target/arm: Use correct mmu_idx for exception-return unstacking
[qemu/ar7.git] / target / ppc / machine.c
blobb2745ec4e519a0399ab20372f65abd2f0efd22b3
1 #include "qemu/osdep.h"
2 #include "qemu-common.h"
3 #include "cpu.h"
4 #include "exec/exec-all.h"
5 #include "hw/hw.h"
6 #include "hw/boards.h"
7 #include "sysemu/kvm.h"
8 #include "helper_regs.h"
9 #include "mmu-hash64.h"
10 #include "migration/cpu.h"
11 #include "qapi/error.h"
12 #include "kvm_ppc.h"
14 static int cpu_load_old(QEMUFile *f, void *opaque, int version_id)
16 PowerPCCPU *cpu = opaque;
17 CPUPPCState *env = &cpu->env;
18 unsigned int i, j;
19 target_ulong sdr1;
20 uint32_t fpscr;
21 #if defined(TARGET_PPC64)
22 int32_t slb_nr;
23 #endif
24 target_ulong xer;
26 for (i = 0; i < 32; i++)
27 qemu_get_betls(f, &env->gpr[i]);
28 #if !defined(TARGET_PPC64)
29 for (i = 0; i < 32; i++)
30 qemu_get_betls(f, &env->gprh[i]);
31 #endif
32 qemu_get_betls(f, &env->lr);
33 qemu_get_betls(f, &env->ctr);
34 for (i = 0; i < 8; i++)
35 qemu_get_be32s(f, &env->crf[i]);
36 qemu_get_betls(f, &xer);
37 cpu_write_xer(env, xer);
38 qemu_get_betls(f, &env->reserve_addr);
39 qemu_get_betls(f, &env->msr);
40 for (i = 0; i < 4; i++)
41 qemu_get_betls(f, &env->tgpr[i]);
42 for (i = 0; i < 32; i++) {
43 union {
44 float64 d;
45 uint64_t l;
46 } u;
47 u.l = qemu_get_be64(f);
48 env->fpr[i] = u.d;
50 qemu_get_be32s(f, &fpscr);
51 env->fpscr = fpscr;
52 qemu_get_sbe32s(f, &env->access_type);
53 #if defined(TARGET_PPC64)
54 qemu_get_betls(f, &env->spr[SPR_ASR]);
55 qemu_get_sbe32s(f, &slb_nr);
56 #endif
57 qemu_get_betls(f, &sdr1);
58 for (i = 0; i < 32; i++)
59 qemu_get_betls(f, &env->sr[i]);
60 for (i = 0; i < 2; i++)
61 for (j = 0; j < 8; j++)
62 qemu_get_betls(f, &env->DBAT[i][j]);
63 for (i = 0; i < 2; i++)
64 for (j = 0; j < 8; j++)
65 qemu_get_betls(f, &env->IBAT[i][j]);
66 qemu_get_sbe32s(f, &env->nb_tlb);
67 qemu_get_sbe32s(f, &env->tlb_per_way);
68 qemu_get_sbe32s(f, &env->nb_ways);
69 qemu_get_sbe32s(f, &env->last_way);
70 qemu_get_sbe32s(f, &env->id_tlbs);
71 qemu_get_sbe32s(f, &env->nb_pids);
72 if (env->tlb.tlb6) {
73 // XXX assumes 6xx
74 for (i = 0; i < env->nb_tlb; i++) {
75 qemu_get_betls(f, &env->tlb.tlb6[i].pte0);
76 qemu_get_betls(f, &env->tlb.tlb6[i].pte1);
77 qemu_get_betls(f, &env->tlb.tlb6[i].EPN);
80 for (i = 0; i < 4; i++)
81 qemu_get_betls(f, &env->pb[i]);
82 for (i = 0; i < 1024; i++)
83 qemu_get_betls(f, &env->spr[i]);
84 if (!cpu->vhyp) {
85 ppc_store_sdr1(env, sdr1);
87 qemu_get_be32s(f, &env->vscr);
88 qemu_get_be64s(f, &env->spe_acc);
89 qemu_get_be32s(f, &env->spe_fscr);
90 qemu_get_betls(f, &env->msr_mask);
91 qemu_get_be32s(f, &env->flags);
92 qemu_get_sbe32s(f, &env->error_code);
93 qemu_get_be32s(f, &env->pending_interrupts);
94 qemu_get_be32s(f, &env->irq_input_state);
95 for (i = 0; i < POWERPC_EXCP_NB; i++)
96 qemu_get_betls(f, &env->excp_vectors[i]);
97 qemu_get_betls(f, &env->excp_prefix);
98 qemu_get_betls(f, &env->ivor_mask);
99 qemu_get_betls(f, &env->ivpr_mask);
100 qemu_get_betls(f, &env->hreset_vector);
101 qemu_get_betls(f, &env->nip);
102 qemu_get_betls(f, &env->hflags);
103 qemu_get_betls(f, &env->hflags_nmsr);
104 qemu_get_sbe32(f); /* Discard unused mmu_idx */
105 qemu_get_sbe32(f); /* Discard unused power_mode */
107 /* Recompute mmu indices */
108 hreg_compute_mem_idx(env);
110 return 0;
113 static int get_avr(QEMUFile *f, void *pv, size_t size, VMStateField *field)
115 ppc_avr_t *v = pv;
117 v->u64[0] = qemu_get_be64(f);
118 v->u64[1] = qemu_get_be64(f);
120 return 0;
123 static int put_avr(QEMUFile *f, void *pv, size_t size, VMStateField *field,
124 QJSON *vmdesc)
126 ppc_avr_t *v = pv;
128 qemu_put_be64(f, v->u64[0]);
129 qemu_put_be64(f, v->u64[1]);
130 return 0;
133 static const VMStateInfo vmstate_info_avr = {
134 .name = "avr",
135 .get = get_avr,
136 .put = put_avr,
139 #define VMSTATE_AVR_ARRAY_V(_f, _s, _n, _v) \
140 VMSTATE_ARRAY(_f, _s, _n, _v, vmstate_info_avr, ppc_avr_t)
142 #define VMSTATE_AVR_ARRAY(_f, _s, _n) \
143 VMSTATE_AVR_ARRAY_V(_f, _s, _n, 0)
145 static bool cpu_pre_2_8_migration(void *opaque, int version_id)
147 PowerPCCPU *cpu = opaque;
149 return cpu->pre_2_8_migration;
152 #if defined(TARGET_PPC64)
153 static bool cpu_pre_3_0_migration(void *opaque, int version_id)
155 PowerPCCPU *cpu = opaque;
157 return cpu->pre_3_0_migration;
159 #endif
161 static int cpu_pre_save(void *opaque)
163 PowerPCCPU *cpu = opaque;
164 CPUPPCState *env = &cpu->env;
165 int i;
166 uint64_t insns_compat_mask =
167 PPC_INSNS_BASE | PPC_ISEL | PPC_STRING | PPC_MFTB
168 | PPC_FLOAT | PPC_FLOAT_FSEL | PPC_FLOAT_FRES
169 | PPC_FLOAT_FSQRT | PPC_FLOAT_FRSQRTE | PPC_FLOAT_FRSQRTES
170 | PPC_FLOAT_STFIWX | PPC_FLOAT_EXT
171 | PPC_CACHE | PPC_CACHE_ICBI | PPC_CACHE_DCBZ
172 | PPC_MEM_SYNC | PPC_MEM_EIEIO | PPC_MEM_TLBIE | PPC_MEM_TLBSYNC
173 | PPC_64B | PPC_64BX | PPC_ALTIVEC
174 | PPC_SEGMENT_64B | PPC_SLBI | PPC_POPCNTB | PPC_POPCNTWD;
175 uint64_t insns_compat_mask2 = PPC2_VSX | PPC2_VSX207 | PPC2_DFP | PPC2_DBRX
176 | PPC2_PERM_ISA206 | PPC2_DIVE_ISA206
177 | PPC2_ATOMIC_ISA206 | PPC2_FP_CVT_ISA206
178 | PPC2_FP_TST_ISA206 | PPC2_BCTAR_ISA207
179 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207
180 | PPC2_ISA205 | PPC2_ISA207S | PPC2_FP_CVT_S64 | PPC2_TM;
182 env->spr[SPR_LR] = env->lr;
183 env->spr[SPR_CTR] = env->ctr;
184 env->spr[SPR_XER] = cpu_read_xer(env);
185 #if defined(TARGET_PPC64)
186 env->spr[SPR_CFAR] = env->cfar;
187 #endif
188 env->spr[SPR_BOOKE_SPEFSCR] = env->spe_fscr;
190 for (i = 0; (i < 4) && (i < env->nb_BATs); i++) {
191 env->spr[SPR_DBAT0U + 2*i] = env->DBAT[0][i];
192 env->spr[SPR_DBAT0U + 2*i + 1] = env->DBAT[1][i];
193 env->spr[SPR_IBAT0U + 2*i] = env->IBAT[0][i];
194 env->spr[SPR_IBAT0U + 2*i + 1] = env->IBAT[1][i];
196 for (i = 0; (i < 4) && ((i+4) < env->nb_BATs); i++) {
197 env->spr[SPR_DBAT4U + 2*i] = env->DBAT[0][i+4];
198 env->spr[SPR_DBAT4U + 2*i + 1] = env->DBAT[1][i+4];
199 env->spr[SPR_IBAT4U + 2*i] = env->IBAT[0][i+4];
200 env->spr[SPR_IBAT4U + 2*i + 1] = env->IBAT[1][i+4];
203 /* Hacks for migration compatibility between 2.6, 2.7 & 2.8 */
204 if (cpu->pre_2_8_migration) {
205 /* Mask out bits that got added to msr_mask since the versions
206 * which stupidly included it in the migration stream. */
207 target_ulong metamask = 0
208 #if defined(TARGET_PPC64)
209 | (1ULL << MSR_TS0)
210 | (1ULL << MSR_TS1)
211 #endif
213 cpu->mig_msr_mask = env->msr_mask & ~metamask;
214 cpu->mig_insns_flags = env->insns_flags & insns_compat_mask;
215 /* CPU models supported by old machines all have PPC_MEM_TLBIE,
216 * so we set it unconditionally to allow backward migration from
217 * a POWER9 host to a POWER8 host.
219 cpu->mig_insns_flags |= PPC_MEM_TLBIE;
220 cpu->mig_insns_flags2 = env->insns_flags2 & insns_compat_mask2;
221 cpu->mig_nb_BATs = env->nb_BATs;
223 if (cpu->pre_3_0_migration) {
224 if (cpu->hash64_opts) {
225 cpu->mig_slb_nr = cpu->hash64_opts->slb_size;
229 return 0;
233 * Determine if a given PVR is a "close enough" match to the CPU
234 * object. For TCG and KVM PR it would probably be sufficient to
235 * require an exact PVR match. However for KVM HV the user is
236 * restricted to a PVR exactly matching the host CPU. The correct way
237 * to handle this is to put the guest into an architected
238 * compatibility mode. However, to allow a more forgiving transition
239 * and migration from before this was widely done, we allow migration
240 * between sufficiently similar PVRs, as determined by the CPU class's
241 * pvr_match() hook.
243 static bool pvr_match(PowerPCCPU *cpu, uint32_t pvr)
245 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu);
247 if (pvr == pcc->pvr) {
248 return true;
250 return pcc->pvr_match(pcc, pvr);
253 static int cpu_post_load(void *opaque, int version_id)
255 PowerPCCPU *cpu = opaque;
256 CPUPPCState *env = &cpu->env;
257 int i;
258 target_ulong msr;
261 * If we're operating in compat mode, we should be ok as long as
262 * the destination supports the same compatiblity mode.
264 * Otherwise, however, we require that the destination has exactly
265 * the same CPU model as the source.
268 #if defined(TARGET_PPC64)
269 if (cpu->compat_pvr) {
270 uint32_t compat_pvr = cpu->compat_pvr;
271 Error *local_err = NULL;
273 cpu->compat_pvr = 0;
274 ppc_set_compat(cpu, compat_pvr, &local_err);
275 if (local_err) {
276 error_report_err(local_err);
277 return -1;
279 } else
280 #endif
282 if (!pvr_match(cpu, env->spr[SPR_PVR])) {
283 return -1;
288 * If we're running with KVM HV, there is a chance that the guest
289 * is running with KVM HV and its kernel does not have the
290 * capability of dealing with a different PVR other than this
291 * exact host PVR in KVM_SET_SREGS. If that happens, the
292 * guest freezes after migration.
294 * The function kvmppc_pvr_workaround_required does this verification
295 * by first checking if the kernel has the cap, returning true immediately
296 * if that is the case. Otherwise, it checks if we're running in KVM PR.
297 * If the guest kernel does not have the cap and we're not running KVM-PR
298 * (so, it is running KVM-HV), we need to ensure that KVM_SET_SREGS will
299 * receive the PVR it expects as a workaround.
302 #if defined(CONFIG_KVM)
303 if (kvmppc_pvr_workaround_required(cpu)) {
304 env->spr[SPR_PVR] = env->spr_cb[SPR_PVR].default_value;
306 #endif
308 env->lr = env->spr[SPR_LR];
309 env->ctr = env->spr[SPR_CTR];
310 cpu_write_xer(env, env->spr[SPR_XER]);
311 #if defined(TARGET_PPC64)
312 env->cfar = env->spr[SPR_CFAR];
313 #endif
314 env->spe_fscr = env->spr[SPR_BOOKE_SPEFSCR];
316 for (i = 0; (i < 4) && (i < env->nb_BATs); i++) {
317 env->DBAT[0][i] = env->spr[SPR_DBAT0U + 2*i];
318 env->DBAT[1][i] = env->spr[SPR_DBAT0U + 2*i + 1];
319 env->IBAT[0][i] = env->spr[SPR_IBAT0U + 2*i];
320 env->IBAT[1][i] = env->spr[SPR_IBAT0U + 2*i + 1];
322 for (i = 0; (i < 4) && ((i+4) < env->nb_BATs); i++) {
323 env->DBAT[0][i+4] = env->spr[SPR_DBAT4U + 2*i];
324 env->DBAT[1][i+4] = env->spr[SPR_DBAT4U + 2*i + 1];
325 env->IBAT[0][i+4] = env->spr[SPR_IBAT4U + 2*i];
326 env->IBAT[1][i+4] = env->spr[SPR_IBAT4U + 2*i + 1];
329 if (!cpu->vhyp) {
330 ppc_store_sdr1(env, env->spr[SPR_SDR1]);
333 /* Invalidate all supported msr bits except MSR_TGPR/MSR_HVB before restoring */
334 msr = env->msr;
335 env->msr ^= env->msr_mask & ~((1ULL << MSR_TGPR) | MSR_HVB);
336 ppc_store_msr(env, msr);
338 hreg_compute_mem_idx(env);
340 return 0;
343 static bool fpu_needed(void *opaque)
345 PowerPCCPU *cpu = opaque;
347 return (cpu->env.insns_flags & PPC_FLOAT);
350 static const VMStateDescription vmstate_fpu = {
351 .name = "cpu/fpu",
352 .version_id = 1,
353 .minimum_version_id = 1,
354 .needed = fpu_needed,
355 .fields = (VMStateField[]) {
356 VMSTATE_FLOAT64_ARRAY(env.fpr, PowerPCCPU, 32),
357 VMSTATE_UINTTL(env.fpscr, PowerPCCPU),
358 VMSTATE_END_OF_LIST()
362 static bool altivec_needed(void *opaque)
364 PowerPCCPU *cpu = opaque;
366 return (cpu->env.insns_flags & PPC_ALTIVEC);
369 static const VMStateDescription vmstate_altivec = {
370 .name = "cpu/altivec",
371 .version_id = 1,
372 .minimum_version_id = 1,
373 .needed = altivec_needed,
374 .fields = (VMStateField[]) {
375 VMSTATE_AVR_ARRAY(env.avr, PowerPCCPU, 32),
376 VMSTATE_UINT32(env.vscr, PowerPCCPU),
377 VMSTATE_END_OF_LIST()
381 static bool vsx_needed(void *opaque)
383 PowerPCCPU *cpu = opaque;
385 return (cpu->env.insns_flags2 & PPC2_VSX);
388 static const VMStateDescription vmstate_vsx = {
389 .name = "cpu/vsx",
390 .version_id = 1,
391 .minimum_version_id = 1,
392 .needed = vsx_needed,
393 .fields = (VMStateField[]) {
394 VMSTATE_UINT64_ARRAY(env.vsr, PowerPCCPU, 32),
395 VMSTATE_END_OF_LIST()
399 #ifdef TARGET_PPC64
400 /* Transactional memory state */
401 static bool tm_needed(void *opaque)
403 PowerPCCPU *cpu = opaque;
404 CPUPPCState *env = &cpu->env;
405 return msr_ts;
408 static const VMStateDescription vmstate_tm = {
409 .name = "cpu/tm",
410 .version_id = 1,
411 .minimum_version_id = 1,
412 .minimum_version_id_old = 1,
413 .needed = tm_needed,
414 .fields = (VMStateField []) {
415 VMSTATE_UINTTL_ARRAY(env.tm_gpr, PowerPCCPU, 32),
416 VMSTATE_AVR_ARRAY(env.tm_vsr, PowerPCCPU, 64),
417 VMSTATE_UINT64(env.tm_cr, PowerPCCPU),
418 VMSTATE_UINT64(env.tm_lr, PowerPCCPU),
419 VMSTATE_UINT64(env.tm_ctr, PowerPCCPU),
420 VMSTATE_UINT64(env.tm_fpscr, PowerPCCPU),
421 VMSTATE_UINT64(env.tm_amr, PowerPCCPU),
422 VMSTATE_UINT64(env.tm_ppr, PowerPCCPU),
423 VMSTATE_UINT64(env.tm_vrsave, PowerPCCPU),
424 VMSTATE_UINT32(env.tm_vscr, PowerPCCPU),
425 VMSTATE_UINT64(env.tm_dscr, PowerPCCPU),
426 VMSTATE_UINT64(env.tm_tar, PowerPCCPU),
427 VMSTATE_END_OF_LIST()
430 #endif
432 static bool sr_needed(void *opaque)
434 #ifdef TARGET_PPC64
435 PowerPCCPU *cpu = opaque;
437 return !(cpu->env.mmu_model & POWERPC_MMU_64);
438 #else
439 return true;
440 #endif
443 static const VMStateDescription vmstate_sr = {
444 .name = "cpu/sr",
445 .version_id = 1,
446 .minimum_version_id = 1,
447 .needed = sr_needed,
448 .fields = (VMStateField[]) {
449 VMSTATE_UINTTL_ARRAY(env.sr, PowerPCCPU, 32),
450 VMSTATE_END_OF_LIST()
454 #ifdef TARGET_PPC64
455 static int get_slbe(QEMUFile *f, void *pv, size_t size, VMStateField *field)
457 ppc_slb_t *v = pv;
459 v->esid = qemu_get_be64(f);
460 v->vsid = qemu_get_be64(f);
462 return 0;
465 static int put_slbe(QEMUFile *f, void *pv, size_t size, VMStateField *field,
466 QJSON *vmdesc)
468 ppc_slb_t *v = pv;
470 qemu_put_be64(f, v->esid);
471 qemu_put_be64(f, v->vsid);
472 return 0;
475 static const VMStateInfo vmstate_info_slbe = {
476 .name = "slbe",
477 .get = get_slbe,
478 .put = put_slbe,
481 #define VMSTATE_SLB_ARRAY_V(_f, _s, _n, _v) \
482 VMSTATE_ARRAY(_f, _s, _n, _v, vmstate_info_slbe, ppc_slb_t)
484 #define VMSTATE_SLB_ARRAY(_f, _s, _n) \
485 VMSTATE_SLB_ARRAY_V(_f, _s, _n, 0)
487 static bool slb_needed(void *opaque)
489 PowerPCCPU *cpu = opaque;
491 /* We don't support any of the old segment table based 64-bit CPUs */
492 return (cpu->env.mmu_model & POWERPC_MMU_64);
495 static int slb_post_load(void *opaque, int version_id)
497 PowerPCCPU *cpu = opaque;
498 CPUPPCState *env = &cpu->env;
499 int i;
501 /* We've pulled in the raw esid and vsid values from the migration
502 * stream, but we need to recompute the page size pointers */
503 for (i = 0; i < cpu->hash64_opts->slb_size; i++) {
504 if (ppc_store_slb(cpu, i, env->slb[i].esid, env->slb[i].vsid) < 0) {
505 /* Migration source had bad values in its SLB */
506 return -1;
510 return 0;
513 static const VMStateDescription vmstate_slb = {
514 .name = "cpu/slb",
515 .version_id = 1,
516 .minimum_version_id = 1,
517 .needed = slb_needed,
518 .post_load = slb_post_load,
519 .fields = (VMStateField[]) {
520 VMSTATE_INT32_TEST(mig_slb_nr, PowerPCCPU, cpu_pre_3_0_migration),
521 VMSTATE_SLB_ARRAY(env.slb, PowerPCCPU, MAX_SLB_ENTRIES),
522 VMSTATE_END_OF_LIST()
525 #endif /* TARGET_PPC64 */
527 static const VMStateDescription vmstate_tlb6xx_entry = {
528 .name = "cpu/tlb6xx_entry",
529 .version_id = 1,
530 .minimum_version_id = 1,
531 .fields = (VMStateField[]) {
532 VMSTATE_UINTTL(pte0, ppc6xx_tlb_t),
533 VMSTATE_UINTTL(pte1, ppc6xx_tlb_t),
534 VMSTATE_UINTTL(EPN, ppc6xx_tlb_t),
535 VMSTATE_END_OF_LIST()
539 static bool tlb6xx_needed(void *opaque)
541 PowerPCCPU *cpu = opaque;
542 CPUPPCState *env = &cpu->env;
544 return env->nb_tlb && (env->tlb_type == TLB_6XX);
547 static const VMStateDescription vmstate_tlb6xx = {
548 .name = "cpu/tlb6xx",
549 .version_id = 1,
550 .minimum_version_id = 1,
551 .needed = tlb6xx_needed,
552 .fields = (VMStateField[]) {
553 VMSTATE_INT32_EQUAL(env.nb_tlb, PowerPCCPU, NULL),
554 VMSTATE_STRUCT_VARRAY_POINTER_INT32(env.tlb.tlb6, PowerPCCPU,
555 env.nb_tlb,
556 vmstate_tlb6xx_entry,
557 ppc6xx_tlb_t),
558 VMSTATE_UINTTL_ARRAY(env.tgpr, PowerPCCPU, 4),
559 VMSTATE_END_OF_LIST()
563 static const VMStateDescription vmstate_tlbemb_entry = {
564 .name = "cpu/tlbemb_entry",
565 .version_id = 1,
566 .minimum_version_id = 1,
567 .fields = (VMStateField[]) {
568 VMSTATE_UINT64(RPN, ppcemb_tlb_t),
569 VMSTATE_UINTTL(EPN, ppcemb_tlb_t),
570 VMSTATE_UINTTL(PID, ppcemb_tlb_t),
571 VMSTATE_UINTTL(size, ppcemb_tlb_t),
572 VMSTATE_UINT32(prot, ppcemb_tlb_t),
573 VMSTATE_UINT32(attr, ppcemb_tlb_t),
574 VMSTATE_END_OF_LIST()
578 static bool tlbemb_needed(void *opaque)
580 PowerPCCPU *cpu = opaque;
581 CPUPPCState *env = &cpu->env;
583 return env->nb_tlb && (env->tlb_type == TLB_EMB);
586 static bool pbr403_needed(void *opaque)
588 PowerPCCPU *cpu = opaque;
589 uint32_t pvr = cpu->env.spr[SPR_PVR];
591 return (pvr & 0xffff0000) == 0x00200000;
594 static const VMStateDescription vmstate_pbr403 = {
595 .name = "cpu/pbr403",
596 .version_id = 1,
597 .minimum_version_id = 1,
598 .needed = pbr403_needed,
599 .fields = (VMStateField[]) {
600 VMSTATE_UINTTL_ARRAY(env.pb, PowerPCCPU, 4),
601 VMSTATE_END_OF_LIST()
605 static const VMStateDescription vmstate_tlbemb = {
606 .name = "cpu/tlb6xx",
607 .version_id = 1,
608 .minimum_version_id = 1,
609 .needed = tlbemb_needed,
610 .fields = (VMStateField[]) {
611 VMSTATE_INT32_EQUAL(env.nb_tlb, PowerPCCPU, NULL),
612 VMSTATE_STRUCT_VARRAY_POINTER_INT32(env.tlb.tlbe, PowerPCCPU,
613 env.nb_tlb,
614 vmstate_tlbemb_entry,
615 ppcemb_tlb_t),
616 /* 403 protection registers */
617 VMSTATE_END_OF_LIST()
619 .subsections = (const VMStateDescription*[]) {
620 &vmstate_pbr403,
621 NULL
625 static const VMStateDescription vmstate_tlbmas_entry = {
626 .name = "cpu/tlbmas_entry",
627 .version_id = 1,
628 .minimum_version_id = 1,
629 .fields = (VMStateField[]) {
630 VMSTATE_UINT32(mas8, ppcmas_tlb_t),
631 VMSTATE_UINT32(mas1, ppcmas_tlb_t),
632 VMSTATE_UINT64(mas2, ppcmas_tlb_t),
633 VMSTATE_UINT64(mas7_3, ppcmas_tlb_t),
634 VMSTATE_END_OF_LIST()
638 static bool tlbmas_needed(void *opaque)
640 PowerPCCPU *cpu = opaque;
641 CPUPPCState *env = &cpu->env;
643 return env->nb_tlb && (env->tlb_type == TLB_MAS);
646 static const VMStateDescription vmstate_tlbmas = {
647 .name = "cpu/tlbmas",
648 .version_id = 1,
649 .minimum_version_id = 1,
650 .needed = tlbmas_needed,
651 .fields = (VMStateField[]) {
652 VMSTATE_INT32_EQUAL(env.nb_tlb, PowerPCCPU, NULL),
653 VMSTATE_STRUCT_VARRAY_POINTER_INT32(env.tlb.tlbm, PowerPCCPU,
654 env.nb_tlb,
655 vmstate_tlbmas_entry,
656 ppcmas_tlb_t),
657 VMSTATE_END_OF_LIST()
661 static bool compat_needed(void *opaque)
663 PowerPCCPU *cpu = opaque;
665 assert(!(cpu->compat_pvr && !cpu->vhyp));
666 return !cpu->pre_2_10_migration && cpu->compat_pvr != 0;
669 static const VMStateDescription vmstate_compat = {
670 .name = "cpu/compat",
671 .version_id = 1,
672 .minimum_version_id = 1,
673 .needed = compat_needed,
674 .fields = (VMStateField[]) {
675 VMSTATE_UINT32(compat_pvr, PowerPCCPU),
676 VMSTATE_END_OF_LIST()
680 const VMStateDescription vmstate_ppc_cpu = {
681 .name = "cpu",
682 .version_id = 5,
683 .minimum_version_id = 5,
684 .minimum_version_id_old = 4,
685 .load_state_old = cpu_load_old,
686 .pre_save = cpu_pre_save,
687 .post_load = cpu_post_load,
688 .fields = (VMStateField[]) {
689 VMSTATE_UNUSED(sizeof(target_ulong)), /* was _EQUAL(env.spr[SPR_PVR]) */
691 /* User mode architected state */
692 VMSTATE_UINTTL_ARRAY(env.gpr, PowerPCCPU, 32),
693 #if !defined(TARGET_PPC64)
694 VMSTATE_UINTTL_ARRAY(env.gprh, PowerPCCPU, 32),
695 #endif
696 VMSTATE_UINT32_ARRAY(env.crf, PowerPCCPU, 8),
697 VMSTATE_UINTTL(env.nip, PowerPCCPU),
699 /* SPRs */
700 VMSTATE_UINTTL_ARRAY(env.spr, PowerPCCPU, 1024),
701 VMSTATE_UINT64(env.spe_acc, PowerPCCPU),
703 /* Reservation */
704 VMSTATE_UINTTL(env.reserve_addr, PowerPCCPU),
706 /* Supervisor mode architected state */
707 VMSTATE_UINTTL(env.msr, PowerPCCPU),
709 /* Internal state */
710 VMSTATE_UINTTL(env.hflags_nmsr, PowerPCCPU),
711 /* FIXME: access_type? */
713 /* Sanity checking */
714 VMSTATE_UINTTL_TEST(mig_msr_mask, PowerPCCPU, cpu_pre_2_8_migration),
715 VMSTATE_UINT64_TEST(mig_insns_flags, PowerPCCPU, cpu_pre_2_8_migration),
716 VMSTATE_UINT64_TEST(mig_insns_flags2, PowerPCCPU,
717 cpu_pre_2_8_migration),
718 VMSTATE_UINT32_TEST(mig_nb_BATs, PowerPCCPU, cpu_pre_2_8_migration),
719 VMSTATE_END_OF_LIST()
721 .subsections = (const VMStateDescription*[]) {
722 &vmstate_fpu,
723 &vmstate_altivec,
724 &vmstate_vsx,
725 &vmstate_sr,
726 #ifdef TARGET_PPC64
727 &vmstate_tm,
728 &vmstate_slb,
729 #endif /* TARGET_PPC64 */
730 &vmstate_tlb6xx,
731 &vmstate_tlbemb,
732 &vmstate_tlbmas,
733 &vmstate_compat,
734 NULL