tests/docker: use debian-all-test-cross for riscv64
[qemu/ar7.git] / hw / block / m25p80.c
blobafc3fdf4d60b16a5720b53fcd0d43c409495a886
1 /*
2 * ST M25P80 emulator. Emulate all SPI flash devices based on the m25p80 command
3 * set. Known devices table current as of Jun/2012 and taken from linux.
4 * See drivers/mtd/devices/m25p80.c.
6 * Copyright (C) 2011 Edgar E. Iglesias <edgar.iglesias@gmail.com>
7 * Copyright (C) 2012 Peter A. G. Crosthwaite <peter.crosthwaite@petalogix.com>
8 * Copyright (C) 2012 PetaLogix
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License as
12 * published by the Free Software Foundation; either version 2 or
13 * (at your option) a later version of the License.
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
20 * You should have received a copy of the GNU General Public License along
21 * with this program; if not, see <http://www.gnu.org/licenses/>.
24 #include "qemu/osdep.h"
25 #include "qemu/units.h"
26 #include "sysemu/block-backend.h"
27 #include "hw/block/block.h"
28 #include "hw/block/flash.h"
29 #include "hw/qdev-properties.h"
30 #include "hw/qdev-properties-system.h"
31 #include "hw/ssi/ssi.h"
32 #include "migration/vmstate.h"
33 #include "qemu/bitops.h"
34 #include "qemu/log.h"
35 #include "qemu/module.h"
36 #include "qemu/error-report.h"
37 #include "qapi/error.h"
38 #include "trace.h"
39 #include "qom/object.h"
40 #include "m25p80_sfdp.h"
42 /* 16 MiB max in 3 byte address mode */
43 #define MAX_3BYTES_SIZE 0x1000000
44 #define SPI_NOR_MAX_ID_LEN 6
46 /* Fields for FlashPartInfo->flags */
47 enum spi_flash_option_flags {
48 ER_4K = BIT(0),
49 ER_32K = BIT(1),
50 EEPROM = BIT(2),
51 HAS_SR_TB = BIT(3),
52 HAS_SR_BP3_BIT6 = BIT(4),
55 typedef struct FlashPartInfo {
56 const char *part_name;
58 * This array stores the ID bytes.
59 * The first three bytes are the JEDIC ID.
60 * JEDEC ID zero means "no ID" (mostly older chips).
62 uint8_t id[SPI_NOR_MAX_ID_LEN];
63 uint8_t id_len;
64 /* there is confusion between manufacturers as to what a sector is. In this
65 * device model, a "sector" is the size that is erased by the ERASE_SECTOR
66 * command (opcode 0xd8).
68 uint32_t sector_size;
69 uint32_t n_sectors;
70 uint32_t page_size;
71 uint16_t flags;
73 * Big sized spi nor are often stacked devices, thus sometime
74 * replace chip erase with die erase.
75 * This field inform how many die is in the chip.
77 uint8_t die_cnt;
78 uint8_t (*sfdp_read)(uint32_t sfdp_addr);
79 } FlashPartInfo;
81 /* adapted from linux */
82 /* Used when the "_ext_id" is two bytes at most */
83 #define INFO(_part_name, _jedec_id, _ext_id, _sector_size, _n_sectors, _flags)\
84 .part_name = _part_name,\
85 .id = {\
86 ((_jedec_id) >> 16) & 0xff,\
87 ((_jedec_id) >> 8) & 0xff,\
88 (_jedec_id) & 0xff,\
89 ((_ext_id) >> 8) & 0xff,\
90 (_ext_id) & 0xff,\
91 },\
92 .id_len = (!(_jedec_id) ? 0 : (3 + ((_ext_id) ? 2 : 0))),\
93 .sector_size = (_sector_size),\
94 .n_sectors = (_n_sectors),\
95 .page_size = 256,\
96 .flags = (_flags),\
97 .die_cnt = 0
99 #define INFO6(_part_name, _jedec_id, _ext_id, _sector_size, _n_sectors, _flags)\
100 .part_name = _part_name,\
101 .id = {\
102 ((_jedec_id) >> 16) & 0xff,\
103 ((_jedec_id) >> 8) & 0xff,\
104 (_jedec_id) & 0xff,\
105 ((_ext_id) >> 16) & 0xff,\
106 ((_ext_id) >> 8) & 0xff,\
107 (_ext_id) & 0xff,\
109 .id_len = 6,\
110 .sector_size = (_sector_size),\
111 .n_sectors = (_n_sectors),\
112 .page_size = 256,\
113 .flags = (_flags),\
114 .die_cnt = 0
116 #define INFO_STACKED(_part_name, _jedec_id, _ext_id, _sector_size, _n_sectors,\
117 _flags, _die_cnt)\
118 .part_name = _part_name,\
119 .id = {\
120 ((_jedec_id) >> 16) & 0xff,\
121 ((_jedec_id) >> 8) & 0xff,\
122 (_jedec_id) & 0xff,\
123 ((_ext_id) >> 8) & 0xff,\
124 (_ext_id) & 0xff,\
126 .id_len = (!(_jedec_id) ? 0 : (3 + ((_ext_id) ? 2 : 0))),\
127 .sector_size = (_sector_size),\
128 .n_sectors = (_n_sectors),\
129 .page_size = 256,\
130 .flags = (_flags),\
131 .die_cnt = _die_cnt
133 #define JEDEC_NUMONYX 0x20
134 #define JEDEC_WINBOND 0xEF
135 #define JEDEC_SPANSION 0x01
137 /* Numonyx (Micron) Configuration register macros */
138 #define VCFG_DUMMY 0x1
139 #define VCFG_WRAP_SEQUENTIAL 0x2
140 #define NVCFG_XIP_MODE_DISABLED (7 << 9)
141 #define NVCFG_XIP_MODE_MASK (7 << 9)
142 #define VCFG_XIP_MODE_DISABLED (1 << 3)
143 #define CFG_DUMMY_CLK_LEN 4
144 #define NVCFG_DUMMY_CLK_POS 12
145 #define VCFG_DUMMY_CLK_POS 4
146 #define EVCFG_OUT_DRIVER_STRENGTH_DEF 7
147 #define EVCFG_VPP_ACCELERATOR (1 << 3)
148 #define EVCFG_RESET_HOLD_ENABLED (1 << 4)
149 #define NVCFG_DUAL_IO_MASK (1 << 2)
150 #define EVCFG_DUAL_IO_DISABLED (1 << 6)
151 #define NVCFG_QUAD_IO_MASK (1 << 3)
152 #define EVCFG_QUAD_IO_DISABLED (1 << 7)
153 #define NVCFG_4BYTE_ADDR_MASK (1 << 0)
154 #define NVCFG_LOWER_SEGMENT_MASK (1 << 1)
156 /* Numonyx (Micron) Flag Status Register macros */
157 #define FSR_4BYTE_ADDR_MODE_ENABLED 0x1
158 #define FSR_FLASH_READY (1 << 7)
160 /* Spansion configuration registers macros. */
161 #define SPANSION_QUAD_CFG_POS 0
162 #define SPANSION_QUAD_CFG_LEN 1
163 #define SPANSION_DUMMY_CLK_POS 0
164 #define SPANSION_DUMMY_CLK_LEN 4
165 #define SPANSION_ADDR_LEN_POS 7
166 #define SPANSION_ADDR_LEN_LEN 1
169 * Spansion read mode command length in bytes,
170 * the mode is currently not supported.
173 #define SPANSION_CONTINUOUS_READ_MODE_CMD_LEN 1
174 #define WINBOND_CONTINUOUS_READ_MODE_CMD_LEN 1
176 static const FlashPartInfo known_devices[] = {
177 /* Atmel -- some are (confusingly) marketed as "DataFlash" */
178 { INFO("at25fs010", 0x1f6601, 0, 32 << 10, 4, ER_4K) },
179 { INFO("at25fs040", 0x1f6604, 0, 64 << 10, 8, ER_4K) },
181 { INFO("at25df041a", 0x1f4401, 0, 64 << 10, 8, ER_4K) },
182 { INFO("at25df321a", 0x1f4701, 0, 64 << 10, 64, ER_4K) },
183 { INFO("at25df641", 0x1f4800, 0, 64 << 10, 128, ER_4K) },
185 { INFO("at26f004", 0x1f0400, 0, 64 << 10, 8, ER_4K) },
186 { INFO("at26df081a", 0x1f4501, 0, 64 << 10, 16, ER_4K) },
187 { INFO("at26df161a", 0x1f4601, 0, 64 << 10, 32, ER_4K) },
188 { INFO("at26df321", 0x1f4700, 0, 64 << 10, 64, ER_4K) },
190 { INFO("at45db081d", 0x1f2500, 0, 64 << 10, 16, ER_4K) },
192 /* Atmel EEPROMS - it is assumed, that don't care bit in command
193 * is set to 0. Block protection is not supported.
195 { INFO("at25128a-nonjedec", 0x0, 0, 1, 131072, EEPROM) },
196 { INFO("at25256a-nonjedec", 0x0, 0, 1, 262144, EEPROM) },
198 /* EON -- en25xxx */
199 { INFO("en25f32", 0x1c3116, 0, 64 << 10, 64, ER_4K) },
200 { INFO("en25p32", 0x1c2016, 0, 64 << 10, 64, 0) },
201 { INFO("en25q32b", 0x1c3016, 0, 64 << 10, 64, 0) },
202 { INFO("en25p64", 0x1c2017, 0, 64 << 10, 128, 0) },
203 { INFO("en25q64", 0x1c3017, 0, 64 << 10, 128, ER_4K) },
205 /* GigaDevice */
206 { INFO("gd25q32", 0xc84016, 0, 64 << 10, 64, ER_4K) },
207 { INFO("gd25q64", 0xc84017, 0, 64 << 10, 128, ER_4K) },
209 /* Intel/Numonyx -- xxxs33b */
210 { INFO("160s33b", 0x898911, 0, 64 << 10, 32, 0) },
211 { INFO("320s33b", 0x898912, 0, 64 << 10, 64, 0) },
212 { INFO("640s33b", 0x898913, 0, 64 << 10, 128, 0) },
213 { INFO("n25q064", 0x20ba17, 0, 64 << 10, 128, 0) },
215 /* ISSI */
216 { INFO("is25lq040b", 0x9d4013, 0, 64 << 10, 8, ER_4K) },
217 { INFO("is25lp080d", 0x9d6014, 0, 64 << 10, 16, ER_4K) },
218 { INFO("is25lp016d", 0x9d6015, 0, 64 << 10, 32, ER_4K) },
219 { INFO("is25lp032", 0x9d6016, 0, 64 << 10, 64, ER_4K) },
220 { INFO("is25lp064", 0x9d6017, 0, 64 << 10, 128, ER_4K) },
221 { INFO("is25lp128", 0x9d6018, 0, 64 << 10, 256, ER_4K) },
222 { INFO("is25lp256", 0x9d6019, 0, 64 << 10, 512, ER_4K) },
223 { INFO("is25wp032", 0x9d7016, 0, 64 << 10, 64, ER_4K) },
224 { INFO("is25wp064", 0x9d7017, 0, 64 << 10, 128, ER_4K) },
225 { INFO("is25wp128", 0x9d7018, 0, 64 << 10, 256, ER_4K) },
226 { INFO("is25wp256", 0x9d7019, 0, 64 << 10, 512, ER_4K),
227 .sfdp_read = m25p80_sfdp_is25wp256 },
229 /* Macronix */
230 { INFO("mx25l2005a", 0xc22012, 0, 64 << 10, 4, ER_4K) },
231 { INFO("mx25l4005a", 0xc22013, 0, 64 << 10, 8, ER_4K) },
232 { INFO("mx25l8005", 0xc22014, 0, 64 << 10, 16, 0) },
233 { INFO("mx25l1606e", 0xc22015, 0, 64 << 10, 32, ER_4K) },
234 { INFO("mx25l3205d", 0xc22016, 0, 64 << 10, 64, 0) },
235 { INFO("mx25l6405d", 0xc22017, 0, 64 << 10, 128, 0) },
236 { INFO("mx25l12805d", 0xc22018, 0, 64 << 10, 256, 0) },
237 { INFO("mx25l12855e", 0xc22618, 0, 64 << 10, 256, 0) },
238 { INFO6("mx25l25635e", 0xc22019, 0xc22019, 64 << 10, 512,
239 ER_4K | ER_32K), .sfdp_read = m25p80_sfdp_mx25l25635e },
240 { INFO6("mx25l25635f", 0xc22019, 0xc22019, 64 << 10, 512,
241 ER_4K | ER_32K), .sfdp_read = m25p80_sfdp_mx25l25635f },
242 { INFO("mx25l25655e", 0xc22619, 0, 64 << 10, 512, 0) },
243 { INFO("mx66l51235f", 0xc2201a, 0, 64 << 10, 1024, ER_4K | ER_32K) },
244 { INFO("mx66u51235f", 0xc2253a, 0, 64 << 10, 1024, ER_4K | ER_32K) },
245 { INFO("mx66u1g45g", 0xc2253b, 0, 64 << 10, 2048, ER_4K | ER_32K) },
246 { INFO("mx66l1g45g", 0xc2201b, 0, 64 << 10, 2048, ER_4K | ER_32K),
247 .sfdp_read = m25p80_sfdp_mx66l1g45g },
249 /* Micron */
250 { INFO("n25q032a11", 0x20bb16, 0, 64 << 10, 64, ER_4K) },
251 { INFO("n25q032a13", 0x20ba16, 0, 64 << 10, 64, ER_4K) },
252 { INFO("n25q064a11", 0x20bb17, 0, 64 << 10, 128, ER_4K) },
253 { INFO("n25q064a13", 0x20ba17, 0, 64 << 10, 128, ER_4K) },
254 { INFO("n25q128a11", 0x20bb18, 0, 64 << 10, 256, ER_4K) },
255 { INFO("n25q128a13", 0x20ba18, 0, 64 << 10, 256, ER_4K) },
256 { INFO("n25q256a11", 0x20bb19, 0, 64 << 10, 512, ER_4K) },
257 { INFO("n25q256a13", 0x20ba19, 0, 64 << 10, 512, ER_4K),
258 .sfdp_read = m25p80_sfdp_n25q256a },
259 { INFO("n25q512a11", 0x20bb20, 0, 64 << 10, 1024, ER_4K) },
260 { INFO("n25q512a13", 0x20ba20, 0, 64 << 10, 1024, ER_4K) },
261 { INFO("n25q128", 0x20ba18, 0, 64 << 10, 256, 0) },
262 { INFO("n25q256a", 0x20ba19, 0, 64 << 10, 512,
263 ER_4K | HAS_SR_BP3_BIT6 | HAS_SR_TB),
264 .sfdp_read = m25p80_sfdp_n25q256a },
265 { INFO("n25q512a", 0x20ba20, 0, 64 << 10, 1024, ER_4K) },
266 { INFO("n25q512ax3", 0x20ba20, 0x1000, 64 << 10, 1024, ER_4K) },
267 { INFO("mt25ql512ab", 0x20ba20, 0x1044, 64 << 10, 1024, ER_4K | ER_32K) },
268 { INFO_STACKED("mt35xu01g", 0x2c5b1b, 0x104100, 128 << 10, 1024,
269 ER_4K | ER_32K, 2) },
270 { INFO_STACKED("n25q00", 0x20ba21, 0x1000, 64 << 10, 2048, ER_4K, 4) },
271 { INFO_STACKED("n25q00a", 0x20bb21, 0x1000, 64 << 10, 2048, ER_4K, 4) },
272 { INFO_STACKED("mt25ql01g", 0x20ba21, 0x1040, 64 << 10, 2048, ER_4K, 2) },
273 { INFO_STACKED("mt25qu01g", 0x20bb21, 0x1040, 64 << 10, 2048, ER_4K, 2) },
274 { INFO_STACKED("mt25ql02g", 0x20ba22, 0x1040, 64 << 10, 4096, ER_4K | ER_32K, 2) },
275 { INFO_STACKED("mt25qu02g", 0x20bb22, 0x1040, 64 << 10, 4096, ER_4K | ER_32K, 2) },
277 /* Spansion -- single (large) sector size only, at least
278 * for the chips listed here (without boot sectors).
280 { INFO("s25sl032p", 0x010215, 0x4d00, 64 << 10, 64, ER_4K) },
281 { INFO("s25sl064p", 0x010216, 0x4d00, 64 << 10, 128, ER_4K) },
282 { INFO("s25fl256s0", 0x010219, 0x4d00, 256 << 10, 128, 0) },
283 { INFO("s25fl256s1", 0x010219, 0x4d01, 64 << 10, 512, 0) },
284 { INFO6("s25fl512s", 0x010220, 0x4d0080, 256 << 10, 256, 0) },
285 { INFO6("s70fl01gs", 0x010221, 0x4d0080, 256 << 10, 512, 0) },
286 { INFO("s25sl12800", 0x012018, 0x0300, 256 << 10, 64, 0) },
287 { INFO("s25sl12801", 0x012018, 0x0301, 64 << 10, 256, 0) },
288 { INFO("s25fl129p0", 0x012018, 0x4d00, 256 << 10, 64, 0) },
289 { INFO("s25fl129p1", 0x012018, 0x4d01, 64 << 10, 256, 0) },
290 { INFO("s25sl004a", 0x010212, 0, 64 << 10, 8, 0) },
291 { INFO("s25sl008a", 0x010213, 0, 64 << 10, 16, 0) },
292 { INFO("s25sl016a", 0x010214, 0, 64 << 10, 32, 0) },
293 { INFO("s25sl032a", 0x010215, 0, 64 << 10, 64, 0) },
294 { INFO("s25sl064a", 0x010216, 0, 64 << 10, 128, 0) },
295 { INFO("s25fl016k", 0xef4015, 0, 64 << 10, 32, ER_4K | ER_32K) },
296 { INFO("s25fl064k", 0xef4017, 0, 64 << 10, 128, ER_4K | ER_32K) },
298 /* Spansion -- boot sectors support */
299 { INFO6("s25fs512s", 0x010220, 0x4d0081, 256 << 10, 256, 0) },
300 { INFO6("s70fs01gs", 0x010221, 0x4d0081, 256 << 10, 512, 0) },
302 /* SST -- large erase sizes are "overlays", "sectors" are 4<< 10 */
303 { INFO("sst25vf040b", 0xbf258d, 0, 64 << 10, 8, ER_4K) },
304 { INFO("sst25vf080b", 0xbf258e, 0, 64 << 10, 16, ER_4K) },
305 { INFO("sst25vf016b", 0xbf2541, 0, 64 << 10, 32, ER_4K) },
306 { INFO("sst25vf032b", 0xbf254a, 0, 64 << 10, 64, ER_4K) },
307 { INFO("sst25wf512", 0xbf2501, 0, 64 << 10, 1, ER_4K) },
308 { INFO("sst25wf010", 0xbf2502, 0, 64 << 10, 2, ER_4K) },
309 { INFO("sst25wf020", 0xbf2503, 0, 64 << 10, 4, ER_4K) },
310 { INFO("sst25wf040", 0xbf2504, 0, 64 << 10, 8, ER_4K) },
311 { INFO("sst25wf080", 0xbf2505, 0, 64 << 10, 16, ER_4K) },
313 /* ST Microelectronics -- newer production may have feature updates */
314 { INFO("m25p05", 0x202010, 0, 32 << 10, 2, 0) },
315 { INFO("m25p10", 0x202011, 0, 32 << 10, 4, 0) },
316 { INFO("m25p20", 0x202012, 0, 64 << 10, 4, 0) },
317 { INFO("m25p40", 0x202013, 0, 64 << 10, 8, 0) },
318 { INFO("m25p80", 0x202014, 0, 64 << 10, 16, 0) },
319 { INFO("m25p16", 0x202015, 0, 64 << 10, 32, 0) },
320 { INFO("m25p32", 0x202016, 0, 64 << 10, 64, 0) },
321 { INFO("m25p64", 0x202017, 0, 64 << 10, 128, 0) },
322 { INFO("m25p128", 0x202018, 0, 256 << 10, 64, 0) },
323 { INFO("n25q032", 0x20ba16, 0, 64 << 10, 64, 0) },
325 { INFO("m45pe10", 0x204011, 0, 64 << 10, 2, 0) },
326 { INFO("m45pe80", 0x204014, 0, 64 << 10, 16, 0) },
327 { INFO("m45pe16", 0x204015, 0, 64 << 10, 32, 0) },
329 { INFO("m25pe20", 0x208012, 0, 64 << 10, 4, 0) },
330 { INFO("m25pe80", 0x208014, 0, 64 << 10, 16, 0) },
331 { INFO("m25pe16", 0x208015, 0, 64 << 10, 32, ER_4K) },
333 { INFO("m25px32", 0x207116, 0, 64 << 10, 64, ER_4K) },
334 { INFO("m25px32-s0", 0x207316, 0, 64 << 10, 64, ER_4K) },
335 { INFO("m25px32-s1", 0x206316, 0, 64 << 10, 64, ER_4K) },
336 { INFO("m25px64", 0x207117, 0, 64 << 10, 128, 0) },
338 /* Winbond -- w25x "blocks" are 64k, "sectors" are 4KiB */
339 { INFO("w25x10", 0xef3011, 0, 64 << 10, 2, ER_4K) },
340 { INFO("w25x20", 0xef3012, 0, 64 << 10, 4, ER_4K) },
341 { INFO("w25x40", 0xef3013, 0, 64 << 10, 8, ER_4K) },
342 { INFO("w25x80", 0xef3014, 0, 64 << 10, 16, ER_4K) },
343 { INFO("w25x16", 0xef3015, 0, 64 << 10, 32, ER_4K) },
344 { INFO("w25x32", 0xef3016, 0, 64 << 10, 64, ER_4K) },
345 { INFO("w25q32", 0xef4016, 0, 64 << 10, 64, ER_4K) },
346 { INFO("w25q32dw", 0xef6016, 0, 64 << 10, 64, ER_4K) },
347 { INFO("w25x64", 0xef3017, 0, 64 << 10, 128, ER_4K) },
348 { INFO("w25q64", 0xef4017, 0, 64 << 10, 128, ER_4K) },
349 { INFO("w25q80", 0xef5014, 0, 64 << 10, 16, ER_4K) },
350 { INFO("w25q80bl", 0xef4014, 0, 64 << 10, 16, ER_4K) },
351 { INFO("w25q256", 0xef4019, 0, 64 << 10, 512, ER_4K),
352 .sfdp_read = m25p80_sfdp_w25q256 },
353 { INFO("w25q512jv", 0xef4020, 0, 64 << 10, 1024, ER_4K),
354 .sfdp_read = m25p80_sfdp_w25q512jv },
355 { INFO("w25q01jvq", 0xef4021, 0, 64 << 10, 2048, ER_4K),
356 .sfdp_read = m25p80_sfdp_w25q01jvq },
359 typedef enum {
360 NOP = 0,
361 WRSR = 0x1,
362 WRDI = 0x4,
363 RDSR = 0x5,
364 WREN = 0x6,
365 BRRD = 0x16,
366 BRWR = 0x17,
367 JEDEC_READ = 0x9f,
368 BULK_ERASE_60 = 0x60,
369 BULK_ERASE = 0xc7,
370 READ_FSR = 0x70,
371 RDCR = 0x15,
372 RDSFDP = 0x5a,
374 READ = 0x03,
375 READ4 = 0x13,
376 FAST_READ = 0x0b,
377 FAST_READ4 = 0x0c,
378 DOR = 0x3b,
379 DOR4 = 0x3c,
380 QOR = 0x6b,
381 QOR4 = 0x6c,
382 DIOR = 0xbb,
383 DIOR4 = 0xbc,
384 QIOR = 0xeb,
385 QIOR4 = 0xec,
387 PP = 0x02,
388 PP4 = 0x12,
389 PP4_4 = 0x3e,
390 DPP = 0xa2,
391 QPP = 0x32,
392 QPP_4 = 0x34,
393 RDID_90 = 0x90,
394 RDID_AB = 0xab,
395 AAI_WP = 0xad,
397 ERASE_4K = 0x20,
398 ERASE4_4K = 0x21,
399 ERASE_32K = 0x52,
400 ERASE4_32K = 0x5c,
401 ERASE_SECTOR = 0xd8,
402 ERASE4_SECTOR = 0xdc,
404 EN_4BYTE_ADDR = 0xB7,
405 EX_4BYTE_ADDR = 0xE9,
407 EXTEND_ADDR_READ = 0xC8,
408 EXTEND_ADDR_WRITE = 0xC5,
410 RESET_ENABLE = 0x66,
411 RESET_MEMORY = 0x99,
414 * Micron: 0x35 - enable QPI
415 * Spansion: 0x35 - read control register
417 RDCR_EQIO = 0x35,
418 RSTQIO = 0xf5,
420 RNVCR = 0xB5,
421 WNVCR = 0xB1,
423 RVCR = 0x85,
424 WVCR = 0x81,
426 REVCR = 0x65,
427 WEVCR = 0x61,
429 DIE_ERASE = 0xC4,
430 } FlashCMD;
432 typedef enum {
433 STATE_IDLE,
434 STATE_PAGE_PROGRAM,
435 STATE_READ,
436 STATE_COLLECTING_DATA,
437 STATE_COLLECTING_VAR_LEN_DATA,
438 STATE_READING_DATA,
439 STATE_READING_SFDP,
440 } CMDState;
442 typedef enum {
443 MAN_SPANSION,
444 MAN_MACRONIX,
445 MAN_NUMONYX,
446 MAN_WINBOND,
447 MAN_SST,
448 MAN_ISSI,
449 MAN_GENERIC,
450 } Manufacturer;
452 typedef enum {
453 MODE_STD = 0,
454 MODE_DIO = 1,
455 MODE_QIO = 2
456 } SPIMode;
458 #define M25P80_INTERNAL_DATA_BUFFER_SZ 16
460 struct Flash {
461 SSIPeripheral parent_obj;
463 BlockBackend *blk;
465 uint8_t *storage;
466 uint32_t size;
467 int page_size;
469 uint8_t state;
470 uint8_t data[M25P80_INTERNAL_DATA_BUFFER_SZ];
471 uint32_t len;
472 uint32_t pos;
473 bool data_read_loop;
474 uint8_t needed_bytes;
475 uint8_t cmd_in_progress;
476 uint32_t cur_addr;
477 uint32_t nonvolatile_cfg;
478 /* Configuration register for Macronix */
479 uint32_t volatile_cfg;
480 uint32_t enh_volatile_cfg;
481 /* Spansion cfg registers. */
482 uint8_t spansion_cr1nv;
483 uint8_t spansion_cr2nv;
484 uint8_t spansion_cr3nv;
485 uint8_t spansion_cr4nv;
486 uint8_t spansion_cr1v;
487 uint8_t spansion_cr2v;
488 uint8_t spansion_cr3v;
489 uint8_t spansion_cr4v;
490 bool wp_level;
491 bool write_enable;
492 bool four_bytes_address_mode;
493 bool reset_enable;
494 bool quad_enable;
495 bool aai_enable;
496 bool block_protect0;
497 bool block_protect1;
498 bool block_protect2;
499 bool block_protect3;
500 bool top_bottom_bit;
501 bool status_register_write_disabled;
502 uint8_t ear;
504 int64_t dirty_page;
506 const FlashPartInfo *pi;
510 struct M25P80Class {
511 SSIPeripheralClass parent_class;
512 FlashPartInfo *pi;
515 #define TYPE_M25P80 "m25p80-generic"
516 OBJECT_DECLARE_TYPE(Flash, M25P80Class, M25P80)
518 static inline Manufacturer get_man(Flash *s)
520 switch (s->pi->id[0]) {
521 case 0x20:
522 return MAN_NUMONYX;
523 case 0xEF:
524 return MAN_WINBOND;
525 case 0x01:
526 return MAN_SPANSION;
527 case 0xC2:
528 return MAN_MACRONIX;
529 case 0xBF:
530 return MAN_SST;
531 case 0x9D:
532 return MAN_ISSI;
533 default:
534 return MAN_GENERIC;
538 static void blk_sync_complete(void *opaque, int ret)
540 QEMUIOVector *iov = opaque;
542 qemu_iovec_destroy(iov);
543 g_free(iov);
545 /* do nothing. Masters do not directly interact with the backing store,
546 * only the working copy so no mutexing required.
550 static void flash_sync_page(Flash *s, int page)
552 QEMUIOVector *iov;
554 if (!s->blk || !blk_is_writable(s->blk)) {
555 return;
558 iov = g_new(QEMUIOVector, 1);
559 qemu_iovec_init(iov, 1);
560 qemu_iovec_add(iov, s->storage + page * s->pi->page_size,
561 s->pi->page_size);
562 blk_aio_pwritev(s->blk, page * s->pi->page_size, iov, 0,
563 blk_sync_complete, iov);
566 static inline void flash_sync_area(Flash *s, int64_t off, int64_t len)
568 QEMUIOVector *iov;
570 if (!s->blk || !blk_is_writable(s->blk)) {
571 return;
574 assert(!(len % BDRV_SECTOR_SIZE));
575 iov = g_new(QEMUIOVector, 1);
576 qemu_iovec_init(iov, 1);
577 qemu_iovec_add(iov, s->storage + off, len);
578 blk_aio_pwritev(s->blk, off, iov, 0, blk_sync_complete, iov);
581 static void flash_erase(Flash *s, int offset, FlashCMD cmd)
583 uint32_t len;
584 uint8_t capa_to_assert = 0;
586 switch (cmd) {
587 case ERASE_4K:
588 case ERASE4_4K:
589 len = 4 * KiB;
590 capa_to_assert = ER_4K;
591 break;
592 case ERASE_32K:
593 case ERASE4_32K:
594 len = 32 * KiB;
595 capa_to_assert = ER_32K;
596 break;
597 case ERASE_SECTOR:
598 case ERASE4_SECTOR:
599 len = s->pi->sector_size;
600 break;
601 case BULK_ERASE:
602 len = s->size;
603 break;
604 case DIE_ERASE:
605 if (s->pi->die_cnt) {
606 len = s->size / s->pi->die_cnt;
607 offset = offset & (~(len - 1));
608 } else {
609 qemu_log_mask(LOG_GUEST_ERROR, "M25P80: die erase is not supported"
610 " by device\n");
611 return;
613 break;
614 default:
615 abort();
618 trace_m25p80_flash_erase(s, offset, len);
620 if ((s->pi->flags & capa_to_assert) != capa_to_assert) {
621 qemu_log_mask(LOG_GUEST_ERROR, "M25P80: %d erase size not supported by"
622 " device\n", len);
625 if (!s->write_enable) {
626 qemu_log_mask(LOG_GUEST_ERROR, "M25P80: erase with write protect!\n");
627 return;
629 memset(s->storage + offset, 0xff, len);
630 flash_sync_area(s, offset, len);
633 static inline void flash_sync_dirty(Flash *s, int64_t newpage)
635 if (s->dirty_page >= 0 && s->dirty_page != newpage) {
636 flash_sync_page(s, s->dirty_page);
637 s->dirty_page = newpage;
641 static inline
642 void flash_write8(Flash *s, uint32_t addr, uint8_t data)
644 uint32_t page = addr / s->pi->page_size;
645 uint8_t prev = s->storage[s->cur_addr];
646 uint32_t block_protect_value = (s->block_protect3 << 3) |
647 (s->block_protect2 << 2) |
648 (s->block_protect1 << 1) |
649 (s->block_protect0 << 0);
651 if (!s->write_enable) {
652 qemu_log_mask(LOG_GUEST_ERROR, "M25P80: write with write protect!\n");
653 return;
656 if (block_protect_value > 0) {
657 uint32_t num_protected_sectors = 1 << (block_protect_value - 1);
658 uint32_t sector = addr / s->pi->sector_size;
660 /* top_bottom_bit == 0 means TOP */
661 if (!s->top_bottom_bit) {
662 if (s->pi->n_sectors <= sector + num_protected_sectors) {
663 qemu_log_mask(LOG_GUEST_ERROR,
664 "M25P80: write with write protect!\n");
665 return;
667 } else {
668 if (sector < num_protected_sectors) {
669 qemu_log_mask(LOG_GUEST_ERROR,
670 "M25P80: write with write protect!\n");
671 return;
676 if ((prev ^ data) & data) {
677 trace_m25p80_programming_zero_to_one(s, addr, prev, data);
680 if (s->pi->flags & EEPROM) {
681 s->storage[s->cur_addr] = data;
682 } else {
683 s->storage[s->cur_addr] &= data;
686 flash_sync_dirty(s, page);
687 s->dirty_page = page;
690 static inline int get_addr_length(Flash *s)
692 /* check if eeprom is in use */
693 if (s->pi->flags == EEPROM) {
694 return 2;
697 switch (s->cmd_in_progress) {
698 case RDSFDP:
699 return 3;
700 case PP4:
701 case PP4_4:
702 case QPP_4:
703 case READ4:
704 case QIOR4:
705 case ERASE4_4K:
706 case ERASE4_32K:
707 case ERASE4_SECTOR:
708 case FAST_READ4:
709 case DOR4:
710 case QOR4:
711 case DIOR4:
712 return 4;
713 default:
714 return s->four_bytes_address_mode ? 4 : 3;
718 static void complete_collecting_data(Flash *s)
720 int i, n;
722 n = get_addr_length(s);
723 s->cur_addr = (n == 3 ? s->ear : 0);
724 for (i = 0; i < n; ++i) {
725 s->cur_addr <<= 8;
726 s->cur_addr |= s->data[i];
729 s->cur_addr &= s->size - 1;
731 s->state = STATE_IDLE;
733 trace_m25p80_complete_collecting(s, s->cmd_in_progress, n, s->ear,
734 s->cur_addr);
736 switch (s->cmd_in_progress) {
737 case DPP:
738 case QPP:
739 case QPP_4:
740 case PP:
741 case PP4:
742 case PP4_4:
743 s->state = STATE_PAGE_PROGRAM;
744 break;
745 case AAI_WP:
746 /* AAI programming starts from the even address */
747 s->cur_addr &= ~BIT(0);
748 s->state = STATE_PAGE_PROGRAM;
749 break;
750 case READ:
751 case READ4:
752 case FAST_READ:
753 case FAST_READ4:
754 case DOR:
755 case DOR4:
756 case QOR:
757 case QOR4:
758 case DIOR:
759 case DIOR4:
760 case QIOR:
761 case QIOR4:
762 s->state = STATE_READ;
763 break;
764 case ERASE_4K:
765 case ERASE4_4K:
766 case ERASE_32K:
767 case ERASE4_32K:
768 case ERASE_SECTOR:
769 case ERASE4_SECTOR:
770 case DIE_ERASE:
771 flash_erase(s, s->cur_addr, s->cmd_in_progress);
772 break;
773 case WRSR:
774 s->status_register_write_disabled = extract32(s->data[0], 7, 1);
775 s->block_protect0 = extract32(s->data[0], 2, 1);
776 s->block_protect1 = extract32(s->data[0], 3, 1);
777 s->block_protect2 = extract32(s->data[0], 4, 1);
778 if (s->pi->flags & HAS_SR_TB) {
779 s->top_bottom_bit = extract32(s->data[0], 5, 1);
781 if (s->pi->flags & HAS_SR_BP3_BIT6) {
782 s->block_protect3 = extract32(s->data[0], 6, 1);
785 switch (get_man(s)) {
786 case MAN_SPANSION:
787 s->quad_enable = !!(s->data[1] & 0x02);
788 break;
789 case MAN_ISSI:
790 s->quad_enable = extract32(s->data[0], 6, 1);
791 break;
792 case MAN_MACRONIX:
793 s->quad_enable = extract32(s->data[0], 6, 1);
794 if (s->len > 1) {
795 s->volatile_cfg = s->data[1];
796 s->four_bytes_address_mode = extract32(s->data[1], 5, 1);
798 break;
799 default:
800 break;
802 if (s->write_enable) {
803 s->write_enable = false;
805 break;
806 case BRWR:
807 case EXTEND_ADDR_WRITE:
808 s->ear = s->data[0];
809 break;
810 case WNVCR:
811 s->nonvolatile_cfg = s->data[0] | (s->data[1] << 8);
812 break;
813 case WVCR:
814 s->volatile_cfg = s->data[0];
815 break;
816 case WEVCR:
817 s->enh_volatile_cfg = s->data[0];
818 break;
819 case RDID_90:
820 case RDID_AB:
821 if (get_man(s) == MAN_SST) {
822 if (s->cur_addr <= 1) {
823 if (s->cur_addr) {
824 s->data[0] = s->pi->id[2];
825 s->data[1] = s->pi->id[0];
826 } else {
827 s->data[0] = s->pi->id[0];
828 s->data[1] = s->pi->id[2];
830 s->pos = 0;
831 s->len = 2;
832 s->data_read_loop = true;
833 s->state = STATE_READING_DATA;
834 } else {
835 qemu_log_mask(LOG_GUEST_ERROR,
836 "M25P80: Invalid read id address\n");
838 } else {
839 qemu_log_mask(LOG_GUEST_ERROR,
840 "M25P80: Read id (command 0x90/0xAB) is not supported"
841 " by device\n");
843 break;
845 case RDSFDP:
846 s->state = STATE_READING_SFDP;
847 break;
849 default:
850 break;
854 static void reset_memory(Flash *s)
856 s->cmd_in_progress = NOP;
857 s->cur_addr = 0;
858 s->ear = 0;
859 s->four_bytes_address_mode = false;
860 s->len = 0;
861 s->needed_bytes = 0;
862 s->pos = 0;
863 s->state = STATE_IDLE;
864 s->write_enable = false;
865 s->reset_enable = false;
866 s->quad_enable = false;
867 s->aai_enable = false;
869 switch (get_man(s)) {
870 case MAN_NUMONYX:
871 s->volatile_cfg = 0;
872 s->volatile_cfg |= VCFG_DUMMY;
873 s->volatile_cfg |= VCFG_WRAP_SEQUENTIAL;
874 if ((s->nonvolatile_cfg & NVCFG_XIP_MODE_MASK)
875 == NVCFG_XIP_MODE_DISABLED) {
876 s->volatile_cfg |= VCFG_XIP_MODE_DISABLED;
878 s->volatile_cfg |= deposit32(s->volatile_cfg,
879 VCFG_DUMMY_CLK_POS,
880 CFG_DUMMY_CLK_LEN,
881 extract32(s->nonvolatile_cfg,
882 NVCFG_DUMMY_CLK_POS,
883 CFG_DUMMY_CLK_LEN)
886 s->enh_volatile_cfg = 0;
887 s->enh_volatile_cfg |= EVCFG_OUT_DRIVER_STRENGTH_DEF;
888 s->enh_volatile_cfg |= EVCFG_VPP_ACCELERATOR;
889 s->enh_volatile_cfg |= EVCFG_RESET_HOLD_ENABLED;
890 if (s->nonvolatile_cfg & NVCFG_DUAL_IO_MASK) {
891 s->enh_volatile_cfg |= EVCFG_DUAL_IO_DISABLED;
893 if (s->nonvolatile_cfg & NVCFG_QUAD_IO_MASK) {
894 s->enh_volatile_cfg |= EVCFG_QUAD_IO_DISABLED;
896 if (!(s->nonvolatile_cfg & NVCFG_4BYTE_ADDR_MASK)) {
897 s->four_bytes_address_mode = true;
899 if (!(s->nonvolatile_cfg & NVCFG_LOWER_SEGMENT_MASK)) {
900 s->ear = s->size / MAX_3BYTES_SIZE - 1;
902 break;
903 case MAN_MACRONIX:
904 s->volatile_cfg = 0x7;
905 break;
906 case MAN_SPANSION:
907 s->spansion_cr1v = s->spansion_cr1nv;
908 s->spansion_cr2v = s->spansion_cr2nv;
909 s->spansion_cr3v = s->spansion_cr3nv;
910 s->spansion_cr4v = s->spansion_cr4nv;
911 s->quad_enable = extract32(s->spansion_cr1v,
912 SPANSION_QUAD_CFG_POS,
913 SPANSION_QUAD_CFG_LEN
915 s->four_bytes_address_mode = extract32(s->spansion_cr2v,
916 SPANSION_ADDR_LEN_POS,
917 SPANSION_ADDR_LEN_LEN
919 break;
920 default:
921 break;
924 trace_m25p80_reset_done(s);
927 static uint8_t numonyx_mode(Flash *s)
929 if (!(s->enh_volatile_cfg & EVCFG_QUAD_IO_DISABLED)) {
930 return MODE_QIO;
931 } else if (!(s->enh_volatile_cfg & EVCFG_DUAL_IO_DISABLED)) {
932 return MODE_DIO;
933 } else {
934 return MODE_STD;
938 static uint8_t numonyx_extract_cfg_num_dummies(Flash *s)
940 uint8_t num_dummies;
941 uint8_t mode;
942 assert(get_man(s) == MAN_NUMONYX);
944 mode = numonyx_mode(s);
945 num_dummies = extract32(s->volatile_cfg, 4, 4);
947 if (num_dummies == 0x0 || num_dummies == 0xf) {
948 switch (s->cmd_in_progress) {
949 case QIOR:
950 case QIOR4:
951 num_dummies = 10;
952 break;
953 default:
954 num_dummies = (mode == MODE_QIO) ? 10 : 8;
955 break;
959 return num_dummies;
962 static void decode_fast_read_cmd(Flash *s)
964 s->needed_bytes = get_addr_length(s);
965 switch (get_man(s)) {
966 /* Dummy cycles - modeled with bytes writes instead of bits */
967 case MAN_SST:
968 s->needed_bytes += 1;
969 break;
970 case MAN_WINBOND:
971 s->needed_bytes += 8;
972 break;
973 case MAN_NUMONYX:
974 s->needed_bytes += numonyx_extract_cfg_num_dummies(s);
975 break;
976 case MAN_MACRONIX:
977 if (extract32(s->volatile_cfg, 6, 2) == 1) {
978 s->needed_bytes += 6;
979 } else {
980 s->needed_bytes += 8;
982 break;
983 case MAN_SPANSION:
984 s->needed_bytes += extract32(s->spansion_cr2v,
985 SPANSION_DUMMY_CLK_POS,
986 SPANSION_DUMMY_CLK_LEN
988 break;
989 case MAN_ISSI:
991 * The Fast Read instruction code is followed by address bytes and
992 * dummy cycles, transmitted via the SI line.
994 * The number of dummy cycles is configurable but this is currently
995 * unmodeled, hence the default value 8 is used.
997 * QPI (Quad Peripheral Interface) mode has different default value
998 * of dummy cycles, but this is unsupported at the time being.
1000 s->needed_bytes += 1;
1001 break;
1002 default:
1003 break;
1005 s->pos = 0;
1006 s->len = 0;
1007 s->state = STATE_COLLECTING_DATA;
1010 static void decode_dio_read_cmd(Flash *s)
1012 s->needed_bytes = get_addr_length(s);
1013 /* Dummy cycles modeled with bytes writes instead of bits */
1014 switch (get_man(s)) {
1015 case MAN_WINBOND:
1016 s->needed_bytes += WINBOND_CONTINUOUS_READ_MODE_CMD_LEN;
1017 break;
1018 case MAN_SPANSION:
1019 s->needed_bytes += SPANSION_CONTINUOUS_READ_MODE_CMD_LEN;
1020 s->needed_bytes += extract32(s->spansion_cr2v,
1021 SPANSION_DUMMY_CLK_POS,
1022 SPANSION_DUMMY_CLK_LEN
1024 break;
1025 case MAN_NUMONYX:
1026 s->needed_bytes += numonyx_extract_cfg_num_dummies(s);
1027 break;
1028 case MAN_MACRONIX:
1029 switch (extract32(s->volatile_cfg, 6, 2)) {
1030 case 1:
1031 s->needed_bytes += 6;
1032 break;
1033 case 2:
1034 s->needed_bytes += 8;
1035 break;
1036 default:
1037 s->needed_bytes += 4;
1038 break;
1040 break;
1041 case MAN_ISSI:
1043 * The Fast Read Dual I/O instruction code is followed by address bytes
1044 * and dummy cycles, transmitted via the IO1 and IO0 line.
1046 * The number of dummy cycles is configurable but this is currently
1047 * unmodeled, hence the default value 4 is used.
1049 s->needed_bytes += 1;
1050 break;
1051 default:
1052 break;
1054 s->pos = 0;
1055 s->len = 0;
1056 s->state = STATE_COLLECTING_DATA;
1059 static void decode_qio_read_cmd(Flash *s)
1061 s->needed_bytes = get_addr_length(s);
1062 /* Dummy cycles modeled with bytes writes instead of bits */
1063 switch (get_man(s)) {
1064 case MAN_WINBOND:
1065 s->needed_bytes += WINBOND_CONTINUOUS_READ_MODE_CMD_LEN;
1066 s->needed_bytes += 4;
1067 break;
1068 case MAN_SPANSION:
1069 s->needed_bytes += SPANSION_CONTINUOUS_READ_MODE_CMD_LEN;
1070 s->needed_bytes += extract32(s->spansion_cr2v,
1071 SPANSION_DUMMY_CLK_POS,
1072 SPANSION_DUMMY_CLK_LEN
1074 break;
1075 case MAN_NUMONYX:
1076 s->needed_bytes += numonyx_extract_cfg_num_dummies(s);
1077 break;
1078 case MAN_MACRONIX:
1079 switch (extract32(s->volatile_cfg, 6, 2)) {
1080 case 1:
1081 s->needed_bytes += 4;
1082 break;
1083 case 2:
1084 s->needed_bytes += 8;
1085 break;
1086 default:
1087 s->needed_bytes += 6;
1088 break;
1090 break;
1091 case MAN_ISSI:
1093 * The Fast Read Quad I/O instruction code is followed by address bytes
1094 * and dummy cycles, transmitted via the IO3, IO2, IO1 and IO0 line.
1096 * The number of dummy cycles is configurable but this is currently
1097 * unmodeled, hence the default value 6 is used.
1099 * QPI (Quad Peripheral Interface) mode has different default value
1100 * of dummy cycles, but this is unsupported at the time being.
1102 s->needed_bytes += 3;
1103 break;
1104 default:
1105 break;
1107 s->pos = 0;
1108 s->len = 0;
1109 s->state = STATE_COLLECTING_DATA;
1112 static bool is_valid_aai_cmd(uint32_t cmd)
1114 return cmd == AAI_WP || cmd == WRDI || cmd == RDSR;
1117 static void decode_new_cmd(Flash *s, uint32_t value)
1119 int i;
1121 s->cmd_in_progress = value;
1122 trace_m25p80_command_decoded(s, value);
1124 if (value != RESET_MEMORY) {
1125 s->reset_enable = false;
1128 if (get_man(s) == MAN_SST && s->aai_enable && !is_valid_aai_cmd(value)) {
1129 qemu_log_mask(LOG_GUEST_ERROR,
1130 "M25P80: Invalid cmd within AAI programming sequence");
1133 switch (value) {
1135 case ERASE_4K:
1136 case ERASE4_4K:
1137 case ERASE_32K:
1138 case ERASE4_32K:
1139 case ERASE_SECTOR:
1140 case ERASE4_SECTOR:
1141 case PP:
1142 case PP4:
1143 case DIE_ERASE:
1144 case RDID_90:
1145 case RDID_AB:
1146 s->needed_bytes = get_addr_length(s);
1147 s->pos = 0;
1148 s->len = 0;
1149 s->state = STATE_COLLECTING_DATA;
1150 break;
1151 case READ:
1152 case READ4:
1153 if (get_man(s) != MAN_NUMONYX || numonyx_mode(s) == MODE_STD) {
1154 s->needed_bytes = get_addr_length(s);
1155 s->pos = 0;
1156 s->len = 0;
1157 s->state = STATE_COLLECTING_DATA;
1158 } else {
1159 qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Cannot execute cmd %x in "
1160 "DIO or QIO mode\n", s->cmd_in_progress);
1162 break;
1163 case DPP:
1164 if (get_man(s) != MAN_NUMONYX || numonyx_mode(s) != MODE_QIO) {
1165 s->needed_bytes = get_addr_length(s);
1166 s->pos = 0;
1167 s->len = 0;
1168 s->state = STATE_COLLECTING_DATA;
1169 } else {
1170 qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Cannot execute cmd %x in "
1171 "QIO mode\n", s->cmd_in_progress);
1173 break;
1174 case QPP:
1175 case QPP_4:
1176 case PP4_4:
1177 if (get_man(s) != MAN_NUMONYX || numonyx_mode(s) != MODE_DIO) {
1178 s->needed_bytes = get_addr_length(s);
1179 s->pos = 0;
1180 s->len = 0;
1181 s->state = STATE_COLLECTING_DATA;
1182 } else {
1183 qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Cannot execute cmd %x in "
1184 "DIO mode\n", s->cmd_in_progress);
1186 break;
1188 case FAST_READ:
1189 case FAST_READ4:
1190 decode_fast_read_cmd(s);
1191 break;
1192 case DOR:
1193 case DOR4:
1194 if (get_man(s) != MAN_NUMONYX || numonyx_mode(s) != MODE_QIO) {
1195 decode_fast_read_cmd(s);
1196 } else {
1197 qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Cannot execute cmd %x in "
1198 "QIO mode\n", s->cmd_in_progress);
1200 break;
1201 case QOR:
1202 case QOR4:
1203 if (get_man(s) != MAN_NUMONYX || numonyx_mode(s) != MODE_DIO) {
1204 decode_fast_read_cmd(s);
1205 } else {
1206 qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Cannot execute cmd %x in "
1207 "DIO mode\n", s->cmd_in_progress);
1209 break;
1211 case DIOR:
1212 case DIOR4:
1213 if (get_man(s) != MAN_NUMONYX || numonyx_mode(s) != MODE_QIO) {
1214 decode_dio_read_cmd(s);
1215 } else {
1216 qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Cannot execute cmd %x in "
1217 "QIO mode\n", s->cmd_in_progress);
1219 break;
1221 case QIOR:
1222 case QIOR4:
1223 if (get_man(s) != MAN_NUMONYX || numonyx_mode(s) != MODE_DIO) {
1224 decode_qio_read_cmd(s);
1225 } else {
1226 qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Cannot execute cmd %x in "
1227 "DIO mode\n", s->cmd_in_progress);
1229 break;
1231 case WRSR:
1233 * If WP# is low and status_register_write_disabled is high,
1234 * status register writes are disabled.
1235 * This is also called "hardware protected mode" (HPM). All other
1236 * combinations of the two states are called "software protected mode"
1237 * (SPM), and status register writes are permitted.
1239 if ((s->wp_level == 0 && s->status_register_write_disabled)
1240 || !s->write_enable) {
1241 qemu_log_mask(LOG_GUEST_ERROR,
1242 "M25P80: Status register write is disabled!\n");
1243 break;
1246 switch (get_man(s)) {
1247 case MAN_SPANSION:
1248 s->needed_bytes = 2;
1249 s->state = STATE_COLLECTING_DATA;
1250 break;
1251 case MAN_MACRONIX:
1252 s->needed_bytes = 2;
1253 s->state = STATE_COLLECTING_VAR_LEN_DATA;
1254 break;
1255 default:
1256 s->needed_bytes = 1;
1257 s->state = STATE_COLLECTING_DATA;
1259 s->pos = 0;
1260 break;
1262 case WRDI:
1263 s->write_enable = false;
1264 if (get_man(s) == MAN_SST) {
1265 s->aai_enable = false;
1267 break;
1268 case WREN:
1269 s->write_enable = true;
1270 break;
1272 case RDSR:
1273 s->data[0] = (!!s->write_enable) << 1;
1274 s->data[0] |= (!!s->status_register_write_disabled) << 7;
1275 s->data[0] |= (!!s->block_protect0) << 2;
1276 s->data[0] |= (!!s->block_protect1) << 3;
1277 s->data[0] |= (!!s->block_protect2) << 4;
1278 if (s->pi->flags & HAS_SR_TB) {
1279 s->data[0] |= (!!s->top_bottom_bit) << 5;
1281 if (s->pi->flags & HAS_SR_BP3_BIT6) {
1282 s->data[0] |= (!!s->block_protect3) << 6;
1285 if (get_man(s) == MAN_MACRONIX || get_man(s) == MAN_ISSI) {
1286 s->data[0] |= (!!s->quad_enable) << 6;
1288 if (get_man(s) == MAN_SST) {
1289 s->data[0] |= (!!s->aai_enable) << 6;
1292 s->pos = 0;
1293 s->len = 1;
1294 s->data_read_loop = true;
1295 s->state = STATE_READING_DATA;
1296 break;
1298 case READ_FSR:
1299 s->data[0] = FSR_FLASH_READY;
1300 if (s->four_bytes_address_mode) {
1301 s->data[0] |= FSR_4BYTE_ADDR_MODE_ENABLED;
1303 s->pos = 0;
1304 s->len = 1;
1305 s->data_read_loop = true;
1306 s->state = STATE_READING_DATA;
1307 break;
1309 case JEDEC_READ:
1310 if (get_man(s) != MAN_NUMONYX || numonyx_mode(s) == MODE_STD) {
1311 trace_m25p80_populated_jedec(s);
1312 for (i = 0; i < s->pi->id_len; i++) {
1313 s->data[i] = s->pi->id[i];
1315 for (; i < SPI_NOR_MAX_ID_LEN; i++) {
1316 s->data[i] = 0;
1319 s->len = SPI_NOR_MAX_ID_LEN;
1320 s->pos = 0;
1321 s->state = STATE_READING_DATA;
1322 } else {
1323 qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Cannot execute JEDEC read "
1324 "in DIO or QIO mode\n");
1326 break;
1328 case RDCR:
1329 s->data[0] = s->volatile_cfg & 0xFF;
1330 s->data[0] |= (!!s->four_bytes_address_mode) << 5;
1331 s->pos = 0;
1332 s->len = 1;
1333 s->state = STATE_READING_DATA;
1334 break;
1336 case BULK_ERASE_60:
1337 case BULK_ERASE:
1338 if (s->write_enable) {
1339 trace_m25p80_chip_erase(s);
1340 flash_erase(s, 0, BULK_ERASE);
1341 } else {
1342 qemu_log_mask(LOG_GUEST_ERROR, "M25P80: chip erase with write "
1343 "protect!\n");
1345 break;
1346 case NOP:
1347 break;
1348 case EN_4BYTE_ADDR:
1349 s->four_bytes_address_mode = true;
1350 break;
1351 case EX_4BYTE_ADDR:
1352 s->four_bytes_address_mode = false;
1353 break;
1354 case BRRD:
1355 case EXTEND_ADDR_READ:
1356 s->data[0] = s->ear;
1357 s->pos = 0;
1358 s->len = 1;
1359 s->state = STATE_READING_DATA;
1360 break;
1361 case BRWR:
1362 case EXTEND_ADDR_WRITE:
1363 if (s->write_enable) {
1364 s->needed_bytes = 1;
1365 s->pos = 0;
1366 s->len = 0;
1367 s->state = STATE_COLLECTING_DATA;
1369 break;
1370 case RNVCR:
1371 s->data[0] = s->nonvolatile_cfg & 0xFF;
1372 s->data[1] = (s->nonvolatile_cfg >> 8) & 0xFF;
1373 s->pos = 0;
1374 s->len = 2;
1375 s->state = STATE_READING_DATA;
1376 break;
1377 case WNVCR:
1378 if (s->write_enable && get_man(s) == MAN_NUMONYX) {
1379 s->needed_bytes = 2;
1380 s->pos = 0;
1381 s->len = 0;
1382 s->state = STATE_COLLECTING_DATA;
1384 break;
1385 case RVCR:
1386 s->data[0] = s->volatile_cfg & 0xFF;
1387 s->pos = 0;
1388 s->len = 1;
1389 s->state = STATE_READING_DATA;
1390 break;
1391 case WVCR:
1392 if (s->write_enable) {
1393 s->needed_bytes = 1;
1394 s->pos = 0;
1395 s->len = 0;
1396 s->state = STATE_COLLECTING_DATA;
1398 break;
1399 case REVCR:
1400 s->data[0] = s->enh_volatile_cfg & 0xFF;
1401 s->pos = 0;
1402 s->len = 1;
1403 s->state = STATE_READING_DATA;
1404 break;
1405 case WEVCR:
1406 if (s->write_enable) {
1407 s->needed_bytes = 1;
1408 s->pos = 0;
1409 s->len = 0;
1410 s->state = STATE_COLLECTING_DATA;
1412 break;
1413 case RESET_ENABLE:
1414 s->reset_enable = true;
1415 break;
1416 case RESET_MEMORY:
1417 if (s->reset_enable) {
1418 reset_memory(s);
1420 break;
1421 case RDCR_EQIO:
1422 switch (get_man(s)) {
1423 case MAN_SPANSION:
1424 s->data[0] = (!!s->quad_enable) << 1;
1425 s->pos = 0;
1426 s->len = 1;
1427 s->state = STATE_READING_DATA;
1428 break;
1429 case MAN_MACRONIX:
1430 s->quad_enable = true;
1431 break;
1432 default:
1433 break;
1435 break;
1436 case RSTQIO:
1437 s->quad_enable = false;
1438 break;
1439 case AAI_WP:
1440 if (get_man(s) == MAN_SST) {
1441 if (s->write_enable) {
1442 if (s->aai_enable) {
1443 s->state = STATE_PAGE_PROGRAM;
1444 } else {
1445 s->aai_enable = true;
1446 s->needed_bytes = get_addr_length(s);
1447 s->state = STATE_COLLECTING_DATA;
1449 } else {
1450 qemu_log_mask(LOG_GUEST_ERROR,
1451 "M25P80: AAI_WP with write protect\n");
1453 } else {
1454 qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Unknown cmd %x\n", value);
1456 break;
1457 case RDSFDP:
1458 if (s->pi->sfdp_read) {
1459 s->needed_bytes = get_addr_length(s) + 1; /* SFDP addr + dummy */
1460 s->pos = 0;
1461 s->len = 0;
1462 s->state = STATE_COLLECTING_DATA;
1463 break;
1465 /* Fallthrough */
1467 default:
1468 s->pos = 0;
1469 s->len = 1;
1470 s->state = STATE_READING_DATA;
1471 s->data_read_loop = true;
1472 s->data[0] = 0;
1473 qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Unknown cmd %x\n", value);
1474 break;
1478 static int m25p80_cs(SSIPeripheral *ss, bool select)
1480 Flash *s = M25P80(ss);
1482 if (select) {
1483 if (s->state == STATE_COLLECTING_VAR_LEN_DATA) {
1484 complete_collecting_data(s);
1486 s->len = 0;
1487 s->pos = 0;
1488 s->state = STATE_IDLE;
1489 flash_sync_dirty(s, -1);
1490 s->data_read_loop = false;
1493 trace_m25p80_select(s, select ? "de" : "");
1495 return 0;
1498 static uint32_t m25p80_transfer8(SSIPeripheral *ss, uint32_t tx)
1500 Flash *s = M25P80(ss);
1501 uint32_t r = 0;
1503 trace_m25p80_transfer(s, s->state, s->len, s->needed_bytes, s->pos,
1504 s->cur_addr, (uint8_t)tx);
1506 switch (s->state) {
1508 case STATE_PAGE_PROGRAM:
1509 trace_m25p80_page_program(s, s->cur_addr, (uint8_t)tx);
1510 flash_write8(s, s->cur_addr, (uint8_t)tx);
1511 s->cur_addr = (s->cur_addr + 1) & (s->size - 1);
1513 if (get_man(s) == MAN_SST && s->aai_enable && s->cur_addr == 0) {
1515 * There is no wrap mode during AAI programming once the highest
1516 * unprotected memory address is reached. The Write-Enable-Latch
1517 * bit is automatically reset, and AAI programming mode aborts.
1519 s->write_enable = false;
1520 s->aai_enable = false;
1523 break;
1525 case STATE_READ:
1526 r = s->storage[s->cur_addr];
1527 trace_m25p80_read_byte(s, s->cur_addr, (uint8_t)r);
1528 s->cur_addr = (s->cur_addr + 1) & (s->size - 1);
1529 break;
1531 case STATE_COLLECTING_DATA:
1532 case STATE_COLLECTING_VAR_LEN_DATA:
1534 if (s->len >= M25P80_INTERNAL_DATA_BUFFER_SZ) {
1535 qemu_log_mask(LOG_GUEST_ERROR,
1536 "M25P80: Write overrun internal data buffer. "
1537 "SPI controller (QEMU emulator or guest driver) "
1538 "is misbehaving\n");
1539 s->len = s->pos = 0;
1540 s->state = STATE_IDLE;
1541 break;
1544 s->data[s->len] = (uint8_t)tx;
1545 s->len++;
1547 if (s->len == s->needed_bytes) {
1548 complete_collecting_data(s);
1550 break;
1552 case STATE_READING_DATA:
1554 if (s->pos >= M25P80_INTERNAL_DATA_BUFFER_SZ) {
1555 qemu_log_mask(LOG_GUEST_ERROR,
1556 "M25P80: Read overrun internal data buffer. "
1557 "SPI controller (QEMU emulator or guest driver) "
1558 "is misbehaving\n");
1559 s->len = s->pos = 0;
1560 s->state = STATE_IDLE;
1561 break;
1564 r = s->data[s->pos];
1565 trace_m25p80_read_data(s, s->pos, (uint8_t)r);
1566 s->pos++;
1567 if (s->pos == s->len) {
1568 s->pos = 0;
1569 if (!s->data_read_loop) {
1570 s->state = STATE_IDLE;
1573 break;
1574 case STATE_READING_SFDP:
1575 assert(s->pi->sfdp_read);
1576 r = s->pi->sfdp_read(s->cur_addr);
1577 trace_m25p80_read_sfdp(s, s->cur_addr, (uint8_t)r);
1578 s->cur_addr = (s->cur_addr + 1) & (M25P80_SFDP_MAX_SIZE - 1);
1579 break;
1581 default:
1582 case STATE_IDLE:
1583 decode_new_cmd(s, (uint8_t)tx);
1584 break;
1587 return r;
1590 static void m25p80_write_protect_pin_irq_handler(void *opaque, int n, int level)
1592 Flash *s = M25P80(opaque);
1593 /* WP# is just a single pin. */
1594 assert(n == 0);
1595 s->wp_level = !!level;
1598 static void m25p80_realize(SSIPeripheral *ss, Error **errp)
1600 Flash *s = M25P80(ss);
1601 M25P80Class *mc = M25P80_GET_CLASS(s);
1602 int ret;
1604 s->pi = mc->pi;
1606 s->size = s->pi->sector_size * s->pi->n_sectors;
1607 s->dirty_page = -1;
1609 if (s->blk) {
1610 uint64_t perm = BLK_PERM_CONSISTENT_READ |
1611 (blk_supports_write_perm(s->blk) ? BLK_PERM_WRITE : 0);
1612 ret = blk_set_perm(s->blk, perm, BLK_PERM_ALL, errp);
1613 if (ret < 0) {
1614 return;
1617 trace_m25p80_binding(s);
1618 s->storage = blk_blockalign(s->blk, s->size);
1620 if (!blk_check_size_and_read_all(s->blk, s->storage, s->size, errp)) {
1621 return;
1623 } else {
1624 trace_m25p80_binding_no_bdrv(s);
1625 s->storage = blk_blockalign(NULL, s->size);
1626 memset(s->storage, 0xFF, s->size);
1629 qdev_init_gpio_in_named(DEVICE(s),
1630 m25p80_write_protect_pin_irq_handler, "WP#", 1);
1633 static void m25p80_reset(DeviceState *d)
1635 Flash *s = M25P80(d);
1637 s->wp_level = true;
1638 s->status_register_write_disabled = false;
1639 s->block_protect0 = false;
1640 s->block_protect1 = false;
1641 s->block_protect2 = false;
1642 s->block_protect3 = false;
1643 s->top_bottom_bit = false;
1645 reset_memory(s);
1648 static int m25p80_pre_save(void *opaque)
1650 flash_sync_dirty((Flash *)opaque, -1);
1652 return 0;
1655 static Property m25p80_properties[] = {
1656 /* This is default value for Micron flash */
1657 DEFINE_PROP_BOOL("write-enable", Flash, write_enable, false),
1658 DEFINE_PROP_UINT32("nonvolatile-cfg", Flash, nonvolatile_cfg, 0x8FFF),
1659 DEFINE_PROP_UINT8("spansion-cr1nv", Flash, spansion_cr1nv, 0x0),
1660 DEFINE_PROP_UINT8("spansion-cr2nv", Flash, spansion_cr2nv, 0x8),
1661 DEFINE_PROP_UINT8("spansion-cr3nv", Flash, spansion_cr3nv, 0x2),
1662 DEFINE_PROP_UINT8("spansion-cr4nv", Flash, spansion_cr4nv, 0x10),
1663 DEFINE_PROP_DRIVE("drive", Flash, blk),
1664 DEFINE_PROP_END_OF_LIST(),
1667 static int m25p80_pre_load(void *opaque)
1669 Flash *s = (Flash *)opaque;
1671 s->data_read_loop = false;
1672 return 0;
1675 static bool m25p80_data_read_loop_needed(void *opaque)
1677 Flash *s = (Flash *)opaque;
1679 return s->data_read_loop;
1682 static const VMStateDescription vmstate_m25p80_data_read_loop = {
1683 .name = "m25p80/data_read_loop",
1684 .version_id = 1,
1685 .minimum_version_id = 1,
1686 .needed = m25p80_data_read_loop_needed,
1687 .fields = (VMStateField[]) {
1688 VMSTATE_BOOL(data_read_loop, Flash),
1689 VMSTATE_END_OF_LIST()
1693 static bool m25p80_aai_enable_needed(void *opaque)
1695 Flash *s = (Flash *)opaque;
1697 return s->aai_enable;
1700 static const VMStateDescription vmstate_m25p80_aai_enable = {
1701 .name = "m25p80/aai_enable",
1702 .version_id = 1,
1703 .minimum_version_id = 1,
1704 .needed = m25p80_aai_enable_needed,
1705 .fields = (VMStateField[]) {
1706 VMSTATE_BOOL(aai_enable, Flash),
1707 VMSTATE_END_OF_LIST()
1711 static bool m25p80_wp_level_srwd_needed(void *opaque)
1713 Flash *s = (Flash *)opaque;
1715 return !s->wp_level || s->status_register_write_disabled;
1718 static const VMStateDescription vmstate_m25p80_write_protect = {
1719 .name = "m25p80/write_protect",
1720 .version_id = 1,
1721 .minimum_version_id = 1,
1722 .needed = m25p80_wp_level_srwd_needed,
1723 .fields = (VMStateField[]) {
1724 VMSTATE_BOOL(wp_level, Flash),
1725 VMSTATE_BOOL(status_register_write_disabled, Flash),
1726 VMSTATE_END_OF_LIST()
1730 static bool m25p80_block_protect_needed(void *opaque)
1732 Flash *s = (Flash *)opaque;
1734 return s->block_protect0 ||
1735 s->block_protect1 ||
1736 s->block_protect2 ||
1737 s->block_protect3 ||
1738 s->top_bottom_bit;
1741 static const VMStateDescription vmstate_m25p80_block_protect = {
1742 .name = "m25p80/block_protect",
1743 .version_id = 1,
1744 .minimum_version_id = 1,
1745 .needed = m25p80_block_protect_needed,
1746 .fields = (VMStateField[]) {
1747 VMSTATE_BOOL(block_protect0, Flash),
1748 VMSTATE_BOOL(block_protect1, Flash),
1749 VMSTATE_BOOL(block_protect2, Flash),
1750 VMSTATE_BOOL(block_protect3, Flash),
1751 VMSTATE_BOOL(top_bottom_bit, Flash),
1752 VMSTATE_END_OF_LIST()
1756 static const VMStateDescription vmstate_m25p80 = {
1757 .name = "m25p80",
1758 .version_id = 0,
1759 .minimum_version_id = 0,
1760 .pre_save = m25p80_pre_save,
1761 .pre_load = m25p80_pre_load,
1762 .fields = (VMStateField[]) {
1763 VMSTATE_UINT8(state, Flash),
1764 VMSTATE_UINT8_ARRAY(data, Flash, M25P80_INTERNAL_DATA_BUFFER_SZ),
1765 VMSTATE_UINT32(len, Flash),
1766 VMSTATE_UINT32(pos, Flash),
1767 VMSTATE_UINT8(needed_bytes, Flash),
1768 VMSTATE_UINT8(cmd_in_progress, Flash),
1769 VMSTATE_UINT32(cur_addr, Flash),
1770 VMSTATE_BOOL(write_enable, Flash),
1771 VMSTATE_BOOL(reset_enable, Flash),
1772 VMSTATE_UINT8(ear, Flash),
1773 VMSTATE_BOOL(four_bytes_address_mode, Flash),
1774 VMSTATE_UINT32(nonvolatile_cfg, Flash),
1775 VMSTATE_UINT32(volatile_cfg, Flash),
1776 VMSTATE_UINT32(enh_volatile_cfg, Flash),
1777 VMSTATE_BOOL(quad_enable, Flash),
1778 VMSTATE_UINT8(spansion_cr1nv, Flash),
1779 VMSTATE_UINT8(spansion_cr2nv, Flash),
1780 VMSTATE_UINT8(spansion_cr3nv, Flash),
1781 VMSTATE_UINT8(spansion_cr4nv, Flash),
1782 VMSTATE_END_OF_LIST()
1784 .subsections = (const VMStateDescription * []) {
1785 &vmstate_m25p80_data_read_loop,
1786 &vmstate_m25p80_aai_enable,
1787 &vmstate_m25p80_write_protect,
1788 &vmstate_m25p80_block_protect,
1789 NULL
1793 static void m25p80_class_init(ObjectClass *klass, void *data)
1795 DeviceClass *dc = DEVICE_CLASS(klass);
1796 SSIPeripheralClass *k = SSI_PERIPHERAL_CLASS(klass);
1797 M25P80Class *mc = M25P80_CLASS(klass);
1799 k->realize = m25p80_realize;
1800 k->transfer = m25p80_transfer8;
1801 k->set_cs = m25p80_cs;
1802 k->cs_polarity = SSI_CS_LOW;
1803 dc->vmsd = &vmstate_m25p80;
1804 device_class_set_props(dc, m25p80_properties);
1805 dc->reset = m25p80_reset;
1806 mc->pi = data;
1809 static const TypeInfo m25p80_info = {
1810 .name = TYPE_M25P80,
1811 .parent = TYPE_SSI_PERIPHERAL,
1812 .instance_size = sizeof(Flash),
1813 .class_size = sizeof(M25P80Class),
1814 .abstract = true,
1817 static void m25p80_register_types(void)
1819 int i;
1821 type_register_static(&m25p80_info);
1822 for (i = 0; i < ARRAY_SIZE(known_devices); ++i) {
1823 TypeInfo ti = {
1824 .name = known_devices[i].part_name,
1825 .parent = TYPE_M25P80,
1826 .class_init = m25p80_class_init,
1827 .class_data = (void *)&known_devices[i],
1829 type_register(&ti);
1833 type_init(m25p80_register_types)
1835 BlockBackend *m25p80_get_blk(DeviceState *dev)
1837 return M25P80(dev)->blk;