_R | PTE_W | PTE_X))) {
941 /* Inner PTE, continue walking */
942 if (pte & (PTE_D | PTE_A | PTE_U | PTE_N)) {
943 return TRANSLATE_FAIL;
945 base = ppn << PGSHIFT;
946 } else if ((pte & (PTE_R | PTE_W | PTE_X)) == PTE_W) {
947 /* Reserved leaf PTE flags: PTE_W */
948 return TRANSLATE_FAIL;
949 } else if ((pte & (PTE_R | PTE_W | PTE_X)) == (PTE_W | PTE_X)) {
950 /* Reserved leaf PTE flags: PTE_W + PTE_X */
951 return TRANSLATE_FAIL;
952 } else if ((pte & PTE_U) && ((mode != PRV_U) &&
953 (!sum || access_type == MMU_INST_FETCH))) {
954 /* User PTE flags when not U mode and mstatus.SUM is not set,
955 or the access type is an instruction fetch */
956 return TRANSLATE_FAIL;
957 } else if (!(pte & PTE_U) && (mode != PRV_S)) {
958 /* Supervisor PTE flags when not S mode */
959 return TRANSLATE_FAIL;
960 } else if (ppn & ((1ULL << ptshift) - 1)) {
961 /* Misaligned PPN */
962 return TRANSLATE_FAIL;
963 } else if (access_type == MMU_DATA_LOAD && !((pte & PTE_R) ||
964 ((pte & PTE_X) && mxr))) {
965 /* Read access check failed */
966 return TRANSLATE_FAIL;
967 } else if (access_type == MMU_DATA_STORE && !(pte & PTE_W)) {
968 /* Write access check failed */
969 return TRANSLATE_FAIL;
970 } else if (access_type == MMU_INST_FETCH && !(pte & PTE_X)) {
971 /* Fetch access check failed */
972 return TRANSLATE_FAIL;
973 } else {
974 /* if necessary, set accessed and dirty bits. */
975 target_ulong updated_pte = pte | PTE_A |
976 (access_type == MMU_DATA_STORE ? PTE_D : 0);
978 /* Page table updates need to be atomic with MTTCG enabled */
979 if (updated_pte != pte) {
981 * - if accessed or dirty bits need updating, and the PTE is
982 * in RAM, then we do so atomically with a compare and swap.
983 * - if the PTE is in IO space or ROM, then it can't be updated
984 * and we return TRANSLATE_FAIL.
985 * - if the PTE changed by the time we went to update it, then
986 * it is no longer valid and we must re-walk the page table.
988 MemoryRegion *mr;
989 hwaddr l = sizeof(target_ulong), addr1;
990 mr = address_space_translate(cs->as, pte_addr,
991 &addr1, &l, false, MEMTXATTRS_UNSPECIFIED);
992 if (memory_region_is_ram(mr)) {
993 target_ulong *pte_pa =
994 qemu_map_ram_ptr(mr->ram_block, addr1);
995 #if TCG_OVERSIZED_GUEST
996 /* MTTCG is not enabled on oversized TCG guests so
997 * page table updates do not need to be atomic */
998 *pte_pa = pte = updated_pte;
999 #else
1000 target_ulong old_pte =
1001 qatomic_cmpxchg(pte_pa, pte, updated_pte);
1002 if (old_pte != pte) {
1003 goto restart;
1004 } else {
1005 pte = updated_pte;
1007 #endif
1008 } else {
1009 /* misconfigured PTE in ROM (AD bits are not preset) or
1010 * PTE is in IO space and can't be updated atomically */
1011 return TRANSLATE_FAIL;
1015 /* for superpage mappings, make a fake leaf PTE for the TLB's
1016 benefit. */
1017 target_ulong vpn = addr >> PGSHIFT;
1019 if (cpu->cfg.ext_svnapot && (pte & PTE_N)) {
1020 napot_bits = ctzl(ppn) + 1;
1021 if ((i != (levels - 1)) || (napot_bits != 4)) {
1022 return TRANSLATE_FAIL;
1026 napot_mask = (1 << napot_bits) - 1;
1027 *physical = (((ppn & ~napot_mask) | (vpn & napot_mask) |
1028 (vpn & (((target_ulong)1 << ptshift) - 1))
1029 ) << PGSHIFT) | (addr & ~TARGET_PAGE_MASK);
1031 /* set permissions on the TLB entry */
1032 if ((pte & PTE_R) || ((pte & PTE_X) && mxr)) {
1033 *prot |= PAGE_READ;
1035 if ((pte & PTE_X)) {
1036 *prot |= PAGE_EXEC;
1038 /* add write permission on stores or if the page is already dirty,
1039 so that we TLB miss on later writes to update the dirty bit */
1040 if ((pte & PTE_W) &&
1041 (access_type == MMU_DATA_STORE || (pte & PTE_D))) {
1042 *prot |= PAGE_WRITE;
1044 return TRANSLATE_SUCCESS;
1047 return TRANSLATE_FAIL;
1050 static void raise_mmu_exception(CPURISCVState *env, target_ulong address,
1051 MMUAccessType access_type, bool pmp_violation,
1052 bool first_stage, bool two_stage)
1054 CPUState *cs = env_cpu(env);
1055 int page_fault_exceptions, vm;
1056 uint64_t stap_mode;
1058 if (riscv_cpu_mxl(env) == MXL_RV32) {
1059 stap_mode = SATP32_MODE;
1060 } else {
1061 stap_mode = SATP64_MODE;
1064 if (first_stage) {
1065 vm = get_field(env->satp, stap_mode);
1066 } else {
1067 vm = get_field(env->hgatp, stap_mode);
1070 page_fault_exceptions = vm != VM_1_10_MBARE && !pmp_violation;
1072 switch (access_type) {
1073 case MMU_INST_FETCH:
1074 if (riscv_cpu_virt_enabled(env) && !first_stage) {
1075 cs->exception_index = RISCV_EXCP_INST_GUEST_PAGE_FAULT;
1076 } else {
1077 cs->exception_index = page_fault_exceptions ?
1078 RISCV_EXCP_INST_PAGE_FAULT : RISCV_EXCP_INST_ACCESS_FAULT;
1080 break;
1081 case MMU_DATA_LOAD:
1082 if (two_stage && !first_stage) {
1083 cs->exception_index = RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT;
1084 } else {
1085 cs->exception_index = page_fault_exceptions ?
1086 RISCV_EXCP_LOAD_PAGE_FAULT : RISCV_EXCP_LOAD_ACCESS_FAULT;
1088 break;
1089 case MMU_DATA_STORE:
1090 if (two_stage && !first_stage) {
1091 cs->exception_index = RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT;
1092 } else {
1093 cs->exception_index = page_fault_exceptions ?
1094 RISCV_EXCP_STORE_PAGE_FAULT : RISCV_EXCP_STORE_AMO_ACCESS_FAULT;
1096 break;
1097 default:
1098 g_assert_not_reached();
1100 env->badaddr = address;
1101 env->two_stage_lookup = two_stage;
1104 hwaddr riscv_cpu_get_phys_page_debug(CPUState *cs, vaddr addr)
1106 RISCVCPU *cpu = RISCV_CPU(cs);
1107 CPURISCVState *env = &cpu->env;
1108 hwaddr phys_addr;
1109 int prot;
1110 int mmu_idx = cpu_mmu_index(&cpu->env, false);
1112 if (get_physical_address(env, &phys_addr, &prot, addr, NULL, 0, mmu_idx,
1113 true, riscv_cpu_virt_enabled(env), true)) {
1114 return -1;
1117 if (riscv_cpu_virt_enabled(env)) {
1118 if (get_physical_address(env, &phys_addr, &prot, phys_addr, NULL,
1119 0, mmu_idx, false, true, true)) {
1120 return -1;
1124 return phys_addr & TARGET_PAGE_MASK;
1127 void riscv_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr,
1128 vaddr addr, unsigned size,
1129 MMUAccessType access_type,
1130 int mmu_idx, MemTxAttrs attrs,
1131 MemTxResult response, uintptr_t retaddr)
1133 RISCVCPU *cpu = RISCV_CPU(cs);
1134 CPURISCVState *env = &cpu->env;
1136 if (access_type == MMU_DATA_STORE) {
1137 cs->exception_index = RISCV_EXCP_STORE_AMO_ACCESS_FAULT;
1138 } else if (access_type == MMU_DATA_LOAD) {
1139 cs->exception_index = RISCV_EXCP_LOAD_ACCESS_FAULT;
1140 } else {
1141 cs->exception_index = RISCV_EXCP_INST_ACCESS_FAULT;
1144 env->badaddr = addr;
1145 env->two_stage_lookup = riscv_cpu_virt_enabled(env) ||
1146 riscv_cpu_two_stage_lookup(mmu_idx);
1147 riscv_raise_exception(&cpu->env, cs->exception_index, retaddr);
1150 void riscv_cpu_do_unaligned_access(CPUState *cs, vaddr addr,
1151 MMUAccessType access_type, int mmu_idx,
1152 uintptr_t retaddr)
1154 RISCVCPU *cpu = RISCV_CPU(cs);
1155 CPURISCVState *env = &cpu->env;
1156 switch (access_type) {
1157 case MMU_INST_FETCH:
1158 cs->exception_index = RISCV_EXCP_INST_ADDR_MIS;
1159 break;
1160 case MMU_DATA_LOAD:
1161 cs->exception_index = RISCV_EXCP_LOAD_ADDR_MIS;
1162 break;
1163 case MMU_DATA_STORE:
1164 cs->exception_index = RISCV_EXCP_STORE_AMO_ADDR_MIS;
1165 break;
1166 default:
1167 g_assert_not_reached();
1169 env->badaddr = addr;
1170 env->two_stage_lookup = riscv_cpu_virt_enabled(env) ||
1171 riscv_cpu_two_stage_lookup(mmu_idx);
1172 riscv_raise_exception(env, cs->exception_index, retaddr);
1175 bool riscv_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
1176 MMUAccessType access_type, int mmu_idx,
1177 bool probe, uintptr_t retaddr)
1179 RISCVCPU *cpu = RISCV_CPU(cs);
1180 CPURISCVState *env = &cpu->env;
1181 vaddr im_address;
1182 hwaddr pa = 0;
1183 int prot, prot2, prot_pmp;
1184 bool pmp_violation = false;
1185 bool first_stage_error = true;
1186 bool two_stage_lookup = false;
1187 int ret = TRANSLATE_FAIL;
1188 int mode = mmu_idx;
1189 /* default TLB page size */
1190 target_ulong tlb_size = TARGET_PAGE_SIZE;
1192 env->guest_phys_fault_addr = 0;
1194 qemu_log_mask(CPU_LOG_MMU, "%s ad %" VADDR_PRIx " rw %d mmu_idx %d\n",
1195 __func__, address, access_type, mmu_idx);
1197 /* MPRV does not affect the virtual-machine load/store
1198 instructions, HLV, HLVX, and HSV. */
1199 if (riscv_cpu_two_stage_lookup(mmu_idx)) {
1200 mode = get_field(env->hstatus, HSTATUS_SPVP);
1201 } else if (mode == PRV_M && access_type != MMU_INST_FETCH &&
1202 get_field(env->mstatus, MSTATUS_MPRV)) {
1203 mode = get_field(env->mstatus, MSTATUS_MPP);
1204 if (riscv_has_ext(env, RVH) && get_field(env->mstatus, MSTATUS_MPV)) {
1205 two_stage_lookup = true;
1209 if (riscv_cpu_virt_enabled(env) ||
1210 ((riscv_cpu_two_stage_lookup(mmu_idx) || two_stage_lookup) &&
1211 access_type != MMU_INST_FETCH)) {
1212 /* Two stage lookup */
1213 ret = get_physical_address(env, &pa, &prot, address,
1214 &env->guest_phys_fault_addr, access_type,
1215 mmu_idx, true, true, false);
1218 * A G-stage exception may be triggered during two state lookup.
1219 * And the env->guest_phys_fault_addr has already been set in
1220 * get_physical_address().
1222 if (ret == TRANSLATE_G_STAGE_FAIL) {
1223 first_stage_error = false;
1224 access_type = MMU_DATA_LOAD;
1227 qemu_log_mask(CPU_LOG_MMU,
1228 "%s 1st-stage address=%" VADDR_PRIx " ret %d physical "
1229 TARGET_FMT_plx " prot %d\n",
1230 __func__, address, ret, pa, prot);
1232 if (ret == TRANSLATE_SUCCESS) {
1233 /* Second stage lookup */
1234 im_address = pa;
1236 ret = get_physical_address(env, &pa, &prot2, im_address, NULL,
1237 access_type, mmu_idx, false, true,
1238 false);
1240 qemu_log_mask(CPU_LOG_MMU,
1241 "%s 2nd-stage address=%" VADDR_PRIx " ret %d physical "
1242 TARGET_FMT_plx " prot %d\n",
1243 __func__, im_address, ret, pa, prot2);
1245 prot &= prot2;
1247 if (ret == TRANSLATE_SUCCESS) {
1248 ret = get_physical_address_pmp(env, &prot_pmp, &tlb_size, pa,
1249 size, access_type, mode);
1251 qemu_log_mask(CPU_LOG_MMU,
1252 "%s PMP address=" TARGET_FMT_plx " ret %d prot"
1253 " %d tlb_size " TARGET_FMT_lu "\n",
1254 __func__, pa, ret, prot_pmp, tlb_size);
1256 prot &= prot_pmp;
1259 if (ret != TRANSLATE_SUCCESS) {
1261 * Guest physical address translation failed, this is a HS
1262 * level exception
1264 first_stage_error = false;
1265 env->guest_phys_fault_addr = (im_address |
1266 (address &
1267 (TARGET_PAGE_SIZE - 1))) >> 2;
1270 } else {
1271 /* Single stage lookup */
1272 ret = get_physical_address(env, &pa, &prot, address, NULL,
1273 access_type, mmu_idx, true, false, false);
1275 qemu_log_mask(CPU_LOG_MMU,
1276 "%s address=%" VADDR_PRIx " ret %d physical "
1277 TARGET_FMT_plx " prot %d\n",
1278 __func__, address, ret, pa, prot);
1280 if (ret == TRANSLATE_SUCCESS) {
1281 ret = get_physical_address_pmp(env, &prot_pmp, &tlb_size, pa,
1282 size, access_type, mode);
1284 qemu_log_mask(CPU_LOG_MMU,
1285 "%s PMP address=" TARGET_FMT_plx " ret %d prot"
1286 " %d tlb_size " TARGET_FMT_lu "\n",
1287 __func__, pa, ret, prot_pmp, tlb_size);
1289 prot &= prot_pmp;
1293 if (ret == TRANSLATE_PMP_FAIL) {
1294 pmp_violation = true;
1297 if (ret == TRANSLATE_SUCCESS) {
1298 tlb_set_page(cs, address & ~(tlb_size - 1), pa & ~(tlb_size - 1),
1299 prot, mmu_idx, tlb_size);
1300 return true;
1301 } else if (probe) {
1302 return false;
1303 } else {
1304 raise_mmu_exception(env, address, access_type, pmp_violation,
1305 first_stage_error,
1306 riscv_cpu_virt_enabled(env) ||
1307 riscv_cpu_two_stage_lookup(mmu_idx));
1308 riscv_raise_exception(env, cs->exception_index, retaddr);
1311 return true;
1313 #endif /* !CONFIG_USER_ONLY */
1316 * Handle Traps
1318 * Adapted from Spike's processor_t::take_trap.
1321 void riscv_cpu_do_interrupt(CPUState *cs)
1323 #if !defined(CONFIG_USER_ONLY)
1325 RISCVCPU *cpu = RISCV_CPU(cs);
1326 CPURISCVState *env = &cpu->env;
1327 bool write_gva = false;
1328 uint64_t s;
1330 /* cs->exception is 32-bits wide unlike mcause which is XLEN-bits wide
1331 * so we mask off the MSB and separate into trap type and cause.
1333 bool async = !!(cs->exception_index & RISCV_EXCP_INT_FLAG);
1334 target_ulong cause = cs->exception_index & RISCV_EXCP_INT_MASK;
1335 uint64_t deleg = async ? env->mideleg : env->medeleg;
1336 target_ulong tval = 0;
1337 target_ulong htval = 0;
1338 target_ulong mtval2 = 0;
1340 if (cause == RISCV_EXCP_SEMIHOST) {
1341 if (env->priv >= PRV_S) {
1342 env->gpr[xA0] = do_common_semihosting(cs);
1343 env->pc += 4;
1344 return;
1346 cause = RISCV_EXCP_BREAKPOINT;
1349 if (!async) {
1350 /* set tval to badaddr for traps with address information */
1351 switch (cause) {
1352 case RISCV_EXCP_INST_GUEST_PAGE_FAULT:
1353 case RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT:
1354 case RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT:
1355 case RISCV_EXCP_INST_ADDR_MIS:
1356 case RISCV_EXCP_INST_ACCESS_FAULT:
1357 case RISCV_EXCP_LOAD_ADDR_MIS:
1358 case RISCV_EXCP_STORE_AMO_ADDR_MIS:
1359 case RISCV_EXCP_LOAD_ACCESS_FAULT:
1360 case RISCV_EXCP_STORE_AMO_ACCESS_FAULT:
1361 case RISCV_EXCP_INST_PAGE_FAULT:
1362 case RISCV_EXCP_LOAD_PAGE_FAULT:
1363 case RISCV_EXCP_STORE_PAGE_FAULT:
1364 write_gva = true;
1365 tval = env->badaddr;
1366 break;
1367 case RISCV_EXCP_ILLEGAL_INST:
1368 tval = env->bins;
1369 break;
1370 default:
1371 break;
1373 /* ecall is dispatched as one cause so translate based on mode */
1374 if (cause == RISCV_EXCP_U_ECALL) {
1375 assert(env->priv <= 3);
1377 if (env->priv == PRV_M) {
1378 cause = RISCV_EXCP_M_ECALL;
1379 } else if (env->priv == PRV_S && riscv_cpu_virt_enabled(env)) {
1380 cause = RISCV_EXCP_VS_ECALL;
1381 } else if (env->priv == PRV_S && !riscv_cpu_virt_enabled(env)) {
1382 cause = RISCV_EXCP_S_ECALL;
1383 } else if (env->priv == PRV_U) {
1384 cause = RISCV_EXCP_U_ECALL;
1389 trace_riscv_trap(env->mhartid, async, cause, env->pc, tval,
1390 riscv_cpu_get_trap_name(cause, async));
1392 qemu_log_mask(CPU_LOG_INT,
1393 "%s: hart:"TARGET_FMT_ld", async:%d, cause:"TARGET_FMT_lx", "
1394 "epc:0x"TARGET_FMT_lx", tval:0x"TARGET_FMT_lx", desc=%s\n",
1395 __func__, env->mhartid, async, cause, env->pc, tval,
1396 riscv_cpu_get_trap_name(cause, async));
1398 if (env->priv <= PRV_S &&
1399 cause < TARGET_LONG_BITS && ((deleg >> cause) & 1)) {
1400 /* handle the trap in S-mode */
1401 if (riscv_has_ext(env, RVH)) {
1402 uint64_t hdeleg = async ? env->hideleg : env->hedeleg;
1404 if (riscv_cpu_virt_enabled(env) && ((hdeleg >> cause) & 1)) {
1405 /* Trap to VS mode */
1407 * See if we need to adjust cause. Yes if its VS mode interrupt
1408 * no if hypervisor has delegated one of hs mode's interrupt
1410 if (cause == IRQ_VS_TIMER || cause == IRQ_VS_SOFT ||
1411 cause == IRQ_VS_EXT) {
1412 cause = cause - 1;
1414 write_gva = false;
1415 } else if (riscv_cpu_virt_enabled(env)) {
1416 /* Trap into HS mode, from virt */
1417 riscv_cpu_swap_hypervisor_regs(env);
1418 env->hstatus = set_field(env->hstatus, HSTATUS_SPVP,
1419 env->priv);
1420 env->hstatus = set_field(env->hstatus, HSTATUS_SPV,
1421 riscv_cpu_virt_enabled(env));
1424 htval = env->guest_phys_fault_addr;
1426 riscv_cpu_set_virt_enabled(env, 0);
1427 } else {
1428 /* Trap into HS mode */
1429 env->hstatus = set_field(env->hstatus, HSTATUS_SPV, false);
1430 htval = env->guest_phys_fault_addr;
1431 write_gva = false;
1433 env->hstatus = set_field(env->hstatus, HSTATUS_GVA, write_gva);
1436 s = env->mstatus;
1437 s = set_field(s, MSTATUS_SPIE, get_field(s, MSTATUS_SIE));
1438 s = set_field(s, MSTATUS_SPP, env->priv);
1439 s = set_field(s, MSTATUS_SIE, 0);
1440 env->mstatus = s;
1441 env->scause = cause | ((target_ulong)async << (TARGET_LONG_BITS - 1));
1442 env->sepc = env->pc;
1443 env->stval = tval;
1444 env->htval = htval;
1445 env->pc = (env->stvec >> 2 << 2) +
1446 ((async && (env->stvec & 3) == 1) ? cause * 4 : 0);
1447 riscv_cpu_set_mode(env, PRV_S);
1448 } else {
1449 /* handle the trap in M-mode */
1450 if (riscv_has_ext(env, RVH)) {
1451 if (riscv_cpu_virt_enabled(env)) {
1452 riscv_cpu_swap_hypervisor_regs(env);
1454 env->mstatus = set_field(env->mstatus, MSTATUS_MPV,
1455 riscv_cpu_virt_enabled(env));
1456 if (riscv_cpu_virt_enabled(env) && tval) {
1457 env->mstatus = set_field(env->mstatus, MSTATUS_GVA, 1);
1460 mtval2 = env->guest_phys_fault_addr;
1462 /* Trapping to M mode, virt is disabled */
1463 riscv_cpu_set_virt_enabled(env, 0);
1466 s = env->mstatus;
1467 s = set_field(s, MSTATUS_MPIE, get_field(s, MSTATUS_MIE));
1468 s = set_field(s, MSTATUS_MPP, env->priv);
1469 s = set_field(s, MSTATUS_MIE, 0);
1470 env->mstatus = s;
1471 env->mcause = cause | ~(((target_ulong)-1) >> async);
1472 env->mepc = env->pc;
1473 env->mtval = tval;
1474 env->mtval2 = mtval2;
1475 env->pc = (env->mtvec >> 2 << 2) +
1476 ((async && (env->mtvec & 3) == 1) ? cause * 4 : 0);
1477 riscv_cpu_set_mode(env, PRV_M);
1480 /* NOTE: it is not necessary to yield load reservations here. It is only
1481 * necessary for an SC from "another hart" to cause a load reservation
1482 * to be yielded. Refer to the memory consistency model section of the
1483 * RISC-V ISA Specification.
1486 env->two_stage_lookup = false;
1487 #endif
1488 cs->exception_index = RISCV_EXCP_NONE; /* mark handled to qemu */