1 #include "qemu/osdep.h"
2 #include "qemu-common.h"
4 #include "exec/exec-all.h"
7 #include "sysemu/kvm.h"
8 #include "helper_regs.h"
9 #include "mmu-hash64.h"
10 #include "migration/cpu.h"
11 #include "qapi/error.h"
14 static int cpu_load_old(QEMUFile
*f
, void *opaque
, int version_id
)
16 PowerPCCPU
*cpu
= opaque
;
17 CPUPPCState
*env
= &cpu
->env
;
21 #if defined(TARGET_PPC64)
26 for (i
= 0; i
< 32; i
++)
27 qemu_get_betls(f
, &env
->gpr
[i
]);
28 #if !defined(TARGET_PPC64)
29 for (i
= 0; i
< 32; i
++)
30 qemu_get_betls(f
, &env
->gprh
[i
]);
32 qemu_get_betls(f
, &env
->lr
);
33 qemu_get_betls(f
, &env
->ctr
);
34 for (i
= 0; i
< 8; i
++)
35 qemu_get_be32s(f
, &env
->crf
[i
]);
36 qemu_get_betls(f
, &xer
);
37 cpu_write_xer(env
, xer
);
38 qemu_get_betls(f
, &env
->reserve_addr
);
39 qemu_get_betls(f
, &env
->msr
);
40 for (i
= 0; i
< 4; i
++)
41 qemu_get_betls(f
, &env
->tgpr
[i
]);
42 for (i
= 0; i
< 32; i
++) {
47 u
.l
= qemu_get_be64(f
);
50 qemu_get_be32s(f
, &fpscr
);
52 qemu_get_sbe32s(f
, &env
->access_type
);
53 #if defined(TARGET_PPC64)
54 qemu_get_betls(f
, &env
->spr
[SPR_ASR
]);
55 qemu_get_sbe32s(f
, &slb_nr
);
57 qemu_get_betls(f
, &sdr1
);
58 for (i
= 0; i
< 32; i
++)
59 qemu_get_betls(f
, &env
->sr
[i
]);
60 for (i
= 0; i
< 2; i
++)
61 for (j
= 0; j
< 8; j
++)
62 qemu_get_betls(f
, &env
->DBAT
[i
][j
]);
63 for (i
= 0; i
< 2; i
++)
64 for (j
= 0; j
< 8; j
++)
65 qemu_get_betls(f
, &env
->IBAT
[i
][j
]);
66 qemu_get_sbe32s(f
, &env
->nb_tlb
);
67 qemu_get_sbe32s(f
, &env
->tlb_per_way
);
68 qemu_get_sbe32s(f
, &env
->nb_ways
);
69 qemu_get_sbe32s(f
, &env
->last_way
);
70 qemu_get_sbe32s(f
, &env
->id_tlbs
);
71 qemu_get_sbe32s(f
, &env
->nb_pids
);
74 for (i
= 0; i
< env
->nb_tlb
; i
++) {
75 qemu_get_betls(f
, &env
->tlb
.tlb6
[i
].pte0
);
76 qemu_get_betls(f
, &env
->tlb
.tlb6
[i
].pte1
);
77 qemu_get_betls(f
, &env
->tlb
.tlb6
[i
].EPN
);
80 for (i
= 0; i
< 4; i
++)
81 qemu_get_betls(f
, &env
->pb
[i
]);
82 for (i
= 0; i
< 1024; i
++)
83 qemu_get_betls(f
, &env
->spr
[i
]);
85 ppc_store_sdr1(env
, sdr1
);
87 qemu_get_be32s(f
, &env
->vscr
);
88 qemu_get_be64s(f
, &env
->spe_acc
);
89 qemu_get_be32s(f
, &env
->spe_fscr
);
90 qemu_get_betls(f
, &env
->msr_mask
);
91 qemu_get_be32s(f
, &env
->flags
);
92 qemu_get_sbe32s(f
, &env
->error_code
);
93 qemu_get_be32s(f
, &env
->pending_interrupts
);
94 qemu_get_be32s(f
, &env
->irq_input_state
);
95 for (i
= 0; i
< POWERPC_EXCP_NB
; i
++)
96 qemu_get_betls(f
, &env
->excp_vectors
[i
]);
97 qemu_get_betls(f
, &env
->excp_prefix
);
98 qemu_get_betls(f
, &env
->ivor_mask
);
99 qemu_get_betls(f
, &env
->ivpr_mask
);
100 qemu_get_betls(f
, &env
->hreset_vector
);
101 qemu_get_betls(f
, &env
->nip
);
102 qemu_get_betls(f
, &env
->hflags
);
103 qemu_get_betls(f
, &env
->hflags_nmsr
);
104 qemu_get_sbe32(f
); /* Discard unused mmu_idx */
105 qemu_get_sbe32(f
); /* Discard unused power_mode */
107 /* Recompute mmu indices */
108 hreg_compute_mem_idx(env
);
113 static int get_avr(QEMUFile
*f
, void *pv
, size_t size
, VMStateField
*field
)
117 v
->u64
[0] = qemu_get_be64(f
);
118 v
->u64
[1] = qemu_get_be64(f
);
123 static int put_avr(QEMUFile
*f
, void *pv
, size_t size
, VMStateField
*field
,
128 qemu_put_be64(f
, v
->u64
[0]);
129 qemu_put_be64(f
, v
->u64
[1]);
133 static const VMStateInfo vmstate_info_avr
= {
139 #define VMSTATE_AVR_ARRAY_V(_f, _s, _n, _v) \
140 VMSTATE_ARRAY(_f, _s, _n, _v, vmstate_info_avr, ppc_avr_t)
142 #define VMSTATE_AVR_ARRAY(_f, _s, _n) \
143 VMSTATE_AVR_ARRAY_V(_f, _s, _n, 0)
145 static bool cpu_pre_2_8_migration(void *opaque
, int version_id
)
147 PowerPCCPU
*cpu
= opaque
;
149 return cpu
->pre_2_8_migration
;
152 #if defined(TARGET_PPC64)
153 static bool cpu_pre_3_0_migration(void *opaque
, int version_id
)
155 PowerPCCPU
*cpu
= opaque
;
157 return cpu
->pre_3_0_migration
;
161 static int cpu_pre_save(void *opaque
)
163 PowerPCCPU
*cpu
= opaque
;
164 CPUPPCState
*env
= &cpu
->env
;
166 uint64_t insns_compat_mask
=
167 PPC_INSNS_BASE
| PPC_ISEL
| PPC_STRING
| PPC_MFTB
168 | PPC_FLOAT
| PPC_FLOAT_FSEL
| PPC_FLOAT_FRES
169 | PPC_FLOAT_FSQRT
| PPC_FLOAT_FRSQRTE
| PPC_FLOAT_FRSQRTES
170 | PPC_FLOAT_STFIWX
| PPC_FLOAT_EXT
171 | PPC_CACHE
| PPC_CACHE_ICBI
| PPC_CACHE_DCBZ
172 | PPC_MEM_SYNC
| PPC_MEM_EIEIO
| PPC_MEM_TLBIE
| PPC_MEM_TLBSYNC
173 | PPC_64B
| PPC_64BX
| PPC_ALTIVEC
174 | PPC_SEGMENT_64B
| PPC_SLBI
| PPC_POPCNTB
| PPC_POPCNTWD
;
175 uint64_t insns_compat_mask2
= PPC2_VSX
| PPC2_VSX207
| PPC2_DFP
| PPC2_DBRX
176 | PPC2_PERM_ISA206
| PPC2_DIVE_ISA206
177 | PPC2_ATOMIC_ISA206
| PPC2_FP_CVT_ISA206
178 | PPC2_FP_TST_ISA206
| PPC2_BCTAR_ISA207
179 | PPC2_LSQ_ISA207
| PPC2_ALTIVEC_207
180 | PPC2_ISA205
| PPC2_ISA207S
| PPC2_FP_CVT_S64
| PPC2_TM
;
182 env
->spr
[SPR_LR
] = env
->lr
;
183 env
->spr
[SPR_CTR
] = env
->ctr
;
184 env
->spr
[SPR_XER
] = cpu_read_xer(env
);
185 #if defined(TARGET_PPC64)
186 env
->spr
[SPR_CFAR
] = env
->cfar
;
188 env
->spr
[SPR_BOOKE_SPEFSCR
] = env
->spe_fscr
;
190 for (i
= 0; (i
< 4) && (i
< env
->nb_BATs
); i
++) {
191 env
->spr
[SPR_DBAT0U
+ 2*i
] = env
->DBAT
[0][i
];
192 env
->spr
[SPR_DBAT0U
+ 2*i
+ 1] = env
->DBAT
[1][i
];
193 env
->spr
[SPR_IBAT0U
+ 2*i
] = env
->IBAT
[0][i
];
194 env
->spr
[SPR_IBAT0U
+ 2*i
+ 1] = env
->IBAT
[1][i
];
196 for (i
= 0; (i
< 4) && ((i
+4) < env
->nb_BATs
); i
++) {
197 env
->spr
[SPR_DBAT4U
+ 2*i
] = env
->DBAT
[0][i
+4];
198 env
->spr
[SPR_DBAT4U
+ 2*i
+ 1] = env
->DBAT
[1][i
+4];
199 env
->spr
[SPR_IBAT4U
+ 2*i
] = env
->IBAT
[0][i
+4];
200 env
->spr
[SPR_IBAT4U
+ 2*i
+ 1] = env
->IBAT
[1][i
+4];
203 /* Hacks for migration compatibility between 2.6, 2.7 & 2.8 */
204 if (cpu
->pre_2_8_migration
) {
205 /* Mask out bits that got added to msr_mask since the versions
206 * which stupidly included it in the migration stream. */
207 target_ulong metamask
= 0
208 #if defined(TARGET_PPC64)
213 cpu
->mig_msr_mask
= env
->msr_mask
& ~metamask
;
214 cpu
->mig_insns_flags
= env
->insns_flags
& insns_compat_mask
;
215 /* CPU models supported by old machines all have PPC_MEM_TLBIE,
216 * so we set it unconditionally to allow backward migration from
217 * a POWER9 host to a POWER8 host.
219 cpu
->mig_insns_flags
|= PPC_MEM_TLBIE
;
220 cpu
->mig_insns_flags2
= env
->insns_flags2
& insns_compat_mask2
;
221 cpu
->mig_nb_BATs
= env
->nb_BATs
;
223 if (cpu
->pre_3_0_migration
) {
224 if (cpu
->hash64_opts
) {
225 cpu
->mig_slb_nr
= cpu
->hash64_opts
->slb_size
;
233 * Determine if a given PVR is a "close enough" match to the CPU
234 * object. For TCG and KVM PR it would probably be sufficient to
235 * require an exact PVR match. However for KVM HV the user is
236 * restricted to a PVR exactly matching the host CPU. The correct way
237 * to handle this is to put the guest into an architected
238 * compatibility mode. However, to allow a more forgiving transition
239 * and migration from before this was widely done, we allow migration
240 * between sufficiently similar PVRs, as determined by the CPU class's
243 static bool pvr_match(PowerPCCPU
*cpu
, uint32_t pvr
)
245 PowerPCCPUClass
*pcc
= POWERPC_CPU_GET_CLASS(cpu
);
247 if (pvr
== pcc
->pvr
) {
250 return pcc
->pvr_match(pcc
, pvr
);
253 static int cpu_post_load(void *opaque
, int version_id
)
255 PowerPCCPU
*cpu
= opaque
;
256 CPUPPCState
*env
= &cpu
->env
;
261 * If we're operating in compat mode, we should be ok as long as
262 * the destination supports the same compatiblity mode.
264 * Otherwise, however, we require that the destination has exactly
265 * the same CPU model as the source.
268 #if defined(TARGET_PPC64)
269 if (cpu
->compat_pvr
) {
270 uint32_t compat_pvr
= cpu
->compat_pvr
;
271 Error
*local_err
= NULL
;
274 ppc_set_compat(cpu
, compat_pvr
, &local_err
);
276 error_report_err(local_err
);
282 if (!pvr_match(cpu
, env
->spr
[SPR_PVR
])) {
288 * If we're running with KVM HV, there is a chance that the guest
289 * is running with KVM HV and its kernel does not have the
290 * capability of dealing with a different PVR other than this
291 * exact host PVR in KVM_SET_SREGS. If that happens, the
292 * guest freezes after migration.
294 * The function kvmppc_pvr_workaround_required does this verification
295 * by first checking if the kernel has the cap, returning true immediately
296 * if that is the case. Otherwise, it checks if we're running in KVM PR.
297 * If the guest kernel does not have the cap and we're not running KVM-PR
298 * (so, it is running KVM-HV), we need to ensure that KVM_SET_SREGS will
299 * receive the PVR it expects as a workaround.
302 #if defined(CONFIG_KVM)
303 if (kvmppc_pvr_workaround_required(cpu
)) {
304 env
->spr
[SPR_PVR
] = env
->spr_cb
[SPR_PVR
].default_value
;
308 env
->lr
= env
->spr
[SPR_LR
];
309 env
->ctr
= env
->spr
[SPR_CTR
];
310 cpu_write_xer(env
, env
->spr
[SPR_XER
]);
311 #if defined(TARGET_PPC64)
312 env
->cfar
= env
->spr
[SPR_CFAR
];
314 env
->spe_fscr
= env
->spr
[SPR_BOOKE_SPEFSCR
];
316 for (i
= 0; (i
< 4) && (i
< env
->nb_BATs
); i
++) {
317 env
->DBAT
[0][i
] = env
->spr
[SPR_DBAT0U
+ 2*i
];
318 env
->DBAT
[1][i
] = env
->spr
[SPR_DBAT0U
+ 2*i
+ 1];
319 env
->IBAT
[0][i
] = env
->spr
[SPR_IBAT0U
+ 2*i
];
320 env
->IBAT
[1][i
] = env
->spr
[SPR_IBAT0U
+ 2*i
+ 1];
322 for (i
= 0; (i
< 4) && ((i
+4) < env
->nb_BATs
); i
++) {
323 env
->DBAT
[0][i
+4] = env
->spr
[SPR_DBAT4U
+ 2*i
];
324 env
->DBAT
[1][i
+4] = env
->spr
[SPR_DBAT4U
+ 2*i
+ 1];
325 env
->IBAT
[0][i
+4] = env
->spr
[SPR_IBAT4U
+ 2*i
];
326 env
->IBAT
[1][i
+4] = env
->spr
[SPR_IBAT4U
+ 2*i
+ 1];
330 ppc_store_sdr1(env
, env
->spr
[SPR_SDR1
]);
333 /* Invalidate all supported msr bits except MSR_TGPR/MSR_HVB before restoring */
335 env
->msr
^= env
->msr_mask
& ~((1ULL << MSR_TGPR
) | MSR_HVB
);
336 ppc_store_msr(env
, msr
);
338 hreg_compute_mem_idx(env
);
343 static bool fpu_needed(void *opaque
)
345 PowerPCCPU
*cpu
= opaque
;
347 return (cpu
->env
.insns_flags
& PPC_FLOAT
);
350 static const VMStateDescription vmstate_fpu
= {
353 .minimum_version_id
= 1,
354 .needed
= fpu_needed
,
355 .fields
= (VMStateField
[]) {
356 VMSTATE_FLOAT64_ARRAY(env
.fpr
, PowerPCCPU
, 32),
357 VMSTATE_UINTTL(env
.fpscr
, PowerPCCPU
),
358 VMSTATE_END_OF_LIST()
362 static bool altivec_needed(void *opaque
)
364 PowerPCCPU
*cpu
= opaque
;
366 return (cpu
->env
.insns_flags
& PPC_ALTIVEC
);
369 static const VMStateDescription vmstate_altivec
= {
370 .name
= "cpu/altivec",
372 .minimum_version_id
= 1,
373 .needed
= altivec_needed
,
374 .fields
= (VMStateField
[]) {
375 VMSTATE_AVR_ARRAY(env
.avr
, PowerPCCPU
, 32),
376 VMSTATE_UINT32(env
.vscr
, PowerPCCPU
),
377 VMSTATE_END_OF_LIST()
381 static bool vsx_needed(void *opaque
)
383 PowerPCCPU
*cpu
= opaque
;
385 return (cpu
->env
.insns_flags2
& PPC2_VSX
);
388 static const VMStateDescription vmstate_vsx
= {
391 .minimum_version_id
= 1,
392 .needed
= vsx_needed
,
393 .fields
= (VMStateField
[]) {
394 VMSTATE_UINT64_ARRAY(env
.vsr
, PowerPCCPU
, 32),
395 VMSTATE_END_OF_LIST()
400 /* Transactional memory state */
401 static bool tm_needed(void *opaque
)
403 PowerPCCPU
*cpu
= opaque
;
404 CPUPPCState
*env
= &cpu
->env
;
408 static const VMStateDescription vmstate_tm
= {
411 .minimum_version_id
= 1,
412 .minimum_version_id_old
= 1,
414 .fields
= (VMStateField
[]) {
415 VMSTATE_UINTTL_ARRAY(env
.tm_gpr
, PowerPCCPU
, 32),
416 VMSTATE_AVR_ARRAY(env
.tm_vsr
, PowerPCCPU
, 64),
417 VMSTATE_UINT64(env
.tm_cr
, PowerPCCPU
),
418 VMSTATE_UINT64(env
.tm_lr
, PowerPCCPU
),
419 VMSTATE_UINT64(env
.tm_ctr
, PowerPCCPU
),
420 VMSTATE_UINT64(env
.tm_fpscr
, PowerPCCPU
),
421 VMSTATE_UINT64(env
.tm_amr
, PowerPCCPU
),
422 VMSTATE_UINT64(env
.tm_ppr
, PowerPCCPU
),
423 VMSTATE_UINT64(env
.tm_vrsave
, PowerPCCPU
),
424 VMSTATE_UINT32(env
.tm_vscr
, PowerPCCPU
),
425 VMSTATE_UINT64(env
.tm_dscr
, PowerPCCPU
),
426 VMSTATE_UINT64(env
.tm_tar
, PowerPCCPU
),
427 VMSTATE_END_OF_LIST()
432 static bool sr_needed(void *opaque
)
435 PowerPCCPU
*cpu
= opaque
;
437 return !(cpu
->env
.mmu_model
& POWERPC_MMU_64
);
443 static const VMStateDescription vmstate_sr
= {
446 .minimum_version_id
= 1,
448 .fields
= (VMStateField
[]) {
449 VMSTATE_UINTTL_ARRAY(env
.sr
, PowerPCCPU
, 32),
450 VMSTATE_END_OF_LIST()
455 static int get_slbe(QEMUFile
*f
, void *pv
, size_t size
, VMStateField
*field
)
459 v
->esid
= qemu_get_be64(f
);
460 v
->vsid
= qemu_get_be64(f
);
465 static int put_slbe(QEMUFile
*f
, void *pv
, size_t size
, VMStateField
*field
,
470 qemu_put_be64(f
, v
->esid
);
471 qemu_put_be64(f
, v
->vsid
);
475 static const VMStateInfo vmstate_info_slbe
= {
481 #define VMSTATE_SLB_ARRAY_V(_f, _s, _n, _v) \
482 VMSTATE_ARRAY(_f, _s, _n, _v, vmstate_info_slbe, ppc_slb_t)
484 #define VMSTATE_SLB_ARRAY(_f, _s, _n) \
485 VMSTATE_SLB_ARRAY_V(_f, _s, _n, 0)
487 static bool slb_needed(void *opaque
)
489 PowerPCCPU
*cpu
= opaque
;
491 /* We don't support any of the old segment table based 64-bit CPUs */
492 return (cpu
->env
.mmu_model
& POWERPC_MMU_64
);
495 static int slb_post_load(void *opaque
, int version_id
)
497 PowerPCCPU
*cpu
= opaque
;
498 CPUPPCState
*env
= &cpu
->env
;
501 /* We've pulled in the raw esid and vsid values from the migration
502 * stream, but we need to recompute the page size pointers */
503 for (i
= 0; i
< cpu
->hash64_opts
->slb_size
; i
++) {
504 if (ppc_store_slb(cpu
, i
, env
->slb
[i
].esid
, env
->slb
[i
].vsid
) < 0) {
505 /* Migration source had bad values in its SLB */
513 static const VMStateDescription vmstate_slb
= {
516 .minimum_version_id
= 1,
517 .needed
= slb_needed
,
518 .post_load
= slb_post_load
,
519 .fields
= (VMStateField
[]) {
520 VMSTATE_INT32_TEST(mig_slb_nr
, PowerPCCPU
, cpu_pre_3_0_migration
),
521 VMSTATE_SLB_ARRAY(env
.slb
, PowerPCCPU
, MAX_SLB_ENTRIES
),
522 VMSTATE_END_OF_LIST()
525 #endif /* TARGET_PPC64 */
527 static const VMStateDescription vmstate_tlb6xx_entry
= {
528 .name
= "cpu/tlb6xx_entry",
530 .minimum_version_id
= 1,
531 .fields
= (VMStateField
[]) {
532 VMSTATE_UINTTL(pte0
, ppc6xx_tlb_t
),
533 VMSTATE_UINTTL(pte1
, ppc6xx_tlb_t
),
534 VMSTATE_UINTTL(EPN
, ppc6xx_tlb_t
),
535 VMSTATE_END_OF_LIST()
539 static bool tlb6xx_needed(void *opaque
)
541 PowerPCCPU
*cpu
= opaque
;
542 CPUPPCState
*env
= &cpu
->env
;
544 return env
->nb_tlb
&& (env
->tlb_type
== TLB_6XX
);
547 static const VMStateDescription vmstate_tlb6xx
= {
548 .name
= "cpu/tlb6xx",
550 .minimum_version_id
= 1,
551 .needed
= tlb6xx_needed
,
552 .fields
= (VMStateField
[]) {
553 VMSTATE_INT32_EQUAL(env
.nb_tlb
, PowerPCCPU
, NULL
),
554 VMSTATE_STRUCT_VARRAY_POINTER_INT32(env
.tlb
.tlb6
, PowerPCCPU
,
556 vmstate_tlb6xx_entry
,
558 VMSTATE_UINTTL_ARRAY(env
.tgpr
, PowerPCCPU
, 4),
559 VMSTATE_END_OF_LIST()
563 static const VMStateDescription vmstate_tlbemb_entry
= {
564 .name
= "cpu/tlbemb_entry",
566 .minimum_version_id
= 1,
567 .fields
= (VMStateField
[]) {
568 VMSTATE_UINT64(RPN
, ppcemb_tlb_t
),
569 VMSTATE_UINTTL(EPN
, ppcemb_tlb_t
),
570 VMSTATE_UINTTL(PID
, ppcemb_tlb_t
),
571 VMSTATE_UINTTL(size
, ppcemb_tlb_t
),
572 VMSTATE_UINT32(prot
, ppcemb_tlb_t
),
573 VMSTATE_UINT32(attr
, ppcemb_tlb_t
),
574 VMSTATE_END_OF_LIST()
578 static bool tlbemb_needed(void *opaque
)
580 PowerPCCPU
*cpu
= opaque
;
581 CPUPPCState
*env
= &cpu
->env
;
583 return env
->nb_tlb
&& (env
->tlb_type
== TLB_EMB
);
586 static bool pbr403_needed(void *opaque
)
588 PowerPCCPU
*cpu
= opaque
;
589 uint32_t pvr
= cpu
->env
.spr
[SPR_PVR
];
591 return (pvr
& 0xffff0000) == 0x00200000;
594 static const VMStateDescription vmstate_pbr403
= {
595 .name
= "cpu/pbr403",
597 .minimum_version_id
= 1,
598 .needed
= pbr403_needed
,
599 .fields
= (VMStateField
[]) {
600 VMSTATE_UINTTL_ARRAY(env
.pb
, PowerPCCPU
, 4),
601 VMSTATE_END_OF_LIST()
605 static const VMStateDescription vmstate_tlbemb
= {
606 .name
= "cpu/tlb6xx",
608 .minimum_version_id
= 1,
609 .needed
= tlbemb_needed
,
610 .fields
= (VMStateField
[]) {
611 VMSTATE_INT32_EQUAL(env
.nb_tlb
, PowerPCCPU
, NULL
),
612 VMSTATE_STRUCT_VARRAY_POINTER_INT32(env
.tlb
.tlbe
, PowerPCCPU
,
614 vmstate_tlbemb_entry
,
616 /* 403 protection registers */
617 VMSTATE_END_OF_LIST()
619 .subsections
= (const VMStateDescription
*[]) {
625 static const VMStateDescription vmstate_tlbmas_entry
= {
626 .name
= "cpu/tlbmas_entry",
628 .minimum_version_id
= 1,
629 .fields
= (VMStateField
[]) {
630 VMSTATE_UINT32(mas8
, ppcmas_tlb_t
),
631 VMSTATE_UINT32(mas1
, ppcmas_tlb_t
),
632 VMSTATE_UINT64(mas2
, ppcmas_tlb_t
),
633 VMSTATE_UINT64(mas7_3
, ppcmas_tlb_t
),
634 VMSTATE_END_OF_LIST()
638 static bool tlbmas_needed(void *opaque
)
640 PowerPCCPU
*cpu
= opaque
;
641 CPUPPCState
*env
= &cpu
->env
;
643 return env
->nb_tlb
&& (env
->tlb_type
== TLB_MAS
);
646 static const VMStateDescription vmstate_tlbmas
= {
647 .name
= "cpu/tlbmas",
649 .minimum_version_id
= 1,
650 .needed
= tlbmas_needed
,
651 .fields
= (VMStateField
[]) {
652 VMSTATE_INT32_EQUAL(env
.nb_tlb
, PowerPCCPU
, NULL
),
653 VMSTATE_STRUCT_VARRAY_POINTER_INT32(env
.tlb
.tlbm
, PowerPCCPU
,
655 vmstate_tlbmas_entry
,
657 VMSTATE_END_OF_LIST()
661 static bool compat_needed(void *opaque
)
663 PowerPCCPU
*cpu
= opaque
;
665 assert(!(cpu
->compat_pvr
&& !cpu
->vhyp
));
666 return !cpu
->pre_2_10_migration
&& cpu
->compat_pvr
!= 0;
669 static const VMStateDescription vmstate_compat
= {
670 .name
= "cpu/compat",
672 .minimum_version_id
= 1,
673 .needed
= compat_needed
,
674 .fields
= (VMStateField
[]) {
675 VMSTATE_UINT32(compat_pvr
, PowerPCCPU
),
676 VMSTATE_END_OF_LIST()
680 const VMStateDescription vmstate_ppc_cpu
= {
683 .minimum_version_id
= 5,
684 .minimum_version_id_old
= 4,
685 .load_state_old
= cpu_load_old
,
686 .pre_save
= cpu_pre_save
,
687 .post_load
= cpu_post_load
,
688 .fields
= (VMStateField
[]) {
689 VMSTATE_UNUSED(sizeof(target_ulong
)), /* was _EQUAL(env.spr[SPR_PVR]) */
691 /* User mode architected state */
692 VMSTATE_UINTTL_ARRAY(env
.gpr
, PowerPCCPU
, 32),
693 #if !defined(TARGET_PPC64)
694 VMSTATE_UINTTL_ARRAY(env
.gprh
, PowerPCCPU
, 32),
696 VMSTATE_UINT32_ARRAY(env
.crf
, PowerPCCPU
, 8),
697 VMSTATE_UINTTL(env
.nip
, PowerPCCPU
),
700 VMSTATE_UINTTL_ARRAY(env
.spr
, PowerPCCPU
, 1024),
701 VMSTATE_UINT64(env
.spe_acc
, PowerPCCPU
),
704 VMSTATE_UINTTL(env
.reserve_addr
, PowerPCCPU
),
706 /* Supervisor mode architected state */
707 VMSTATE_UINTTL(env
.msr
, PowerPCCPU
),
710 VMSTATE_UINTTL(env
.hflags_nmsr
, PowerPCCPU
),
711 /* FIXME: access_type? */
713 /* Sanity checking */
714 VMSTATE_UINTTL_TEST(mig_msr_mask
, PowerPCCPU
, cpu_pre_2_8_migration
),
715 VMSTATE_UINT64_TEST(mig_insns_flags
, PowerPCCPU
, cpu_pre_2_8_migration
),
716 VMSTATE_UINT64_TEST(mig_insns_flags2
, PowerPCCPU
,
717 cpu_pre_2_8_migration
),
718 VMSTATE_UINT32_TEST(mig_nb_BATs
, PowerPCCPU
, cpu_pre_2_8_migration
),
719 VMSTATE_END_OF_LIST()
721 .subsections
= (const VMStateDescription
*[]) {
729 #endif /* TARGET_PPC64 */