target/arm: Update find_last_active for PREDDESC
[qemu/ar7.git] / hw / i386 / intel_iommu.c
blob6be8f3291854d3a007f56b39e3ccd820ad881fb8
1 /*
2 * QEMU emulation of an Intel IOMMU (VT-d)
3 * (DMA Remapping device)
5 * Copyright (C) 2013 Knut Omang, Oracle <knut.omang@oracle.com>
6 * Copyright (C) 2014 Le Tan, <tamlokveer@gmail.com>
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public License along
19 * with this program; if not, see <http://www.gnu.org/licenses/>.
22 #include "qemu/osdep.h"
23 #include "qemu/error-report.h"
24 #include "qemu/main-loop.h"
25 #include "qapi/error.h"
26 #include "hw/sysbus.h"
27 #include "exec/address-spaces.h"
28 #include "intel_iommu_internal.h"
29 #include "hw/pci/pci.h"
30 #include "hw/pci/pci_bus.h"
31 #include "hw/qdev-properties.h"
32 #include "hw/i386/pc.h"
33 #include "hw/i386/apic-msidef.h"
34 #include "hw/boards.h"
35 #include "hw/i386/x86-iommu.h"
36 #include "hw/pci-host/q35.h"
37 #include "sysemu/kvm.h"
38 #include "sysemu/dma.h"
39 #include "sysemu/sysemu.h"
40 #include "hw/i386/apic_internal.h"
41 #include "kvm/kvm_i386.h"
42 #include "migration/vmstate.h"
43 #include "trace.h"
45 /* context entry operations */
46 #define VTD_CE_GET_RID2PASID(ce) \
47 ((ce)->val[1] & VTD_SM_CONTEXT_ENTRY_RID2PASID_MASK)
48 #define VTD_CE_GET_PASID_DIR_TABLE(ce) \
49 ((ce)->val[0] & VTD_PASID_DIR_BASE_ADDR_MASK)
51 /* pe operations */
52 #define VTD_PE_GET_TYPE(pe) ((pe)->val[0] & VTD_SM_PASID_ENTRY_PGTT)
53 #define VTD_PE_GET_LEVEL(pe) (2 + (((pe)->val[0] >> 2) & VTD_SM_PASID_ENTRY_AW))
54 #define VTD_PE_GET_FPD_ERR(ret_fr, is_fpd_set, s, source_id, addr, is_write) {\
55 if (ret_fr) { \
56 ret_fr = -ret_fr; \
57 if (is_fpd_set && vtd_is_qualified_fault(ret_fr)) { \
58 trace_vtd_fault_disabled(); \
59 } else { \
60 vtd_report_dmar_fault(s, source_id, addr, ret_fr, is_write); \
61 } \
62 goto error; \
63 } \
66 static void vtd_address_space_refresh_all(IntelIOMMUState *s);
67 static void vtd_address_space_unmap(VTDAddressSpace *as, IOMMUNotifier *n);
69 static void vtd_panic_require_caching_mode(void)
71 error_report("We need to set caching-mode=on for intel-iommu to enable "
72 "device assignment with IOMMU protection.");
73 exit(1);
76 static void vtd_define_quad(IntelIOMMUState *s, hwaddr addr, uint64_t val,
77 uint64_t wmask, uint64_t w1cmask)
79 stq_le_p(&s->csr[addr], val);
80 stq_le_p(&s->wmask[addr], wmask);
81 stq_le_p(&s->w1cmask[addr], w1cmask);
84 static void vtd_define_quad_wo(IntelIOMMUState *s, hwaddr addr, uint64_t mask)
86 stq_le_p(&s->womask[addr], mask);
89 static void vtd_define_long(IntelIOMMUState *s, hwaddr addr, uint32_t val,
90 uint32_t wmask, uint32_t w1cmask)
92 stl_le_p(&s->csr[addr], val);
93 stl_le_p(&s->wmask[addr], wmask);
94 stl_le_p(&s->w1cmask[addr], w1cmask);
97 static void vtd_define_long_wo(IntelIOMMUState *s, hwaddr addr, uint32_t mask)
99 stl_le_p(&s->womask[addr], mask);
102 /* "External" get/set operations */
103 static void vtd_set_quad(IntelIOMMUState *s, hwaddr addr, uint64_t val)
105 uint64_t oldval = ldq_le_p(&s->csr[addr]);
106 uint64_t wmask = ldq_le_p(&s->wmask[addr]);
107 uint64_t w1cmask = ldq_le_p(&s->w1cmask[addr]);
108 stq_le_p(&s->csr[addr],
109 ((oldval & ~wmask) | (val & wmask)) & ~(w1cmask & val));
112 static void vtd_set_long(IntelIOMMUState *s, hwaddr addr, uint32_t val)
114 uint32_t oldval = ldl_le_p(&s->csr[addr]);
115 uint32_t wmask = ldl_le_p(&s->wmask[addr]);
116 uint32_t w1cmask = ldl_le_p(&s->w1cmask[addr]);
117 stl_le_p(&s->csr[addr],
118 ((oldval & ~wmask) | (val & wmask)) & ~(w1cmask & val));
121 static uint64_t vtd_get_quad(IntelIOMMUState *s, hwaddr addr)
123 uint64_t val = ldq_le_p(&s->csr[addr]);
124 uint64_t womask = ldq_le_p(&s->womask[addr]);
125 return val & ~womask;
128 static uint32_t vtd_get_long(IntelIOMMUState *s, hwaddr addr)
130 uint32_t val = ldl_le_p(&s->csr[addr]);
131 uint32_t womask = ldl_le_p(&s->womask[addr]);
132 return val & ~womask;
135 /* "Internal" get/set operations */
136 static uint64_t vtd_get_quad_raw(IntelIOMMUState *s, hwaddr addr)
138 return ldq_le_p(&s->csr[addr]);
141 static uint32_t vtd_get_long_raw(IntelIOMMUState *s, hwaddr addr)
143 return ldl_le_p(&s->csr[addr]);
146 static void vtd_set_quad_raw(IntelIOMMUState *s, hwaddr addr, uint64_t val)
148 stq_le_p(&s->csr[addr], val);
151 static uint32_t vtd_set_clear_mask_long(IntelIOMMUState *s, hwaddr addr,
152 uint32_t clear, uint32_t mask)
154 uint32_t new_val = (ldl_le_p(&s->csr[addr]) & ~clear) | mask;
155 stl_le_p(&s->csr[addr], new_val);
156 return new_val;
159 static uint64_t vtd_set_clear_mask_quad(IntelIOMMUState *s, hwaddr addr,
160 uint64_t clear, uint64_t mask)
162 uint64_t new_val = (ldq_le_p(&s->csr[addr]) & ~clear) | mask;
163 stq_le_p(&s->csr[addr], new_val);
164 return new_val;
167 static inline void vtd_iommu_lock(IntelIOMMUState *s)
169 qemu_mutex_lock(&s->iommu_lock);
172 static inline void vtd_iommu_unlock(IntelIOMMUState *s)
174 qemu_mutex_unlock(&s->iommu_lock);
177 static void vtd_update_scalable_state(IntelIOMMUState *s)
179 uint64_t val = vtd_get_quad_raw(s, DMAR_RTADDR_REG);
181 if (s->scalable_mode) {
182 s->root_scalable = val & VTD_RTADDR_SMT;
186 /* Whether the address space needs to notify new mappings */
187 static inline gboolean vtd_as_has_map_notifier(VTDAddressSpace *as)
189 return as->notifier_flags & IOMMU_NOTIFIER_MAP;
192 /* GHashTable functions */
193 static gboolean vtd_uint64_equal(gconstpointer v1, gconstpointer v2)
195 return *((const uint64_t *)v1) == *((const uint64_t *)v2);
198 static guint vtd_uint64_hash(gconstpointer v)
200 return (guint)*(const uint64_t *)v;
203 static gboolean vtd_hash_remove_by_domain(gpointer key, gpointer value,
204 gpointer user_data)
206 VTDIOTLBEntry *entry = (VTDIOTLBEntry *)value;
207 uint16_t domain_id = *(uint16_t *)user_data;
208 return entry->domain_id == domain_id;
211 /* The shift of an addr for a certain level of paging structure */
212 static inline uint32_t vtd_slpt_level_shift(uint32_t level)
214 assert(level != 0);
215 return VTD_PAGE_SHIFT_4K + (level - 1) * VTD_SL_LEVEL_BITS;
218 static inline uint64_t vtd_slpt_level_page_mask(uint32_t level)
220 return ~((1ULL << vtd_slpt_level_shift(level)) - 1);
223 static gboolean vtd_hash_remove_by_page(gpointer key, gpointer value,
224 gpointer user_data)
226 VTDIOTLBEntry *entry = (VTDIOTLBEntry *)value;
227 VTDIOTLBPageInvInfo *info = (VTDIOTLBPageInvInfo *)user_data;
228 uint64_t gfn = (info->addr >> VTD_PAGE_SHIFT_4K) & info->mask;
229 uint64_t gfn_tlb = (info->addr & entry->mask) >> VTD_PAGE_SHIFT_4K;
230 return (entry->domain_id == info->domain_id) &&
231 (((entry->gfn & info->mask) == gfn) ||
232 (entry->gfn == gfn_tlb));
235 /* Reset all the gen of VTDAddressSpace to zero and set the gen of
236 * IntelIOMMUState to 1. Must be called with IOMMU lock held.
238 static void vtd_reset_context_cache_locked(IntelIOMMUState *s)
240 VTDAddressSpace *vtd_as;
241 VTDBus *vtd_bus;
242 GHashTableIter bus_it;
243 uint32_t devfn_it;
245 trace_vtd_context_cache_reset();
247 g_hash_table_iter_init(&bus_it, s->vtd_as_by_busptr);
249 while (g_hash_table_iter_next (&bus_it, NULL, (void**)&vtd_bus)) {
250 for (devfn_it = 0; devfn_it < PCI_DEVFN_MAX; ++devfn_it) {
251 vtd_as = vtd_bus->dev_as[devfn_it];
252 if (!vtd_as) {
253 continue;
255 vtd_as->context_cache_entry.context_cache_gen = 0;
258 s->context_cache_gen = 1;
261 /* Must be called with IOMMU lock held. */
262 static void vtd_reset_iotlb_locked(IntelIOMMUState *s)
264 assert(s->iotlb);
265 g_hash_table_remove_all(s->iotlb);
268 static void vtd_reset_iotlb(IntelIOMMUState *s)
270 vtd_iommu_lock(s);
271 vtd_reset_iotlb_locked(s);
272 vtd_iommu_unlock(s);
275 static void vtd_reset_caches(IntelIOMMUState *s)
277 vtd_iommu_lock(s);
278 vtd_reset_iotlb_locked(s);
279 vtd_reset_context_cache_locked(s);
280 vtd_iommu_unlock(s);
283 static uint64_t vtd_get_iotlb_key(uint64_t gfn, uint16_t source_id,
284 uint32_t level)
286 return gfn | ((uint64_t)(source_id) << VTD_IOTLB_SID_SHIFT) |
287 ((uint64_t)(level) << VTD_IOTLB_LVL_SHIFT);
290 static uint64_t vtd_get_iotlb_gfn(hwaddr addr, uint32_t level)
292 return (addr & vtd_slpt_level_page_mask(level)) >> VTD_PAGE_SHIFT_4K;
295 /* Must be called with IOMMU lock held */
296 static VTDIOTLBEntry *vtd_lookup_iotlb(IntelIOMMUState *s, uint16_t source_id,
297 hwaddr addr)
299 VTDIOTLBEntry *entry;
300 uint64_t key;
301 int level;
303 for (level = VTD_SL_PT_LEVEL; level < VTD_SL_PML4_LEVEL; level++) {
304 key = vtd_get_iotlb_key(vtd_get_iotlb_gfn(addr, level),
305 source_id, level);
306 entry = g_hash_table_lookup(s->iotlb, &key);
307 if (entry) {
308 goto out;
312 out:
313 return entry;
316 /* Must be with IOMMU lock held */
317 static void vtd_update_iotlb(IntelIOMMUState *s, uint16_t source_id,
318 uint16_t domain_id, hwaddr addr, uint64_t slpte,
319 uint8_t access_flags, uint32_t level)
321 VTDIOTLBEntry *entry = g_malloc(sizeof(*entry));
322 uint64_t *key = g_malloc(sizeof(*key));
323 uint64_t gfn = vtd_get_iotlb_gfn(addr, level);
325 trace_vtd_iotlb_page_update(source_id, addr, slpte, domain_id);
326 if (g_hash_table_size(s->iotlb) >= VTD_IOTLB_MAX_SIZE) {
327 trace_vtd_iotlb_reset("iotlb exceeds size limit");
328 vtd_reset_iotlb_locked(s);
331 entry->gfn = gfn;
332 entry->domain_id = domain_id;
333 entry->slpte = slpte;
334 entry->access_flags = access_flags;
335 entry->mask = vtd_slpt_level_page_mask(level);
336 *key = vtd_get_iotlb_key(gfn, source_id, level);
337 g_hash_table_replace(s->iotlb, key, entry);
340 /* Given the reg addr of both the message data and address, generate an
341 * interrupt via MSI.
343 static void vtd_generate_interrupt(IntelIOMMUState *s, hwaddr mesg_addr_reg,
344 hwaddr mesg_data_reg)
346 MSIMessage msi;
348 assert(mesg_data_reg < DMAR_REG_SIZE);
349 assert(mesg_addr_reg < DMAR_REG_SIZE);
351 msi.address = vtd_get_long_raw(s, mesg_addr_reg);
352 msi.data = vtd_get_long_raw(s, mesg_data_reg);
354 trace_vtd_irq_generate(msi.address, msi.data);
356 apic_get_class()->send_msi(&msi);
359 /* Generate a fault event to software via MSI if conditions are met.
360 * Notice that the value of FSTS_REG being passed to it should be the one
361 * before any update.
363 static void vtd_generate_fault_event(IntelIOMMUState *s, uint32_t pre_fsts)
365 if (pre_fsts & VTD_FSTS_PPF || pre_fsts & VTD_FSTS_PFO ||
366 pre_fsts & VTD_FSTS_IQE) {
367 error_report_once("There are previous interrupt conditions "
368 "to be serviced by software, fault event "
369 "is not generated");
370 return;
372 vtd_set_clear_mask_long(s, DMAR_FECTL_REG, 0, VTD_FECTL_IP);
373 if (vtd_get_long_raw(s, DMAR_FECTL_REG) & VTD_FECTL_IM) {
374 error_report_once("Interrupt Mask set, irq is not generated");
375 } else {
376 vtd_generate_interrupt(s, DMAR_FEADDR_REG, DMAR_FEDATA_REG);
377 vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
381 /* Check if the Fault (F) field of the Fault Recording Register referenced by
382 * @index is Set.
384 static bool vtd_is_frcd_set(IntelIOMMUState *s, uint16_t index)
386 /* Each reg is 128-bit */
387 hwaddr addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
388 addr += 8; /* Access the high 64-bit half */
390 assert(index < DMAR_FRCD_REG_NR);
392 return vtd_get_quad_raw(s, addr) & VTD_FRCD_F;
395 /* Update the PPF field of Fault Status Register.
396 * Should be called whenever change the F field of any fault recording
397 * registers.
399 static void vtd_update_fsts_ppf(IntelIOMMUState *s)
401 uint32_t i;
402 uint32_t ppf_mask = 0;
404 for (i = 0; i < DMAR_FRCD_REG_NR; i++) {
405 if (vtd_is_frcd_set(s, i)) {
406 ppf_mask = VTD_FSTS_PPF;
407 break;
410 vtd_set_clear_mask_long(s, DMAR_FSTS_REG, VTD_FSTS_PPF, ppf_mask);
411 trace_vtd_fsts_ppf(!!ppf_mask);
414 static void vtd_set_frcd_and_update_ppf(IntelIOMMUState *s, uint16_t index)
416 /* Each reg is 128-bit */
417 hwaddr addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
418 addr += 8; /* Access the high 64-bit half */
420 assert(index < DMAR_FRCD_REG_NR);
422 vtd_set_clear_mask_quad(s, addr, 0, VTD_FRCD_F);
423 vtd_update_fsts_ppf(s);
426 /* Must not update F field now, should be done later */
427 static void vtd_record_frcd(IntelIOMMUState *s, uint16_t index,
428 uint16_t source_id, hwaddr addr,
429 VTDFaultReason fault, bool is_write)
431 uint64_t hi = 0, lo;
432 hwaddr frcd_reg_addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
434 assert(index < DMAR_FRCD_REG_NR);
436 lo = VTD_FRCD_FI(addr);
437 hi = VTD_FRCD_SID(source_id) | VTD_FRCD_FR(fault);
438 if (!is_write) {
439 hi |= VTD_FRCD_T;
441 vtd_set_quad_raw(s, frcd_reg_addr, lo);
442 vtd_set_quad_raw(s, frcd_reg_addr + 8, hi);
444 trace_vtd_frr_new(index, hi, lo);
447 /* Try to collapse multiple pending faults from the same requester */
448 static bool vtd_try_collapse_fault(IntelIOMMUState *s, uint16_t source_id)
450 uint32_t i;
451 uint64_t frcd_reg;
452 hwaddr addr = DMAR_FRCD_REG_OFFSET + 8; /* The high 64-bit half */
454 for (i = 0; i < DMAR_FRCD_REG_NR; i++) {
455 frcd_reg = vtd_get_quad_raw(s, addr);
456 if ((frcd_reg & VTD_FRCD_F) &&
457 ((frcd_reg & VTD_FRCD_SID_MASK) == source_id)) {
458 return true;
460 addr += 16; /* 128-bit for each */
462 return false;
465 /* Log and report an DMAR (address translation) fault to software */
466 static void vtd_report_dmar_fault(IntelIOMMUState *s, uint16_t source_id,
467 hwaddr addr, VTDFaultReason fault,
468 bool is_write)
470 uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
472 assert(fault < VTD_FR_MAX);
474 if (fault == VTD_FR_RESERVED_ERR) {
475 /* This is not a normal fault reason case. Drop it. */
476 return;
479 trace_vtd_dmar_fault(source_id, fault, addr, is_write);
481 if (fsts_reg & VTD_FSTS_PFO) {
482 error_report_once("New fault is not recorded due to "
483 "Primary Fault Overflow");
484 return;
487 if (vtd_try_collapse_fault(s, source_id)) {
488 error_report_once("New fault is not recorded due to "
489 "compression of faults");
490 return;
493 if (vtd_is_frcd_set(s, s->next_frcd_reg)) {
494 error_report_once("Next Fault Recording Reg is used, "
495 "new fault is not recorded, set PFO field");
496 vtd_set_clear_mask_long(s, DMAR_FSTS_REG, 0, VTD_FSTS_PFO);
497 return;
500 vtd_record_frcd(s, s->next_frcd_reg, source_id, addr, fault, is_write);
502 if (fsts_reg & VTD_FSTS_PPF) {
503 error_report_once("There are pending faults already, "
504 "fault event is not generated");
505 vtd_set_frcd_and_update_ppf(s, s->next_frcd_reg);
506 s->next_frcd_reg++;
507 if (s->next_frcd_reg == DMAR_FRCD_REG_NR) {
508 s->next_frcd_reg = 0;
510 } else {
511 vtd_set_clear_mask_long(s, DMAR_FSTS_REG, VTD_FSTS_FRI_MASK,
512 VTD_FSTS_FRI(s->next_frcd_reg));
513 vtd_set_frcd_and_update_ppf(s, s->next_frcd_reg); /* Will set PPF */
514 s->next_frcd_reg++;
515 if (s->next_frcd_reg == DMAR_FRCD_REG_NR) {
516 s->next_frcd_reg = 0;
518 /* This case actually cause the PPF to be Set.
519 * So generate fault event (interrupt).
521 vtd_generate_fault_event(s, fsts_reg);
525 /* Handle Invalidation Queue Errors of queued invalidation interface error
526 * conditions.
528 static void vtd_handle_inv_queue_error(IntelIOMMUState *s)
530 uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
532 vtd_set_clear_mask_long(s, DMAR_FSTS_REG, 0, VTD_FSTS_IQE);
533 vtd_generate_fault_event(s, fsts_reg);
536 /* Set the IWC field and try to generate an invalidation completion interrupt */
537 static void vtd_generate_completion_event(IntelIOMMUState *s)
539 if (vtd_get_long_raw(s, DMAR_ICS_REG) & VTD_ICS_IWC) {
540 trace_vtd_inv_desc_wait_irq("One pending, skip current");
541 return;
543 vtd_set_clear_mask_long(s, DMAR_ICS_REG, 0, VTD_ICS_IWC);
544 vtd_set_clear_mask_long(s, DMAR_IECTL_REG, 0, VTD_IECTL_IP);
545 if (vtd_get_long_raw(s, DMAR_IECTL_REG) & VTD_IECTL_IM) {
546 trace_vtd_inv_desc_wait_irq("IM in IECTL_REG is set, "
547 "new event not generated");
548 return;
549 } else {
550 /* Generate the interrupt event */
551 trace_vtd_inv_desc_wait_irq("Generating complete event");
552 vtd_generate_interrupt(s, DMAR_IEADDR_REG, DMAR_IEDATA_REG);
553 vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
557 static inline bool vtd_root_entry_present(IntelIOMMUState *s,
558 VTDRootEntry *re,
559 uint8_t devfn)
561 if (s->root_scalable && devfn > UINT8_MAX / 2) {
562 return re->hi & VTD_ROOT_ENTRY_P;
565 return re->lo & VTD_ROOT_ENTRY_P;
568 static int vtd_get_root_entry(IntelIOMMUState *s, uint8_t index,
569 VTDRootEntry *re)
571 dma_addr_t addr;
573 addr = s->root + index * sizeof(*re);
574 if (dma_memory_read(&address_space_memory, addr, re, sizeof(*re))) {
575 re->lo = 0;
576 return -VTD_FR_ROOT_TABLE_INV;
578 re->lo = le64_to_cpu(re->lo);
579 re->hi = le64_to_cpu(re->hi);
580 return 0;
583 static inline bool vtd_ce_present(VTDContextEntry *context)
585 return context->lo & VTD_CONTEXT_ENTRY_P;
588 static int vtd_get_context_entry_from_root(IntelIOMMUState *s,
589 VTDRootEntry *re,
590 uint8_t index,
591 VTDContextEntry *ce)
593 dma_addr_t addr, ce_size;
595 /* we have checked that root entry is present */
596 ce_size = s->root_scalable ? VTD_CTX_ENTRY_SCALABLE_SIZE :
597 VTD_CTX_ENTRY_LEGACY_SIZE;
599 if (s->root_scalable && index > UINT8_MAX / 2) {
600 index = index & (~VTD_DEVFN_CHECK_MASK);
601 addr = re->hi & VTD_ROOT_ENTRY_CTP;
602 } else {
603 addr = re->lo & VTD_ROOT_ENTRY_CTP;
606 addr = addr + index * ce_size;
607 if (dma_memory_read(&address_space_memory, addr, ce, ce_size)) {
608 return -VTD_FR_CONTEXT_TABLE_INV;
611 ce->lo = le64_to_cpu(ce->lo);
612 ce->hi = le64_to_cpu(ce->hi);
613 if (ce_size == VTD_CTX_ENTRY_SCALABLE_SIZE) {
614 ce->val[2] = le64_to_cpu(ce->val[2]);
615 ce->val[3] = le64_to_cpu(ce->val[3]);
617 return 0;
620 static inline dma_addr_t vtd_ce_get_slpt_base(VTDContextEntry *ce)
622 return ce->lo & VTD_CONTEXT_ENTRY_SLPTPTR;
625 static inline uint64_t vtd_get_slpte_addr(uint64_t slpte, uint8_t aw)
627 return slpte & VTD_SL_PT_BASE_ADDR_MASK(aw);
630 /* Whether the pte indicates the address of the page frame */
631 static inline bool vtd_is_last_slpte(uint64_t slpte, uint32_t level)
633 return level == VTD_SL_PT_LEVEL || (slpte & VTD_SL_PT_PAGE_SIZE_MASK);
636 /* Get the content of a spte located in @base_addr[@index] */
637 static uint64_t vtd_get_slpte(dma_addr_t base_addr, uint32_t index)
639 uint64_t slpte;
641 assert(index < VTD_SL_PT_ENTRY_NR);
643 if (dma_memory_read(&address_space_memory,
644 base_addr + index * sizeof(slpte), &slpte,
645 sizeof(slpte))) {
646 slpte = (uint64_t)-1;
647 return slpte;
649 slpte = le64_to_cpu(slpte);
650 return slpte;
653 /* Given an iova and the level of paging structure, return the offset
654 * of current level.
656 static inline uint32_t vtd_iova_level_offset(uint64_t iova, uint32_t level)
658 return (iova >> vtd_slpt_level_shift(level)) &
659 ((1ULL << VTD_SL_LEVEL_BITS) - 1);
662 /* Check Capability Register to see if the @level of page-table is supported */
663 static inline bool vtd_is_level_supported(IntelIOMMUState *s, uint32_t level)
665 return VTD_CAP_SAGAW_MASK & s->cap &
666 (1ULL << (level - 2 + VTD_CAP_SAGAW_SHIFT));
669 /* Return true if check passed, otherwise false */
670 static inline bool vtd_pe_type_check(X86IOMMUState *x86_iommu,
671 VTDPASIDEntry *pe)
673 switch (VTD_PE_GET_TYPE(pe)) {
674 case VTD_SM_PASID_ENTRY_FLT:
675 case VTD_SM_PASID_ENTRY_SLT:
676 case VTD_SM_PASID_ENTRY_NESTED:
677 break;
678 case VTD_SM_PASID_ENTRY_PT:
679 if (!x86_iommu->pt_supported) {
680 return false;
682 break;
683 default:
684 /* Unknwon type */
685 return false;
687 return true;
690 static inline bool vtd_pdire_present(VTDPASIDDirEntry *pdire)
692 return pdire->val & 1;
696 * Caller of this function should check present bit if wants
697 * to use pdir entry for futher usage except for fpd bit check.
699 static int vtd_get_pdire_from_pdir_table(dma_addr_t pasid_dir_base,
700 uint32_t pasid,
701 VTDPASIDDirEntry *pdire)
703 uint32_t index;
704 dma_addr_t addr, entry_size;
706 index = VTD_PASID_DIR_INDEX(pasid);
707 entry_size = VTD_PASID_DIR_ENTRY_SIZE;
708 addr = pasid_dir_base + index * entry_size;
709 if (dma_memory_read(&address_space_memory, addr, pdire, entry_size)) {
710 return -VTD_FR_PASID_TABLE_INV;
713 return 0;
716 static inline bool vtd_pe_present(VTDPASIDEntry *pe)
718 return pe->val[0] & VTD_PASID_ENTRY_P;
721 static int vtd_get_pe_in_pasid_leaf_table(IntelIOMMUState *s,
722 uint32_t pasid,
723 dma_addr_t addr,
724 VTDPASIDEntry *pe)
726 uint32_t index;
727 dma_addr_t entry_size;
728 X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
730 index = VTD_PASID_TABLE_INDEX(pasid);
731 entry_size = VTD_PASID_ENTRY_SIZE;
732 addr = addr + index * entry_size;
733 if (dma_memory_read(&address_space_memory, addr, pe, entry_size)) {
734 return -VTD_FR_PASID_TABLE_INV;
737 /* Do translation type check */
738 if (!vtd_pe_type_check(x86_iommu, pe)) {
739 return -VTD_FR_PASID_TABLE_INV;
742 if (!vtd_is_level_supported(s, VTD_PE_GET_LEVEL(pe))) {
743 return -VTD_FR_PASID_TABLE_INV;
746 return 0;
750 * Caller of this function should check present bit if wants
751 * to use pasid entry for futher usage except for fpd bit check.
753 static int vtd_get_pe_from_pdire(IntelIOMMUState *s,
754 uint32_t pasid,
755 VTDPASIDDirEntry *pdire,
756 VTDPASIDEntry *pe)
758 dma_addr_t addr = pdire->val & VTD_PASID_TABLE_BASE_ADDR_MASK;
760 return vtd_get_pe_in_pasid_leaf_table(s, pasid, addr, pe);
764 * This function gets a pasid entry from a specified pasid
765 * table (includes dir and leaf table) with a specified pasid.
766 * Sanity check should be done to ensure return a present
767 * pasid entry to caller.
769 static int vtd_get_pe_from_pasid_table(IntelIOMMUState *s,
770 dma_addr_t pasid_dir_base,
771 uint32_t pasid,
772 VTDPASIDEntry *pe)
774 int ret;
775 VTDPASIDDirEntry pdire;
777 ret = vtd_get_pdire_from_pdir_table(pasid_dir_base,
778 pasid, &pdire);
779 if (ret) {
780 return ret;
783 if (!vtd_pdire_present(&pdire)) {
784 return -VTD_FR_PASID_TABLE_INV;
787 ret = vtd_get_pe_from_pdire(s, pasid, &pdire, pe);
788 if (ret) {
789 return ret;
792 if (!vtd_pe_present(pe)) {
793 return -VTD_FR_PASID_TABLE_INV;
796 return 0;
799 static int vtd_ce_get_rid2pasid_entry(IntelIOMMUState *s,
800 VTDContextEntry *ce,
801 VTDPASIDEntry *pe)
803 uint32_t pasid;
804 dma_addr_t pasid_dir_base;
805 int ret = 0;
807 pasid = VTD_CE_GET_RID2PASID(ce);
808 pasid_dir_base = VTD_CE_GET_PASID_DIR_TABLE(ce);
809 ret = vtd_get_pe_from_pasid_table(s, pasid_dir_base, pasid, pe);
811 return ret;
814 static int vtd_ce_get_pasid_fpd(IntelIOMMUState *s,
815 VTDContextEntry *ce,
816 bool *pe_fpd_set)
818 int ret;
819 uint32_t pasid;
820 dma_addr_t pasid_dir_base;
821 VTDPASIDDirEntry pdire;
822 VTDPASIDEntry pe;
824 pasid = VTD_CE_GET_RID2PASID(ce);
825 pasid_dir_base = VTD_CE_GET_PASID_DIR_TABLE(ce);
828 * No present bit check since fpd is meaningful even
829 * if the present bit is clear.
831 ret = vtd_get_pdire_from_pdir_table(pasid_dir_base, pasid, &pdire);
832 if (ret) {
833 return ret;
836 if (pdire.val & VTD_PASID_DIR_FPD) {
837 *pe_fpd_set = true;
838 return 0;
841 if (!vtd_pdire_present(&pdire)) {
842 return -VTD_FR_PASID_TABLE_INV;
846 * No present bit check since fpd is meaningful even
847 * if the present bit is clear.
849 ret = vtd_get_pe_from_pdire(s, pasid, &pdire, &pe);
850 if (ret) {
851 return ret;
854 if (pe.val[0] & VTD_PASID_ENTRY_FPD) {
855 *pe_fpd_set = true;
858 return 0;
861 /* Get the page-table level that hardware should use for the second-level
862 * page-table walk from the Address Width field of context-entry.
864 static inline uint32_t vtd_ce_get_level(VTDContextEntry *ce)
866 return 2 + (ce->hi & VTD_CONTEXT_ENTRY_AW);
869 static uint32_t vtd_get_iova_level(IntelIOMMUState *s,
870 VTDContextEntry *ce)
872 VTDPASIDEntry pe;
874 if (s->root_scalable) {
875 vtd_ce_get_rid2pasid_entry(s, ce, &pe);
876 return VTD_PE_GET_LEVEL(&pe);
879 return vtd_ce_get_level(ce);
882 static inline uint32_t vtd_ce_get_agaw(VTDContextEntry *ce)
884 return 30 + (ce->hi & VTD_CONTEXT_ENTRY_AW) * 9;
887 static uint32_t vtd_get_iova_agaw(IntelIOMMUState *s,
888 VTDContextEntry *ce)
890 VTDPASIDEntry pe;
892 if (s->root_scalable) {
893 vtd_ce_get_rid2pasid_entry(s, ce, &pe);
894 return 30 + ((pe.val[0] >> 2) & VTD_SM_PASID_ENTRY_AW) * 9;
897 return vtd_ce_get_agaw(ce);
900 static inline uint32_t vtd_ce_get_type(VTDContextEntry *ce)
902 return ce->lo & VTD_CONTEXT_ENTRY_TT;
905 /* Only for Legacy Mode. Return true if check passed, otherwise false */
906 static inline bool vtd_ce_type_check(X86IOMMUState *x86_iommu,
907 VTDContextEntry *ce)
909 switch (vtd_ce_get_type(ce)) {
910 case VTD_CONTEXT_TT_MULTI_LEVEL:
911 /* Always supported */
912 break;
913 case VTD_CONTEXT_TT_DEV_IOTLB:
914 if (!x86_iommu->dt_supported) {
915 error_report_once("%s: DT specified but not supported", __func__);
916 return false;
918 break;
919 case VTD_CONTEXT_TT_PASS_THROUGH:
920 if (!x86_iommu->pt_supported) {
921 error_report_once("%s: PT specified but not supported", __func__);
922 return false;
924 break;
925 default:
926 /* Unknown type */
927 error_report_once("%s: unknown ce type: %"PRIu32, __func__,
928 vtd_ce_get_type(ce));
929 return false;
931 return true;
934 static inline uint64_t vtd_iova_limit(IntelIOMMUState *s,
935 VTDContextEntry *ce, uint8_t aw)
937 uint32_t ce_agaw = vtd_get_iova_agaw(s, ce);
938 return 1ULL << MIN(ce_agaw, aw);
941 /* Return true if IOVA passes range check, otherwise false. */
942 static inline bool vtd_iova_range_check(IntelIOMMUState *s,
943 uint64_t iova, VTDContextEntry *ce,
944 uint8_t aw)
947 * Check if @iova is above 2^X-1, where X is the minimum of MGAW
948 * in CAP_REG and AW in context-entry.
950 return !(iova & ~(vtd_iova_limit(s, ce, aw) - 1));
953 static dma_addr_t vtd_get_iova_pgtbl_base(IntelIOMMUState *s,
954 VTDContextEntry *ce)
956 VTDPASIDEntry pe;
958 if (s->root_scalable) {
959 vtd_ce_get_rid2pasid_entry(s, ce, &pe);
960 return pe.val[0] & VTD_SM_PASID_ENTRY_SLPTPTR;
963 return vtd_ce_get_slpt_base(ce);
967 * Rsvd field masks for spte:
968 * vtd_spte_rsvd 4k pages
969 * vtd_spte_rsvd_large large pages
971 static uint64_t vtd_spte_rsvd[5];
972 static uint64_t vtd_spte_rsvd_large[5];
974 static bool vtd_slpte_nonzero_rsvd(uint64_t slpte, uint32_t level)
976 uint64_t rsvd_mask = vtd_spte_rsvd[level];
978 if ((level == VTD_SL_PD_LEVEL || level == VTD_SL_PDP_LEVEL) &&
979 (slpte & VTD_SL_PT_PAGE_SIZE_MASK)) {
980 /* large page */
981 rsvd_mask = vtd_spte_rsvd_large[level];
984 return slpte & rsvd_mask;
987 /* Find the VTD address space associated with a given bus number */
988 static VTDBus *vtd_find_as_from_bus_num(IntelIOMMUState *s, uint8_t bus_num)
990 VTDBus *vtd_bus = s->vtd_as_by_bus_num[bus_num];
991 GHashTableIter iter;
993 if (vtd_bus) {
994 return vtd_bus;
998 * Iterate over the registered buses to find the one which
999 * currently holds this bus number and update the bus_num
1000 * lookup table.
1002 g_hash_table_iter_init(&iter, s->vtd_as_by_busptr);
1003 while (g_hash_table_iter_next(&iter, NULL, (void **)&vtd_bus)) {
1004 if (pci_bus_num(vtd_bus->bus) == bus_num) {
1005 s->vtd_as_by_bus_num[bus_num] = vtd_bus;
1006 return vtd_bus;
1010 return NULL;
1013 /* Given the @iova, get relevant @slptep. @slpte_level will be the last level
1014 * of the translation, can be used for deciding the size of large page.
1016 static int vtd_iova_to_slpte(IntelIOMMUState *s, VTDContextEntry *ce,
1017 uint64_t iova, bool is_write,
1018 uint64_t *slptep, uint32_t *slpte_level,
1019 bool *reads, bool *writes, uint8_t aw_bits)
1021 dma_addr_t addr = vtd_get_iova_pgtbl_base(s, ce);
1022 uint32_t level = vtd_get_iova_level(s, ce);
1023 uint32_t offset;
1024 uint64_t slpte;
1025 uint64_t access_right_check;
1027 if (!vtd_iova_range_check(s, iova, ce, aw_bits)) {
1028 error_report_once("%s: detected IOVA overflow (iova=0x%" PRIx64 ")",
1029 __func__, iova);
1030 return -VTD_FR_ADDR_BEYOND_MGAW;
1033 /* FIXME: what is the Atomics request here? */
1034 access_right_check = is_write ? VTD_SL_W : VTD_SL_R;
1036 while (true) {
1037 offset = vtd_iova_level_offset(iova, level);
1038 slpte = vtd_get_slpte(addr, offset);
1040 if (slpte == (uint64_t)-1) {
1041 error_report_once("%s: detected read error on DMAR slpte "
1042 "(iova=0x%" PRIx64 ")", __func__, iova);
1043 if (level == vtd_get_iova_level(s, ce)) {
1044 /* Invalid programming of context-entry */
1045 return -VTD_FR_CONTEXT_ENTRY_INV;
1046 } else {
1047 return -VTD_FR_PAGING_ENTRY_INV;
1050 *reads = (*reads) && (slpte & VTD_SL_R);
1051 *writes = (*writes) && (slpte & VTD_SL_W);
1052 if (!(slpte & access_right_check)) {
1053 error_report_once("%s: detected slpte permission error "
1054 "(iova=0x%" PRIx64 ", level=0x%" PRIx32 ", "
1055 "slpte=0x%" PRIx64 ", write=%d)", __func__,
1056 iova, level, slpte, is_write);
1057 return is_write ? -VTD_FR_WRITE : -VTD_FR_READ;
1059 if (vtd_slpte_nonzero_rsvd(slpte, level)) {
1060 error_report_once("%s: detected splte reserve non-zero "
1061 "iova=0x%" PRIx64 ", level=0x%" PRIx32
1062 "slpte=0x%" PRIx64 ")", __func__, iova,
1063 level, slpte);
1064 return -VTD_FR_PAGING_ENTRY_RSVD;
1067 if (vtd_is_last_slpte(slpte, level)) {
1068 *slptep = slpte;
1069 *slpte_level = level;
1070 return 0;
1072 addr = vtd_get_slpte_addr(slpte, aw_bits);
1073 level--;
1077 typedef int (*vtd_page_walk_hook)(IOMMUTLBEvent *event, void *private);
1080 * Constant information used during page walking
1082 * @hook_fn: hook func to be called when detected page
1083 * @private: private data to be passed into hook func
1084 * @notify_unmap: whether we should notify invalid entries
1085 * @as: VT-d address space of the device
1086 * @aw: maximum address width
1087 * @domain: domain ID of the page walk
1089 typedef struct {
1090 VTDAddressSpace *as;
1091 vtd_page_walk_hook hook_fn;
1092 void *private;
1093 bool notify_unmap;
1094 uint8_t aw;
1095 uint16_t domain_id;
1096 } vtd_page_walk_info;
1098 static int vtd_page_walk_one(IOMMUTLBEvent *event, vtd_page_walk_info *info)
1100 VTDAddressSpace *as = info->as;
1101 vtd_page_walk_hook hook_fn = info->hook_fn;
1102 void *private = info->private;
1103 IOMMUTLBEntry *entry = &event->entry;
1104 DMAMap target = {
1105 .iova = entry->iova,
1106 .size = entry->addr_mask,
1107 .translated_addr = entry->translated_addr,
1108 .perm = entry->perm,
1110 DMAMap *mapped = iova_tree_find(as->iova_tree, &target);
1112 if (event->type == IOMMU_NOTIFIER_UNMAP && !info->notify_unmap) {
1113 trace_vtd_page_walk_one_skip_unmap(entry->iova, entry->addr_mask);
1114 return 0;
1117 assert(hook_fn);
1119 /* Update local IOVA mapped ranges */
1120 if (event->type == IOMMU_NOTIFIER_MAP) {
1121 if (mapped) {
1122 /* If it's exactly the same translation, skip */
1123 if (!memcmp(mapped, &target, sizeof(target))) {
1124 trace_vtd_page_walk_one_skip_map(entry->iova, entry->addr_mask,
1125 entry->translated_addr);
1126 return 0;
1127 } else {
1129 * Translation changed. Normally this should not
1130 * happen, but it can happen when with buggy guest
1131 * OSes. Note that there will be a small window that
1132 * we don't have map at all. But that's the best
1133 * effort we can do. The ideal way to emulate this is
1134 * atomically modify the PTE to follow what has
1135 * changed, but we can't. One example is that vfio
1136 * driver only has VFIO_IOMMU_[UN]MAP_DMA but no
1137 * interface to modify a mapping (meanwhile it seems
1138 * meaningless to even provide one). Anyway, let's
1139 * mark this as a TODO in case one day we'll have
1140 * a better solution.
1142 IOMMUAccessFlags cache_perm = entry->perm;
1143 int ret;
1145 /* Emulate an UNMAP */
1146 event->type = IOMMU_NOTIFIER_UNMAP;
1147 entry->perm = IOMMU_NONE;
1148 trace_vtd_page_walk_one(info->domain_id,
1149 entry->iova,
1150 entry->translated_addr,
1151 entry->addr_mask,
1152 entry->perm);
1153 ret = hook_fn(event, private);
1154 if (ret) {
1155 return ret;
1157 /* Drop any existing mapping */
1158 iova_tree_remove(as->iova_tree, &target);
1159 /* Recover the correct type */
1160 event->type = IOMMU_NOTIFIER_MAP;
1161 entry->perm = cache_perm;
1164 iova_tree_insert(as->iova_tree, &target);
1165 } else {
1166 if (!mapped) {
1167 /* Skip since we didn't map this range at all */
1168 trace_vtd_page_walk_one_skip_unmap(entry->iova, entry->addr_mask);
1169 return 0;
1171 iova_tree_remove(as->iova_tree, &target);
1174 trace_vtd_page_walk_one(info->domain_id, entry->iova,
1175 entry->translated_addr, entry->addr_mask,
1176 entry->perm);
1177 return hook_fn(event, private);
1181 * vtd_page_walk_level - walk over specific level for IOVA range
1183 * @addr: base GPA addr to start the walk
1184 * @start: IOVA range start address
1185 * @end: IOVA range end address (start <= addr < end)
1186 * @read: whether parent level has read permission
1187 * @write: whether parent level has write permission
1188 * @info: constant information for the page walk
1190 static int vtd_page_walk_level(dma_addr_t addr, uint64_t start,
1191 uint64_t end, uint32_t level, bool read,
1192 bool write, vtd_page_walk_info *info)
1194 bool read_cur, write_cur, entry_valid;
1195 uint32_t offset;
1196 uint64_t slpte;
1197 uint64_t subpage_size, subpage_mask;
1198 IOMMUTLBEvent event;
1199 uint64_t iova = start;
1200 uint64_t iova_next;
1201 int ret = 0;
1203 trace_vtd_page_walk_level(addr, level, start, end);
1205 subpage_size = 1ULL << vtd_slpt_level_shift(level);
1206 subpage_mask = vtd_slpt_level_page_mask(level);
1208 while (iova < end) {
1209 iova_next = (iova & subpage_mask) + subpage_size;
1211 offset = vtd_iova_level_offset(iova, level);
1212 slpte = vtd_get_slpte(addr, offset);
1214 if (slpte == (uint64_t)-1) {
1215 trace_vtd_page_walk_skip_read(iova, iova_next);
1216 goto next;
1219 if (vtd_slpte_nonzero_rsvd(slpte, level)) {
1220 trace_vtd_page_walk_skip_reserve(iova, iova_next);
1221 goto next;
1224 /* Permissions are stacked with parents' */
1225 read_cur = read && (slpte & VTD_SL_R);
1226 write_cur = write && (slpte & VTD_SL_W);
1229 * As long as we have either read/write permission, this is a
1230 * valid entry. The rule works for both page entries and page
1231 * table entries.
1233 entry_valid = read_cur | write_cur;
1235 if (!vtd_is_last_slpte(slpte, level) && entry_valid) {
1237 * This is a valid PDE (or even bigger than PDE). We need
1238 * to walk one further level.
1240 ret = vtd_page_walk_level(vtd_get_slpte_addr(slpte, info->aw),
1241 iova, MIN(iova_next, end), level - 1,
1242 read_cur, write_cur, info);
1243 } else {
1245 * This means we are either:
1247 * (1) the real page entry (either 4K page, or huge page)
1248 * (2) the whole range is invalid
1250 * In either case, we send an IOTLB notification down.
1252 event.entry.target_as = &address_space_memory;
1253 event.entry.iova = iova & subpage_mask;
1254 event.entry.perm = IOMMU_ACCESS_FLAG(read_cur, write_cur);
1255 event.entry.addr_mask = ~subpage_mask;
1256 /* NOTE: this is only meaningful if entry_valid == true */
1257 event.entry.translated_addr = vtd_get_slpte_addr(slpte, info->aw);
1258 event.type = event.entry.perm ? IOMMU_NOTIFIER_MAP :
1259 IOMMU_NOTIFIER_UNMAP;
1260 ret = vtd_page_walk_one(&event, info);
1263 if (ret < 0) {
1264 return ret;
1267 next:
1268 iova = iova_next;
1271 return 0;
1275 * vtd_page_walk - walk specific IOVA range, and call the hook
1277 * @s: intel iommu state
1278 * @ce: context entry to walk upon
1279 * @start: IOVA address to start the walk
1280 * @end: IOVA range end address (start <= addr < end)
1281 * @info: page walking information struct
1283 static int vtd_page_walk(IntelIOMMUState *s, VTDContextEntry *ce,
1284 uint64_t start, uint64_t end,
1285 vtd_page_walk_info *info)
1287 dma_addr_t addr = vtd_get_iova_pgtbl_base(s, ce);
1288 uint32_t level = vtd_get_iova_level(s, ce);
1290 if (!vtd_iova_range_check(s, start, ce, info->aw)) {
1291 return -VTD_FR_ADDR_BEYOND_MGAW;
1294 if (!vtd_iova_range_check(s, end, ce, info->aw)) {
1295 /* Fix end so that it reaches the maximum */
1296 end = vtd_iova_limit(s, ce, info->aw);
1299 return vtd_page_walk_level(addr, start, end, level, true, true, info);
1302 static int vtd_root_entry_rsvd_bits_check(IntelIOMMUState *s,
1303 VTDRootEntry *re)
1305 /* Legacy Mode reserved bits check */
1306 if (!s->root_scalable &&
1307 (re->hi || (re->lo & VTD_ROOT_ENTRY_RSVD(s->aw_bits))))
1308 goto rsvd_err;
1310 /* Scalable Mode reserved bits check */
1311 if (s->root_scalable &&
1312 ((re->lo & VTD_ROOT_ENTRY_RSVD(s->aw_bits)) ||
1313 (re->hi & VTD_ROOT_ENTRY_RSVD(s->aw_bits))))
1314 goto rsvd_err;
1316 return 0;
1318 rsvd_err:
1319 error_report_once("%s: invalid root entry: hi=0x%"PRIx64
1320 ", lo=0x%"PRIx64,
1321 __func__, re->hi, re->lo);
1322 return -VTD_FR_ROOT_ENTRY_RSVD;
1325 static inline int vtd_context_entry_rsvd_bits_check(IntelIOMMUState *s,
1326 VTDContextEntry *ce)
1328 if (!s->root_scalable &&
1329 (ce->hi & VTD_CONTEXT_ENTRY_RSVD_HI ||
1330 ce->lo & VTD_CONTEXT_ENTRY_RSVD_LO(s->aw_bits))) {
1331 error_report_once("%s: invalid context entry: hi=%"PRIx64
1332 ", lo=%"PRIx64" (reserved nonzero)",
1333 __func__, ce->hi, ce->lo);
1334 return -VTD_FR_CONTEXT_ENTRY_RSVD;
1337 if (s->root_scalable &&
1338 (ce->val[0] & VTD_SM_CONTEXT_ENTRY_RSVD_VAL0(s->aw_bits) ||
1339 ce->val[1] & VTD_SM_CONTEXT_ENTRY_RSVD_VAL1 ||
1340 ce->val[2] ||
1341 ce->val[3])) {
1342 error_report_once("%s: invalid context entry: val[3]=%"PRIx64
1343 ", val[2]=%"PRIx64
1344 ", val[1]=%"PRIx64
1345 ", val[0]=%"PRIx64" (reserved nonzero)",
1346 __func__, ce->val[3], ce->val[2],
1347 ce->val[1], ce->val[0]);
1348 return -VTD_FR_CONTEXT_ENTRY_RSVD;
1351 return 0;
1354 static int vtd_ce_rid2pasid_check(IntelIOMMUState *s,
1355 VTDContextEntry *ce)
1357 VTDPASIDEntry pe;
1360 * Make sure in Scalable Mode, a present context entry
1361 * has valid rid2pasid setting, which includes valid
1362 * rid2pasid field and corresponding pasid entry setting
1364 return vtd_ce_get_rid2pasid_entry(s, ce, &pe);
1367 /* Map a device to its corresponding domain (context-entry) */
1368 static int vtd_dev_to_context_entry(IntelIOMMUState *s, uint8_t bus_num,
1369 uint8_t devfn, VTDContextEntry *ce)
1371 VTDRootEntry re;
1372 int ret_fr;
1373 X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
1375 ret_fr = vtd_get_root_entry(s, bus_num, &re);
1376 if (ret_fr) {
1377 return ret_fr;
1380 if (!vtd_root_entry_present(s, &re, devfn)) {
1381 /* Not error - it's okay we don't have root entry. */
1382 trace_vtd_re_not_present(bus_num);
1383 return -VTD_FR_ROOT_ENTRY_P;
1386 ret_fr = vtd_root_entry_rsvd_bits_check(s, &re);
1387 if (ret_fr) {
1388 return ret_fr;
1391 ret_fr = vtd_get_context_entry_from_root(s, &re, devfn, ce);
1392 if (ret_fr) {
1393 return ret_fr;
1396 if (!vtd_ce_present(ce)) {
1397 /* Not error - it's okay we don't have context entry. */
1398 trace_vtd_ce_not_present(bus_num, devfn);
1399 return -VTD_FR_CONTEXT_ENTRY_P;
1402 ret_fr = vtd_context_entry_rsvd_bits_check(s, ce);
1403 if (ret_fr) {
1404 return ret_fr;
1407 /* Check if the programming of context-entry is valid */
1408 if (!s->root_scalable &&
1409 !vtd_is_level_supported(s, vtd_ce_get_level(ce))) {
1410 error_report_once("%s: invalid context entry: hi=%"PRIx64
1411 ", lo=%"PRIx64" (level %d not supported)",
1412 __func__, ce->hi, ce->lo,
1413 vtd_ce_get_level(ce));
1414 return -VTD_FR_CONTEXT_ENTRY_INV;
1417 if (!s->root_scalable) {
1418 /* Do translation type check */
1419 if (!vtd_ce_type_check(x86_iommu, ce)) {
1420 /* Errors dumped in vtd_ce_type_check() */
1421 return -VTD_FR_CONTEXT_ENTRY_INV;
1423 } else {
1425 * Check if the programming of context-entry.rid2pasid
1426 * and corresponding pasid setting is valid, and thus
1427 * avoids to check pasid entry fetching result in future
1428 * helper function calling.
1430 ret_fr = vtd_ce_rid2pasid_check(s, ce);
1431 if (ret_fr) {
1432 return ret_fr;
1436 return 0;
1439 static int vtd_sync_shadow_page_hook(IOMMUTLBEvent *event,
1440 void *private)
1442 memory_region_notify_iommu(private, 0, *event);
1443 return 0;
1446 static uint16_t vtd_get_domain_id(IntelIOMMUState *s,
1447 VTDContextEntry *ce)
1449 VTDPASIDEntry pe;
1451 if (s->root_scalable) {
1452 vtd_ce_get_rid2pasid_entry(s, ce, &pe);
1453 return VTD_SM_PASID_ENTRY_DID(pe.val[1]);
1456 return VTD_CONTEXT_ENTRY_DID(ce->hi);
1459 static int vtd_sync_shadow_page_table_range(VTDAddressSpace *vtd_as,
1460 VTDContextEntry *ce,
1461 hwaddr addr, hwaddr size)
1463 IntelIOMMUState *s = vtd_as->iommu_state;
1464 vtd_page_walk_info info = {
1465 .hook_fn = vtd_sync_shadow_page_hook,
1466 .private = (void *)&vtd_as->iommu,
1467 .notify_unmap = true,
1468 .aw = s->aw_bits,
1469 .as = vtd_as,
1470 .domain_id = vtd_get_domain_id(s, ce),
1473 return vtd_page_walk(s, ce, addr, addr + size, &info);
1476 static int vtd_sync_shadow_page_table(VTDAddressSpace *vtd_as)
1478 int ret;
1479 VTDContextEntry ce;
1480 IOMMUNotifier *n;
1482 if (!(vtd_as->iommu.iommu_notify_flags & IOMMU_NOTIFIER_IOTLB_EVENTS)) {
1483 return 0;
1486 ret = vtd_dev_to_context_entry(vtd_as->iommu_state,
1487 pci_bus_num(vtd_as->bus),
1488 vtd_as->devfn, &ce);
1489 if (ret) {
1490 if (ret == -VTD_FR_CONTEXT_ENTRY_P) {
1492 * It's a valid scenario to have a context entry that is
1493 * not present. For example, when a device is removed
1494 * from an existing domain then the context entry will be
1495 * zeroed by the guest before it was put into another
1496 * domain. When this happens, instead of synchronizing
1497 * the shadow pages we should invalidate all existing
1498 * mappings and notify the backends.
1500 IOMMU_NOTIFIER_FOREACH(n, &vtd_as->iommu) {
1501 vtd_address_space_unmap(vtd_as, n);
1503 ret = 0;
1505 return ret;
1508 return vtd_sync_shadow_page_table_range(vtd_as, &ce, 0, UINT64_MAX);
1512 * Check if specific device is configed to bypass address
1513 * translation for DMA requests. In Scalable Mode, bypass
1514 * 1st-level translation or 2nd-level translation, it depends
1515 * on PGTT setting.
1517 static bool vtd_dev_pt_enabled(VTDAddressSpace *as)
1519 IntelIOMMUState *s;
1520 VTDContextEntry ce;
1521 VTDPASIDEntry pe;
1522 int ret;
1524 assert(as);
1526 s = as->iommu_state;
1527 ret = vtd_dev_to_context_entry(s, pci_bus_num(as->bus),
1528 as->devfn, &ce);
1529 if (ret) {
1531 * Possibly failed to parse the context entry for some reason
1532 * (e.g., during init, or any guest configuration errors on
1533 * context entries). We should assume PT not enabled for
1534 * safety.
1536 return false;
1539 if (s->root_scalable) {
1540 ret = vtd_ce_get_rid2pasid_entry(s, &ce, &pe);
1541 if (ret) {
1542 error_report_once("%s: vtd_ce_get_rid2pasid_entry error: %"PRId32,
1543 __func__, ret);
1544 return false;
1546 return (VTD_PE_GET_TYPE(&pe) == VTD_SM_PASID_ENTRY_PT);
1549 return (vtd_ce_get_type(&ce) == VTD_CONTEXT_TT_PASS_THROUGH);
1552 /* Return whether the device is using IOMMU translation. */
1553 static bool vtd_switch_address_space(VTDAddressSpace *as)
1555 bool use_iommu;
1556 /* Whether we need to take the BQL on our own */
1557 bool take_bql = !qemu_mutex_iothread_locked();
1559 assert(as);
1561 use_iommu = as->iommu_state->dmar_enabled && !vtd_dev_pt_enabled(as);
1563 trace_vtd_switch_address_space(pci_bus_num(as->bus),
1564 VTD_PCI_SLOT(as->devfn),
1565 VTD_PCI_FUNC(as->devfn),
1566 use_iommu);
1569 * It's possible that we reach here without BQL, e.g., when called
1570 * from vtd_pt_enable_fast_path(). However the memory APIs need
1571 * it. We'd better make sure we have had it already, or, take it.
1573 if (take_bql) {
1574 qemu_mutex_lock_iothread();
1577 /* Turn off first then on the other */
1578 if (use_iommu) {
1579 memory_region_set_enabled(&as->nodmar, false);
1580 memory_region_set_enabled(MEMORY_REGION(&as->iommu), true);
1581 } else {
1582 memory_region_set_enabled(MEMORY_REGION(&as->iommu), false);
1583 memory_region_set_enabled(&as->nodmar, true);
1586 if (take_bql) {
1587 qemu_mutex_unlock_iothread();
1590 return use_iommu;
1593 static void vtd_switch_address_space_all(IntelIOMMUState *s)
1595 GHashTableIter iter;
1596 VTDBus *vtd_bus;
1597 int i;
1599 g_hash_table_iter_init(&iter, s->vtd_as_by_busptr);
1600 while (g_hash_table_iter_next(&iter, NULL, (void **)&vtd_bus)) {
1601 for (i = 0; i < PCI_DEVFN_MAX; i++) {
1602 if (!vtd_bus->dev_as[i]) {
1603 continue;
1605 vtd_switch_address_space(vtd_bus->dev_as[i]);
1610 static inline uint16_t vtd_make_source_id(uint8_t bus_num, uint8_t devfn)
1612 return ((bus_num & 0xffUL) << 8) | (devfn & 0xffUL);
1615 static const bool vtd_qualified_faults[] = {
1616 [VTD_FR_RESERVED] = false,
1617 [VTD_FR_ROOT_ENTRY_P] = false,
1618 [VTD_FR_CONTEXT_ENTRY_P] = true,
1619 [VTD_FR_CONTEXT_ENTRY_INV] = true,
1620 [VTD_FR_ADDR_BEYOND_MGAW] = true,
1621 [VTD_FR_WRITE] = true,
1622 [VTD_FR_READ] = true,
1623 [VTD_FR_PAGING_ENTRY_INV] = true,
1624 [VTD_FR_ROOT_TABLE_INV] = false,
1625 [VTD_FR_CONTEXT_TABLE_INV] = false,
1626 [VTD_FR_ROOT_ENTRY_RSVD] = false,
1627 [VTD_FR_PAGING_ENTRY_RSVD] = true,
1628 [VTD_FR_CONTEXT_ENTRY_TT] = true,
1629 [VTD_FR_PASID_TABLE_INV] = false,
1630 [VTD_FR_RESERVED_ERR] = false,
1631 [VTD_FR_MAX] = false,
1634 /* To see if a fault condition is "qualified", which is reported to software
1635 * only if the FPD field in the context-entry used to process the faulting
1636 * request is 0.
1638 static inline bool vtd_is_qualified_fault(VTDFaultReason fault)
1640 return vtd_qualified_faults[fault];
1643 static inline bool vtd_is_interrupt_addr(hwaddr addr)
1645 return VTD_INTERRUPT_ADDR_FIRST <= addr && addr <= VTD_INTERRUPT_ADDR_LAST;
1648 static void vtd_pt_enable_fast_path(IntelIOMMUState *s, uint16_t source_id)
1650 VTDBus *vtd_bus;
1651 VTDAddressSpace *vtd_as;
1652 bool success = false;
1654 vtd_bus = vtd_find_as_from_bus_num(s, VTD_SID_TO_BUS(source_id));
1655 if (!vtd_bus) {
1656 goto out;
1659 vtd_as = vtd_bus->dev_as[VTD_SID_TO_DEVFN(source_id)];
1660 if (!vtd_as) {
1661 goto out;
1664 if (vtd_switch_address_space(vtd_as) == false) {
1665 /* We switched off IOMMU region successfully. */
1666 success = true;
1669 out:
1670 trace_vtd_pt_enable_fast_path(source_id, success);
1673 /* Map dev to context-entry then do a paging-structures walk to do a iommu
1674 * translation.
1676 * Called from RCU critical section.
1678 * @bus_num: The bus number
1679 * @devfn: The devfn, which is the combined of device and function number
1680 * @is_write: The access is a write operation
1681 * @entry: IOMMUTLBEntry that contain the addr to be translated and result
1683 * Returns true if translation is successful, otherwise false.
1685 static bool vtd_do_iommu_translate(VTDAddressSpace *vtd_as, PCIBus *bus,
1686 uint8_t devfn, hwaddr addr, bool is_write,
1687 IOMMUTLBEntry *entry)
1689 IntelIOMMUState *s = vtd_as->iommu_state;
1690 VTDContextEntry ce;
1691 uint8_t bus_num = pci_bus_num(bus);
1692 VTDContextCacheEntry *cc_entry;
1693 uint64_t slpte, page_mask;
1694 uint32_t level;
1695 uint16_t source_id = vtd_make_source_id(bus_num, devfn);
1696 int ret_fr;
1697 bool is_fpd_set = false;
1698 bool reads = true;
1699 bool writes = true;
1700 uint8_t access_flags;
1701 VTDIOTLBEntry *iotlb_entry;
1704 * We have standalone memory region for interrupt addresses, we
1705 * should never receive translation requests in this region.
1707 assert(!vtd_is_interrupt_addr(addr));
1709 vtd_iommu_lock(s);
1711 cc_entry = &vtd_as->context_cache_entry;
1713 /* Try to fetch slpte form IOTLB */
1714 iotlb_entry = vtd_lookup_iotlb(s, source_id, addr);
1715 if (iotlb_entry) {
1716 trace_vtd_iotlb_page_hit(source_id, addr, iotlb_entry->slpte,
1717 iotlb_entry->domain_id);
1718 slpte = iotlb_entry->slpte;
1719 access_flags = iotlb_entry->access_flags;
1720 page_mask = iotlb_entry->mask;
1721 goto out;
1724 /* Try to fetch context-entry from cache first */
1725 if (cc_entry->context_cache_gen == s->context_cache_gen) {
1726 trace_vtd_iotlb_cc_hit(bus_num, devfn, cc_entry->context_entry.hi,
1727 cc_entry->context_entry.lo,
1728 cc_entry->context_cache_gen);
1729 ce = cc_entry->context_entry;
1730 is_fpd_set = ce.lo & VTD_CONTEXT_ENTRY_FPD;
1731 if (!is_fpd_set && s->root_scalable) {
1732 ret_fr = vtd_ce_get_pasid_fpd(s, &ce, &is_fpd_set);
1733 VTD_PE_GET_FPD_ERR(ret_fr, is_fpd_set, s, source_id, addr, is_write);
1735 } else {
1736 ret_fr = vtd_dev_to_context_entry(s, bus_num, devfn, &ce);
1737 is_fpd_set = ce.lo & VTD_CONTEXT_ENTRY_FPD;
1738 if (!ret_fr && !is_fpd_set && s->root_scalable) {
1739 ret_fr = vtd_ce_get_pasid_fpd(s, &ce, &is_fpd_set);
1741 VTD_PE_GET_FPD_ERR(ret_fr, is_fpd_set, s, source_id, addr, is_write);
1742 /* Update context-cache */
1743 trace_vtd_iotlb_cc_update(bus_num, devfn, ce.hi, ce.lo,
1744 cc_entry->context_cache_gen,
1745 s->context_cache_gen);
1746 cc_entry->context_entry = ce;
1747 cc_entry->context_cache_gen = s->context_cache_gen;
1751 * We don't need to translate for pass-through context entries.
1752 * Also, let's ignore IOTLB caching as well for PT devices.
1754 if (vtd_ce_get_type(&ce) == VTD_CONTEXT_TT_PASS_THROUGH) {
1755 entry->iova = addr & VTD_PAGE_MASK_4K;
1756 entry->translated_addr = entry->iova;
1757 entry->addr_mask = ~VTD_PAGE_MASK_4K;
1758 entry->perm = IOMMU_RW;
1759 trace_vtd_translate_pt(source_id, entry->iova);
1762 * When this happens, it means firstly caching-mode is not
1763 * enabled, and this is the first passthrough translation for
1764 * the device. Let's enable the fast path for passthrough.
1766 * When passthrough is disabled again for the device, we can
1767 * capture it via the context entry invalidation, then the
1768 * IOMMU region can be swapped back.
1770 vtd_pt_enable_fast_path(s, source_id);
1771 vtd_iommu_unlock(s);
1772 return true;
1775 ret_fr = vtd_iova_to_slpte(s, &ce, addr, is_write, &slpte, &level,
1776 &reads, &writes, s->aw_bits);
1777 VTD_PE_GET_FPD_ERR(ret_fr, is_fpd_set, s, source_id, addr, is_write);
1779 page_mask = vtd_slpt_level_page_mask(level);
1780 access_flags = IOMMU_ACCESS_FLAG(reads, writes);
1781 vtd_update_iotlb(s, source_id, vtd_get_domain_id(s, &ce), addr, slpte,
1782 access_flags, level);
1783 out:
1784 vtd_iommu_unlock(s);
1785 entry->iova = addr & page_mask;
1786 entry->translated_addr = vtd_get_slpte_addr(slpte, s->aw_bits) & page_mask;
1787 entry->addr_mask = ~page_mask;
1788 entry->perm = access_flags;
1789 return true;
1791 error:
1792 vtd_iommu_unlock(s);
1793 entry->iova = 0;
1794 entry->translated_addr = 0;
1795 entry->addr_mask = 0;
1796 entry->perm = IOMMU_NONE;
1797 return false;
1800 static void vtd_root_table_setup(IntelIOMMUState *s)
1802 s->root = vtd_get_quad_raw(s, DMAR_RTADDR_REG);
1803 s->root &= VTD_RTADDR_ADDR_MASK(s->aw_bits);
1805 vtd_update_scalable_state(s);
1807 trace_vtd_reg_dmar_root(s->root, s->root_scalable);
1810 static void vtd_iec_notify_all(IntelIOMMUState *s, bool global,
1811 uint32_t index, uint32_t mask)
1813 x86_iommu_iec_notify_all(X86_IOMMU_DEVICE(s), global, index, mask);
1816 static void vtd_interrupt_remap_table_setup(IntelIOMMUState *s)
1818 uint64_t value = 0;
1819 value = vtd_get_quad_raw(s, DMAR_IRTA_REG);
1820 s->intr_size = 1UL << ((value & VTD_IRTA_SIZE_MASK) + 1);
1821 s->intr_root = value & VTD_IRTA_ADDR_MASK(s->aw_bits);
1822 s->intr_eime = value & VTD_IRTA_EIME;
1824 /* Notify global invalidation */
1825 vtd_iec_notify_all(s, true, 0, 0);
1827 trace_vtd_reg_ir_root(s->intr_root, s->intr_size);
1830 static void vtd_iommu_replay_all(IntelIOMMUState *s)
1832 VTDAddressSpace *vtd_as;
1834 QLIST_FOREACH(vtd_as, &s->vtd_as_with_notifiers, next) {
1835 vtd_sync_shadow_page_table(vtd_as);
1839 static void vtd_context_global_invalidate(IntelIOMMUState *s)
1841 trace_vtd_inv_desc_cc_global();
1842 /* Protects context cache */
1843 vtd_iommu_lock(s);
1844 s->context_cache_gen++;
1845 if (s->context_cache_gen == VTD_CONTEXT_CACHE_GEN_MAX) {
1846 vtd_reset_context_cache_locked(s);
1848 vtd_iommu_unlock(s);
1849 vtd_address_space_refresh_all(s);
1851 * From VT-d spec 6.5.2.1, a global context entry invalidation
1852 * should be followed by a IOTLB global invalidation, so we should
1853 * be safe even without this. Hoewever, let's replay the region as
1854 * well to be safer, and go back here when we need finer tunes for
1855 * VT-d emulation codes.
1857 vtd_iommu_replay_all(s);
1860 /* Do a context-cache device-selective invalidation.
1861 * @func_mask: FM field after shifting
1863 static void vtd_context_device_invalidate(IntelIOMMUState *s,
1864 uint16_t source_id,
1865 uint16_t func_mask)
1867 uint16_t mask;
1868 VTDBus *vtd_bus;
1869 VTDAddressSpace *vtd_as;
1870 uint8_t bus_n, devfn;
1871 uint16_t devfn_it;
1873 trace_vtd_inv_desc_cc_devices(source_id, func_mask);
1875 switch (func_mask & 3) {
1876 case 0:
1877 mask = 0; /* No bits in the SID field masked */
1878 break;
1879 case 1:
1880 mask = 4; /* Mask bit 2 in the SID field */
1881 break;
1882 case 2:
1883 mask = 6; /* Mask bit 2:1 in the SID field */
1884 break;
1885 case 3:
1886 mask = 7; /* Mask bit 2:0 in the SID field */
1887 break;
1888 default:
1889 g_assert_not_reached();
1891 mask = ~mask;
1893 bus_n = VTD_SID_TO_BUS(source_id);
1894 vtd_bus = vtd_find_as_from_bus_num(s, bus_n);
1895 if (vtd_bus) {
1896 devfn = VTD_SID_TO_DEVFN(source_id);
1897 for (devfn_it = 0; devfn_it < PCI_DEVFN_MAX; ++devfn_it) {
1898 vtd_as = vtd_bus->dev_as[devfn_it];
1899 if (vtd_as && ((devfn_it & mask) == (devfn & mask))) {
1900 trace_vtd_inv_desc_cc_device(bus_n, VTD_PCI_SLOT(devfn_it),
1901 VTD_PCI_FUNC(devfn_it));
1902 vtd_iommu_lock(s);
1903 vtd_as->context_cache_entry.context_cache_gen = 0;
1904 vtd_iommu_unlock(s);
1906 * Do switch address space when needed, in case if the
1907 * device passthrough bit is switched.
1909 vtd_switch_address_space(vtd_as);
1911 * So a device is moving out of (or moving into) a
1912 * domain, resync the shadow page table.
1913 * This won't bring bad even if we have no such
1914 * notifier registered - the IOMMU notification
1915 * framework will skip MAP notifications if that
1916 * happened.
1918 vtd_sync_shadow_page_table(vtd_as);
1924 /* Context-cache invalidation
1925 * Returns the Context Actual Invalidation Granularity.
1926 * @val: the content of the CCMD_REG
1928 static uint64_t vtd_context_cache_invalidate(IntelIOMMUState *s, uint64_t val)
1930 uint64_t caig;
1931 uint64_t type = val & VTD_CCMD_CIRG_MASK;
1933 switch (type) {
1934 case VTD_CCMD_DOMAIN_INVL:
1935 /* Fall through */
1936 case VTD_CCMD_GLOBAL_INVL:
1937 caig = VTD_CCMD_GLOBAL_INVL_A;
1938 vtd_context_global_invalidate(s);
1939 break;
1941 case VTD_CCMD_DEVICE_INVL:
1942 caig = VTD_CCMD_DEVICE_INVL_A;
1943 vtd_context_device_invalidate(s, VTD_CCMD_SID(val), VTD_CCMD_FM(val));
1944 break;
1946 default:
1947 error_report_once("%s: invalid context: 0x%" PRIx64,
1948 __func__, val);
1949 caig = 0;
1951 return caig;
1954 static void vtd_iotlb_global_invalidate(IntelIOMMUState *s)
1956 trace_vtd_inv_desc_iotlb_global();
1957 vtd_reset_iotlb(s);
1958 vtd_iommu_replay_all(s);
1961 static void vtd_iotlb_domain_invalidate(IntelIOMMUState *s, uint16_t domain_id)
1963 VTDContextEntry ce;
1964 VTDAddressSpace *vtd_as;
1966 trace_vtd_inv_desc_iotlb_domain(domain_id);
1968 vtd_iommu_lock(s);
1969 g_hash_table_foreach_remove(s->iotlb, vtd_hash_remove_by_domain,
1970 &domain_id);
1971 vtd_iommu_unlock(s);
1973 QLIST_FOREACH(vtd_as, &s->vtd_as_with_notifiers, next) {
1974 if (!vtd_dev_to_context_entry(s, pci_bus_num(vtd_as->bus),
1975 vtd_as->devfn, &ce) &&
1976 domain_id == vtd_get_domain_id(s, &ce)) {
1977 vtd_sync_shadow_page_table(vtd_as);
1982 static void vtd_iotlb_page_invalidate_notify(IntelIOMMUState *s,
1983 uint16_t domain_id, hwaddr addr,
1984 uint8_t am)
1986 VTDAddressSpace *vtd_as;
1987 VTDContextEntry ce;
1988 int ret;
1989 hwaddr size = (1 << am) * VTD_PAGE_SIZE;
1991 QLIST_FOREACH(vtd_as, &(s->vtd_as_with_notifiers), next) {
1992 ret = vtd_dev_to_context_entry(s, pci_bus_num(vtd_as->bus),
1993 vtd_as->devfn, &ce);
1994 if (!ret && domain_id == vtd_get_domain_id(s, &ce)) {
1995 if (vtd_as_has_map_notifier(vtd_as)) {
1997 * As long as we have MAP notifications registered in
1998 * any of our IOMMU notifiers, we need to sync the
1999 * shadow page table.
2001 vtd_sync_shadow_page_table_range(vtd_as, &ce, addr, size);
2002 } else {
2004 * For UNMAP-only notifiers, we don't need to walk the
2005 * page tables. We just deliver the PSI down to
2006 * invalidate caches.
2008 IOMMUTLBEvent event = {
2009 .type = IOMMU_NOTIFIER_UNMAP,
2010 .entry = {
2011 .target_as = &address_space_memory,
2012 .iova = addr,
2013 .translated_addr = 0,
2014 .addr_mask = size - 1,
2015 .perm = IOMMU_NONE,
2018 memory_region_notify_iommu(&vtd_as->iommu, 0, event);
2024 static void vtd_iotlb_page_invalidate(IntelIOMMUState *s, uint16_t domain_id,
2025 hwaddr addr, uint8_t am)
2027 VTDIOTLBPageInvInfo info;
2029 trace_vtd_inv_desc_iotlb_pages(domain_id, addr, am);
2031 assert(am <= VTD_MAMV);
2032 info.domain_id = domain_id;
2033 info.addr = addr;
2034 info.mask = ~((1 << am) - 1);
2035 vtd_iommu_lock(s);
2036 g_hash_table_foreach_remove(s->iotlb, vtd_hash_remove_by_page, &info);
2037 vtd_iommu_unlock(s);
2038 vtd_iotlb_page_invalidate_notify(s, domain_id, addr, am);
2041 /* Flush IOTLB
2042 * Returns the IOTLB Actual Invalidation Granularity.
2043 * @val: the content of the IOTLB_REG
2045 static uint64_t vtd_iotlb_flush(IntelIOMMUState *s, uint64_t val)
2047 uint64_t iaig;
2048 uint64_t type = val & VTD_TLB_FLUSH_GRANU_MASK;
2049 uint16_t domain_id;
2050 hwaddr addr;
2051 uint8_t am;
2053 switch (type) {
2054 case VTD_TLB_GLOBAL_FLUSH:
2055 iaig = VTD_TLB_GLOBAL_FLUSH_A;
2056 vtd_iotlb_global_invalidate(s);
2057 break;
2059 case VTD_TLB_DSI_FLUSH:
2060 domain_id = VTD_TLB_DID(val);
2061 iaig = VTD_TLB_DSI_FLUSH_A;
2062 vtd_iotlb_domain_invalidate(s, domain_id);
2063 break;
2065 case VTD_TLB_PSI_FLUSH:
2066 domain_id = VTD_TLB_DID(val);
2067 addr = vtd_get_quad_raw(s, DMAR_IVA_REG);
2068 am = VTD_IVA_AM(addr);
2069 addr = VTD_IVA_ADDR(addr);
2070 if (am > VTD_MAMV) {
2071 error_report_once("%s: address mask overflow: 0x%" PRIx64,
2072 __func__, vtd_get_quad_raw(s, DMAR_IVA_REG));
2073 iaig = 0;
2074 break;
2076 iaig = VTD_TLB_PSI_FLUSH_A;
2077 vtd_iotlb_page_invalidate(s, domain_id, addr, am);
2078 break;
2080 default:
2081 error_report_once("%s: invalid granularity: 0x%" PRIx64,
2082 __func__, val);
2083 iaig = 0;
2085 return iaig;
2088 static void vtd_fetch_inv_desc(IntelIOMMUState *s);
2090 static inline bool vtd_queued_inv_disable_check(IntelIOMMUState *s)
2092 return s->qi_enabled && (s->iq_tail == s->iq_head) &&
2093 (s->iq_last_desc_type == VTD_INV_DESC_WAIT);
2096 static void vtd_handle_gcmd_qie(IntelIOMMUState *s, bool en)
2098 uint64_t iqa_val = vtd_get_quad_raw(s, DMAR_IQA_REG);
2100 trace_vtd_inv_qi_enable(en);
2102 if (en) {
2103 s->iq = iqa_val & VTD_IQA_IQA_MASK(s->aw_bits);
2104 /* 2^(x+8) entries */
2105 s->iq_size = 1UL << ((iqa_val & VTD_IQA_QS) + 8 - (s->iq_dw ? 1 : 0));
2106 s->qi_enabled = true;
2107 trace_vtd_inv_qi_setup(s->iq, s->iq_size);
2108 /* Ok - report back to driver */
2109 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_QIES);
2111 if (s->iq_tail != 0) {
2113 * This is a spec violation but Windows guests are known to set up
2114 * Queued Invalidation this way so we allow the write and process
2115 * Invalidation Descriptors right away.
2117 trace_vtd_warn_invalid_qi_tail(s->iq_tail);
2118 if (!(vtd_get_long_raw(s, DMAR_FSTS_REG) & VTD_FSTS_IQE)) {
2119 vtd_fetch_inv_desc(s);
2122 } else {
2123 if (vtd_queued_inv_disable_check(s)) {
2124 /* disable Queued Invalidation */
2125 vtd_set_quad_raw(s, DMAR_IQH_REG, 0);
2126 s->iq_head = 0;
2127 s->qi_enabled = false;
2128 /* Ok - report back to driver */
2129 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_QIES, 0);
2130 } else {
2131 error_report_once("%s: detected improper state when disable QI "
2132 "(head=0x%x, tail=0x%x, last_type=%d)",
2133 __func__,
2134 s->iq_head, s->iq_tail, s->iq_last_desc_type);
2139 /* Set Root Table Pointer */
2140 static void vtd_handle_gcmd_srtp(IntelIOMMUState *s)
2142 vtd_root_table_setup(s);
2143 /* Ok - report back to driver */
2144 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_RTPS);
2145 vtd_reset_caches(s);
2146 vtd_address_space_refresh_all(s);
2149 /* Set Interrupt Remap Table Pointer */
2150 static void vtd_handle_gcmd_sirtp(IntelIOMMUState *s)
2152 vtd_interrupt_remap_table_setup(s);
2153 /* Ok - report back to driver */
2154 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_IRTPS);
2157 /* Handle Translation Enable/Disable */
2158 static void vtd_handle_gcmd_te(IntelIOMMUState *s, bool en)
2160 if (s->dmar_enabled == en) {
2161 return;
2164 trace_vtd_dmar_enable(en);
2166 if (en) {
2167 s->dmar_enabled = true;
2168 /* Ok - report back to driver */
2169 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_TES);
2170 } else {
2171 s->dmar_enabled = false;
2173 /* Clear the index of Fault Recording Register */
2174 s->next_frcd_reg = 0;
2175 /* Ok - report back to driver */
2176 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_TES, 0);
2179 vtd_reset_caches(s);
2180 vtd_address_space_refresh_all(s);
2183 /* Handle Interrupt Remap Enable/Disable */
2184 static void vtd_handle_gcmd_ire(IntelIOMMUState *s, bool en)
2186 trace_vtd_ir_enable(en);
2188 if (en) {
2189 s->intr_enabled = true;
2190 /* Ok - report back to driver */
2191 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_IRES);
2192 } else {
2193 s->intr_enabled = false;
2194 /* Ok - report back to driver */
2195 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_IRES, 0);
2199 /* Handle write to Global Command Register */
2200 static void vtd_handle_gcmd_write(IntelIOMMUState *s)
2202 uint32_t status = vtd_get_long_raw(s, DMAR_GSTS_REG);
2203 uint32_t val = vtd_get_long_raw(s, DMAR_GCMD_REG);
2204 uint32_t changed = status ^ val;
2206 trace_vtd_reg_write_gcmd(status, val);
2207 if (changed & VTD_GCMD_TE) {
2208 /* Translation enable/disable */
2209 vtd_handle_gcmd_te(s, val & VTD_GCMD_TE);
2211 if (val & VTD_GCMD_SRTP) {
2212 /* Set/update the root-table pointer */
2213 vtd_handle_gcmd_srtp(s);
2215 if (changed & VTD_GCMD_QIE) {
2216 /* Queued Invalidation Enable */
2217 vtd_handle_gcmd_qie(s, val & VTD_GCMD_QIE);
2219 if (val & VTD_GCMD_SIRTP) {
2220 /* Set/update the interrupt remapping root-table pointer */
2221 vtd_handle_gcmd_sirtp(s);
2223 if (changed & VTD_GCMD_IRE) {
2224 /* Interrupt remap enable/disable */
2225 vtd_handle_gcmd_ire(s, val & VTD_GCMD_IRE);
2229 /* Handle write to Context Command Register */
2230 static void vtd_handle_ccmd_write(IntelIOMMUState *s)
2232 uint64_t ret;
2233 uint64_t val = vtd_get_quad_raw(s, DMAR_CCMD_REG);
2235 /* Context-cache invalidation request */
2236 if (val & VTD_CCMD_ICC) {
2237 if (s->qi_enabled) {
2238 error_report_once("Queued Invalidation enabled, "
2239 "should not use register-based invalidation");
2240 return;
2242 ret = vtd_context_cache_invalidate(s, val);
2243 /* Invalidation completed. Change something to show */
2244 vtd_set_clear_mask_quad(s, DMAR_CCMD_REG, VTD_CCMD_ICC, 0ULL);
2245 ret = vtd_set_clear_mask_quad(s, DMAR_CCMD_REG, VTD_CCMD_CAIG_MASK,
2246 ret);
2250 /* Handle write to IOTLB Invalidation Register */
2251 static void vtd_handle_iotlb_write(IntelIOMMUState *s)
2253 uint64_t ret;
2254 uint64_t val = vtd_get_quad_raw(s, DMAR_IOTLB_REG);
2256 /* IOTLB invalidation request */
2257 if (val & VTD_TLB_IVT) {
2258 if (s->qi_enabled) {
2259 error_report_once("Queued Invalidation enabled, "
2260 "should not use register-based invalidation");
2261 return;
2263 ret = vtd_iotlb_flush(s, val);
2264 /* Invalidation completed. Change something to show */
2265 vtd_set_clear_mask_quad(s, DMAR_IOTLB_REG, VTD_TLB_IVT, 0ULL);
2266 ret = vtd_set_clear_mask_quad(s, DMAR_IOTLB_REG,
2267 VTD_TLB_FLUSH_GRANU_MASK_A, ret);
2271 /* Fetch an Invalidation Descriptor from the Invalidation Queue */
2272 static bool vtd_get_inv_desc(IntelIOMMUState *s,
2273 VTDInvDesc *inv_desc)
2275 dma_addr_t base_addr = s->iq;
2276 uint32_t offset = s->iq_head;
2277 uint32_t dw = s->iq_dw ? 32 : 16;
2278 dma_addr_t addr = base_addr + offset * dw;
2280 if (dma_memory_read(&address_space_memory, addr, inv_desc, dw)) {
2281 error_report_once("Read INV DESC failed.");
2282 return false;
2284 inv_desc->lo = le64_to_cpu(inv_desc->lo);
2285 inv_desc->hi = le64_to_cpu(inv_desc->hi);
2286 if (dw == 32) {
2287 inv_desc->val[2] = le64_to_cpu(inv_desc->val[2]);
2288 inv_desc->val[3] = le64_to_cpu(inv_desc->val[3]);
2290 return true;
2293 static bool vtd_process_wait_desc(IntelIOMMUState *s, VTDInvDesc *inv_desc)
2295 if ((inv_desc->hi & VTD_INV_DESC_WAIT_RSVD_HI) ||
2296 (inv_desc->lo & VTD_INV_DESC_WAIT_RSVD_LO)) {
2297 error_report_once("%s: invalid wait desc: hi=%"PRIx64", lo=%"PRIx64
2298 " (reserved nonzero)", __func__, inv_desc->hi,
2299 inv_desc->lo);
2300 return false;
2302 if (inv_desc->lo & VTD_INV_DESC_WAIT_SW) {
2303 /* Status Write */
2304 uint32_t status_data = (uint32_t)(inv_desc->lo >>
2305 VTD_INV_DESC_WAIT_DATA_SHIFT);
2307 assert(!(inv_desc->lo & VTD_INV_DESC_WAIT_IF));
2309 /* FIXME: need to be masked with HAW? */
2310 dma_addr_t status_addr = inv_desc->hi;
2311 trace_vtd_inv_desc_wait_sw(status_addr, status_data);
2312 status_data = cpu_to_le32(status_data);
2313 if (dma_memory_write(&address_space_memory, status_addr, &status_data,
2314 sizeof(status_data))) {
2315 trace_vtd_inv_desc_wait_write_fail(inv_desc->hi, inv_desc->lo);
2316 return false;
2318 } else if (inv_desc->lo & VTD_INV_DESC_WAIT_IF) {
2319 /* Interrupt flag */
2320 vtd_generate_completion_event(s);
2321 } else {
2322 error_report_once("%s: invalid wait desc: hi=%"PRIx64", lo=%"PRIx64
2323 " (unknown type)", __func__, inv_desc->hi,
2324 inv_desc->lo);
2325 return false;
2327 return true;
2330 static bool vtd_process_context_cache_desc(IntelIOMMUState *s,
2331 VTDInvDesc *inv_desc)
2333 uint16_t sid, fmask;
2335 if ((inv_desc->lo & VTD_INV_DESC_CC_RSVD) || inv_desc->hi) {
2336 error_report_once("%s: invalid cc inv desc: hi=%"PRIx64", lo=%"PRIx64
2337 " (reserved nonzero)", __func__, inv_desc->hi,
2338 inv_desc->lo);
2339 return false;
2341 switch (inv_desc->lo & VTD_INV_DESC_CC_G) {
2342 case VTD_INV_DESC_CC_DOMAIN:
2343 trace_vtd_inv_desc_cc_domain(
2344 (uint16_t)VTD_INV_DESC_CC_DID(inv_desc->lo));
2345 /* Fall through */
2346 case VTD_INV_DESC_CC_GLOBAL:
2347 vtd_context_global_invalidate(s);
2348 break;
2350 case VTD_INV_DESC_CC_DEVICE:
2351 sid = VTD_INV_DESC_CC_SID(inv_desc->lo);
2352 fmask = VTD_INV_DESC_CC_FM(inv_desc->lo);
2353 vtd_context_device_invalidate(s, sid, fmask);
2354 break;
2356 default:
2357 error_report_once("%s: invalid cc inv desc: hi=%"PRIx64", lo=%"PRIx64
2358 " (invalid type)", __func__, inv_desc->hi,
2359 inv_desc->lo);
2360 return false;
2362 return true;
2365 static bool vtd_process_iotlb_desc(IntelIOMMUState *s, VTDInvDesc *inv_desc)
2367 uint16_t domain_id;
2368 uint8_t am;
2369 hwaddr addr;
2371 if ((inv_desc->lo & VTD_INV_DESC_IOTLB_RSVD_LO) ||
2372 (inv_desc->hi & VTD_INV_DESC_IOTLB_RSVD_HI)) {
2373 error_report_once("%s: invalid iotlb inv desc: hi=0x%"PRIx64
2374 ", lo=0x%"PRIx64" (reserved bits unzero)",
2375 __func__, inv_desc->hi, inv_desc->lo);
2376 return false;
2379 switch (inv_desc->lo & VTD_INV_DESC_IOTLB_G) {
2380 case VTD_INV_DESC_IOTLB_GLOBAL:
2381 vtd_iotlb_global_invalidate(s);
2382 break;
2384 case VTD_INV_DESC_IOTLB_DOMAIN:
2385 domain_id = VTD_INV_DESC_IOTLB_DID(inv_desc->lo);
2386 vtd_iotlb_domain_invalidate(s, domain_id);
2387 break;
2389 case VTD_INV_DESC_IOTLB_PAGE:
2390 domain_id = VTD_INV_DESC_IOTLB_DID(inv_desc->lo);
2391 addr = VTD_INV_DESC_IOTLB_ADDR(inv_desc->hi);
2392 am = VTD_INV_DESC_IOTLB_AM(inv_desc->hi);
2393 if (am > VTD_MAMV) {
2394 error_report_once("%s: invalid iotlb inv desc: hi=0x%"PRIx64
2395 ", lo=0x%"PRIx64" (am=%u > VTD_MAMV=%u)",
2396 __func__, inv_desc->hi, inv_desc->lo,
2397 am, (unsigned)VTD_MAMV);
2398 return false;
2400 vtd_iotlb_page_invalidate(s, domain_id, addr, am);
2401 break;
2403 default:
2404 error_report_once("%s: invalid iotlb inv desc: hi=0x%"PRIx64
2405 ", lo=0x%"PRIx64" (type mismatch: 0x%llx)",
2406 __func__, inv_desc->hi, inv_desc->lo,
2407 inv_desc->lo & VTD_INV_DESC_IOTLB_G);
2408 return false;
2410 return true;
2413 static bool vtd_process_inv_iec_desc(IntelIOMMUState *s,
2414 VTDInvDesc *inv_desc)
2416 trace_vtd_inv_desc_iec(inv_desc->iec.granularity,
2417 inv_desc->iec.index,
2418 inv_desc->iec.index_mask);
2420 vtd_iec_notify_all(s, !inv_desc->iec.granularity,
2421 inv_desc->iec.index,
2422 inv_desc->iec.index_mask);
2423 return true;
2426 static bool vtd_process_device_iotlb_desc(IntelIOMMUState *s,
2427 VTDInvDesc *inv_desc)
2429 VTDAddressSpace *vtd_dev_as;
2430 IOMMUTLBEvent event;
2431 struct VTDBus *vtd_bus;
2432 hwaddr addr;
2433 uint64_t sz;
2434 uint16_t sid;
2435 uint8_t devfn;
2436 bool size;
2437 uint8_t bus_num;
2439 addr = VTD_INV_DESC_DEVICE_IOTLB_ADDR(inv_desc->hi);
2440 sid = VTD_INV_DESC_DEVICE_IOTLB_SID(inv_desc->lo);
2441 devfn = sid & 0xff;
2442 bus_num = sid >> 8;
2443 size = VTD_INV_DESC_DEVICE_IOTLB_SIZE(inv_desc->hi);
2445 if ((inv_desc->lo & VTD_INV_DESC_DEVICE_IOTLB_RSVD_LO) ||
2446 (inv_desc->hi & VTD_INV_DESC_DEVICE_IOTLB_RSVD_HI)) {
2447 error_report_once("%s: invalid dev-iotlb inv desc: hi=%"PRIx64
2448 ", lo=%"PRIx64" (reserved nonzero)", __func__,
2449 inv_desc->hi, inv_desc->lo);
2450 return false;
2453 vtd_bus = vtd_find_as_from_bus_num(s, bus_num);
2454 if (!vtd_bus) {
2455 goto done;
2458 vtd_dev_as = vtd_bus->dev_as[devfn];
2459 if (!vtd_dev_as) {
2460 goto done;
2463 /* According to ATS spec table 2.4:
2464 * S = 0, bits 15:12 = xxxx range size: 4K
2465 * S = 1, bits 15:12 = xxx0 range size: 8K
2466 * S = 1, bits 15:12 = xx01 range size: 16K
2467 * S = 1, bits 15:12 = x011 range size: 32K
2468 * S = 1, bits 15:12 = 0111 range size: 64K
2469 * ...
2471 if (size) {
2472 sz = (VTD_PAGE_SIZE * 2) << cto64(addr >> VTD_PAGE_SHIFT);
2473 addr &= ~(sz - 1);
2474 } else {
2475 sz = VTD_PAGE_SIZE;
2478 event.type = IOMMU_NOTIFIER_DEVIOTLB_UNMAP;
2479 event.entry.target_as = &vtd_dev_as->as;
2480 event.entry.addr_mask = sz - 1;
2481 event.entry.iova = addr;
2482 event.entry.perm = IOMMU_NONE;
2483 event.entry.translated_addr = 0;
2484 memory_region_notify_iommu(&vtd_dev_as->iommu, 0, event);
2486 done:
2487 return true;
2490 static bool vtd_process_inv_desc(IntelIOMMUState *s)
2492 VTDInvDesc inv_desc;
2493 uint8_t desc_type;
2495 trace_vtd_inv_qi_head(s->iq_head);
2496 if (!vtd_get_inv_desc(s, &inv_desc)) {
2497 s->iq_last_desc_type = VTD_INV_DESC_NONE;
2498 return false;
2501 desc_type = inv_desc.lo & VTD_INV_DESC_TYPE;
2502 /* FIXME: should update at first or at last? */
2503 s->iq_last_desc_type = desc_type;
2505 switch (desc_type) {
2506 case VTD_INV_DESC_CC:
2507 trace_vtd_inv_desc("context-cache", inv_desc.hi, inv_desc.lo);
2508 if (!vtd_process_context_cache_desc(s, &inv_desc)) {
2509 return false;
2511 break;
2513 case VTD_INV_DESC_IOTLB:
2514 trace_vtd_inv_desc("iotlb", inv_desc.hi, inv_desc.lo);
2515 if (!vtd_process_iotlb_desc(s, &inv_desc)) {
2516 return false;
2518 break;
2521 * TODO: the entity of below two cases will be implemented in future series.
2522 * To make guest (which integrates scalable mode support patch set in
2523 * iommu driver) work, just return true is enough so far.
2525 case VTD_INV_DESC_PC:
2526 break;
2528 case VTD_INV_DESC_PIOTLB:
2529 break;
2531 case VTD_INV_DESC_WAIT:
2532 trace_vtd_inv_desc("wait", inv_desc.hi, inv_desc.lo);
2533 if (!vtd_process_wait_desc(s, &inv_desc)) {
2534 return false;
2536 break;
2538 case VTD_INV_DESC_IEC:
2539 trace_vtd_inv_desc("iec", inv_desc.hi, inv_desc.lo);
2540 if (!vtd_process_inv_iec_desc(s, &inv_desc)) {
2541 return false;
2543 break;
2545 case VTD_INV_DESC_DEVICE:
2546 trace_vtd_inv_desc("device", inv_desc.hi, inv_desc.lo);
2547 if (!vtd_process_device_iotlb_desc(s, &inv_desc)) {
2548 return false;
2550 break;
2552 default:
2553 error_report_once("%s: invalid inv desc: hi=%"PRIx64", lo=%"PRIx64
2554 " (unknown type)", __func__, inv_desc.hi,
2555 inv_desc.lo);
2556 return false;
2558 s->iq_head++;
2559 if (s->iq_head == s->iq_size) {
2560 s->iq_head = 0;
2562 return true;
2565 /* Try to fetch and process more Invalidation Descriptors */
2566 static void vtd_fetch_inv_desc(IntelIOMMUState *s)
2568 int qi_shift;
2570 /* Refer to 10.4.23 of VT-d spec 3.0 */
2571 qi_shift = s->iq_dw ? VTD_IQH_QH_SHIFT_5 : VTD_IQH_QH_SHIFT_4;
2573 trace_vtd_inv_qi_fetch();
2575 if (s->iq_tail >= s->iq_size) {
2576 /* Detects an invalid Tail pointer */
2577 error_report_once("%s: detected invalid QI tail "
2578 "(tail=0x%x, size=0x%x)",
2579 __func__, s->iq_tail, s->iq_size);
2580 vtd_handle_inv_queue_error(s);
2581 return;
2583 while (s->iq_head != s->iq_tail) {
2584 if (!vtd_process_inv_desc(s)) {
2585 /* Invalidation Queue Errors */
2586 vtd_handle_inv_queue_error(s);
2587 break;
2589 /* Must update the IQH_REG in time */
2590 vtd_set_quad_raw(s, DMAR_IQH_REG,
2591 (((uint64_t)(s->iq_head)) << qi_shift) &
2592 VTD_IQH_QH_MASK);
2596 /* Handle write to Invalidation Queue Tail Register */
2597 static void vtd_handle_iqt_write(IntelIOMMUState *s)
2599 uint64_t val = vtd_get_quad_raw(s, DMAR_IQT_REG);
2601 if (s->iq_dw && (val & VTD_IQT_QT_256_RSV_BIT)) {
2602 error_report_once("%s: RSV bit is set: val=0x%"PRIx64,
2603 __func__, val);
2604 return;
2606 s->iq_tail = VTD_IQT_QT(s->iq_dw, val);
2607 trace_vtd_inv_qi_tail(s->iq_tail);
2609 if (s->qi_enabled && !(vtd_get_long_raw(s, DMAR_FSTS_REG) & VTD_FSTS_IQE)) {
2610 /* Process Invalidation Queue here */
2611 vtd_fetch_inv_desc(s);
2615 static void vtd_handle_fsts_write(IntelIOMMUState *s)
2617 uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
2618 uint32_t fectl_reg = vtd_get_long_raw(s, DMAR_FECTL_REG);
2619 uint32_t status_fields = VTD_FSTS_PFO | VTD_FSTS_PPF | VTD_FSTS_IQE;
2621 if ((fectl_reg & VTD_FECTL_IP) && !(fsts_reg & status_fields)) {
2622 vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
2623 trace_vtd_fsts_clear_ip();
2625 /* FIXME: when IQE is Clear, should we try to fetch some Invalidation
2626 * Descriptors if there are any when Queued Invalidation is enabled?
2630 static void vtd_handle_fectl_write(IntelIOMMUState *s)
2632 uint32_t fectl_reg;
2633 /* FIXME: when software clears the IM field, check the IP field. But do we
2634 * need to compare the old value and the new value to conclude that
2635 * software clears the IM field? Or just check if the IM field is zero?
2637 fectl_reg = vtd_get_long_raw(s, DMAR_FECTL_REG);
2639 trace_vtd_reg_write_fectl(fectl_reg);
2641 if ((fectl_reg & VTD_FECTL_IP) && !(fectl_reg & VTD_FECTL_IM)) {
2642 vtd_generate_interrupt(s, DMAR_FEADDR_REG, DMAR_FEDATA_REG);
2643 vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
2647 static void vtd_handle_ics_write(IntelIOMMUState *s)
2649 uint32_t ics_reg = vtd_get_long_raw(s, DMAR_ICS_REG);
2650 uint32_t iectl_reg = vtd_get_long_raw(s, DMAR_IECTL_REG);
2652 if ((iectl_reg & VTD_IECTL_IP) && !(ics_reg & VTD_ICS_IWC)) {
2653 trace_vtd_reg_ics_clear_ip();
2654 vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
2658 static void vtd_handle_iectl_write(IntelIOMMUState *s)
2660 uint32_t iectl_reg;
2661 /* FIXME: when software clears the IM field, check the IP field. But do we
2662 * need to compare the old value and the new value to conclude that
2663 * software clears the IM field? Or just check if the IM field is zero?
2665 iectl_reg = vtd_get_long_raw(s, DMAR_IECTL_REG);
2667 trace_vtd_reg_write_iectl(iectl_reg);
2669 if ((iectl_reg & VTD_IECTL_IP) && !(iectl_reg & VTD_IECTL_IM)) {
2670 vtd_generate_interrupt(s, DMAR_IEADDR_REG, DMAR_IEDATA_REG);
2671 vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
2675 static uint64_t vtd_mem_read(void *opaque, hwaddr addr, unsigned size)
2677 IntelIOMMUState *s = opaque;
2678 uint64_t val;
2680 trace_vtd_reg_read(addr, size);
2682 if (addr + size > DMAR_REG_SIZE) {
2683 error_report_once("%s: MMIO over range: addr=0x%" PRIx64
2684 " size=0x%x", __func__, addr, size);
2685 return (uint64_t)-1;
2688 switch (addr) {
2689 /* Root Table Address Register, 64-bit */
2690 case DMAR_RTADDR_REG:
2691 val = vtd_get_quad_raw(s, DMAR_RTADDR_REG);
2692 if (size == 4) {
2693 val = val & ((1ULL << 32) - 1);
2695 break;
2697 case DMAR_RTADDR_REG_HI:
2698 assert(size == 4);
2699 val = vtd_get_quad_raw(s, DMAR_RTADDR_REG) >> 32;
2700 break;
2702 /* Invalidation Queue Address Register, 64-bit */
2703 case DMAR_IQA_REG:
2704 val = s->iq | (vtd_get_quad(s, DMAR_IQA_REG) & VTD_IQA_QS);
2705 if (size == 4) {
2706 val = val & ((1ULL << 32) - 1);
2708 break;
2710 case DMAR_IQA_REG_HI:
2711 assert(size == 4);
2712 val = s->iq >> 32;
2713 break;
2715 default:
2716 if (size == 4) {
2717 val = vtd_get_long(s, addr);
2718 } else {
2719 val = vtd_get_quad(s, addr);
2723 return val;
2726 static void vtd_mem_write(void *opaque, hwaddr addr,
2727 uint64_t val, unsigned size)
2729 IntelIOMMUState *s = opaque;
2731 trace_vtd_reg_write(addr, size, val);
2733 if (addr + size > DMAR_REG_SIZE) {
2734 error_report_once("%s: MMIO over range: addr=0x%" PRIx64
2735 " size=0x%x", __func__, addr, size);
2736 return;
2739 switch (addr) {
2740 /* Global Command Register, 32-bit */
2741 case DMAR_GCMD_REG:
2742 vtd_set_long(s, addr, val);
2743 vtd_handle_gcmd_write(s);
2744 break;
2746 /* Context Command Register, 64-bit */
2747 case DMAR_CCMD_REG:
2748 if (size == 4) {
2749 vtd_set_long(s, addr, val);
2750 } else {
2751 vtd_set_quad(s, addr, val);
2752 vtd_handle_ccmd_write(s);
2754 break;
2756 case DMAR_CCMD_REG_HI:
2757 assert(size == 4);
2758 vtd_set_long(s, addr, val);
2759 vtd_handle_ccmd_write(s);
2760 break;
2762 /* IOTLB Invalidation Register, 64-bit */
2763 case DMAR_IOTLB_REG:
2764 if (size == 4) {
2765 vtd_set_long(s, addr, val);
2766 } else {
2767 vtd_set_quad(s, addr, val);
2768 vtd_handle_iotlb_write(s);
2770 break;
2772 case DMAR_IOTLB_REG_HI:
2773 assert(size == 4);
2774 vtd_set_long(s, addr, val);
2775 vtd_handle_iotlb_write(s);
2776 break;
2778 /* Invalidate Address Register, 64-bit */
2779 case DMAR_IVA_REG:
2780 if (size == 4) {
2781 vtd_set_long(s, addr, val);
2782 } else {
2783 vtd_set_quad(s, addr, val);
2785 break;
2787 case DMAR_IVA_REG_HI:
2788 assert(size == 4);
2789 vtd_set_long(s, addr, val);
2790 break;
2792 /* Fault Status Register, 32-bit */
2793 case DMAR_FSTS_REG:
2794 assert(size == 4);
2795 vtd_set_long(s, addr, val);
2796 vtd_handle_fsts_write(s);
2797 break;
2799 /* Fault Event Control Register, 32-bit */
2800 case DMAR_FECTL_REG:
2801 assert(size == 4);
2802 vtd_set_long(s, addr, val);
2803 vtd_handle_fectl_write(s);
2804 break;
2806 /* Fault Event Data Register, 32-bit */
2807 case DMAR_FEDATA_REG:
2808 assert(size == 4);
2809 vtd_set_long(s, addr, val);
2810 break;
2812 /* Fault Event Address Register, 32-bit */
2813 case DMAR_FEADDR_REG:
2814 if (size == 4) {
2815 vtd_set_long(s, addr, val);
2816 } else {
2818 * While the register is 32-bit only, some guests (Xen...) write to
2819 * it with 64-bit.
2821 vtd_set_quad(s, addr, val);
2823 break;
2825 /* Fault Event Upper Address Register, 32-bit */
2826 case DMAR_FEUADDR_REG:
2827 assert(size == 4);
2828 vtd_set_long(s, addr, val);
2829 break;
2831 /* Protected Memory Enable Register, 32-bit */
2832 case DMAR_PMEN_REG:
2833 assert(size == 4);
2834 vtd_set_long(s, addr, val);
2835 break;
2837 /* Root Table Address Register, 64-bit */
2838 case DMAR_RTADDR_REG:
2839 if (size == 4) {
2840 vtd_set_long(s, addr, val);
2841 } else {
2842 vtd_set_quad(s, addr, val);
2844 break;
2846 case DMAR_RTADDR_REG_HI:
2847 assert(size == 4);
2848 vtd_set_long(s, addr, val);
2849 break;
2851 /* Invalidation Queue Tail Register, 64-bit */
2852 case DMAR_IQT_REG:
2853 if (size == 4) {
2854 vtd_set_long(s, addr, val);
2855 } else {
2856 vtd_set_quad(s, addr, val);
2858 vtd_handle_iqt_write(s);
2859 break;
2861 case DMAR_IQT_REG_HI:
2862 assert(size == 4);
2863 vtd_set_long(s, addr, val);
2864 /* 19:63 of IQT_REG is RsvdZ, do nothing here */
2865 break;
2867 /* Invalidation Queue Address Register, 64-bit */
2868 case DMAR_IQA_REG:
2869 if (size == 4) {
2870 vtd_set_long(s, addr, val);
2871 } else {
2872 vtd_set_quad(s, addr, val);
2874 if (s->ecap & VTD_ECAP_SMTS &&
2875 val & VTD_IQA_DW_MASK) {
2876 s->iq_dw = true;
2877 } else {
2878 s->iq_dw = false;
2880 break;
2882 case DMAR_IQA_REG_HI:
2883 assert(size == 4);
2884 vtd_set_long(s, addr, val);
2885 break;
2887 /* Invalidation Completion Status Register, 32-bit */
2888 case DMAR_ICS_REG:
2889 assert(size == 4);
2890 vtd_set_long(s, addr, val);
2891 vtd_handle_ics_write(s);
2892 break;
2894 /* Invalidation Event Control Register, 32-bit */
2895 case DMAR_IECTL_REG:
2896 assert(size == 4);
2897 vtd_set_long(s, addr, val);
2898 vtd_handle_iectl_write(s);
2899 break;
2901 /* Invalidation Event Data Register, 32-bit */
2902 case DMAR_IEDATA_REG:
2903 assert(size == 4);
2904 vtd_set_long(s, addr, val);
2905 break;
2907 /* Invalidation Event Address Register, 32-bit */
2908 case DMAR_IEADDR_REG:
2909 assert(size == 4);
2910 vtd_set_long(s, addr, val);
2911 break;
2913 /* Invalidation Event Upper Address Register, 32-bit */
2914 case DMAR_IEUADDR_REG:
2915 assert(size == 4);
2916 vtd_set_long(s, addr, val);
2917 break;
2919 /* Fault Recording Registers, 128-bit */
2920 case DMAR_FRCD_REG_0_0:
2921 if (size == 4) {
2922 vtd_set_long(s, addr, val);
2923 } else {
2924 vtd_set_quad(s, addr, val);
2926 break;
2928 case DMAR_FRCD_REG_0_1:
2929 assert(size == 4);
2930 vtd_set_long(s, addr, val);
2931 break;
2933 case DMAR_FRCD_REG_0_2:
2934 if (size == 4) {
2935 vtd_set_long(s, addr, val);
2936 } else {
2937 vtd_set_quad(s, addr, val);
2938 /* May clear bit 127 (Fault), update PPF */
2939 vtd_update_fsts_ppf(s);
2941 break;
2943 case DMAR_FRCD_REG_0_3:
2944 assert(size == 4);
2945 vtd_set_long(s, addr, val);
2946 /* May clear bit 127 (Fault), update PPF */
2947 vtd_update_fsts_ppf(s);
2948 break;
2950 case DMAR_IRTA_REG:
2951 if (size == 4) {
2952 vtd_set_long(s, addr, val);
2953 } else {
2954 vtd_set_quad(s, addr, val);
2956 break;
2958 case DMAR_IRTA_REG_HI:
2959 assert(size == 4);
2960 vtd_set_long(s, addr, val);
2961 break;
2963 default:
2964 if (size == 4) {
2965 vtd_set_long(s, addr, val);
2966 } else {
2967 vtd_set_quad(s, addr, val);
2972 static IOMMUTLBEntry vtd_iommu_translate(IOMMUMemoryRegion *iommu, hwaddr addr,
2973 IOMMUAccessFlags flag, int iommu_idx)
2975 VTDAddressSpace *vtd_as = container_of(iommu, VTDAddressSpace, iommu);
2976 IntelIOMMUState *s = vtd_as->iommu_state;
2977 IOMMUTLBEntry iotlb = {
2978 /* We'll fill in the rest later. */
2979 .target_as = &address_space_memory,
2981 bool success;
2983 if (likely(s->dmar_enabled)) {
2984 success = vtd_do_iommu_translate(vtd_as, vtd_as->bus, vtd_as->devfn,
2985 addr, flag & IOMMU_WO, &iotlb);
2986 } else {
2987 /* DMAR disabled, passthrough, use 4k-page*/
2988 iotlb.iova = addr & VTD_PAGE_MASK_4K;
2989 iotlb.translated_addr = addr & VTD_PAGE_MASK_4K;
2990 iotlb.addr_mask = ~VTD_PAGE_MASK_4K;
2991 iotlb.perm = IOMMU_RW;
2992 success = true;
2995 if (likely(success)) {
2996 trace_vtd_dmar_translate(pci_bus_num(vtd_as->bus),
2997 VTD_PCI_SLOT(vtd_as->devfn),
2998 VTD_PCI_FUNC(vtd_as->devfn),
2999 iotlb.iova, iotlb.translated_addr,
3000 iotlb.addr_mask);
3001 } else {
3002 error_report_once("%s: detected translation failure "
3003 "(dev=%02x:%02x:%02x, iova=0x%" PRIx64 ")",
3004 __func__, pci_bus_num(vtd_as->bus),
3005 VTD_PCI_SLOT(vtd_as->devfn),
3006 VTD_PCI_FUNC(vtd_as->devfn),
3007 addr);
3010 return iotlb;
3013 static int vtd_iommu_notify_flag_changed(IOMMUMemoryRegion *iommu,
3014 IOMMUNotifierFlag old,
3015 IOMMUNotifierFlag new,
3016 Error **errp)
3018 VTDAddressSpace *vtd_as = container_of(iommu, VTDAddressSpace, iommu);
3019 IntelIOMMUState *s = vtd_as->iommu_state;
3021 /* Update per-address-space notifier flags */
3022 vtd_as->notifier_flags = new;
3024 if (old == IOMMU_NOTIFIER_NONE) {
3025 QLIST_INSERT_HEAD(&s->vtd_as_with_notifiers, vtd_as, next);
3026 } else if (new == IOMMU_NOTIFIER_NONE) {
3027 QLIST_REMOVE(vtd_as, next);
3029 return 0;
3032 static int vtd_post_load(void *opaque, int version_id)
3034 IntelIOMMUState *iommu = opaque;
3037 * Memory regions are dynamically turned on/off depending on
3038 * context entry configurations from the guest. After migration,
3039 * we need to make sure the memory regions are still correct.
3041 vtd_switch_address_space_all(iommu);
3044 * We don't need to migrate the root_scalable because we can
3045 * simply do the calculation after the loading is complete. We
3046 * can actually do similar things with root, dmar_enabled, etc.
3047 * however since we've had them already so we'd better keep them
3048 * for compatibility of migration.
3050 vtd_update_scalable_state(iommu);
3052 return 0;
3055 static const VMStateDescription vtd_vmstate = {
3056 .name = "iommu-intel",
3057 .version_id = 1,
3058 .minimum_version_id = 1,
3059 .priority = MIG_PRI_IOMMU,
3060 .post_load = vtd_post_load,
3061 .fields = (VMStateField[]) {
3062 VMSTATE_UINT64(root, IntelIOMMUState),
3063 VMSTATE_UINT64(intr_root, IntelIOMMUState),
3064 VMSTATE_UINT64(iq, IntelIOMMUState),
3065 VMSTATE_UINT32(intr_size, IntelIOMMUState),
3066 VMSTATE_UINT16(iq_head, IntelIOMMUState),
3067 VMSTATE_UINT16(iq_tail, IntelIOMMUState),
3068 VMSTATE_UINT16(iq_size, IntelIOMMUState),
3069 VMSTATE_UINT16(next_frcd_reg, IntelIOMMUState),
3070 VMSTATE_UINT8_ARRAY(csr, IntelIOMMUState, DMAR_REG_SIZE),
3071 VMSTATE_UINT8(iq_last_desc_type, IntelIOMMUState),
3072 VMSTATE_UNUSED(1), /* bool root_extended is obsolete by VT-d */
3073 VMSTATE_BOOL(dmar_enabled, IntelIOMMUState),
3074 VMSTATE_BOOL(qi_enabled, IntelIOMMUState),
3075 VMSTATE_BOOL(intr_enabled, IntelIOMMUState),
3076 VMSTATE_BOOL(intr_eime, IntelIOMMUState),
3077 VMSTATE_END_OF_LIST()
3081 static const MemoryRegionOps vtd_mem_ops = {
3082 .read = vtd_mem_read,
3083 .write = vtd_mem_write,
3084 .endianness = DEVICE_LITTLE_ENDIAN,
3085 .impl = {
3086 .min_access_size = 4,
3087 .max_access_size = 8,
3089 .valid = {
3090 .min_access_size = 4,
3091 .max_access_size = 8,
3095 static Property vtd_properties[] = {
3096 DEFINE_PROP_UINT32("version", IntelIOMMUState, version, 0),
3097 DEFINE_PROP_ON_OFF_AUTO("eim", IntelIOMMUState, intr_eim,
3098 ON_OFF_AUTO_AUTO),
3099 DEFINE_PROP_BOOL("x-buggy-eim", IntelIOMMUState, buggy_eim, false),
3100 DEFINE_PROP_UINT8("aw-bits", IntelIOMMUState, aw_bits,
3101 VTD_HOST_ADDRESS_WIDTH),
3102 DEFINE_PROP_BOOL("caching-mode", IntelIOMMUState, caching_mode, FALSE),
3103 DEFINE_PROP_BOOL("x-scalable-mode", IntelIOMMUState, scalable_mode, FALSE),
3104 DEFINE_PROP_BOOL("dma-drain", IntelIOMMUState, dma_drain, true),
3105 DEFINE_PROP_END_OF_LIST(),
3108 /* Read IRTE entry with specific index */
3109 static int vtd_irte_get(IntelIOMMUState *iommu, uint16_t index,
3110 VTD_IR_TableEntry *entry, uint16_t sid)
3112 static const uint16_t vtd_svt_mask[VTD_SQ_MAX] = \
3113 {0xffff, 0xfffb, 0xfff9, 0xfff8};
3114 dma_addr_t addr = 0x00;
3115 uint16_t mask, source_id;
3116 uint8_t bus, bus_max, bus_min;
3118 if (index >= iommu->intr_size) {
3119 error_report_once("%s: index too large: ind=0x%x",
3120 __func__, index);
3121 return -VTD_FR_IR_INDEX_OVER;
3124 addr = iommu->intr_root + index * sizeof(*entry);
3125 if (dma_memory_read(&address_space_memory, addr, entry,
3126 sizeof(*entry))) {
3127 error_report_once("%s: read failed: ind=0x%x addr=0x%" PRIx64,
3128 __func__, index, addr);
3129 return -VTD_FR_IR_ROOT_INVAL;
3132 trace_vtd_ir_irte_get(index, le64_to_cpu(entry->data[1]),
3133 le64_to_cpu(entry->data[0]));
3135 if (!entry->irte.present) {
3136 error_report_once("%s: detected non-present IRTE "
3137 "(index=%u, high=0x%" PRIx64 ", low=0x%" PRIx64 ")",
3138 __func__, index, le64_to_cpu(entry->data[1]),
3139 le64_to_cpu(entry->data[0]));
3140 return -VTD_FR_IR_ENTRY_P;
3143 if (entry->irte.__reserved_0 || entry->irte.__reserved_1 ||
3144 entry->irte.__reserved_2) {
3145 error_report_once("%s: detected non-zero reserved IRTE "
3146 "(index=%u, high=0x%" PRIx64 ", low=0x%" PRIx64 ")",
3147 __func__, index, le64_to_cpu(entry->data[1]),
3148 le64_to_cpu(entry->data[0]));
3149 return -VTD_FR_IR_IRTE_RSVD;
3152 if (sid != X86_IOMMU_SID_INVALID) {
3153 /* Validate IRTE SID */
3154 source_id = le32_to_cpu(entry->irte.source_id);
3155 switch (entry->irte.sid_vtype) {
3156 case VTD_SVT_NONE:
3157 break;
3159 case VTD_SVT_ALL:
3160 mask = vtd_svt_mask[entry->irte.sid_q];
3161 if ((source_id & mask) != (sid & mask)) {
3162 error_report_once("%s: invalid IRTE SID "
3163 "(index=%u, sid=%u, source_id=%u)",
3164 __func__, index, sid, source_id);
3165 return -VTD_FR_IR_SID_ERR;
3167 break;
3169 case VTD_SVT_BUS:
3170 bus_max = source_id >> 8;
3171 bus_min = source_id & 0xff;
3172 bus = sid >> 8;
3173 if (bus > bus_max || bus < bus_min) {
3174 error_report_once("%s: invalid SVT_BUS "
3175 "(index=%u, bus=%u, min=%u, max=%u)",
3176 __func__, index, bus, bus_min, bus_max);
3177 return -VTD_FR_IR_SID_ERR;
3179 break;
3181 default:
3182 error_report_once("%s: detected invalid IRTE SVT "
3183 "(index=%u, type=%d)", __func__,
3184 index, entry->irte.sid_vtype);
3185 /* Take this as verification failure. */
3186 return -VTD_FR_IR_SID_ERR;
3190 return 0;
3193 /* Fetch IRQ information of specific IR index */
3194 static int vtd_remap_irq_get(IntelIOMMUState *iommu, uint16_t index,
3195 X86IOMMUIrq *irq, uint16_t sid)
3197 VTD_IR_TableEntry irte = {};
3198 int ret = 0;
3200 ret = vtd_irte_get(iommu, index, &irte, sid);
3201 if (ret) {
3202 return ret;
3205 irq->trigger_mode = irte.irte.trigger_mode;
3206 irq->vector = irte.irte.vector;
3207 irq->delivery_mode = irte.irte.delivery_mode;
3208 irq->dest = le32_to_cpu(irte.irte.dest_id);
3209 if (!iommu->intr_eime) {
3210 #define VTD_IR_APIC_DEST_MASK (0xff00ULL)
3211 #define VTD_IR_APIC_DEST_SHIFT (8)
3212 irq->dest = (irq->dest & VTD_IR_APIC_DEST_MASK) >>
3213 VTD_IR_APIC_DEST_SHIFT;
3215 irq->dest_mode = irte.irte.dest_mode;
3216 irq->redir_hint = irte.irte.redir_hint;
3218 trace_vtd_ir_remap(index, irq->trigger_mode, irq->vector,
3219 irq->delivery_mode, irq->dest, irq->dest_mode);
3221 return 0;
3224 /* Interrupt remapping for MSI/MSI-X entry */
3225 static int vtd_interrupt_remap_msi(IntelIOMMUState *iommu,
3226 MSIMessage *origin,
3227 MSIMessage *translated,
3228 uint16_t sid)
3230 int ret = 0;
3231 VTD_IR_MSIAddress addr;
3232 uint16_t index;
3233 X86IOMMUIrq irq = {};
3235 assert(origin && translated);
3237 trace_vtd_ir_remap_msi_req(origin->address, origin->data);
3239 if (!iommu || !iommu->intr_enabled) {
3240 memcpy(translated, origin, sizeof(*origin));
3241 goto out;
3244 if (origin->address & VTD_MSI_ADDR_HI_MASK) {
3245 error_report_once("%s: MSI address high 32 bits non-zero detected: "
3246 "address=0x%" PRIx64, __func__, origin->address);
3247 return -VTD_FR_IR_REQ_RSVD;
3250 addr.data = origin->address & VTD_MSI_ADDR_LO_MASK;
3251 if (addr.addr.__head != 0xfee) {
3252 error_report_once("%s: MSI address low 32 bit invalid: 0x%" PRIx32,
3253 __func__, addr.data);
3254 return -VTD_FR_IR_REQ_RSVD;
3257 /* This is compatible mode. */
3258 if (addr.addr.int_mode != VTD_IR_INT_FORMAT_REMAP) {
3259 memcpy(translated, origin, sizeof(*origin));
3260 goto out;
3263 index = addr.addr.index_h << 15 | le16_to_cpu(addr.addr.index_l);
3265 #define VTD_IR_MSI_DATA_SUBHANDLE (0x0000ffff)
3266 #define VTD_IR_MSI_DATA_RESERVED (0xffff0000)
3268 if (addr.addr.sub_valid) {
3269 /* See VT-d spec 5.1.2.2 and 5.1.3 on subhandle */
3270 index += origin->data & VTD_IR_MSI_DATA_SUBHANDLE;
3273 ret = vtd_remap_irq_get(iommu, index, &irq, sid);
3274 if (ret) {
3275 return ret;
3278 if (addr.addr.sub_valid) {
3279 trace_vtd_ir_remap_type("MSI");
3280 if (origin->data & VTD_IR_MSI_DATA_RESERVED) {
3281 error_report_once("%s: invalid IR MSI "
3282 "(sid=%u, address=0x%" PRIx64
3283 ", data=0x%" PRIx32 ")",
3284 __func__, sid, origin->address, origin->data);
3285 return -VTD_FR_IR_REQ_RSVD;
3287 } else {
3288 uint8_t vector = origin->data & 0xff;
3289 uint8_t trigger_mode = (origin->data >> MSI_DATA_TRIGGER_SHIFT) & 0x1;
3291 trace_vtd_ir_remap_type("IOAPIC");
3292 /* IOAPIC entry vector should be aligned with IRTE vector
3293 * (see vt-d spec 5.1.5.1). */
3294 if (vector != irq.vector) {
3295 trace_vtd_warn_ir_vector(sid, index, vector, irq.vector);
3298 /* The Trigger Mode field must match the Trigger Mode in the IRTE.
3299 * (see vt-d spec 5.1.5.1). */
3300 if (trigger_mode != irq.trigger_mode) {
3301 trace_vtd_warn_ir_trigger(sid, index, trigger_mode,
3302 irq.trigger_mode);
3307 * We'd better keep the last two bits, assuming that guest OS
3308 * might modify it. Keep it does not hurt after all.
3310 irq.msi_addr_last_bits = addr.addr.__not_care;
3312 /* Translate X86IOMMUIrq to MSI message */
3313 x86_iommu_irq_to_msi_message(&irq, translated);
3315 out:
3316 trace_vtd_ir_remap_msi(origin->address, origin->data,
3317 translated->address, translated->data);
3318 return 0;
3321 static int vtd_int_remap(X86IOMMUState *iommu, MSIMessage *src,
3322 MSIMessage *dst, uint16_t sid)
3324 return vtd_interrupt_remap_msi(INTEL_IOMMU_DEVICE(iommu),
3325 src, dst, sid);
3328 static MemTxResult vtd_mem_ir_read(void *opaque, hwaddr addr,
3329 uint64_t *data, unsigned size,
3330 MemTxAttrs attrs)
3332 return MEMTX_OK;
3335 static MemTxResult vtd_mem_ir_write(void *opaque, hwaddr addr,
3336 uint64_t value, unsigned size,
3337 MemTxAttrs attrs)
3339 int ret = 0;
3340 MSIMessage from = {}, to = {};
3341 uint16_t sid = X86_IOMMU_SID_INVALID;
3343 from.address = (uint64_t) addr + VTD_INTERRUPT_ADDR_FIRST;
3344 from.data = (uint32_t) value;
3346 if (!attrs.unspecified) {
3347 /* We have explicit Source ID */
3348 sid = attrs.requester_id;
3351 ret = vtd_interrupt_remap_msi(opaque, &from, &to, sid);
3352 if (ret) {
3353 /* TODO: report error */
3354 /* Drop this interrupt */
3355 return MEMTX_ERROR;
3358 apic_get_class()->send_msi(&to);
3360 return MEMTX_OK;
3363 static const MemoryRegionOps vtd_mem_ir_ops = {
3364 .read_with_attrs = vtd_mem_ir_read,
3365 .write_with_attrs = vtd_mem_ir_write,
3366 .endianness = DEVICE_LITTLE_ENDIAN,
3367 .impl = {
3368 .min_access_size = 4,
3369 .max_access_size = 4,
3371 .valid = {
3372 .min_access_size = 4,
3373 .max_access_size = 4,
3377 VTDAddressSpace *vtd_find_add_as(IntelIOMMUState *s, PCIBus *bus, int devfn)
3379 uintptr_t key = (uintptr_t)bus;
3380 VTDBus *vtd_bus = g_hash_table_lookup(s->vtd_as_by_busptr, &key);
3381 VTDAddressSpace *vtd_dev_as;
3382 char name[128];
3384 if (!vtd_bus) {
3385 uintptr_t *new_key = g_malloc(sizeof(*new_key));
3386 *new_key = (uintptr_t)bus;
3387 /* No corresponding free() */
3388 vtd_bus = g_malloc0(sizeof(VTDBus) + sizeof(VTDAddressSpace *) * \
3389 PCI_DEVFN_MAX);
3390 vtd_bus->bus = bus;
3391 g_hash_table_insert(s->vtd_as_by_busptr, new_key, vtd_bus);
3394 vtd_dev_as = vtd_bus->dev_as[devfn];
3396 if (!vtd_dev_as) {
3397 snprintf(name, sizeof(name), "vtd-%02x.%x", PCI_SLOT(devfn),
3398 PCI_FUNC(devfn));
3399 vtd_bus->dev_as[devfn] = vtd_dev_as = g_malloc0(sizeof(VTDAddressSpace));
3401 vtd_dev_as->bus = bus;
3402 vtd_dev_as->devfn = (uint8_t)devfn;
3403 vtd_dev_as->iommu_state = s;
3404 vtd_dev_as->context_cache_entry.context_cache_gen = 0;
3405 vtd_dev_as->iova_tree = iova_tree_new();
3407 memory_region_init(&vtd_dev_as->root, OBJECT(s), name, UINT64_MAX);
3408 address_space_init(&vtd_dev_as->as, &vtd_dev_as->root, "vtd-root");
3411 * Build the DMAR-disabled container with aliases to the
3412 * shared MRs. Note that aliasing to a shared memory region
3413 * could help the memory API to detect same FlatViews so we
3414 * can have devices to share the same FlatView when DMAR is
3415 * disabled (either by not providing "intel_iommu=on" or with
3416 * "iommu=pt"). It will greatly reduce the total number of
3417 * FlatViews of the system hence VM runs faster.
3419 memory_region_init_alias(&vtd_dev_as->nodmar, OBJECT(s),
3420 "vtd-nodmar", &s->mr_nodmar, 0,
3421 memory_region_size(&s->mr_nodmar));
3424 * Build the per-device DMAR-enabled container.
3426 * TODO: currently we have per-device IOMMU memory region only
3427 * because we have per-device IOMMU notifiers for devices. If
3428 * one day we can abstract the IOMMU notifiers out of the
3429 * memory regions then we can also share the same memory
3430 * region here just like what we've done above with the nodmar
3431 * region.
3433 strcat(name, "-dmar");
3434 memory_region_init_iommu(&vtd_dev_as->iommu, sizeof(vtd_dev_as->iommu),
3435 TYPE_INTEL_IOMMU_MEMORY_REGION, OBJECT(s),
3436 name, UINT64_MAX);
3437 memory_region_init_alias(&vtd_dev_as->iommu_ir, OBJECT(s), "vtd-ir",
3438 &s->mr_ir, 0, memory_region_size(&s->mr_ir));
3439 memory_region_add_subregion_overlap(MEMORY_REGION(&vtd_dev_as->iommu),
3440 VTD_INTERRUPT_ADDR_FIRST,
3441 &vtd_dev_as->iommu_ir, 1);
3444 * Hook both the containers under the root container, we
3445 * switch between DMAR & noDMAR by enable/disable
3446 * corresponding sub-containers
3448 memory_region_add_subregion_overlap(&vtd_dev_as->root, 0,
3449 MEMORY_REGION(&vtd_dev_as->iommu),
3451 memory_region_add_subregion_overlap(&vtd_dev_as->root, 0,
3452 &vtd_dev_as->nodmar, 0);
3454 vtd_switch_address_space(vtd_dev_as);
3456 return vtd_dev_as;
3459 /* Unmap the whole range in the notifier's scope. */
3460 static void vtd_address_space_unmap(VTDAddressSpace *as, IOMMUNotifier *n)
3462 hwaddr size, remain;
3463 hwaddr start = n->start;
3464 hwaddr end = n->end;
3465 IntelIOMMUState *s = as->iommu_state;
3466 DMAMap map;
3469 * Note: all the codes in this function has a assumption that IOVA
3470 * bits are no more than VTD_MGAW bits (which is restricted by
3471 * VT-d spec), otherwise we need to consider overflow of 64 bits.
3474 if (end > VTD_ADDRESS_SIZE(s->aw_bits) - 1) {
3476 * Don't need to unmap regions that is bigger than the whole
3477 * VT-d supported address space size
3479 end = VTD_ADDRESS_SIZE(s->aw_bits) - 1;
3482 assert(start <= end);
3483 size = remain = end - start + 1;
3485 while (remain >= VTD_PAGE_SIZE) {
3486 IOMMUTLBEvent event;
3487 uint64_t mask = dma_aligned_pow2_mask(start, end, s->aw_bits);
3488 uint64_t size = mask + 1;
3490 assert(size);
3492 event.type = IOMMU_NOTIFIER_UNMAP;
3493 event.entry.iova = start;
3494 event.entry.addr_mask = mask;
3495 event.entry.target_as = &address_space_memory;
3496 event.entry.perm = IOMMU_NONE;
3497 /* This field is meaningless for unmap */
3498 event.entry.translated_addr = 0;
3500 memory_region_notify_iommu_one(n, &event);
3502 start += size;
3503 remain -= size;
3506 assert(!remain);
3508 trace_vtd_as_unmap_whole(pci_bus_num(as->bus),
3509 VTD_PCI_SLOT(as->devfn),
3510 VTD_PCI_FUNC(as->devfn),
3511 n->start, size);
3513 map.iova = n->start;
3514 map.size = size;
3515 iova_tree_remove(as->iova_tree, &map);
3518 static void vtd_address_space_unmap_all(IntelIOMMUState *s)
3520 VTDAddressSpace *vtd_as;
3521 IOMMUNotifier *n;
3523 QLIST_FOREACH(vtd_as, &s->vtd_as_with_notifiers, next) {
3524 IOMMU_NOTIFIER_FOREACH(n, &vtd_as->iommu) {
3525 vtd_address_space_unmap(vtd_as, n);
3530 static void vtd_address_space_refresh_all(IntelIOMMUState *s)
3532 vtd_address_space_unmap_all(s);
3533 vtd_switch_address_space_all(s);
3536 static int vtd_replay_hook(IOMMUTLBEvent *event, void *private)
3538 memory_region_notify_iommu_one(private, event);
3539 return 0;
3542 static void vtd_iommu_replay(IOMMUMemoryRegion *iommu_mr, IOMMUNotifier *n)
3544 VTDAddressSpace *vtd_as = container_of(iommu_mr, VTDAddressSpace, iommu);
3545 IntelIOMMUState *s = vtd_as->iommu_state;
3546 uint8_t bus_n = pci_bus_num(vtd_as->bus);
3547 VTDContextEntry ce;
3550 * The replay can be triggered by either a invalidation or a newly
3551 * created entry. No matter what, we release existing mappings
3552 * (it means flushing caches for UNMAP-only registers).
3554 vtd_address_space_unmap(vtd_as, n);
3556 if (vtd_dev_to_context_entry(s, bus_n, vtd_as->devfn, &ce) == 0) {
3557 trace_vtd_replay_ce_valid(s->root_scalable ? "scalable mode" :
3558 "legacy mode",
3559 bus_n, PCI_SLOT(vtd_as->devfn),
3560 PCI_FUNC(vtd_as->devfn),
3561 vtd_get_domain_id(s, &ce),
3562 ce.hi, ce.lo);
3563 if (vtd_as_has_map_notifier(vtd_as)) {
3564 /* This is required only for MAP typed notifiers */
3565 vtd_page_walk_info info = {
3566 .hook_fn = vtd_replay_hook,
3567 .private = (void *)n,
3568 .notify_unmap = false,
3569 .aw = s->aw_bits,
3570 .as = vtd_as,
3571 .domain_id = vtd_get_domain_id(s, &ce),
3574 vtd_page_walk(s, &ce, 0, ~0ULL, &info);
3576 } else {
3577 trace_vtd_replay_ce_invalid(bus_n, PCI_SLOT(vtd_as->devfn),
3578 PCI_FUNC(vtd_as->devfn));
3581 return;
3584 /* Do the initialization. It will also be called when reset, so pay
3585 * attention when adding new initialization stuff.
3587 static void vtd_init(IntelIOMMUState *s)
3589 X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
3591 memset(s->csr, 0, DMAR_REG_SIZE);
3592 memset(s->wmask, 0, DMAR_REG_SIZE);
3593 memset(s->w1cmask, 0, DMAR_REG_SIZE);
3594 memset(s->womask, 0, DMAR_REG_SIZE);
3596 s->root = 0;
3597 s->root_scalable = false;
3598 s->dmar_enabled = false;
3599 s->intr_enabled = false;
3600 s->iq_head = 0;
3601 s->iq_tail = 0;
3602 s->iq = 0;
3603 s->iq_size = 0;
3604 s->qi_enabled = false;
3605 s->iq_last_desc_type = VTD_INV_DESC_NONE;
3606 s->iq_dw = false;
3607 s->next_frcd_reg = 0;
3608 s->cap = VTD_CAP_FRO | VTD_CAP_NFR | VTD_CAP_ND |
3609 VTD_CAP_MAMV | VTD_CAP_PSI | VTD_CAP_SLLPS |
3610 VTD_CAP_SAGAW_39bit | VTD_CAP_MGAW(s->aw_bits);
3611 if (s->dma_drain) {
3612 s->cap |= VTD_CAP_DRAIN;
3614 if (s->aw_bits == VTD_HOST_AW_48BIT) {
3615 s->cap |= VTD_CAP_SAGAW_48bit;
3617 s->ecap = VTD_ECAP_QI | VTD_ECAP_IRO;
3620 * Rsvd field masks for spte
3622 vtd_spte_rsvd[0] = ~0ULL;
3623 vtd_spte_rsvd[1] = VTD_SPTE_PAGE_L1_RSVD_MASK(s->aw_bits,
3624 x86_iommu->dt_supported);
3625 vtd_spte_rsvd[2] = VTD_SPTE_PAGE_L2_RSVD_MASK(s->aw_bits);
3626 vtd_spte_rsvd[3] = VTD_SPTE_PAGE_L3_RSVD_MASK(s->aw_bits);
3627 vtd_spte_rsvd[4] = VTD_SPTE_PAGE_L4_RSVD_MASK(s->aw_bits);
3629 vtd_spte_rsvd_large[2] = VTD_SPTE_LPAGE_L2_RSVD_MASK(s->aw_bits,
3630 x86_iommu->dt_supported);
3631 vtd_spte_rsvd_large[3] = VTD_SPTE_LPAGE_L3_RSVD_MASK(s->aw_bits,
3632 x86_iommu->dt_supported);
3634 if (x86_iommu_ir_supported(x86_iommu)) {
3635 s->ecap |= VTD_ECAP_IR | VTD_ECAP_MHMV;
3636 if (s->intr_eim == ON_OFF_AUTO_ON) {
3637 s->ecap |= VTD_ECAP_EIM;
3639 assert(s->intr_eim != ON_OFF_AUTO_AUTO);
3642 if (x86_iommu->dt_supported) {
3643 s->ecap |= VTD_ECAP_DT;
3646 if (x86_iommu->pt_supported) {
3647 s->ecap |= VTD_ECAP_PT;
3650 if (s->caching_mode) {
3651 s->cap |= VTD_CAP_CM;
3654 /* TODO: read cap/ecap from host to decide which cap to be exposed. */
3655 if (s->scalable_mode) {
3656 s->ecap |= VTD_ECAP_SMTS | VTD_ECAP_SRS | VTD_ECAP_SLTS;
3659 vtd_reset_caches(s);
3661 /* Define registers with default values and bit semantics */
3662 vtd_define_long(s, DMAR_VER_REG, 0x10UL, 0, 0);
3663 vtd_define_quad(s, DMAR_CAP_REG, s->cap, 0, 0);
3664 vtd_define_quad(s, DMAR_ECAP_REG, s->ecap, 0, 0);
3665 vtd_define_long(s, DMAR_GCMD_REG, 0, 0xff800000UL, 0);
3666 vtd_define_long_wo(s, DMAR_GCMD_REG, 0xff800000UL);
3667 vtd_define_long(s, DMAR_GSTS_REG, 0, 0, 0);
3668 vtd_define_quad(s, DMAR_RTADDR_REG, 0, 0xfffffffffffffc00ULL, 0);
3669 vtd_define_quad(s, DMAR_CCMD_REG, 0, 0xe0000003ffffffffULL, 0);
3670 vtd_define_quad_wo(s, DMAR_CCMD_REG, 0x3ffff0000ULL);
3672 /* Advanced Fault Logging not supported */
3673 vtd_define_long(s, DMAR_FSTS_REG, 0, 0, 0x11UL);
3674 vtd_define_long(s, DMAR_FECTL_REG, 0x80000000UL, 0x80000000UL, 0);
3675 vtd_define_long(s, DMAR_FEDATA_REG, 0, 0x0000ffffUL, 0);
3676 vtd_define_long(s, DMAR_FEADDR_REG, 0, 0xfffffffcUL, 0);
3678 /* Treated as RsvdZ when EIM in ECAP_REG is not supported
3679 * vtd_define_long(s, DMAR_FEUADDR_REG, 0, 0xffffffffUL, 0);
3681 vtd_define_long(s, DMAR_FEUADDR_REG, 0, 0, 0);
3683 /* Treated as RO for implementations that PLMR and PHMR fields reported
3684 * as Clear in the CAP_REG.
3685 * vtd_define_long(s, DMAR_PMEN_REG, 0, 0x80000000UL, 0);
3687 vtd_define_long(s, DMAR_PMEN_REG, 0, 0, 0);
3689 vtd_define_quad(s, DMAR_IQH_REG, 0, 0, 0);
3690 vtd_define_quad(s, DMAR_IQT_REG, 0, 0x7fff0ULL, 0);
3691 vtd_define_quad(s, DMAR_IQA_REG, 0, 0xfffffffffffff807ULL, 0);
3692 vtd_define_long(s, DMAR_ICS_REG, 0, 0, 0x1UL);
3693 vtd_define_long(s, DMAR_IECTL_REG, 0x80000000UL, 0x80000000UL, 0);
3694 vtd_define_long(s, DMAR_IEDATA_REG, 0, 0xffffffffUL, 0);
3695 vtd_define_long(s, DMAR_IEADDR_REG, 0, 0xfffffffcUL, 0);
3696 /* Treadted as RsvdZ when EIM in ECAP_REG is not supported */
3697 vtd_define_long(s, DMAR_IEUADDR_REG, 0, 0, 0);
3699 /* IOTLB registers */
3700 vtd_define_quad(s, DMAR_IOTLB_REG, 0, 0Xb003ffff00000000ULL, 0);
3701 vtd_define_quad(s, DMAR_IVA_REG, 0, 0xfffffffffffff07fULL, 0);
3702 vtd_define_quad_wo(s, DMAR_IVA_REG, 0xfffffffffffff07fULL);
3704 /* Fault Recording Registers, 128-bit */
3705 vtd_define_quad(s, DMAR_FRCD_REG_0_0, 0, 0, 0);
3706 vtd_define_quad(s, DMAR_FRCD_REG_0_2, 0, 0, 0x8000000000000000ULL);
3709 * Interrupt remapping registers.
3711 vtd_define_quad(s, DMAR_IRTA_REG, 0, 0xfffffffffffff80fULL, 0);
3714 /* Should not reset address_spaces when reset because devices will still use
3715 * the address space they got at first (won't ask the bus again).
3717 static void vtd_reset(DeviceState *dev)
3719 IntelIOMMUState *s = INTEL_IOMMU_DEVICE(dev);
3721 vtd_init(s);
3722 vtd_address_space_refresh_all(s);
3725 static AddressSpace *vtd_host_dma_iommu(PCIBus *bus, void *opaque, int devfn)
3727 IntelIOMMUState *s = opaque;
3728 VTDAddressSpace *vtd_as;
3730 assert(0 <= devfn && devfn < PCI_DEVFN_MAX);
3732 vtd_as = vtd_find_add_as(s, bus, devfn);
3733 return &vtd_as->as;
3736 static bool vtd_decide_config(IntelIOMMUState *s, Error **errp)
3738 X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
3740 if (s->intr_eim == ON_OFF_AUTO_ON && !x86_iommu_ir_supported(x86_iommu)) {
3741 error_setg(errp, "eim=on cannot be selected without intremap=on");
3742 return false;
3745 if (s->intr_eim == ON_OFF_AUTO_AUTO) {
3746 s->intr_eim = (kvm_irqchip_in_kernel() || s->buggy_eim)
3747 && x86_iommu_ir_supported(x86_iommu) ?
3748 ON_OFF_AUTO_ON : ON_OFF_AUTO_OFF;
3750 if (s->intr_eim == ON_OFF_AUTO_ON && !s->buggy_eim) {
3751 if (!kvm_irqchip_in_kernel()) {
3752 error_setg(errp, "eim=on requires accel=kvm,kernel-irqchip=split");
3753 return false;
3755 if (!kvm_enable_x2apic()) {
3756 error_setg(errp, "eim=on requires support on the KVM side"
3757 "(X2APIC_API, first shipped in v4.7)");
3758 return false;
3762 /* Currently only address widths supported are 39 and 48 bits */
3763 if ((s->aw_bits != VTD_HOST_AW_39BIT) &&
3764 (s->aw_bits != VTD_HOST_AW_48BIT)) {
3765 error_setg(errp, "Supported values for aw-bits are: %d, %d",
3766 VTD_HOST_AW_39BIT, VTD_HOST_AW_48BIT);
3767 return false;
3770 if (s->scalable_mode && !s->dma_drain) {
3771 error_setg(errp, "Need to set dma_drain for scalable mode");
3772 return false;
3775 return true;
3778 static int vtd_machine_done_notify_one(Object *child, void *unused)
3780 IntelIOMMUState *iommu = INTEL_IOMMU_DEVICE(x86_iommu_get_default());
3783 * We hard-coded here because vfio-pci is the only special case
3784 * here. Let's be more elegant in the future when we can, but so
3785 * far there seems to be no better way.
3787 if (object_dynamic_cast(child, "vfio-pci") && !iommu->caching_mode) {
3788 vtd_panic_require_caching_mode();
3791 return 0;
3794 static void vtd_machine_done_hook(Notifier *notifier, void *unused)
3796 object_child_foreach_recursive(object_get_root(),
3797 vtd_machine_done_notify_one, NULL);
3800 static Notifier vtd_machine_done_notify = {
3801 .notify = vtd_machine_done_hook,
3804 static void vtd_realize(DeviceState *dev, Error **errp)
3806 MachineState *ms = MACHINE(qdev_get_machine());
3807 PCMachineState *pcms = PC_MACHINE(ms);
3808 X86MachineState *x86ms = X86_MACHINE(ms);
3809 PCIBus *bus = pcms->bus;
3810 IntelIOMMUState *s = INTEL_IOMMU_DEVICE(dev);
3811 X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(dev);
3813 x86_iommu->type = TYPE_INTEL;
3815 if (!vtd_decide_config(s, errp)) {
3816 return;
3819 QLIST_INIT(&s->vtd_as_with_notifiers);
3820 qemu_mutex_init(&s->iommu_lock);
3821 memset(s->vtd_as_by_bus_num, 0, sizeof(s->vtd_as_by_bus_num));
3822 memory_region_init_io(&s->csrmem, OBJECT(s), &vtd_mem_ops, s,
3823 "intel_iommu", DMAR_REG_SIZE);
3825 /* Create the shared memory regions by all devices */
3826 memory_region_init(&s->mr_nodmar, OBJECT(s), "vtd-nodmar",
3827 UINT64_MAX);
3828 memory_region_init_io(&s->mr_ir, OBJECT(s), &vtd_mem_ir_ops,
3829 s, "vtd-ir", VTD_INTERRUPT_ADDR_SIZE);
3830 memory_region_init_alias(&s->mr_sys_alias, OBJECT(s),
3831 "vtd-sys-alias", get_system_memory(), 0,
3832 memory_region_size(get_system_memory()));
3833 memory_region_add_subregion_overlap(&s->mr_nodmar, 0,
3834 &s->mr_sys_alias, 0);
3835 memory_region_add_subregion_overlap(&s->mr_nodmar,
3836 VTD_INTERRUPT_ADDR_FIRST,
3837 &s->mr_ir, 1);
3839 sysbus_init_mmio(SYS_BUS_DEVICE(s), &s->csrmem);
3840 /* No corresponding destroy */
3841 s->iotlb = g_hash_table_new_full(vtd_uint64_hash, vtd_uint64_equal,
3842 g_free, g_free);
3843 s->vtd_as_by_busptr = g_hash_table_new_full(vtd_uint64_hash, vtd_uint64_equal,
3844 g_free, g_free);
3845 vtd_init(s);
3846 sysbus_mmio_map(SYS_BUS_DEVICE(s), 0, Q35_HOST_BRIDGE_IOMMU_ADDR);
3847 pci_setup_iommu(bus, vtd_host_dma_iommu, dev);
3848 /* Pseudo address space under root PCI bus. */
3849 x86ms->ioapic_as = vtd_host_dma_iommu(bus, s, Q35_PSEUDO_DEVFN_IOAPIC);
3850 qemu_add_machine_init_done_notifier(&vtd_machine_done_notify);
3853 static void vtd_class_init(ObjectClass *klass, void *data)
3855 DeviceClass *dc = DEVICE_CLASS(klass);
3856 X86IOMMUClass *x86_class = X86_IOMMU_DEVICE_CLASS(klass);
3858 dc->reset = vtd_reset;
3859 dc->vmsd = &vtd_vmstate;
3860 device_class_set_props(dc, vtd_properties);
3861 dc->hotpluggable = false;
3862 x86_class->realize = vtd_realize;
3863 x86_class->int_remap = vtd_int_remap;
3864 /* Supported by the pc-q35-* machine types */
3865 dc->user_creatable = true;
3866 set_bit(DEVICE_CATEGORY_MISC, dc->categories);
3867 dc->desc = "Intel IOMMU (VT-d) DMA Remapping device";
3870 static const TypeInfo vtd_info = {
3871 .name = TYPE_INTEL_IOMMU_DEVICE,
3872 .parent = TYPE_X86_IOMMU_DEVICE,
3873 .instance_size = sizeof(IntelIOMMUState),
3874 .class_init = vtd_class_init,
3877 static void vtd_iommu_memory_region_class_init(ObjectClass *klass,
3878 void *data)
3880 IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_CLASS(klass);
3882 imrc->translate = vtd_iommu_translate;
3883 imrc->notify_flag_changed = vtd_iommu_notify_flag_changed;
3884 imrc->replay = vtd_iommu_replay;
3887 static const TypeInfo vtd_iommu_memory_region_info = {
3888 .parent = TYPE_IOMMU_MEMORY_REGION,
3889 .name = TYPE_INTEL_IOMMU_MEMORY_REGION,
3890 .class_init = vtd_iommu_memory_region_class_init,
3893 static void vtd_register_types(void)
3895 type_register_static(&vtd_info);
3896 type_register_static(&vtd_iommu_memory_region_info);
3899 type_init(vtd_register_types)