target/arm: Use TRANS_FEAT for RAX1
[qemu/ar7.git] / hw / i386 / fw_cfg.c
bloba283785a8de4db1d98ac0b9218e5a05c9e0dc646
1 /*
2 * QEMU fw_cfg helpers (X86 specific)
4 * Copyright (c) 2019 Red Hat, Inc.
6 * Author:
7 * Philippe Mathieu-Daudé <philmd@redhat.com>
9 * SPDX-License-Identifier: GPL-2.0-or-later
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
15 #include "qemu/osdep.h"
16 #include "sysemu/numa.h"
17 #include "hw/acpi/acpi.h"
18 #include "hw/acpi/aml-build.h"
19 #include "hw/firmware/smbios.h"
20 #include "hw/i386/fw_cfg.h"
21 #include "hw/timer/hpet.h"
22 #include "hw/nvram/fw_cfg.h"
23 #include "e820_memory_layout.h"
24 #include "kvm/kvm_i386.h"
25 #include "qapi/error.h"
26 #include CONFIG_DEVICES
28 struct hpet_fw_config hpet_cfg = {.count = UINT8_MAX};
30 const char *fw_cfg_arch_key_name(uint16_t key)
32 static const struct {
33 uint16_t key;
34 const char *name;
35 } fw_cfg_arch_wellknown_keys[] = {
36 {FW_CFG_ACPI_TABLES, "acpi_tables"},
37 {FW_CFG_SMBIOS_ENTRIES, "smbios_entries"},
38 {FW_CFG_IRQ0_OVERRIDE, "irq0_override"},
39 {FW_CFG_E820_TABLE, "e820_table"},
40 {FW_CFG_HPET, "hpet"},
43 for (size_t i = 0; i < ARRAY_SIZE(fw_cfg_arch_wellknown_keys); i++) {
44 if (fw_cfg_arch_wellknown_keys[i].key == key) {
45 return fw_cfg_arch_wellknown_keys[i].name;
48 return NULL;
51 void fw_cfg_build_smbios(MachineState *ms, FWCfgState *fw_cfg)
53 #ifdef CONFIG_SMBIOS
54 uint8_t *smbios_tables, *smbios_anchor;
55 size_t smbios_tables_len, smbios_anchor_len;
56 struct smbios_phys_mem_area *mem_array;
57 unsigned i, array_count;
58 X86CPU *cpu = X86_CPU(ms->possible_cpus->cpus[0].cpu);
60 /* tell smbios about cpuid version and features */
61 smbios_set_cpuid(cpu->env.cpuid_version, cpu->env.features[FEAT_1_EDX]);
63 smbios_tables = smbios_get_table_legacy(ms, &smbios_tables_len);
64 if (smbios_tables) {
65 fw_cfg_add_bytes(fw_cfg, FW_CFG_SMBIOS_ENTRIES,
66 smbios_tables, smbios_tables_len);
69 /* build the array of physical mem area from e820 table */
70 mem_array = g_malloc0(sizeof(*mem_array) * e820_get_num_entries());
71 for (i = 0, array_count = 0; i < e820_get_num_entries(); i++) {
72 uint64_t addr, len;
74 if (e820_get_entry(i, E820_RAM, &addr, &len)) {
75 mem_array[array_count].address = addr;
76 mem_array[array_count].length = len;
77 array_count++;
80 smbios_get_tables(ms, mem_array, array_count,
81 &smbios_tables, &smbios_tables_len,
82 &smbios_anchor, &smbios_anchor_len,
83 &error_fatal);
84 g_free(mem_array);
86 if (smbios_anchor) {
87 fw_cfg_add_file(fw_cfg, "etc/smbios/smbios-tables",
88 smbios_tables, smbios_tables_len);
89 fw_cfg_add_file(fw_cfg, "etc/smbios/smbios-anchor",
90 smbios_anchor, smbios_anchor_len);
92 #endif
95 FWCfgState *fw_cfg_arch_create(MachineState *ms,
96 uint16_t boot_cpus,
97 uint16_t apic_id_limit)
99 FWCfgState *fw_cfg;
100 uint64_t *numa_fw_cfg;
101 int i;
102 MachineClass *mc = MACHINE_GET_CLASS(ms);
103 const CPUArchIdList *cpus = mc->possible_cpu_arch_ids(ms);
104 int nb_numa_nodes = ms->numa_state->num_nodes;
106 fw_cfg = fw_cfg_init_io_dma(FW_CFG_IO_BASE, FW_CFG_IO_BASE + 4,
107 &address_space_memory);
108 fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, boot_cpus);
110 /* FW_CFG_MAX_CPUS is a bit confusing/problematic on x86:
112 * For machine types prior to 1.8, SeaBIOS needs FW_CFG_MAX_CPUS for
113 * building MPTable, ACPI MADT, ACPI CPU hotplug and ACPI SRAT table,
114 * that tables are based on xAPIC ID and QEMU<->SeaBIOS interface
115 * for CPU hotplug also uses APIC ID and not "CPU index".
116 * This means that FW_CFG_MAX_CPUS is not the "maximum number of CPUs",
117 * but the "limit to the APIC ID values SeaBIOS may see".
119 * So for compatibility reasons with old BIOSes we are stuck with
120 * "etc/max-cpus" actually being apic_id_limit
122 fw_cfg_add_i16(fw_cfg, FW_CFG_MAX_CPUS, apic_id_limit);
123 fw_cfg_add_i64(fw_cfg, FW_CFG_RAM_SIZE, ms->ram_size);
124 #ifdef CONFIG_ACPI
125 fw_cfg_add_bytes(fw_cfg, FW_CFG_ACPI_TABLES,
126 acpi_tables, acpi_tables_len);
127 #endif
128 fw_cfg_add_i32(fw_cfg, FW_CFG_IRQ0_OVERRIDE, 1);
130 fw_cfg_add_bytes(fw_cfg, FW_CFG_E820_TABLE,
131 &e820_reserve, sizeof(e820_reserve));
132 fw_cfg_add_file(fw_cfg, "etc/e820", e820_table,
133 sizeof(struct e820_entry) * e820_get_num_entries());
135 fw_cfg_add_bytes(fw_cfg, FW_CFG_HPET, &hpet_cfg, sizeof(hpet_cfg));
136 /* allocate memory for the NUMA channel: one (64bit) word for the number
137 * of nodes, one word for each VCPU->node and one word for each node to
138 * hold the amount of memory.
140 numa_fw_cfg = g_new0(uint64_t, 1 + apic_id_limit + nb_numa_nodes);
141 numa_fw_cfg[0] = cpu_to_le64(nb_numa_nodes);
142 for (i = 0; i < cpus->len; i++) {
143 unsigned int apic_id = cpus->cpus[i].arch_id;
144 assert(apic_id < apic_id_limit);
145 numa_fw_cfg[apic_id + 1] = cpu_to_le64(cpus->cpus[i].props.node_id);
147 for (i = 0; i < nb_numa_nodes; i++) {
148 numa_fw_cfg[apic_id_limit + 1 + i] =
149 cpu_to_le64(ms->numa_state->nodes[i].node_mem);
151 fw_cfg_add_bytes(fw_cfg, FW_CFG_NUMA, numa_fw_cfg,
152 (1 + apic_id_limit + nb_numa_nodes) *
153 sizeof(*numa_fw_cfg));
155 return fw_cfg;
158 void fw_cfg_build_feature_control(MachineState *ms, FWCfgState *fw_cfg)
160 X86CPU *cpu = X86_CPU(ms->possible_cpus->cpus[0].cpu);
161 CPUX86State *env = &cpu->env;
162 uint32_t unused, ebx, ecx, edx;
163 uint64_t feature_control_bits = 0;
164 uint64_t *val;
166 cpu_x86_cpuid(env, 1, 0, &unused, &unused, &ecx, &edx);
167 if (ecx & CPUID_EXT_VMX) {
168 feature_control_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
171 if ((edx & (CPUID_EXT2_MCE | CPUID_EXT2_MCA)) ==
172 (CPUID_EXT2_MCE | CPUID_EXT2_MCA) &&
173 (env->mcg_cap & MCG_LMCE_P)) {
174 feature_control_bits |= FEATURE_CONTROL_LMCE;
177 if (env->cpuid_level >= 7) {
178 cpu_x86_cpuid(env, 0x7, 0, &unused, &ebx, &ecx, &unused);
179 if (ebx & CPUID_7_0_EBX_SGX) {
180 feature_control_bits |= FEATURE_CONTROL_SGX;
182 if (ecx & CPUID_7_0_ECX_SGX_LC) {
183 feature_control_bits |= FEATURE_CONTROL_SGX_LC;
187 if (!feature_control_bits) {
188 return;
191 val = g_malloc(sizeof(*val));
192 *val = cpu_to_le64(feature_control_bits | FEATURE_CONTROL_LOCKED);
193 fw_cfg_add_file(fw_cfg, "etc/msr_feature_control", val, sizeof(*val));
196 void fw_cfg_add_acpi_dsdt(Aml *scope, FWCfgState *fw_cfg)
199 * when using port i/o, the 8-bit data register *always* overlaps
200 * with half of the 16-bit control register. Hence, the total size
201 * of the i/o region used is FW_CFG_CTL_SIZE; when using DMA, the
202 * DMA control register is located at FW_CFG_DMA_IO_BASE + 4
204 Object *obj = OBJECT(fw_cfg);
205 uint8_t io_size = object_property_get_bool(obj, "dma_enabled", NULL) ?
206 ROUND_UP(FW_CFG_CTL_SIZE, 4) + sizeof(dma_addr_t) :
207 FW_CFG_CTL_SIZE;
208 Aml *dev = aml_device("FWCF");
209 Aml *crs = aml_resource_template();
211 aml_append(dev, aml_name_decl("_HID", aml_string("QEMU0002")));
213 /* device present, functioning, decoding, not shown in UI */
214 aml_append(dev, aml_name_decl("_STA", aml_int(0xB)));
216 aml_append(crs,
217 aml_io(AML_DECODE16, FW_CFG_IO_BASE, FW_CFG_IO_BASE, 0x01, io_size));
219 aml_append(dev, aml_name_decl("_CRS", crs));
220 aml_append(scope, dev);