2 * ARM mach-virt emulation
4 * Copyright (c) 2013 Linaro Limited
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2 or later, as published by the Free Software Foundation.
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 * You should have received a copy of the GNU General Public License along with
16 * this program. If not, see <http://www.gnu.org/licenses/>.
18 * Emulate a virtual board which works by passing Linux all the information
19 * it needs about what devices are present via the device tree.
20 * There are some restrictions about what we can do here:
21 * + we can only present devices whose Linux drivers will work based
22 * purely on the device tree with no platform data at all
23 * + we want to present a very stripped-down minimalist platform,
24 * both because this reduces the security attack surface from the guest
25 * and also because it reduces our exposure to being broken when
26 * the kernel updates its device tree bindings and requires further
27 * information in a device binding that we aren't providing.
28 * This is essentially the same approach kvmtool uses.
31 #include "qemu/osdep.h"
32 #include "qapi/error.h"
33 #include "hw/sysbus.h"
34 #include "hw/arm/arm.h"
35 #include "hw/arm/primecell.h"
36 #include "hw/arm/virt.h"
37 #include "hw/devices.h"
39 #include "sysemu/block-backend.h"
40 #include "sysemu/device_tree.h"
41 #include "sysemu/numa.h"
42 #include "sysemu/sysemu.h"
43 #include "sysemu/kvm.h"
44 #include "hw/compat.h"
45 #include "hw/loader.h"
46 #include "exec/address-spaces.h"
47 #include "qemu/bitops.h"
48 #include "qemu/error-report.h"
49 #include "hw/pci-host/gpex.h"
50 #include "hw/arm/sysbus-fdt.h"
51 #include "hw/platform-bus.h"
52 #include "hw/arm/fdt.h"
53 #include "hw/intc/arm_gic.h"
54 #include "hw/intc/arm_gicv3_common.h"
56 #include "hw/smbios/smbios.h"
57 #include "qapi/visitor.h"
58 #include "standard-headers/linux/input.h"
60 #define DEFINE_VIRT_MACHINE_LATEST(major, minor, latest) \
61 static void virt_##major##_##minor##_class_init(ObjectClass *oc, \
64 MachineClass *mc = MACHINE_CLASS(oc); \
65 virt_machine_##major##_##minor##_options(mc); \
66 mc->desc = "QEMU " # major "." # minor " ARM Virtual Machine"; \
71 static const TypeInfo machvirt_##major##_##minor##_info = { \
72 .name = MACHINE_TYPE_NAME("virt-" # major "." # minor), \
73 .parent = TYPE_VIRT_MACHINE, \
74 .instance_init = virt_##major##_##minor##_instance_init, \
75 .class_init = virt_##major##_##minor##_class_init, \
77 static void machvirt_machine_##major##_##minor##_init(void) \
79 type_register_static(&machvirt_##major##_##minor##_info); \
81 type_init(machvirt_machine_##major##_##minor##_init);
83 #define DEFINE_VIRT_MACHINE_AS_LATEST(major, minor) \
84 DEFINE_VIRT_MACHINE_LATEST(major, minor, true)
85 #define DEFINE_VIRT_MACHINE(major, minor) \
86 DEFINE_VIRT_MACHINE_LATEST(major, minor, false)
89 /* Number of external interrupt lines to configure the GIC with */
92 #define PLATFORM_BUS_NUM_IRQS 64
94 static ARMPlatformBusSystemParams platform_bus_params
;
96 /* RAM limit in GB. Since VIRT_MEM starts at the 1GB mark, this means
97 * RAM can go up to the 256GB mark, leaving 256GB of the physical
98 * address space unallocated and free for future use between 256G and 512G.
99 * If we need to provide more RAM to VMs in the future then we need to:
100 * * allocate a second bank of RAM starting at 2TB and working up
101 * * fix the DT and ACPI table generation code in QEMU to correctly
102 * report two split lumps of RAM to the guest
103 * * fix KVM in the host kernel to allow guests with >40 bit address spaces
104 * (We don't want to fill all the way up to 512GB with RAM because
105 * we might want it for non-RAM purposes later. Conversely it seems
106 * reasonable to assume that anybody configuring a VM with a quarter
107 * of a terabyte of RAM will be doing it on a host with more than a
108 * terabyte of physical address space.)
110 #define RAMLIMIT_GB 255
111 #define RAMLIMIT_BYTES (RAMLIMIT_GB * 1024ULL * 1024 * 1024)
113 /* Addresses and sizes of our components.
114 * 0..128MB is space for a flash device so we can run bootrom code such as UEFI.
115 * 128MB..256MB is used for miscellaneous device I/O.
116 * 256MB..1GB is reserved for possible future PCI support (ie where the
117 * PCI memory window will go if we add a PCI host controller).
118 * 1GB and up is RAM (which may happily spill over into the
119 * high memory region beyond 4GB).
120 * This represents a compromise between how much RAM can be given to
121 * a 32 bit VM and leaving space for expansion and in particular for PCI.
122 * Note that devices should generally be placed at multiples of 0x10000,
123 * to accommodate guests using 64K pages.
125 static const MemMapEntry a15memmap
[] = {
126 /* Space up to 0x8000000 is reserved for a boot ROM */
127 [VIRT_FLASH
] = { 0, 0x08000000 },
128 [VIRT_CPUPERIPHS
] = { 0x08000000, 0x00020000 },
129 /* GIC distributor and CPU interfaces sit inside the CPU peripheral space */
130 [VIRT_GIC_DIST
] = { 0x08000000, 0x00010000 },
131 [VIRT_GIC_CPU
] = { 0x08010000, 0x00010000 },
132 [VIRT_GIC_V2M
] = { 0x08020000, 0x00001000 },
133 /* The space in between here is reserved for GICv3 CPU/vCPU/HYP */
134 [VIRT_GIC_ITS
] = { 0x08080000, 0x00020000 },
135 /* This redistributor space allows up to 2*64kB*123 CPUs */
136 [VIRT_GIC_REDIST
] = { 0x080A0000, 0x00F60000 },
137 [VIRT_UART
] = { 0x09000000, 0x00001000 },
138 [VIRT_RTC
] = { 0x09010000, 0x00001000 },
139 [VIRT_FW_CFG
] = { 0x09020000, 0x00000018 },
140 [VIRT_GPIO
] = { 0x09030000, 0x00001000 },
141 [VIRT_SECURE_UART
] = { 0x09040000, 0x00001000 },
142 [VIRT_MMIO
] = { 0x0a000000, 0x00000200 },
143 /* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */
144 [VIRT_PLATFORM_BUS
] = { 0x0c000000, 0x02000000 },
145 [VIRT_SECURE_MEM
] = { 0x0e000000, 0x01000000 },
146 [VIRT_PCIE_MMIO
] = { 0x10000000, 0x2eff0000 },
147 [VIRT_PCIE_PIO
] = { 0x3eff0000, 0x00010000 },
148 [VIRT_PCIE_ECAM
] = { 0x3f000000, 0x01000000 },
149 [VIRT_MEM
] = { 0x40000000, RAMLIMIT_BYTES
},
150 /* Second PCIe window, 512GB wide at the 512GB boundary */
151 [VIRT_PCIE_MMIO_HIGH
] = { 0x8000000000ULL
, 0x8000000000ULL
},
154 static const int a15irqmap
[] = {
157 [VIRT_PCIE
] = 3, /* ... to 6 */
159 [VIRT_SECURE_UART
] = 8,
160 [VIRT_MMIO
] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */
161 [VIRT_GIC_V2M
] = 48, /* ...to 48 + NUM_GICV2M_SPIS - 1 */
162 [VIRT_PLATFORM_BUS
] = 112, /* ...to 112 + PLATFORM_BUS_NUM_IRQS -1 */
165 static const char *valid_cpus
[] = {
172 static bool cpuname_valid(const char *cpu
)
176 for (i
= 0; i
< ARRAY_SIZE(valid_cpus
); i
++) {
177 if (strcmp(cpu
, valid_cpus
[i
]) == 0) {
184 static void create_fdt(VirtMachineState
*vms
)
186 void *fdt
= create_device_tree(&vms
->fdt_size
);
189 error_report("create_device_tree() failed");
196 qemu_fdt_setprop_string(fdt
, "/", "compatible", "linux,dummy-virt");
197 qemu_fdt_setprop_cell(fdt
, "/", "#address-cells", 0x2);
198 qemu_fdt_setprop_cell(fdt
, "/", "#size-cells", 0x2);
201 * /chosen and /memory nodes must exist for load_dtb
202 * to fill in necessary properties later
204 qemu_fdt_add_subnode(fdt
, "/chosen");
205 qemu_fdt_add_subnode(fdt
, "/memory");
206 qemu_fdt_setprop_string(fdt
, "/memory", "device_type", "memory");
208 /* Clock node, for the benefit of the UART. The kernel device tree
209 * binding documentation claims the PL011 node clock properties are
210 * optional but in practice if you omit them the kernel refuses to
211 * probe for the device.
213 vms
->clock_phandle
= qemu_fdt_alloc_phandle(fdt
);
214 qemu_fdt_add_subnode(fdt
, "/apb-pclk");
215 qemu_fdt_setprop_string(fdt
, "/apb-pclk", "compatible", "fixed-clock");
216 qemu_fdt_setprop_cell(fdt
, "/apb-pclk", "#clock-cells", 0x0);
217 qemu_fdt_setprop_cell(fdt
, "/apb-pclk", "clock-frequency", 24000000);
218 qemu_fdt_setprop_string(fdt
, "/apb-pclk", "clock-output-names",
220 qemu_fdt_setprop_cell(fdt
, "/apb-pclk", "phandle", vms
->clock_phandle
);
222 if (have_numa_distance
) {
223 int size
= nb_numa_nodes
* nb_numa_nodes
* 3 * sizeof(uint32_t);
224 uint32_t *matrix
= g_malloc0(size
);
227 for (i
= 0; i
< nb_numa_nodes
; i
++) {
228 for (j
= 0; j
< nb_numa_nodes
; j
++) {
229 idx
= (i
* nb_numa_nodes
+ j
) * 3;
230 matrix
[idx
+ 0] = cpu_to_be32(i
);
231 matrix
[idx
+ 1] = cpu_to_be32(j
);
232 matrix
[idx
+ 2] = cpu_to_be32(numa_info
[i
].distance
[j
]);
236 qemu_fdt_add_subnode(fdt
, "/distance-map");
237 qemu_fdt_setprop_string(fdt
, "/distance-map", "compatible",
238 "numa-distance-map-v1");
239 qemu_fdt_setprop(fdt
, "/distance-map", "distance-matrix",
245 static void fdt_add_psci_node(const VirtMachineState
*vms
)
247 uint32_t cpu_suspend_fn
;
251 void *fdt
= vms
->fdt
;
252 ARMCPU
*armcpu
= ARM_CPU(qemu_get_cpu(0));
253 const char *psci_method
;
255 switch (vms
->psci_conduit
) {
256 case QEMU_PSCI_CONDUIT_DISABLED
:
258 case QEMU_PSCI_CONDUIT_HVC
:
261 case QEMU_PSCI_CONDUIT_SMC
:
265 g_assert_not_reached();
268 qemu_fdt_add_subnode(fdt
, "/psci");
269 if (armcpu
->psci_version
== 2) {
270 const char comp
[] = "arm,psci-0.2\0arm,psci";
271 qemu_fdt_setprop(fdt
, "/psci", "compatible", comp
, sizeof(comp
));
273 cpu_off_fn
= QEMU_PSCI_0_2_FN_CPU_OFF
;
274 if (arm_feature(&armcpu
->env
, ARM_FEATURE_AARCH64
)) {
275 cpu_suspend_fn
= QEMU_PSCI_0_2_FN64_CPU_SUSPEND
;
276 cpu_on_fn
= QEMU_PSCI_0_2_FN64_CPU_ON
;
277 migrate_fn
= QEMU_PSCI_0_2_FN64_MIGRATE
;
279 cpu_suspend_fn
= QEMU_PSCI_0_2_FN_CPU_SUSPEND
;
280 cpu_on_fn
= QEMU_PSCI_0_2_FN_CPU_ON
;
281 migrate_fn
= QEMU_PSCI_0_2_FN_MIGRATE
;
284 qemu_fdt_setprop_string(fdt
, "/psci", "compatible", "arm,psci");
286 cpu_suspend_fn
= QEMU_PSCI_0_1_FN_CPU_SUSPEND
;
287 cpu_off_fn
= QEMU_PSCI_0_1_FN_CPU_OFF
;
288 cpu_on_fn
= QEMU_PSCI_0_1_FN_CPU_ON
;
289 migrate_fn
= QEMU_PSCI_0_1_FN_MIGRATE
;
292 /* We adopt the PSCI spec's nomenclature, and use 'conduit' to refer
293 * to the instruction that should be used to invoke PSCI functions.
294 * However, the device tree binding uses 'method' instead, so that is
295 * what we should use here.
297 qemu_fdt_setprop_string(fdt
, "/psci", "method", psci_method
);
299 qemu_fdt_setprop_cell(fdt
, "/psci", "cpu_suspend", cpu_suspend_fn
);
300 qemu_fdt_setprop_cell(fdt
, "/psci", "cpu_off", cpu_off_fn
);
301 qemu_fdt_setprop_cell(fdt
, "/psci", "cpu_on", cpu_on_fn
);
302 qemu_fdt_setprop_cell(fdt
, "/psci", "migrate", migrate_fn
);
305 static void fdt_add_timer_nodes(const VirtMachineState
*vms
)
307 /* On real hardware these interrupts are level-triggered.
308 * On KVM they were edge-triggered before host kernel version 4.4,
309 * and level-triggered afterwards.
310 * On emulated QEMU they are level-triggered.
312 * Getting the DTB info about them wrong is awkward for some
314 * pre-4.8 ignore the DT and leave the interrupt configured
315 * with whatever the GIC reset value (or the bootloader) left it at
316 * 4.8 before rc6 honour the incorrect data by programming it back
317 * into the GIC, causing problems
318 * 4.8rc6 and later ignore the DT and always write "level triggered"
321 * For backwards-compatibility, virt-2.8 and earlier will continue
322 * to say these are edge-triggered, but later machines will report
323 * the correct information.
326 VirtMachineClass
*vmc
= VIRT_MACHINE_GET_CLASS(vms
);
327 uint32_t irqflags
= GIC_FDT_IRQ_FLAGS_LEVEL_HI
;
329 if (vmc
->claim_edge_triggered_timers
) {
330 irqflags
= GIC_FDT_IRQ_FLAGS_EDGE_LO_HI
;
333 if (vms
->gic_version
== 2) {
334 irqflags
= deposit32(irqflags
, GIC_FDT_IRQ_PPI_CPU_START
,
335 GIC_FDT_IRQ_PPI_CPU_WIDTH
,
336 (1 << vms
->smp_cpus
) - 1);
339 qemu_fdt_add_subnode(vms
->fdt
, "/timer");
341 armcpu
= ARM_CPU(qemu_get_cpu(0));
342 if (arm_feature(&armcpu
->env
, ARM_FEATURE_V8
)) {
343 const char compat
[] = "arm,armv8-timer\0arm,armv7-timer";
344 qemu_fdt_setprop(vms
->fdt
, "/timer", "compatible",
345 compat
, sizeof(compat
));
347 qemu_fdt_setprop_string(vms
->fdt
, "/timer", "compatible",
350 qemu_fdt_setprop(vms
->fdt
, "/timer", "always-on", NULL
, 0);
351 qemu_fdt_setprop_cells(vms
->fdt
, "/timer", "interrupts",
352 GIC_FDT_IRQ_TYPE_PPI
, ARCH_TIMER_S_EL1_IRQ
, irqflags
,
353 GIC_FDT_IRQ_TYPE_PPI
, ARCH_TIMER_NS_EL1_IRQ
, irqflags
,
354 GIC_FDT_IRQ_TYPE_PPI
, ARCH_TIMER_VIRT_IRQ
, irqflags
,
355 GIC_FDT_IRQ_TYPE_PPI
, ARCH_TIMER_NS_EL2_IRQ
, irqflags
);
358 static void fdt_add_cpu_nodes(const VirtMachineState
*vms
)
362 const MachineState
*ms
= MACHINE(vms
);
365 * From Documentation/devicetree/bindings/arm/cpus.txt
366 * On ARM v8 64-bit systems value should be set to 2,
367 * that corresponds to the MPIDR_EL1 register size.
368 * If MPIDR_EL1[63:32] value is equal to 0 on all CPUs
369 * in the system, #address-cells can be set to 1, since
370 * MPIDR_EL1[63:32] bits are not used for CPUs
373 * Here we actually don't know whether our system is 32- or 64-bit one.
374 * The simplest way to go is to examine affinity IDs of all our CPUs. If
375 * at least one of them has Aff3 populated, we set #address-cells to 2.
377 for (cpu
= 0; cpu
< vms
->smp_cpus
; cpu
++) {
378 ARMCPU
*armcpu
= ARM_CPU(qemu_get_cpu(cpu
));
380 if (armcpu
->mp_affinity
& ARM_AFF3_MASK
) {
386 qemu_fdt_add_subnode(vms
->fdt
, "/cpus");
387 qemu_fdt_setprop_cell(vms
->fdt
, "/cpus", "#address-cells", addr_cells
);
388 qemu_fdt_setprop_cell(vms
->fdt
, "/cpus", "#size-cells", 0x0);
390 for (cpu
= vms
->smp_cpus
- 1; cpu
>= 0; cpu
--) {
391 char *nodename
= g_strdup_printf("/cpus/cpu@%d", cpu
);
392 ARMCPU
*armcpu
= ARM_CPU(qemu_get_cpu(cpu
));
393 CPUState
*cs
= CPU(armcpu
);
395 qemu_fdt_add_subnode(vms
->fdt
, nodename
);
396 qemu_fdt_setprop_string(vms
->fdt
, nodename
, "device_type", "cpu");
397 qemu_fdt_setprop_string(vms
->fdt
, nodename
, "compatible",
398 armcpu
->dtb_compatible
);
400 if (vms
->psci_conduit
!= QEMU_PSCI_CONDUIT_DISABLED
401 && vms
->smp_cpus
> 1) {
402 qemu_fdt_setprop_string(vms
->fdt
, nodename
,
403 "enable-method", "psci");
406 if (addr_cells
== 2) {
407 qemu_fdt_setprop_u64(vms
->fdt
, nodename
, "reg",
408 armcpu
->mp_affinity
);
410 qemu_fdt_setprop_cell(vms
->fdt
, nodename
, "reg",
411 armcpu
->mp_affinity
);
414 if (ms
->possible_cpus
->cpus
[cs
->cpu_index
].props
.has_node_id
) {
415 qemu_fdt_setprop_cell(vms
->fdt
, nodename
, "numa-node-id",
416 ms
->possible_cpus
->cpus
[cs
->cpu_index
].props
.node_id
);
423 static void fdt_add_its_gic_node(VirtMachineState
*vms
)
425 vms
->msi_phandle
= qemu_fdt_alloc_phandle(vms
->fdt
);
426 qemu_fdt_add_subnode(vms
->fdt
, "/intc/its");
427 qemu_fdt_setprop_string(vms
->fdt
, "/intc/its", "compatible",
429 qemu_fdt_setprop(vms
->fdt
, "/intc/its", "msi-controller", NULL
, 0);
430 qemu_fdt_setprop_sized_cells(vms
->fdt
, "/intc/its", "reg",
431 2, vms
->memmap
[VIRT_GIC_ITS
].base
,
432 2, vms
->memmap
[VIRT_GIC_ITS
].size
);
433 qemu_fdt_setprop_cell(vms
->fdt
, "/intc/its", "phandle", vms
->msi_phandle
);
436 static void fdt_add_v2m_gic_node(VirtMachineState
*vms
)
438 vms
->msi_phandle
= qemu_fdt_alloc_phandle(vms
->fdt
);
439 qemu_fdt_add_subnode(vms
->fdt
, "/intc/v2m");
440 qemu_fdt_setprop_string(vms
->fdt
, "/intc/v2m", "compatible",
441 "arm,gic-v2m-frame");
442 qemu_fdt_setprop(vms
->fdt
, "/intc/v2m", "msi-controller", NULL
, 0);
443 qemu_fdt_setprop_sized_cells(vms
->fdt
, "/intc/v2m", "reg",
444 2, vms
->memmap
[VIRT_GIC_V2M
].base
,
445 2, vms
->memmap
[VIRT_GIC_V2M
].size
);
446 qemu_fdt_setprop_cell(vms
->fdt
, "/intc/v2m", "phandle", vms
->msi_phandle
);
449 static void fdt_add_gic_node(VirtMachineState
*vms
)
451 vms
->gic_phandle
= qemu_fdt_alloc_phandle(vms
->fdt
);
452 qemu_fdt_setprop_cell(vms
->fdt
, "/", "interrupt-parent", vms
->gic_phandle
);
454 qemu_fdt_add_subnode(vms
->fdt
, "/intc");
455 qemu_fdt_setprop_cell(vms
->fdt
, "/intc", "#interrupt-cells", 3);
456 qemu_fdt_setprop(vms
->fdt
, "/intc", "interrupt-controller", NULL
, 0);
457 qemu_fdt_setprop_cell(vms
->fdt
, "/intc", "#address-cells", 0x2);
458 qemu_fdt_setprop_cell(vms
->fdt
, "/intc", "#size-cells", 0x2);
459 qemu_fdt_setprop(vms
->fdt
, "/intc", "ranges", NULL
, 0);
460 if (vms
->gic_version
== 3) {
461 qemu_fdt_setprop_string(vms
->fdt
, "/intc", "compatible",
463 qemu_fdt_setprop_sized_cells(vms
->fdt
, "/intc", "reg",
464 2, vms
->memmap
[VIRT_GIC_DIST
].base
,
465 2, vms
->memmap
[VIRT_GIC_DIST
].size
,
466 2, vms
->memmap
[VIRT_GIC_REDIST
].base
,
467 2, vms
->memmap
[VIRT_GIC_REDIST
].size
);
469 qemu_fdt_setprop_cells(vms
->fdt
, "/intc", "interrupts",
470 GIC_FDT_IRQ_TYPE_PPI
, ARCH_GICV3_MAINT_IRQ
,
471 GIC_FDT_IRQ_FLAGS_LEVEL_HI
);
474 /* 'cortex-a15-gic' means 'GIC v2' */
475 qemu_fdt_setprop_string(vms
->fdt
, "/intc", "compatible",
476 "arm,cortex-a15-gic");
477 qemu_fdt_setprop_sized_cells(vms
->fdt
, "/intc", "reg",
478 2, vms
->memmap
[VIRT_GIC_DIST
].base
,
479 2, vms
->memmap
[VIRT_GIC_DIST
].size
,
480 2, vms
->memmap
[VIRT_GIC_CPU
].base
,
481 2, vms
->memmap
[VIRT_GIC_CPU
].size
);
484 qemu_fdt_setprop_cell(vms
->fdt
, "/intc", "phandle", vms
->gic_phandle
);
487 static void fdt_add_pmu_nodes(const VirtMachineState
*vms
)
491 uint32_t irqflags
= GIC_FDT_IRQ_FLAGS_LEVEL_HI
;
494 armcpu
= ARM_CPU(cpu
);
495 if (!arm_feature(&armcpu
->env
, ARM_FEATURE_PMU
) ||
496 (kvm_enabled() && !kvm_arm_pmu_create(cpu
, PPI(VIRTUAL_PMU_IRQ
)))) {
501 if (vms
->gic_version
== 2) {
502 irqflags
= deposit32(irqflags
, GIC_FDT_IRQ_PPI_CPU_START
,
503 GIC_FDT_IRQ_PPI_CPU_WIDTH
,
504 (1 << vms
->smp_cpus
) - 1);
507 armcpu
= ARM_CPU(qemu_get_cpu(0));
508 qemu_fdt_add_subnode(vms
->fdt
, "/pmu");
509 if (arm_feature(&armcpu
->env
, ARM_FEATURE_V8
)) {
510 const char compat
[] = "arm,armv8-pmuv3";
511 qemu_fdt_setprop(vms
->fdt
, "/pmu", "compatible",
512 compat
, sizeof(compat
));
513 qemu_fdt_setprop_cells(vms
->fdt
, "/pmu", "interrupts",
514 GIC_FDT_IRQ_TYPE_PPI
, VIRTUAL_PMU_IRQ
, irqflags
);
518 static void create_its(VirtMachineState
*vms
, DeviceState
*gicdev
)
520 const char *itsclass
= its_class_name();
524 /* Do nothing if not supported */
528 dev
= qdev_create(NULL
, itsclass
);
530 object_property_set_link(OBJECT(dev
), OBJECT(gicdev
), "parent-gicv3",
532 qdev_init_nofail(dev
);
533 sysbus_mmio_map(SYS_BUS_DEVICE(dev
), 0, vms
->memmap
[VIRT_GIC_ITS
].base
);
535 fdt_add_its_gic_node(vms
);
538 static void create_v2m(VirtMachineState
*vms
, qemu_irq
*pic
)
541 int irq
= vms
->irqmap
[VIRT_GIC_V2M
];
544 dev
= qdev_create(NULL
, "arm-gicv2m");
545 sysbus_mmio_map(SYS_BUS_DEVICE(dev
), 0, vms
->memmap
[VIRT_GIC_V2M
].base
);
546 qdev_prop_set_uint32(dev
, "base-spi", irq
);
547 qdev_prop_set_uint32(dev
, "num-spi", NUM_GICV2M_SPIS
);
548 qdev_init_nofail(dev
);
550 for (i
= 0; i
< NUM_GICV2M_SPIS
; i
++) {
551 sysbus_connect_irq(SYS_BUS_DEVICE(dev
), i
, pic
[irq
+ i
]);
554 fdt_add_v2m_gic_node(vms
);
557 static void create_gic(VirtMachineState
*vms
, qemu_irq
*pic
)
559 /* We create a standalone GIC */
561 SysBusDevice
*gicbusdev
;
563 int type
= vms
->gic_version
, i
;
565 gictype
= (type
== 3) ? gicv3_class_name() : gic_class_name();
567 gicdev
= qdev_create(NULL
, gictype
);
568 qdev_prop_set_uint32(gicdev
, "revision", type
);
569 qdev_prop_set_uint32(gicdev
, "num-cpu", smp_cpus
);
570 /* Note that the num-irq property counts both internal and external
571 * interrupts; there are always 32 of the former (mandated by GIC spec).
573 qdev_prop_set_uint32(gicdev
, "num-irq", NUM_IRQS
+ 32);
574 if (!kvm_irqchip_in_kernel()) {
575 qdev_prop_set_bit(gicdev
, "has-security-extensions", vms
->secure
);
577 qdev_init_nofail(gicdev
);
578 gicbusdev
= SYS_BUS_DEVICE(gicdev
);
579 sysbus_mmio_map(gicbusdev
, 0, vms
->memmap
[VIRT_GIC_DIST
].base
);
581 sysbus_mmio_map(gicbusdev
, 1, vms
->memmap
[VIRT_GIC_REDIST
].base
);
583 sysbus_mmio_map(gicbusdev
, 1, vms
->memmap
[VIRT_GIC_CPU
].base
);
586 /* Wire the outputs from each CPU's generic timer and the GICv3
587 * maintenance interrupt signal to the appropriate GIC PPI inputs,
588 * and the GIC's IRQ/FIQ/VIRQ/VFIQ interrupt outputs to the CPU's inputs.
590 for (i
= 0; i
< smp_cpus
; i
++) {
591 DeviceState
*cpudev
= DEVICE(qemu_get_cpu(i
));
592 int ppibase
= NUM_IRQS
+ i
* GIC_INTERNAL
+ GIC_NR_SGIS
;
594 /* Mapping from the output timer irq lines from the CPU to the
595 * GIC PPI inputs we use for the virt board.
597 const int timer_irq
[] = {
598 [GTIMER_PHYS
] = ARCH_TIMER_NS_EL1_IRQ
,
599 [GTIMER_VIRT
] = ARCH_TIMER_VIRT_IRQ
,
600 [GTIMER_HYP
] = ARCH_TIMER_NS_EL2_IRQ
,
601 [GTIMER_SEC
] = ARCH_TIMER_S_EL1_IRQ
,
604 for (irq
= 0; irq
< ARRAY_SIZE(timer_irq
); irq
++) {
605 qdev_connect_gpio_out(cpudev
, irq
,
606 qdev_get_gpio_in(gicdev
,
607 ppibase
+ timer_irq
[irq
]));
610 qdev_connect_gpio_out_named(cpudev
, "gicv3-maintenance-interrupt", 0,
611 qdev_get_gpio_in(gicdev
, ppibase
612 + ARCH_GICV3_MAINT_IRQ
));
614 sysbus_connect_irq(gicbusdev
, i
, qdev_get_gpio_in(cpudev
, ARM_CPU_IRQ
));
615 sysbus_connect_irq(gicbusdev
, i
+ smp_cpus
,
616 qdev_get_gpio_in(cpudev
, ARM_CPU_FIQ
));
617 sysbus_connect_irq(gicbusdev
, i
+ 2 * smp_cpus
,
618 qdev_get_gpio_in(cpudev
, ARM_CPU_VIRQ
));
619 sysbus_connect_irq(gicbusdev
, i
+ 3 * smp_cpus
,
620 qdev_get_gpio_in(cpudev
, ARM_CPU_VFIQ
));
623 for (i
= 0; i
< NUM_IRQS
; i
++) {
624 pic
[i
] = qdev_get_gpio_in(gicdev
, i
);
627 fdt_add_gic_node(vms
);
629 if (type
== 3 && vms
->its
) {
630 create_its(vms
, gicdev
);
631 } else if (type
== 2) {
632 create_v2m(vms
, pic
);
636 static void create_uart(const VirtMachineState
*vms
, qemu_irq
*pic
, int uart
,
637 MemoryRegion
*mem
, Chardev
*chr
)
640 hwaddr base
= vms
->memmap
[uart
].base
;
641 hwaddr size
= vms
->memmap
[uart
].size
;
642 int irq
= vms
->irqmap
[uart
];
643 const char compat
[] = "arm,pl011\0arm,primecell";
644 const char clocknames
[] = "uartclk\0apb_pclk";
645 DeviceState
*dev
= qdev_create(NULL
, "pl011");
646 SysBusDevice
*s
= SYS_BUS_DEVICE(dev
);
648 qdev_prop_set_chr(dev
, "chardev", chr
);
649 qdev_init_nofail(dev
);
650 memory_region_add_subregion(mem
, base
,
651 sysbus_mmio_get_region(s
, 0));
652 sysbus_connect_irq(s
, 0, pic
[irq
]);
654 nodename
= g_strdup_printf("/pl011@%" PRIx64
, base
);
655 qemu_fdt_add_subnode(vms
->fdt
, nodename
);
656 /* Note that we can't use setprop_string because of the embedded NUL */
657 qemu_fdt_setprop(vms
->fdt
, nodename
, "compatible",
658 compat
, sizeof(compat
));
659 qemu_fdt_setprop_sized_cells(vms
->fdt
, nodename
, "reg",
661 qemu_fdt_setprop_cells(vms
->fdt
, nodename
, "interrupts",
662 GIC_FDT_IRQ_TYPE_SPI
, irq
,
663 GIC_FDT_IRQ_FLAGS_LEVEL_HI
);
664 qemu_fdt_setprop_cells(vms
->fdt
, nodename
, "clocks",
665 vms
->clock_phandle
, vms
->clock_phandle
);
666 qemu_fdt_setprop(vms
->fdt
, nodename
, "clock-names",
667 clocknames
, sizeof(clocknames
));
669 if (uart
== VIRT_UART
) {
670 qemu_fdt_setprop_string(vms
->fdt
, "/chosen", "stdout-path", nodename
);
672 /* Mark as not usable by the normal world */
673 qemu_fdt_setprop_string(vms
->fdt
, nodename
, "status", "disabled");
674 qemu_fdt_setprop_string(vms
->fdt
, nodename
, "secure-status", "okay");
680 static void create_rtc(const VirtMachineState
*vms
, qemu_irq
*pic
)
683 hwaddr base
= vms
->memmap
[VIRT_RTC
].base
;
684 hwaddr size
= vms
->memmap
[VIRT_RTC
].size
;
685 int irq
= vms
->irqmap
[VIRT_RTC
];
686 const char compat
[] = "arm,pl031\0arm,primecell";
688 sysbus_create_simple("pl031", base
, pic
[irq
]);
690 nodename
= g_strdup_printf("/pl031@%" PRIx64
, base
);
691 qemu_fdt_add_subnode(vms
->fdt
, nodename
);
692 qemu_fdt_setprop(vms
->fdt
, nodename
, "compatible", compat
, sizeof(compat
));
693 qemu_fdt_setprop_sized_cells(vms
->fdt
, nodename
, "reg",
695 qemu_fdt_setprop_cells(vms
->fdt
, nodename
, "interrupts",
696 GIC_FDT_IRQ_TYPE_SPI
, irq
,
697 GIC_FDT_IRQ_FLAGS_LEVEL_HI
);
698 qemu_fdt_setprop_cell(vms
->fdt
, nodename
, "clocks", vms
->clock_phandle
);
699 qemu_fdt_setprop_string(vms
->fdt
, nodename
, "clock-names", "apb_pclk");
703 static DeviceState
*gpio_key_dev
;
704 static void virt_powerdown_req(Notifier
*n
, void *opaque
)
706 /* use gpio Pin 3 for power button event */
707 qemu_set_irq(qdev_get_gpio_in(gpio_key_dev
, 0), 1);
710 static Notifier virt_system_powerdown_notifier
= {
711 .notify
= virt_powerdown_req
714 static void create_gpio(const VirtMachineState
*vms
, qemu_irq
*pic
)
717 DeviceState
*pl061_dev
;
718 hwaddr base
= vms
->memmap
[VIRT_GPIO
].base
;
719 hwaddr size
= vms
->memmap
[VIRT_GPIO
].size
;
720 int irq
= vms
->irqmap
[VIRT_GPIO
];
721 const char compat
[] = "arm,pl061\0arm,primecell";
723 pl061_dev
= sysbus_create_simple("pl061", base
, pic
[irq
]);
725 uint32_t phandle
= qemu_fdt_alloc_phandle(vms
->fdt
);
726 nodename
= g_strdup_printf("/pl061@%" PRIx64
, base
);
727 qemu_fdt_add_subnode(vms
->fdt
, nodename
);
728 qemu_fdt_setprop_sized_cells(vms
->fdt
, nodename
, "reg",
730 qemu_fdt_setprop(vms
->fdt
, nodename
, "compatible", compat
, sizeof(compat
));
731 qemu_fdt_setprop_cell(vms
->fdt
, nodename
, "#gpio-cells", 2);
732 qemu_fdt_setprop(vms
->fdt
, nodename
, "gpio-controller", NULL
, 0);
733 qemu_fdt_setprop_cells(vms
->fdt
, nodename
, "interrupts",
734 GIC_FDT_IRQ_TYPE_SPI
, irq
,
735 GIC_FDT_IRQ_FLAGS_LEVEL_HI
);
736 qemu_fdt_setprop_cell(vms
->fdt
, nodename
, "clocks", vms
->clock_phandle
);
737 qemu_fdt_setprop_string(vms
->fdt
, nodename
, "clock-names", "apb_pclk");
738 qemu_fdt_setprop_cell(vms
->fdt
, nodename
, "phandle", phandle
);
740 gpio_key_dev
= sysbus_create_simple("gpio-key", -1,
741 qdev_get_gpio_in(pl061_dev
, 3));
742 qemu_fdt_add_subnode(vms
->fdt
, "/gpio-keys");
743 qemu_fdt_setprop_string(vms
->fdt
, "/gpio-keys", "compatible", "gpio-keys");
744 qemu_fdt_setprop_cell(vms
->fdt
, "/gpio-keys", "#size-cells", 0);
745 qemu_fdt_setprop_cell(vms
->fdt
, "/gpio-keys", "#address-cells", 1);
747 qemu_fdt_add_subnode(vms
->fdt
, "/gpio-keys/poweroff");
748 qemu_fdt_setprop_string(vms
->fdt
, "/gpio-keys/poweroff",
749 "label", "GPIO Key Poweroff");
750 qemu_fdt_setprop_cell(vms
->fdt
, "/gpio-keys/poweroff", "linux,code",
752 qemu_fdt_setprop_cells(vms
->fdt
, "/gpio-keys/poweroff",
753 "gpios", phandle
, 3, 0);
755 /* connect powerdown request */
756 qemu_register_powerdown_notifier(&virt_system_powerdown_notifier
);
761 static void create_virtio_devices(const VirtMachineState
*vms
, qemu_irq
*pic
)
764 hwaddr size
= vms
->memmap
[VIRT_MMIO
].size
;
766 /* We create the transports in forwards order. Since qbus_realize()
767 * prepends (not appends) new child buses, the incrementing loop below will
768 * create a list of virtio-mmio buses with decreasing base addresses.
770 * When a -device option is processed from the command line,
771 * qbus_find_recursive() picks the next free virtio-mmio bus in forwards
772 * order. The upshot is that -device options in increasing command line
773 * order are mapped to virtio-mmio buses with decreasing base addresses.
775 * When this code was originally written, that arrangement ensured that the
776 * guest Linux kernel would give the lowest "name" (/dev/vda, eth0, etc) to
777 * the first -device on the command line. (The end-to-end order is a
778 * function of this loop, qbus_realize(), qbus_find_recursive(), and the
779 * guest kernel's name-to-address assignment strategy.)
781 * Meanwhile, the kernel's traversal seems to have been reversed; see eg.
782 * the message, if not necessarily the code, of commit 70161ff336.
783 * Therefore the loop now establishes the inverse of the original intent.
785 * Unfortunately, we can't counteract the kernel change by reversing the
786 * loop; it would break existing command lines.
788 * In any case, the kernel makes no guarantee about the stability of
789 * enumeration order of virtio devices (as demonstrated by it changing
790 * between kernel versions). For reliable and stable identification
791 * of disks users must use UUIDs or similar mechanisms.
793 for (i
= 0; i
< NUM_VIRTIO_TRANSPORTS
; i
++) {
794 int irq
= vms
->irqmap
[VIRT_MMIO
] + i
;
795 hwaddr base
= vms
->memmap
[VIRT_MMIO
].base
+ i
* size
;
797 sysbus_create_simple("virtio-mmio", base
, pic
[irq
]);
800 /* We add dtb nodes in reverse order so that they appear in the finished
801 * device tree lowest address first.
803 * Note that this mapping is independent of the loop above. The previous
804 * loop influences virtio device to virtio transport assignment, whereas
805 * this loop controls how virtio transports are laid out in the dtb.
807 for (i
= NUM_VIRTIO_TRANSPORTS
- 1; i
>= 0; i
--) {
809 int irq
= vms
->irqmap
[VIRT_MMIO
] + i
;
810 hwaddr base
= vms
->memmap
[VIRT_MMIO
].base
+ i
* size
;
812 nodename
= g_strdup_printf("/virtio_mmio@%" PRIx64
, base
);
813 qemu_fdt_add_subnode(vms
->fdt
, nodename
);
814 qemu_fdt_setprop_string(vms
->fdt
, nodename
,
815 "compatible", "virtio,mmio");
816 qemu_fdt_setprop_sized_cells(vms
->fdt
, nodename
, "reg",
818 qemu_fdt_setprop_cells(vms
->fdt
, nodename
, "interrupts",
819 GIC_FDT_IRQ_TYPE_SPI
, irq
,
820 GIC_FDT_IRQ_FLAGS_EDGE_LO_HI
);
821 qemu_fdt_setprop(vms
->fdt
, nodename
, "dma-coherent", NULL
, 0);
826 static void create_one_flash(const char *name
, hwaddr flashbase
,
827 hwaddr flashsize
, const char *file
,
828 MemoryRegion
*sysmem
)
830 /* Create and map a single flash device. We use the same
831 * parameters as the flash devices on the Versatile Express board.
833 DriveInfo
*dinfo
= drive_get_next(IF_PFLASH
);
834 DeviceState
*dev
= qdev_create(NULL
, "cfi.pflash01");
835 SysBusDevice
*sbd
= SYS_BUS_DEVICE(dev
);
836 const uint64_t sectorlength
= 256 * 1024;
839 qdev_prop_set_drive(dev
, "drive", blk_by_legacy_dinfo(dinfo
),
843 qdev_prop_set_uint32(dev
, "num-blocks", flashsize
/ sectorlength
);
844 qdev_prop_set_uint64(dev
, "sector-length", sectorlength
);
845 qdev_prop_set_uint8(dev
, "width", 4);
846 qdev_prop_set_uint8(dev
, "device-width", 2);
847 qdev_prop_set_bit(dev
, "big-endian", false);
848 qdev_prop_set_uint16(dev
, "id0", 0x89);
849 qdev_prop_set_uint16(dev
, "id1", 0x18);
850 qdev_prop_set_uint16(dev
, "id2", 0x00);
851 qdev_prop_set_uint16(dev
, "id3", 0x00);
852 qdev_prop_set_string(dev
, "name", name
);
853 qdev_init_nofail(dev
);
855 memory_region_add_subregion(sysmem
, flashbase
,
856 sysbus_mmio_get_region(SYS_BUS_DEVICE(dev
), 0));
862 if (drive_get(IF_PFLASH
, 0, 0)) {
863 error_report("The contents of the first flash device may be "
864 "specified with -bios or with -drive if=pflash... "
865 "but you cannot use both options at once");
868 fn
= qemu_find_file(QEMU_FILE_TYPE_BIOS
, file
);
870 error_report("Could not find ROM image '%s'", file
);
873 image_size
= load_image_mr(fn
, sysbus_mmio_get_region(sbd
, 0));
875 if (image_size
< 0) {
876 error_report("Could not load ROM image '%s'", file
);
882 static void create_flash(const VirtMachineState
*vms
,
883 MemoryRegion
*sysmem
,
884 MemoryRegion
*secure_sysmem
)
886 /* Create two flash devices to fill the VIRT_FLASH space in the memmap.
887 * Any file passed via -bios goes in the first of these.
888 * sysmem is the system memory space. secure_sysmem is the secure view
889 * of the system, and the first flash device should be made visible only
890 * there. The second flash device is visible to both secure and nonsecure.
891 * If sysmem == secure_sysmem this means there is no separate Secure
892 * address space and both flash devices are generally visible.
894 hwaddr flashsize
= vms
->memmap
[VIRT_FLASH
].size
/ 2;
895 hwaddr flashbase
= vms
->memmap
[VIRT_FLASH
].base
;
898 create_one_flash("virt.flash0", flashbase
, flashsize
,
899 bios_name
, secure_sysmem
);
900 create_one_flash("virt.flash1", flashbase
+ flashsize
, flashsize
,
903 if (sysmem
== secure_sysmem
) {
904 /* Report both flash devices as a single node in the DT */
905 nodename
= g_strdup_printf("/flash@%" PRIx64
, flashbase
);
906 qemu_fdt_add_subnode(vms
->fdt
, nodename
);
907 qemu_fdt_setprop_string(vms
->fdt
, nodename
, "compatible", "cfi-flash");
908 qemu_fdt_setprop_sized_cells(vms
->fdt
, nodename
, "reg",
909 2, flashbase
, 2, flashsize
,
910 2, flashbase
+ flashsize
, 2, flashsize
);
911 qemu_fdt_setprop_cell(vms
->fdt
, nodename
, "bank-width", 4);
914 /* Report the devices as separate nodes so we can mark one as
915 * only visible to the secure world.
917 nodename
= g_strdup_printf("/secflash@%" PRIx64
, flashbase
);
918 qemu_fdt_add_subnode(vms
->fdt
, nodename
);
919 qemu_fdt_setprop_string(vms
->fdt
, nodename
, "compatible", "cfi-flash");
920 qemu_fdt_setprop_sized_cells(vms
->fdt
, nodename
, "reg",
921 2, flashbase
, 2, flashsize
);
922 qemu_fdt_setprop_cell(vms
->fdt
, nodename
, "bank-width", 4);
923 qemu_fdt_setprop_string(vms
->fdt
, nodename
, "status", "disabled");
924 qemu_fdt_setprop_string(vms
->fdt
, nodename
, "secure-status", "okay");
927 nodename
= g_strdup_printf("/flash@%" PRIx64
, flashbase
);
928 qemu_fdt_add_subnode(vms
->fdt
, nodename
);
929 qemu_fdt_setprop_string(vms
->fdt
, nodename
, "compatible", "cfi-flash");
930 qemu_fdt_setprop_sized_cells(vms
->fdt
, nodename
, "reg",
931 2, flashbase
+ flashsize
, 2, flashsize
);
932 qemu_fdt_setprop_cell(vms
->fdt
, nodename
, "bank-width", 4);
937 static FWCfgState
*create_fw_cfg(const VirtMachineState
*vms
, AddressSpace
*as
)
939 hwaddr base
= vms
->memmap
[VIRT_FW_CFG
].base
;
940 hwaddr size
= vms
->memmap
[VIRT_FW_CFG
].size
;
944 fw_cfg
= fw_cfg_init_mem_wide(base
+ 8, base
, 8, base
+ 16, as
);
945 fw_cfg_add_i16(fw_cfg
, FW_CFG_NB_CPUS
, (uint16_t)smp_cpus
);
947 nodename
= g_strdup_printf("/fw-cfg@%" PRIx64
, base
);
948 qemu_fdt_add_subnode(vms
->fdt
, nodename
);
949 qemu_fdt_setprop_string(vms
->fdt
, nodename
,
950 "compatible", "qemu,fw-cfg-mmio");
951 qemu_fdt_setprop_sized_cells(vms
->fdt
, nodename
, "reg",
953 qemu_fdt_setprop(vms
->fdt
, nodename
, "dma-coherent", NULL
, 0);
958 static void create_pcie_irq_map(const VirtMachineState
*vms
,
959 uint32_t gic_phandle
,
960 int first_irq
, const char *nodename
)
963 uint32_t full_irq_map
[4 * 4 * 10] = { 0 };
964 uint32_t *irq_map
= full_irq_map
;
966 for (devfn
= 0; devfn
<= 0x18; devfn
+= 0x8) {
967 for (pin
= 0; pin
< 4; pin
++) {
968 int irq_type
= GIC_FDT_IRQ_TYPE_SPI
;
969 int irq_nr
= first_irq
+ ((pin
+ PCI_SLOT(devfn
)) % PCI_NUM_PINS
);
970 int irq_level
= GIC_FDT_IRQ_FLAGS_LEVEL_HI
;
974 devfn
<< 8, 0, 0, /* devfn */
975 pin
+ 1, /* PCI pin */
976 gic_phandle
, 0, 0, irq_type
, irq_nr
, irq_level
}; /* GIC irq */
978 /* Convert map to big endian */
979 for (i
= 0; i
< 10; i
++) {
980 irq_map
[i
] = cpu_to_be32(map
[i
]);
986 qemu_fdt_setprop(vms
->fdt
, nodename
, "interrupt-map",
987 full_irq_map
, sizeof(full_irq_map
));
989 qemu_fdt_setprop_cells(vms
->fdt
, nodename
, "interrupt-map-mask",
990 0x1800, 0, 0, /* devfn (PCI_SLOT(3)) */
994 static void create_pcie(const VirtMachineState
*vms
, qemu_irq
*pic
)
996 hwaddr base_mmio
= vms
->memmap
[VIRT_PCIE_MMIO
].base
;
997 hwaddr size_mmio
= vms
->memmap
[VIRT_PCIE_MMIO
].size
;
998 hwaddr base_mmio_high
= vms
->memmap
[VIRT_PCIE_MMIO_HIGH
].base
;
999 hwaddr size_mmio_high
= vms
->memmap
[VIRT_PCIE_MMIO_HIGH
].size
;
1000 hwaddr base_pio
= vms
->memmap
[VIRT_PCIE_PIO
].base
;
1001 hwaddr size_pio
= vms
->memmap
[VIRT_PCIE_PIO
].size
;
1002 hwaddr base_ecam
= vms
->memmap
[VIRT_PCIE_ECAM
].base
;
1003 hwaddr size_ecam
= vms
->memmap
[VIRT_PCIE_ECAM
].size
;
1004 hwaddr base
= base_mmio
;
1005 int nr_pcie_buses
= size_ecam
/ PCIE_MMCFG_SIZE_MIN
;
1006 int irq
= vms
->irqmap
[VIRT_PCIE
];
1007 MemoryRegion
*mmio_alias
;
1008 MemoryRegion
*mmio_reg
;
1009 MemoryRegion
*ecam_alias
;
1010 MemoryRegion
*ecam_reg
;
1016 dev
= qdev_create(NULL
, TYPE_GPEX_HOST
);
1017 qdev_init_nofail(dev
);
1019 /* Map only the first size_ecam bytes of ECAM space */
1020 ecam_alias
= g_new0(MemoryRegion
, 1);
1021 ecam_reg
= sysbus_mmio_get_region(SYS_BUS_DEVICE(dev
), 0);
1022 memory_region_init_alias(ecam_alias
, OBJECT(dev
), "pcie-ecam",
1023 ecam_reg
, 0, size_ecam
);
1024 memory_region_add_subregion(get_system_memory(), base_ecam
, ecam_alias
);
1026 /* Map the MMIO window into system address space so as to expose
1027 * the section of PCI MMIO space which starts at the same base address
1028 * (ie 1:1 mapping for that part of PCI MMIO space visible through
1031 mmio_alias
= g_new0(MemoryRegion
, 1);
1032 mmio_reg
= sysbus_mmio_get_region(SYS_BUS_DEVICE(dev
), 1);
1033 memory_region_init_alias(mmio_alias
, OBJECT(dev
), "pcie-mmio",
1034 mmio_reg
, base_mmio
, size_mmio
);
1035 memory_region_add_subregion(get_system_memory(), base_mmio
, mmio_alias
);
1038 /* Map high MMIO space */
1039 MemoryRegion
*high_mmio_alias
= g_new0(MemoryRegion
, 1);
1041 memory_region_init_alias(high_mmio_alias
, OBJECT(dev
), "pcie-mmio-high",
1042 mmio_reg
, base_mmio_high
, size_mmio_high
);
1043 memory_region_add_subregion(get_system_memory(), base_mmio_high
,
1047 /* Map IO port space */
1048 sysbus_mmio_map(SYS_BUS_DEVICE(dev
), 2, base_pio
);
1050 for (i
= 0; i
< GPEX_NUM_IRQS
; i
++) {
1051 sysbus_connect_irq(SYS_BUS_DEVICE(dev
), i
, pic
[irq
+ i
]);
1054 pci
= PCI_HOST_BRIDGE(dev
);
1056 for (i
= 0; i
< nb_nics
; i
++) {
1057 NICInfo
*nd
= &nd_table
[i
];
1060 nd
->model
= g_strdup("virtio");
1063 pci_nic_init_nofail(nd
, pci
->bus
, nd
->model
, NULL
);
1067 nodename
= g_strdup_printf("/pcie@%" PRIx64
, base
);
1068 qemu_fdt_add_subnode(vms
->fdt
, nodename
);
1069 qemu_fdt_setprop_string(vms
->fdt
, nodename
,
1070 "compatible", "pci-host-ecam-generic");
1071 qemu_fdt_setprop_string(vms
->fdt
, nodename
, "device_type", "pci");
1072 qemu_fdt_setprop_cell(vms
->fdt
, nodename
, "#address-cells", 3);
1073 qemu_fdt_setprop_cell(vms
->fdt
, nodename
, "#size-cells", 2);
1074 qemu_fdt_setprop_cells(vms
->fdt
, nodename
, "bus-range", 0,
1076 qemu_fdt_setprop(vms
->fdt
, nodename
, "dma-coherent", NULL
, 0);
1078 if (vms
->msi_phandle
) {
1079 qemu_fdt_setprop_cells(vms
->fdt
, nodename
, "msi-parent",
1083 qemu_fdt_setprop_sized_cells(vms
->fdt
, nodename
, "reg",
1084 2, base_ecam
, 2, size_ecam
);
1087 qemu_fdt_setprop_sized_cells(vms
->fdt
, nodename
, "ranges",
1088 1, FDT_PCI_RANGE_IOPORT
, 2, 0,
1089 2, base_pio
, 2, size_pio
,
1090 1, FDT_PCI_RANGE_MMIO
, 2, base_mmio
,
1091 2, base_mmio
, 2, size_mmio
,
1092 1, FDT_PCI_RANGE_MMIO_64BIT
,
1094 2, base_mmio_high
, 2, size_mmio_high
);
1096 qemu_fdt_setprop_sized_cells(vms
->fdt
, nodename
, "ranges",
1097 1, FDT_PCI_RANGE_IOPORT
, 2, 0,
1098 2, base_pio
, 2, size_pio
,
1099 1, FDT_PCI_RANGE_MMIO
, 2, base_mmio
,
1100 2, base_mmio
, 2, size_mmio
);
1103 qemu_fdt_setprop_cell(vms
->fdt
, nodename
, "#interrupt-cells", 1);
1104 create_pcie_irq_map(vms
, vms
->gic_phandle
, irq
, nodename
);
1109 static void create_platform_bus(VirtMachineState
*vms
, qemu_irq
*pic
)
1114 ARMPlatformBusFDTParams
*fdt_params
= g_new(ARMPlatformBusFDTParams
, 1);
1115 MemoryRegion
*sysmem
= get_system_memory();
1117 platform_bus_params
.platform_bus_base
= vms
->memmap
[VIRT_PLATFORM_BUS
].base
;
1118 platform_bus_params
.platform_bus_size
= vms
->memmap
[VIRT_PLATFORM_BUS
].size
;
1119 platform_bus_params
.platform_bus_first_irq
= vms
->irqmap
[VIRT_PLATFORM_BUS
];
1120 platform_bus_params
.platform_bus_num_irqs
= PLATFORM_BUS_NUM_IRQS
;
1122 fdt_params
->system_params
= &platform_bus_params
;
1123 fdt_params
->binfo
= &vms
->bootinfo
;
1124 fdt_params
->intc
= "/intc";
1126 * register a machine init done notifier that creates the device tree
1127 * nodes of the platform bus and its children dynamic sysbus devices
1129 arm_register_platform_bus_fdt_creator(fdt_params
);
1131 dev
= qdev_create(NULL
, TYPE_PLATFORM_BUS_DEVICE
);
1132 dev
->id
= TYPE_PLATFORM_BUS_DEVICE
;
1133 qdev_prop_set_uint32(dev
, "num_irqs",
1134 platform_bus_params
.platform_bus_num_irqs
);
1135 qdev_prop_set_uint32(dev
, "mmio_size",
1136 platform_bus_params
.platform_bus_size
);
1137 qdev_init_nofail(dev
);
1138 s
= SYS_BUS_DEVICE(dev
);
1140 for (i
= 0; i
< platform_bus_params
.platform_bus_num_irqs
; i
++) {
1141 int irqn
= platform_bus_params
.platform_bus_first_irq
+ i
;
1142 sysbus_connect_irq(s
, i
, pic
[irqn
]);
1145 memory_region_add_subregion(sysmem
,
1146 platform_bus_params
.platform_bus_base
,
1147 sysbus_mmio_get_region(s
, 0));
1150 static void create_secure_ram(VirtMachineState
*vms
,
1151 MemoryRegion
*secure_sysmem
)
1153 MemoryRegion
*secram
= g_new(MemoryRegion
, 1);
1155 hwaddr base
= vms
->memmap
[VIRT_SECURE_MEM
].base
;
1156 hwaddr size
= vms
->memmap
[VIRT_SECURE_MEM
].size
;
1158 memory_region_init_ram(secram
, NULL
, "virt.secure-ram", size
, &error_fatal
);
1159 vmstate_register_ram_global(secram
);
1160 memory_region_add_subregion(secure_sysmem
, base
, secram
);
1162 nodename
= g_strdup_printf("/secram@%" PRIx64
, base
);
1163 qemu_fdt_add_subnode(vms
->fdt
, nodename
);
1164 qemu_fdt_setprop_string(vms
->fdt
, nodename
, "device_type", "memory");
1165 qemu_fdt_setprop_sized_cells(vms
->fdt
, nodename
, "reg", 2, base
, 2, size
);
1166 qemu_fdt_setprop_string(vms
->fdt
, nodename
, "status", "disabled");
1167 qemu_fdt_setprop_string(vms
->fdt
, nodename
, "secure-status", "okay");
1172 static void *machvirt_dtb(const struct arm_boot_info
*binfo
, int *fdt_size
)
1174 const VirtMachineState
*board
= container_of(binfo
, VirtMachineState
,
1177 *fdt_size
= board
->fdt_size
;
1181 static void virt_build_smbios(VirtMachineState
*vms
)
1183 uint8_t *smbios_tables
, *smbios_anchor
;
1184 size_t smbios_tables_len
, smbios_anchor_len
;
1185 const char *product
= "QEMU Virtual Machine";
1191 if (kvm_enabled()) {
1192 product
= "KVM Virtual Machine";
1195 smbios_set_defaults("QEMU", product
,
1196 "1.0", false, true, SMBIOS_ENTRY_POINT_30
);
1198 smbios_get_tables(NULL
, 0, &smbios_tables
, &smbios_tables_len
,
1199 &smbios_anchor
, &smbios_anchor_len
);
1201 if (smbios_anchor
) {
1202 fw_cfg_add_file(vms
->fw_cfg
, "etc/smbios/smbios-tables",
1203 smbios_tables
, smbios_tables_len
);
1204 fw_cfg_add_file(vms
->fw_cfg
, "etc/smbios/smbios-anchor",
1205 smbios_anchor
, smbios_anchor_len
);
1210 void virt_machine_done(Notifier
*notifier
, void *data
)
1212 VirtMachineState
*vms
= container_of(notifier
, VirtMachineState
,
1215 virt_acpi_setup(vms
);
1216 virt_build_smbios(vms
);
1219 static uint64_t virt_cpu_mp_affinity(VirtMachineState
*vms
, int idx
)
1221 uint8_t clustersz
= ARM_DEFAULT_CPUS_PER_CLUSTER
;
1222 VirtMachineClass
*vmc
= VIRT_MACHINE_GET_CLASS(vms
);
1224 if (!vmc
->disallow_affinity_adjustment
) {
1225 /* Adjust MPIDR like 64-bit KVM hosts, which incorporate the
1226 * GIC's target-list limitations. 32-bit KVM hosts currently
1227 * always create clusters of 4 CPUs, but that is expected to
1228 * change when they gain support for gicv3. When KVM is enabled
1229 * it will override the changes we make here, therefore our
1230 * purposes are to make TCG consistent (with 64-bit KVM hosts)
1231 * and to improve SGI efficiency.
1233 if (vms
->gic_version
== 3) {
1234 clustersz
= GICV3_TARGETLIST_BITS
;
1236 clustersz
= GIC_TARGETLIST_BITS
;
1239 return arm_cpu_mp_affinity(idx
, clustersz
);
1242 static void machvirt_init(MachineState
*machine
)
1244 VirtMachineState
*vms
= VIRT_MACHINE(machine
);
1245 VirtMachineClass
*vmc
= VIRT_MACHINE_GET_CLASS(machine
);
1246 MachineClass
*mc
= MACHINE_GET_CLASS(machine
);
1247 const CPUArchIdList
*possible_cpus
;
1248 qemu_irq pic
[NUM_IRQS
];
1249 MemoryRegion
*sysmem
= get_system_memory();
1250 MemoryRegion
*secure_sysmem
= NULL
;
1251 int n
, virt_max_cpus
;
1252 MemoryRegion
*ram
= g_new(MemoryRegion
, 1);
1253 const char *cpu_model
= machine
->cpu_model
;
1256 const char *typename
;
1259 bool firmware_loaded
= bios_name
|| drive_get(IF_PFLASH
, 0, 0);
1262 cpu_model
= "cortex-a15";
1265 /* We can probe only here because during property set
1266 * KVM is not available yet
1268 if (!vms
->gic_version
) {
1269 if (!kvm_enabled()) {
1270 error_report("gic-version=host requires KVM");
1274 vms
->gic_version
= kvm_arm_vgic_probe();
1275 if (!vms
->gic_version
) {
1276 error_report("Unable to determine GIC version supported by host");
1281 /* Separate the actual CPU model name from any appended features */
1282 cpustr
= g_strsplit(cpu_model
, ",", 2);
1284 if (!cpuname_valid(cpustr
[0])) {
1285 error_report("mach-virt: CPU %s not supported", cpustr
[0]);
1289 /* If we have an EL3 boot ROM then the assumption is that it will
1290 * implement PSCI itself, so disable QEMU's internal implementation
1291 * so it doesn't get in the way. Instead of starting secondary
1292 * CPUs in PSCI powerdown state we will start them all running and
1293 * let the boot ROM sort them out.
1294 * The usual case is that we do use QEMU's PSCI implementation;
1295 * if the guest has EL2 then we will use SMC as the conduit,
1296 * and otherwise we will use HVC (for backwards compatibility and
1297 * because if we're using KVM then we must use HVC).
1299 if (vms
->secure
&& firmware_loaded
) {
1300 vms
->psci_conduit
= QEMU_PSCI_CONDUIT_DISABLED
;
1301 } else if (vms
->virt
) {
1302 vms
->psci_conduit
= QEMU_PSCI_CONDUIT_SMC
;
1304 vms
->psci_conduit
= QEMU_PSCI_CONDUIT_HVC
;
1307 /* The maximum number of CPUs depends on the GIC version, or on how
1308 * many redistributors we can fit into the memory map.
1310 if (vms
->gic_version
== 3) {
1311 virt_max_cpus
= vms
->memmap
[VIRT_GIC_REDIST
].size
/ 0x20000;
1313 virt_max_cpus
= GIC_NCPU
;
1316 if (max_cpus
> virt_max_cpus
) {
1317 error_report("Number of SMP CPUs requested (%d) exceeds max CPUs "
1318 "supported by machine 'mach-virt' (%d)",
1319 max_cpus
, virt_max_cpus
);
1323 vms
->smp_cpus
= smp_cpus
;
1325 if (machine
->ram_size
> vms
->memmap
[VIRT_MEM
].size
) {
1326 error_report("mach-virt: cannot model more than %dGB RAM", RAMLIMIT_GB
);
1330 if (vms
->virt
&& kvm_enabled()) {
1331 error_report("mach-virt: KVM does not support providing "
1332 "Virtualization extensions to the guest CPU");
1337 if (kvm_enabled()) {
1338 error_report("mach-virt: KVM does not support Security extensions");
1342 /* The Secure view of the world is the same as the NonSecure,
1343 * but with a few extra devices. Create it as a container region
1344 * containing the system memory at low priority; any secure-only
1345 * devices go in at higher priority and take precedence.
1347 secure_sysmem
= g_new(MemoryRegion
, 1);
1348 memory_region_init(secure_sysmem
, OBJECT(machine
), "secure-memory",
1350 memory_region_add_subregion_overlap(secure_sysmem
, 0, sysmem
, -1);
1355 oc
= cpu_class_by_name(TYPE_ARM_CPU
, cpustr
[0]);
1357 error_report("Unable to find CPU definition");
1360 typename
= object_class_get_name(oc
);
1362 /* convert -smp CPU options specified by the user into global props */
1364 cc
->parse_features(typename
, cpustr
[1], &err
);
1367 error_report_err(err
);
1371 possible_cpus
= mc
->possible_cpu_arch_ids(machine
);
1372 for (n
= 0; n
< possible_cpus
->len
; n
++) {
1376 if (n
>= smp_cpus
) {
1380 cpuobj
= object_new(typename
);
1381 object_property_set_int(cpuobj
, possible_cpus
->cpus
[n
].arch_id
,
1382 "mp-affinity", NULL
);
1387 numa_cpu_pre_plug(&possible_cpus
->cpus
[cs
->cpu_index
], DEVICE(cpuobj
),
1391 object_property_set_bool(cpuobj
, false, "has_el3", NULL
);
1394 if (!vms
->virt
&& object_property_find(cpuobj
, "has_el2", NULL
)) {
1395 object_property_set_bool(cpuobj
, false, "has_el2", NULL
);
1398 if (vms
->psci_conduit
!= QEMU_PSCI_CONDUIT_DISABLED
) {
1399 object_property_set_int(cpuobj
, vms
->psci_conduit
,
1400 "psci-conduit", NULL
);
1402 /* Secondary CPUs start in PSCI powered-down state */
1404 object_property_set_bool(cpuobj
, true,
1405 "start-powered-off", NULL
);
1409 if (vmc
->no_pmu
&& object_property_find(cpuobj
, "pmu", NULL
)) {
1410 object_property_set_bool(cpuobj
, false, "pmu", NULL
);
1413 if (object_property_find(cpuobj
, "reset-cbar", NULL
)) {
1414 object_property_set_int(cpuobj
, vms
->memmap
[VIRT_CPUPERIPHS
].base
,
1415 "reset-cbar", &error_abort
);
1418 object_property_set_link(cpuobj
, OBJECT(sysmem
), "memory",
1421 object_property_set_link(cpuobj
, OBJECT(secure_sysmem
),
1422 "secure-memory", &error_abort
);
1425 object_property_set_bool(cpuobj
, true, "realized", NULL
);
1426 object_unref(cpuobj
);
1428 fdt_add_timer_nodes(vms
);
1429 fdt_add_cpu_nodes(vms
);
1430 fdt_add_psci_node(vms
);
1432 memory_region_allocate_system_memory(ram
, NULL
, "mach-virt.ram",
1434 memory_region_add_subregion(sysmem
, vms
->memmap
[VIRT_MEM
].base
, ram
);
1436 create_flash(vms
, sysmem
, secure_sysmem
? secure_sysmem
: sysmem
);
1438 create_gic(vms
, pic
);
1440 fdt_add_pmu_nodes(vms
);
1442 create_uart(vms
, pic
, VIRT_UART
, sysmem
, serial_hds
[0]);
1445 create_secure_ram(vms
, secure_sysmem
);
1446 create_uart(vms
, pic
, VIRT_SECURE_UART
, secure_sysmem
, serial_hds
[1]);
1449 create_rtc(vms
, pic
);
1451 create_pcie(vms
, pic
);
1453 create_gpio(vms
, pic
);
1455 /* Create mmio transports, so the user can create virtio backends
1456 * (which will be automatically plugged in to the transports). If
1457 * no backend is created the transport will just sit harmlessly idle.
1459 create_virtio_devices(vms
, pic
);
1461 vms
->fw_cfg
= create_fw_cfg(vms
, &address_space_memory
);
1462 rom_set_fw(vms
->fw_cfg
);
1464 vms
->machine_done
.notify
= virt_machine_done
;
1465 qemu_add_machine_init_done_notifier(&vms
->machine_done
);
1467 vms
->bootinfo
.ram_size
= machine
->ram_size
;
1468 vms
->bootinfo
.kernel_filename
= machine
->kernel_filename
;
1469 vms
->bootinfo
.kernel_cmdline
= machine
->kernel_cmdline
;
1470 vms
->bootinfo
.initrd_filename
= machine
->initrd_filename
;
1471 vms
->bootinfo
.nb_cpus
= smp_cpus
;
1472 vms
->bootinfo
.board_id
= -1;
1473 vms
->bootinfo
.loader_start
= vms
->memmap
[VIRT_MEM
].base
;
1474 vms
->bootinfo
.get_dtb
= machvirt_dtb
;
1475 vms
->bootinfo
.firmware_loaded
= firmware_loaded
;
1476 arm_load_kernel(ARM_CPU(first_cpu
), &vms
->bootinfo
);
1479 * arm_load_kernel machine init done notifier registration must
1480 * happen before the platform_bus_create call. In this latter,
1481 * another notifier is registered which adds platform bus nodes.
1482 * Notifiers are executed in registration reverse order.
1484 create_platform_bus(vms
, pic
);
1487 static bool virt_get_secure(Object
*obj
, Error
**errp
)
1489 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
1494 static void virt_set_secure(Object
*obj
, bool value
, Error
**errp
)
1496 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
1498 vms
->secure
= value
;
1501 static bool virt_get_virt(Object
*obj
, Error
**errp
)
1503 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
1508 static void virt_set_virt(Object
*obj
, bool value
, Error
**errp
)
1510 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
1515 static bool virt_get_highmem(Object
*obj
, Error
**errp
)
1517 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
1519 return vms
->highmem
;
1522 static void virt_set_highmem(Object
*obj
, bool value
, Error
**errp
)
1524 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
1526 vms
->highmem
= value
;
1529 static bool virt_get_its(Object
*obj
, Error
**errp
)
1531 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
1536 static void virt_set_its(Object
*obj
, bool value
, Error
**errp
)
1538 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
1543 static char *virt_get_gic_version(Object
*obj
, Error
**errp
)
1545 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
1546 const char *val
= vms
->gic_version
== 3 ? "3" : "2";
1548 return g_strdup(val
);
1551 static void virt_set_gic_version(Object
*obj
, const char *value
, Error
**errp
)
1553 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
1555 if (!strcmp(value
, "3")) {
1556 vms
->gic_version
= 3;
1557 } else if (!strcmp(value
, "2")) {
1558 vms
->gic_version
= 2;
1559 } else if (!strcmp(value
, "host")) {
1560 vms
->gic_version
= 0; /* Will probe later */
1562 error_setg(errp
, "Invalid gic-version value");
1563 error_append_hint(errp
, "Valid values are 3, 2, host.\n");
1567 static CpuInstanceProperties
1568 virt_cpu_index_to_props(MachineState
*ms
, unsigned cpu_index
)
1570 MachineClass
*mc
= MACHINE_GET_CLASS(ms
);
1571 const CPUArchIdList
*possible_cpus
= mc
->possible_cpu_arch_ids(ms
);
1573 assert(cpu_index
< possible_cpus
->len
);
1574 return possible_cpus
->cpus
[cpu_index
].props
;
1577 static const CPUArchIdList
*virt_possible_cpu_arch_ids(MachineState
*ms
)
1580 VirtMachineState
*vms
= VIRT_MACHINE(ms
);
1582 if (ms
->possible_cpus
) {
1583 assert(ms
->possible_cpus
->len
== max_cpus
);
1584 return ms
->possible_cpus
;
1587 ms
->possible_cpus
= g_malloc0(sizeof(CPUArchIdList
) +
1588 sizeof(CPUArchId
) * max_cpus
);
1589 ms
->possible_cpus
->len
= max_cpus
;
1590 for (n
= 0; n
< ms
->possible_cpus
->len
; n
++) {
1591 ms
->possible_cpus
->cpus
[n
].arch_id
=
1592 virt_cpu_mp_affinity(vms
, n
);
1593 ms
->possible_cpus
->cpus
[n
].props
.has_thread_id
= true;
1594 ms
->possible_cpus
->cpus
[n
].props
.thread_id
= n
;
1596 /* default distribution of CPUs over NUMA nodes */
1597 if (nb_numa_nodes
) {
1598 /* preset values but do not enable them i.e. 'has_node_id = false',
1599 * numa init code will enable them later if manual mapping wasn't
1601 ms
->possible_cpus
->cpus
[n
].props
.node_id
= n
% nb_numa_nodes
;
1604 return ms
->possible_cpus
;
1607 static void virt_machine_class_init(ObjectClass
*oc
, void *data
)
1609 MachineClass
*mc
= MACHINE_CLASS(oc
);
1611 mc
->init
= machvirt_init
;
1612 /* Start max_cpus at the maximum QEMU supports. We'll further restrict
1613 * it later in machvirt_init, where we have more information about the
1614 * configuration of the particular instance.
1617 mc
->has_dynamic_sysbus
= true;
1618 mc
->block_default_type
= IF_VIRTIO
;
1620 mc
->pci_allow_0_address
= true;
1621 /* We know we will never create a pre-ARMv7 CPU which needs 1K pages */
1622 mc
->minimum_page_bits
= 12;
1623 mc
->possible_cpu_arch_ids
= virt_possible_cpu_arch_ids
;
1624 mc
->cpu_index_to_instance_props
= virt_cpu_index_to_props
;
1627 static const TypeInfo virt_machine_info
= {
1628 .name
= TYPE_VIRT_MACHINE
,
1629 .parent
= TYPE_MACHINE
,
1631 .instance_size
= sizeof(VirtMachineState
),
1632 .class_size
= sizeof(VirtMachineClass
),
1633 .class_init
= virt_machine_class_init
,
1636 static void machvirt_machine_init(void)
1638 type_register_static(&virt_machine_info
);
1640 type_init(machvirt_machine_init
);
1642 static void virt_2_9_instance_init(Object
*obj
)
1644 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
1645 VirtMachineClass
*vmc
= VIRT_MACHINE_GET_CLASS(vms
);
1647 /* EL3 is disabled by default on virt: this makes us consistent
1648 * between KVM and TCG for this board, and it also allows us to
1649 * boot UEFI blobs which assume no TrustZone support.
1651 vms
->secure
= false;
1652 object_property_add_bool(obj
, "secure", virt_get_secure
,
1653 virt_set_secure
, NULL
);
1654 object_property_set_description(obj
, "secure",
1655 "Set on/off to enable/disable the ARM "
1656 "Security Extensions (TrustZone)",
1659 /* EL2 is also disabled by default, for similar reasons */
1661 object_property_add_bool(obj
, "virtualization", virt_get_virt
,
1662 virt_set_virt
, NULL
);
1663 object_property_set_description(obj
, "virtualization",
1664 "Set on/off to enable/disable emulating a "
1665 "guest CPU which implements the ARM "
1666 "Virtualization Extensions",
1669 /* High memory is enabled by default */
1670 vms
->highmem
= true;
1671 object_property_add_bool(obj
, "highmem", virt_get_highmem
,
1672 virt_set_highmem
, NULL
);
1673 object_property_set_description(obj
, "highmem",
1674 "Set on/off to enable/disable using "
1675 "physical address space above 32 bits",
1677 /* Default GIC type is v2 */
1678 vms
->gic_version
= 2;
1679 object_property_add_str(obj
, "gic-version", virt_get_gic_version
,
1680 virt_set_gic_version
, NULL
);
1681 object_property_set_description(obj
, "gic-version",
1683 "Valid values are 2, 3 and host", NULL
);
1688 /* Default allows ITS instantiation */
1690 object_property_add_bool(obj
, "its", virt_get_its
,
1691 virt_set_its
, NULL
);
1692 object_property_set_description(obj
, "its",
1693 "Set on/off to enable/disable "
1694 "ITS instantiation",
1698 vms
->memmap
= a15memmap
;
1699 vms
->irqmap
= a15irqmap
;
1702 static void virt_machine_2_9_options(MachineClass
*mc
)
1705 DEFINE_VIRT_MACHINE_AS_LATEST(2, 9)
1707 #define VIRT_COMPAT_2_8 \
1710 static void virt_2_8_instance_init(Object
*obj
)
1712 virt_2_9_instance_init(obj
);
1715 static void virt_machine_2_8_options(MachineClass
*mc
)
1717 VirtMachineClass
*vmc
= VIRT_MACHINE_CLASS(OBJECT_CLASS(mc
));
1719 virt_machine_2_9_options(mc
);
1720 SET_MACHINE_COMPAT(mc
, VIRT_COMPAT_2_8
);
1721 /* For 2.8 and earlier we falsely claimed in the DT that
1722 * our timers were edge-triggered, not level-triggered.
1724 vmc
->claim_edge_triggered_timers
= true;
1726 DEFINE_VIRT_MACHINE(2, 8)
1728 #define VIRT_COMPAT_2_7 \
1731 static void virt_2_7_instance_init(Object
*obj
)
1733 virt_2_8_instance_init(obj
);
1736 static void virt_machine_2_7_options(MachineClass
*mc
)
1738 VirtMachineClass
*vmc
= VIRT_MACHINE_CLASS(OBJECT_CLASS(mc
));
1740 virt_machine_2_8_options(mc
);
1741 SET_MACHINE_COMPAT(mc
, VIRT_COMPAT_2_7
);
1742 /* ITS was introduced with 2.8 */
1744 /* Stick with 1K pages for migration compatibility */
1745 mc
->minimum_page_bits
= 0;
1747 DEFINE_VIRT_MACHINE(2, 7)
1749 #define VIRT_COMPAT_2_6 \
1752 static void virt_2_6_instance_init(Object
*obj
)
1754 virt_2_7_instance_init(obj
);
1757 static void virt_machine_2_6_options(MachineClass
*mc
)
1759 VirtMachineClass
*vmc
= VIRT_MACHINE_CLASS(OBJECT_CLASS(mc
));
1761 virt_machine_2_7_options(mc
);
1762 SET_MACHINE_COMPAT(mc
, VIRT_COMPAT_2_6
);
1763 vmc
->disallow_affinity_adjustment
= true;
1764 /* Disable PMU for 2.6 as PMU support was first introduced in 2.7 */
1767 DEFINE_VIRT_MACHINE(2, 6)