s390: use FILE instead of QEMUFile for creating text file
[qemu/ar7.git] / hw / intc / arm_gic.c
blob06a22e0aaf1ef1b50b62b1cc029f553b91ba6aab
1 /*
2 * ARM Generic/Distributed Interrupt Controller
4 * Copyright (c) 2006-2007 CodeSourcery.
5 * Written by Paul Brook
7 * This code is licensed under the GPL.
8 */
10 /* This file contains implementation code for the RealView EB interrupt
11 * controller, MPCore distributed interrupt controller and ARMv7-M
12 * Nested Vectored Interrupt Controller.
13 * It is compiled in two ways:
14 * (1) as a standalone file to produce a sysbus device which is a GIC
15 * that can be used on the realview board and as one of the builtin
16 * private peripherals for the ARM MP CPUs (11MPCore, A9, etc)
17 * (2) by being directly #included into armv7m_nvic.c to produce the
18 * armv7m_nvic device.
21 #include "qemu/osdep.h"
22 #include "hw/sysbus.h"
23 #include "gic_internal.h"
24 #include "qapi/error.h"
25 #include "qom/cpu.h"
26 #include "qemu/log.h"
27 #include "trace.h"
29 //#define DEBUG_GIC
31 #ifdef DEBUG_GIC
32 #define DPRINTF(fmt, ...) \
33 do { fprintf(stderr, "arm_gic: " fmt , ## __VA_ARGS__); } while (0)
34 #else
35 #define DPRINTF(fmt, ...) do {} while(0)
36 #endif
38 static const uint8_t gic_id_11mpcore[] = {
39 0x00, 0x00, 0x00, 0x00, 0x90, 0x13, 0x04, 0x00, 0x0d, 0xf0, 0x05, 0xb1
42 static const uint8_t gic_id_gicv1[] = {
43 0x04, 0x00, 0x00, 0x00, 0x90, 0xb3, 0x1b, 0x00, 0x0d, 0xf0, 0x05, 0xb1
46 static const uint8_t gic_id_gicv2[] = {
47 0x04, 0x00, 0x00, 0x00, 0x90, 0xb4, 0x2b, 0x00, 0x0d, 0xf0, 0x05, 0xb1
50 static inline int gic_get_current_cpu(GICState *s)
52 if (s->num_cpu > 1) {
53 return current_cpu->cpu_index;
55 return 0;
58 /* Return true if this GIC config has interrupt groups, which is
59 * true if we're a GICv2, or a GICv1 with the security extensions.
61 static inline bool gic_has_groups(GICState *s)
63 return s->revision == 2 || s->security_extn;
66 /* TODO: Many places that call this routine could be optimized. */
67 /* Update interrupt status after enabled or pending bits have been changed. */
68 void gic_update(GICState *s)
70 int best_irq;
71 int best_prio;
72 int irq;
73 int irq_level, fiq_level;
74 int cpu;
75 int cm;
77 for (cpu = 0; cpu < s->num_cpu; cpu++) {
78 cm = 1 << cpu;
79 s->current_pending[cpu] = 1023;
80 if (!(s->ctlr & (GICD_CTLR_EN_GRP0 | GICD_CTLR_EN_GRP1))
81 || !(s->cpu_ctlr[cpu] & (GICC_CTLR_EN_GRP0 | GICC_CTLR_EN_GRP1))) {
82 qemu_irq_lower(s->parent_irq[cpu]);
83 qemu_irq_lower(s->parent_fiq[cpu]);
84 continue;
86 best_prio = 0x100;
87 best_irq = 1023;
88 for (irq = 0; irq < s->num_irq; irq++) {
89 if (GIC_TEST_ENABLED(irq, cm) && gic_test_pending(s, irq, cm) &&
90 (irq < GIC_INTERNAL || GIC_TARGET(irq) & cm)) {
91 if (GIC_GET_PRIORITY(irq, cpu) < best_prio) {
92 best_prio = GIC_GET_PRIORITY(irq, cpu);
93 best_irq = irq;
98 if (best_irq != 1023) {
99 trace_gic_update_bestirq(cpu, best_irq, best_prio,
100 s->priority_mask[cpu], s->running_priority[cpu]);
103 irq_level = fiq_level = 0;
105 if (best_prio < s->priority_mask[cpu]) {
106 s->current_pending[cpu] = best_irq;
107 if (best_prio < s->running_priority[cpu]) {
108 int group = GIC_TEST_GROUP(best_irq, cm);
110 if (extract32(s->ctlr, group, 1) &&
111 extract32(s->cpu_ctlr[cpu], group, 1)) {
112 if (group == 0 && s->cpu_ctlr[cpu] & GICC_CTLR_FIQ_EN) {
113 DPRINTF("Raised pending FIQ %d (cpu %d)\n",
114 best_irq, cpu);
115 fiq_level = 1;
116 trace_gic_update_set_irq(cpu, "fiq", fiq_level);
117 } else {
118 DPRINTF("Raised pending IRQ %d (cpu %d)\n",
119 best_irq, cpu);
120 irq_level = 1;
121 trace_gic_update_set_irq(cpu, "irq", irq_level);
127 qemu_set_irq(s->parent_irq[cpu], irq_level);
128 qemu_set_irq(s->parent_fiq[cpu], fiq_level);
132 void gic_set_pending_private(GICState *s, int cpu, int irq)
134 int cm = 1 << cpu;
136 if (gic_test_pending(s, irq, cm)) {
137 return;
140 DPRINTF("Set %d pending cpu %d\n", irq, cpu);
141 GIC_SET_PENDING(irq, cm);
142 gic_update(s);
145 static void gic_set_irq_11mpcore(GICState *s, int irq, int level,
146 int cm, int target)
148 if (level) {
149 GIC_SET_LEVEL(irq, cm);
150 if (GIC_TEST_EDGE_TRIGGER(irq) || GIC_TEST_ENABLED(irq, cm)) {
151 DPRINTF("Set %d pending mask %x\n", irq, target);
152 GIC_SET_PENDING(irq, target);
154 } else {
155 GIC_CLEAR_LEVEL(irq, cm);
159 static void gic_set_irq_generic(GICState *s, int irq, int level,
160 int cm, int target)
162 if (level) {
163 GIC_SET_LEVEL(irq, cm);
164 DPRINTF("Set %d pending mask %x\n", irq, target);
165 if (GIC_TEST_EDGE_TRIGGER(irq)) {
166 GIC_SET_PENDING(irq, target);
168 } else {
169 GIC_CLEAR_LEVEL(irq, cm);
173 /* Process a change in an external IRQ input. */
174 static void gic_set_irq(void *opaque, int irq, int level)
176 /* Meaning of the 'irq' parameter:
177 * [0..N-1] : external interrupts
178 * [N..N+31] : PPI (internal) interrupts for CPU 0
179 * [N+32..N+63] : PPI (internal interrupts for CPU 1
180 * ...
182 GICState *s = (GICState *)opaque;
183 int cm, target;
184 if (irq < (s->num_irq - GIC_INTERNAL)) {
185 /* The first external input line is internal interrupt 32. */
186 cm = ALL_CPU_MASK;
187 irq += GIC_INTERNAL;
188 target = GIC_TARGET(irq);
189 } else {
190 int cpu;
191 irq -= (s->num_irq - GIC_INTERNAL);
192 cpu = irq / GIC_INTERNAL;
193 irq %= GIC_INTERNAL;
194 cm = 1 << cpu;
195 target = cm;
198 assert(irq >= GIC_NR_SGIS);
200 if (level == GIC_TEST_LEVEL(irq, cm)) {
201 return;
204 if (s->revision == REV_11MPCORE || s->revision == REV_NVIC) {
205 gic_set_irq_11mpcore(s, irq, level, cm, target);
206 } else {
207 gic_set_irq_generic(s, irq, level, cm, target);
209 trace_gic_set_irq(irq, level, cm, target);
211 gic_update(s);
214 static uint16_t gic_get_current_pending_irq(GICState *s, int cpu,
215 MemTxAttrs attrs)
217 uint16_t pending_irq = s->current_pending[cpu];
219 if (pending_irq < GIC_MAXIRQ && gic_has_groups(s)) {
220 int group = GIC_TEST_GROUP(pending_irq, (1 << cpu));
221 /* On a GIC without the security extensions, reading this register
222 * behaves in the same way as a secure access to a GIC with them.
224 bool secure = !s->security_extn || attrs.secure;
226 if (group == 0 && !secure) {
227 /* Group0 interrupts hidden from Non-secure access */
228 return 1023;
230 if (group == 1 && secure && !(s->cpu_ctlr[cpu] & GICC_CTLR_ACK_CTL)) {
231 /* Group1 interrupts only seen by Secure access if
232 * AckCtl bit set.
234 return 1022;
237 return pending_irq;
240 static int gic_get_group_priority(GICState *s, int cpu, int irq)
242 /* Return the group priority of the specified interrupt
243 * (which is the top bits of its priority, with the number
244 * of bits masked determined by the applicable binary point register).
246 int bpr;
247 uint32_t mask;
249 if (gic_has_groups(s) &&
250 !(s->cpu_ctlr[cpu] & GICC_CTLR_CBPR) &&
251 GIC_TEST_GROUP(irq, (1 << cpu))) {
252 bpr = s->abpr[cpu];
253 } else {
254 bpr = s->bpr[cpu];
257 /* a BPR of 0 means the group priority bits are [7:1];
258 * a BPR of 1 means they are [7:2], and so on down to
259 * a BPR of 7 meaning no group priority bits at all.
261 mask = ~0U << ((bpr & 7) + 1);
263 return GIC_GET_PRIORITY(irq, cpu) & mask;
266 static void gic_activate_irq(GICState *s, int cpu, int irq)
268 /* Set the appropriate Active Priority Register bit for this IRQ,
269 * and update the running priority.
271 int prio = gic_get_group_priority(s, cpu, irq);
272 int preemption_level = prio >> (GIC_MIN_BPR + 1);
273 int regno = preemption_level / 32;
274 int bitno = preemption_level % 32;
276 if (gic_has_groups(s) && GIC_TEST_GROUP(irq, (1 << cpu))) {
277 s->nsapr[regno][cpu] |= (1 << bitno);
278 } else {
279 s->apr[regno][cpu] |= (1 << bitno);
282 s->running_priority[cpu] = prio;
283 GIC_SET_ACTIVE(irq, 1 << cpu);
286 static int gic_get_prio_from_apr_bits(GICState *s, int cpu)
288 /* Recalculate the current running priority for this CPU based
289 * on the set bits in the Active Priority Registers.
291 int i;
292 for (i = 0; i < GIC_NR_APRS; i++) {
293 uint32_t apr = s->apr[i][cpu] | s->nsapr[i][cpu];
294 if (!apr) {
295 continue;
297 return (i * 32 + ctz32(apr)) << (GIC_MIN_BPR + 1);
299 return 0x100;
302 static void gic_drop_prio(GICState *s, int cpu, int group)
304 /* Drop the priority of the currently active interrupt in the
305 * specified group.
307 * Note that we can guarantee (because of the requirement to nest
308 * GICC_IAR reads [which activate an interrupt and raise priority]
309 * with GICC_EOIR writes [which drop the priority for the interrupt])
310 * that the interrupt we're being called for is the highest priority
311 * active interrupt, meaning that it has the lowest set bit in the
312 * APR registers.
314 * If the guest does not honour the ordering constraints then the
315 * behaviour of the GIC is UNPREDICTABLE, which for us means that
316 * the values of the APR registers might become incorrect and the
317 * running priority will be wrong, so interrupts that should preempt
318 * might not do so, and interrupts that should not preempt might do so.
320 int i;
322 for (i = 0; i < GIC_NR_APRS; i++) {
323 uint32_t *papr = group ? &s->nsapr[i][cpu] : &s->apr[i][cpu];
324 if (!*papr) {
325 continue;
327 /* Clear lowest set bit */
328 *papr &= *papr - 1;
329 break;
332 s->running_priority[cpu] = gic_get_prio_from_apr_bits(s, cpu);
335 uint32_t gic_acknowledge_irq(GICState *s, int cpu, MemTxAttrs attrs)
337 int ret, irq, src;
338 int cm = 1 << cpu;
340 /* gic_get_current_pending_irq() will return 1022 or 1023 appropriately
341 * for the case where this GIC supports grouping and the pending interrupt
342 * is in the wrong group.
344 irq = gic_get_current_pending_irq(s, cpu, attrs);
345 trace_gic_acknowledge_irq(cpu, irq);
347 if (irq >= GIC_MAXIRQ) {
348 DPRINTF("ACK, no pending interrupt or it is hidden: %d\n", irq);
349 return irq;
352 if (GIC_GET_PRIORITY(irq, cpu) >= s->running_priority[cpu]) {
353 DPRINTF("ACK, pending interrupt (%d) has insufficient priority\n", irq);
354 return 1023;
357 if (s->revision == REV_11MPCORE || s->revision == REV_NVIC) {
358 /* Clear pending flags for both level and edge triggered interrupts.
359 * Level triggered IRQs will be reasserted once they become inactive.
361 GIC_CLEAR_PENDING(irq, GIC_TEST_MODEL(irq) ? ALL_CPU_MASK : cm);
362 ret = irq;
363 } else {
364 if (irq < GIC_NR_SGIS) {
365 /* Lookup the source CPU for the SGI and clear this in the
366 * sgi_pending map. Return the src and clear the overall pending
367 * state on this CPU if the SGI is not pending from any CPUs.
369 assert(s->sgi_pending[irq][cpu] != 0);
370 src = ctz32(s->sgi_pending[irq][cpu]);
371 s->sgi_pending[irq][cpu] &= ~(1 << src);
372 if (s->sgi_pending[irq][cpu] == 0) {
373 GIC_CLEAR_PENDING(irq, GIC_TEST_MODEL(irq) ? ALL_CPU_MASK : cm);
375 ret = irq | ((src & 0x7) << 10);
376 } else {
377 /* Clear pending state for both level and edge triggered
378 * interrupts. (level triggered interrupts with an active line
379 * remain pending, see gic_test_pending)
381 GIC_CLEAR_PENDING(irq, GIC_TEST_MODEL(irq) ? ALL_CPU_MASK : cm);
382 ret = irq;
386 gic_activate_irq(s, cpu, irq);
387 gic_update(s);
388 DPRINTF("ACK %d\n", irq);
389 return ret;
392 void gic_set_priority(GICState *s, int cpu, int irq, uint8_t val,
393 MemTxAttrs attrs)
395 if (s->security_extn && !attrs.secure) {
396 if (!GIC_TEST_GROUP(irq, (1 << cpu))) {
397 return; /* Ignore Non-secure access of Group0 IRQ */
399 val = 0x80 | (val >> 1); /* Non-secure view */
402 if (irq < GIC_INTERNAL) {
403 s->priority1[irq][cpu] = val;
404 } else {
405 s->priority2[(irq) - GIC_INTERNAL] = val;
409 static uint32_t gic_get_priority(GICState *s, int cpu, int irq,
410 MemTxAttrs attrs)
412 uint32_t prio = GIC_GET_PRIORITY(irq, cpu);
414 if (s->security_extn && !attrs.secure) {
415 if (!GIC_TEST_GROUP(irq, (1 << cpu))) {
416 return 0; /* Non-secure access cannot read priority of Group0 IRQ */
418 prio = (prio << 1) & 0xff; /* Non-secure view */
420 return prio;
423 static void gic_set_priority_mask(GICState *s, int cpu, uint8_t pmask,
424 MemTxAttrs attrs)
426 if (s->security_extn && !attrs.secure) {
427 if (s->priority_mask[cpu] & 0x80) {
428 /* Priority Mask in upper half */
429 pmask = 0x80 | (pmask >> 1);
430 } else {
431 /* Non-secure write ignored if priority mask is in lower half */
432 return;
435 s->priority_mask[cpu] = pmask;
438 static uint32_t gic_get_priority_mask(GICState *s, int cpu, MemTxAttrs attrs)
440 uint32_t pmask = s->priority_mask[cpu];
442 if (s->security_extn && !attrs.secure) {
443 if (pmask & 0x80) {
444 /* Priority Mask in upper half, return Non-secure view */
445 pmask = (pmask << 1) & 0xff;
446 } else {
447 /* Priority Mask in lower half, RAZ */
448 pmask = 0;
451 return pmask;
454 static uint32_t gic_get_cpu_control(GICState *s, int cpu, MemTxAttrs attrs)
456 uint32_t ret = s->cpu_ctlr[cpu];
458 if (s->security_extn && !attrs.secure) {
459 /* Construct the NS banked view of GICC_CTLR from the correct
460 * bits of the S banked view. We don't need to move the bypass
461 * control bits because we don't implement that (IMPDEF) part
462 * of the GIC architecture.
464 ret = (ret & (GICC_CTLR_EN_GRP1 | GICC_CTLR_EOIMODE_NS)) >> 1;
466 return ret;
469 static void gic_set_cpu_control(GICState *s, int cpu, uint32_t value,
470 MemTxAttrs attrs)
472 uint32_t mask;
474 if (s->security_extn && !attrs.secure) {
475 /* The NS view can only write certain bits in the register;
476 * the rest are unchanged
478 mask = GICC_CTLR_EN_GRP1;
479 if (s->revision == 2) {
480 mask |= GICC_CTLR_EOIMODE_NS;
482 s->cpu_ctlr[cpu] &= ~mask;
483 s->cpu_ctlr[cpu] |= (value << 1) & mask;
484 } else {
485 if (s->revision == 2) {
486 mask = s->security_extn ? GICC_CTLR_V2_S_MASK : GICC_CTLR_V2_MASK;
487 } else {
488 mask = s->security_extn ? GICC_CTLR_V1_S_MASK : GICC_CTLR_V1_MASK;
490 s->cpu_ctlr[cpu] = value & mask;
492 DPRINTF("CPU Interface %d: Group0 Interrupts %sabled, "
493 "Group1 Interrupts %sabled\n", cpu,
494 (s->cpu_ctlr[cpu] & GICC_CTLR_EN_GRP0) ? "En" : "Dis",
495 (s->cpu_ctlr[cpu] & GICC_CTLR_EN_GRP1) ? "En" : "Dis");
498 static uint8_t gic_get_running_priority(GICState *s, int cpu, MemTxAttrs attrs)
500 if (s->security_extn && !attrs.secure) {
501 if (s->running_priority[cpu] & 0x80) {
502 /* Running priority in upper half of range: return the Non-secure
503 * view of the priority.
505 return s->running_priority[cpu] << 1;
506 } else {
507 /* Running priority in lower half of range: RAZ */
508 return 0;
510 } else {
511 return s->running_priority[cpu];
515 /* Return true if we should split priority drop and interrupt deactivation,
516 * ie whether the relevant EOIMode bit is set.
518 static bool gic_eoi_split(GICState *s, int cpu, MemTxAttrs attrs)
520 if (s->revision != 2) {
521 /* Before GICv2 prio-drop and deactivate are not separable */
522 return false;
524 if (s->security_extn && !attrs.secure) {
525 return s->cpu_ctlr[cpu] & GICC_CTLR_EOIMODE_NS;
527 return s->cpu_ctlr[cpu] & GICC_CTLR_EOIMODE;
530 static void gic_deactivate_irq(GICState *s, int cpu, int irq, MemTxAttrs attrs)
532 int cm = 1 << cpu;
533 int group = gic_has_groups(s) && GIC_TEST_GROUP(irq, cm);
535 if (!gic_eoi_split(s, cpu, attrs)) {
536 /* This is UNPREDICTABLE; we choose to ignore it */
537 qemu_log_mask(LOG_GUEST_ERROR,
538 "gic_deactivate_irq: GICC_DIR write when EOIMode clear");
539 return;
542 if (s->security_extn && !attrs.secure && !group) {
543 DPRINTF("Non-secure DI for Group0 interrupt %d ignored\n", irq);
544 return;
547 GIC_CLEAR_ACTIVE(irq, cm);
550 void gic_complete_irq(GICState *s, int cpu, int irq, MemTxAttrs attrs)
552 int cm = 1 << cpu;
553 int group;
555 DPRINTF("EOI %d\n", irq);
556 if (irq >= s->num_irq) {
557 /* This handles two cases:
558 * 1. If software writes the ID of a spurious interrupt [ie 1023]
559 * to the GICC_EOIR, the GIC ignores that write.
560 * 2. If software writes the number of a non-existent interrupt
561 * this must be a subcase of "value written does not match the last
562 * valid interrupt value read from the Interrupt Acknowledge
563 * register" and so this is UNPREDICTABLE. We choose to ignore it.
565 return;
567 if (s->running_priority[cpu] == 0x100) {
568 return; /* No active IRQ. */
571 if (s->revision == REV_11MPCORE || s->revision == REV_NVIC) {
572 /* Mark level triggered interrupts as pending if they are still
573 raised. */
574 if (!GIC_TEST_EDGE_TRIGGER(irq) && GIC_TEST_ENABLED(irq, cm)
575 && GIC_TEST_LEVEL(irq, cm) && (GIC_TARGET(irq) & cm) != 0) {
576 DPRINTF("Set %d pending mask %x\n", irq, cm);
577 GIC_SET_PENDING(irq, cm);
581 group = gic_has_groups(s) && GIC_TEST_GROUP(irq, cm);
583 if (s->security_extn && !attrs.secure && !group) {
584 DPRINTF("Non-secure EOI for Group0 interrupt %d ignored\n", irq);
585 return;
588 /* Secure EOI with GICC_CTLR.AckCtl == 0 when the IRQ is a Group 1
589 * interrupt is UNPREDICTABLE. We choose to handle it as if AckCtl == 1,
590 * i.e. go ahead and complete the irq anyway.
593 gic_drop_prio(s, cpu, group);
595 /* In GICv2 the guest can choose to split priority-drop and deactivate */
596 if (!gic_eoi_split(s, cpu, attrs)) {
597 GIC_CLEAR_ACTIVE(irq, cm);
599 gic_update(s);
602 static uint32_t gic_dist_readb(void *opaque, hwaddr offset, MemTxAttrs attrs)
604 GICState *s = (GICState *)opaque;
605 uint32_t res;
606 int irq;
607 int i;
608 int cpu;
609 int cm;
610 int mask;
612 cpu = gic_get_current_cpu(s);
613 cm = 1 << cpu;
614 if (offset < 0x100) {
615 if (offset == 0) { /* GICD_CTLR */
616 if (s->security_extn && !attrs.secure) {
617 /* The NS bank of this register is just an alias of the
618 * EnableGrp1 bit in the S bank version.
620 return extract32(s->ctlr, 1, 1);
621 } else {
622 return s->ctlr;
625 if (offset == 4)
626 /* Interrupt Controller Type Register */
627 return ((s->num_irq / 32) - 1)
628 | ((s->num_cpu - 1) << 5)
629 | (s->security_extn << 10);
630 if (offset < 0x08)
631 return 0;
632 if (offset >= 0x80) {
633 /* Interrupt Group Registers: these RAZ/WI if this is an NS
634 * access to a GIC with the security extensions, or if the GIC
635 * doesn't have groups at all.
637 res = 0;
638 if (!(s->security_extn && !attrs.secure) && gic_has_groups(s)) {
639 /* Every byte offset holds 8 group status bits */
640 irq = (offset - 0x080) * 8 + GIC_BASE_IRQ;
641 if (irq >= s->num_irq) {
642 goto bad_reg;
644 for (i = 0; i < 8; i++) {
645 if (GIC_TEST_GROUP(irq + i, cm)) {
646 res |= (1 << i);
650 return res;
652 goto bad_reg;
653 } else if (offset < 0x200) {
654 /* Interrupt Set/Clear Enable. */
655 if (offset < 0x180)
656 irq = (offset - 0x100) * 8;
657 else
658 irq = (offset - 0x180) * 8;
659 irq += GIC_BASE_IRQ;
660 if (irq >= s->num_irq)
661 goto bad_reg;
662 res = 0;
663 for (i = 0; i < 8; i++) {
664 if (GIC_TEST_ENABLED(irq + i, cm)) {
665 res |= (1 << i);
668 } else if (offset < 0x300) {
669 /* Interrupt Set/Clear Pending. */
670 if (offset < 0x280)
671 irq = (offset - 0x200) * 8;
672 else
673 irq = (offset - 0x280) * 8;
674 irq += GIC_BASE_IRQ;
675 if (irq >= s->num_irq)
676 goto bad_reg;
677 res = 0;
678 mask = (irq < GIC_INTERNAL) ? cm : ALL_CPU_MASK;
679 for (i = 0; i < 8; i++) {
680 if (gic_test_pending(s, irq + i, mask)) {
681 res |= (1 << i);
684 } else if (offset < 0x400) {
685 /* Interrupt Active. */
686 irq = (offset - 0x300) * 8 + GIC_BASE_IRQ;
687 if (irq >= s->num_irq)
688 goto bad_reg;
689 res = 0;
690 mask = (irq < GIC_INTERNAL) ? cm : ALL_CPU_MASK;
691 for (i = 0; i < 8; i++) {
692 if (GIC_TEST_ACTIVE(irq + i, mask)) {
693 res |= (1 << i);
696 } else if (offset < 0x800) {
697 /* Interrupt Priority. */
698 irq = (offset - 0x400) + GIC_BASE_IRQ;
699 if (irq >= s->num_irq)
700 goto bad_reg;
701 res = gic_get_priority(s, cpu, irq, attrs);
702 } else if (offset < 0xc00) {
703 /* Interrupt CPU Target. */
704 if (s->num_cpu == 1 && s->revision != REV_11MPCORE) {
705 /* For uniprocessor GICs these RAZ/WI */
706 res = 0;
707 } else {
708 irq = (offset - 0x800) + GIC_BASE_IRQ;
709 if (irq >= s->num_irq) {
710 goto bad_reg;
712 if (irq >= 29 && irq <= 31) {
713 res = cm;
714 } else {
715 res = GIC_TARGET(irq);
718 } else if (offset < 0xf00) {
719 /* Interrupt Configuration. */
720 irq = (offset - 0xc00) * 4 + GIC_BASE_IRQ;
721 if (irq >= s->num_irq)
722 goto bad_reg;
723 res = 0;
724 for (i = 0; i < 4; i++) {
725 if (GIC_TEST_MODEL(irq + i))
726 res |= (1 << (i * 2));
727 if (GIC_TEST_EDGE_TRIGGER(irq + i))
728 res |= (2 << (i * 2));
730 } else if (offset < 0xf10) {
731 goto bad_reg;
732 } else if (offset < 0xf30) {
733 if (s->revision == REV_11MPCORE || s->revision == REV_NVIC) {
734 goto bad_reg;
737 if (offset < 0xf20) {
738 /* GICD_CPENDSGIRn */
739 irq = (offset - 0xf10);
740 } else {
741 irq = (offset - 0xf20);
742 /* GICD_SPENDSGIRn */
745 res = s->sgi_pending[irq][cpu];
746 } else if (offset < 0xfd0) {
747 goto bad_reg;
748 } else if (offset < 0x1000) {
749 if (offset & 3) {
750 res = 0;
751 } else {
752 switch (s->revision) {
753 case REV_11MPCORE:
754 res = gic_id_11mpcore[(offset - 0xfd0) >> 2];
755 break;
756 case 1:
757 res = gic_id_gicv1[(offset - 0xfd0) >> 2];
758 break;
759 case 2:
760 res = gic_id_gicv2[(offset - 0xfd0) >> 2];
761 break;
762 case REV_NVIC:
763 /* Shouldn't be able to get here */
764 abort();
765 default:
766 res = 0;
769 } else {
770 g_assert_not_reached();
772 return res;
773 bad_reg:
774 qemu_log_mask(LOG_GUEST_ERROR,
775 "gic_dist_readb: Bad offset %x\n", (int)offset);
776 return 0;
779 static MemTxResult gic_dist_read(void *opaque, hwaddr offset, uint64_t *data,
780 unsigned size, MemTxAttrs attrs)
782 switch (size) {
783 case 1:
784 *data = gic_dist_readb(opaque, offset, attrs);
785 return MEMTX_OK;
786 case 2:
787 *data = gic_dist_readb(opaque, offset, attrs);
788 *data |= gic_dist_readb(opaque, offset + 1, attrs) << 8;
789 return MEMTX_OK;
790 case 4:
791 *data = gic_dist_readb(opaque, offset, attrs);
792 *data |= gic_dist_readb(opaque, offset + 1, attrs) << 8;
793 *data |= gic_dist_readb(opaque, offset + 2, attrs) << 16;
794 *data |= gic_dist_readb(opaque, offset + 3, attrs) << 24;
795 return MEMTX_OK;
796 default:
797 return MEMTX_ERROR;
801 static void gic_dist_writeb(void *opaque, hwaddr offset,
802 uint32_t value, MemTxAttrs attrs)
804 GICState *s = (GICState *)opaque;
805 int irq;
806 int i;
807 int cpu;
809 cpu = gic_get_current_cpu(s);
810 if (offset < 0x100) {
811 if (offset == 0) {
812 if (s->security_extn && !attrs.secure) {
813 /* NS version is just an alias of the S version's bit 1 */
814 s->ctlr = deposit32(s->ctlr, 1, 1, value);
815 } else if (gic_has_groups(s)) {
816 s->ctlr = value & (GICD_CTLR_EN_GRP0 | GICD_CTLR_EN_GRP1);
817 } else {
818 s->ctlr = value & GICD_CTLR_EN_GRP0;
820 DPRINTF("Distributor: Group0 %sabled; Group 1 %sabled\n",
821 s->ctlr & GICD_CTLR_EN_GRP0 ? "En" : "Dis",
822 s->ctlr & GICD_CTLR_EN_GRP1 ? "En" : "Dis");
823 } else if (offset < 4) {
824 /* ignored. */
825 } else if (offset >= 0x80) {
826 /* Interrupt Group Registers: RAZ/WI for NS access to secure
827 * GIC, or for GICs without groups.
829 if (!(s->security_extn && !attrs.secure) && gic_has_groups(s)) {
830 /* Every byte offset holds 8 group status bits */
831 irq = (offset - 0x80) * 8 + GIC_BASE_IRQ;
832 if (irq >= s->num_irq) {
833 goto bad_reg;
835 for (i = 0; i < 8; i++) {
836 /* Group bits are banked for private interrupts */
837 int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK;
838 if (value & (1 << i)) {
839 /* Group1 (Non-secure) */
840 GIC_SET_GROUP(irq + i, cm);
841 } else {
842 /* Group0 (Secure) */
843 GIC_CLEAR_GROUP(irq + i, cm);
847 } else {
848 goto bad_reg;
850 } else if (offset < 0x180) {
851 /* Interrupt Set Enable. */
852 irq = (offset - 0x100) * 8 + GIC_BASE_IRQ;
853 if (irq >= s->num_irq)
854 goto bad_reg;
855 if (irq < GIC_NR_SGIS) {
856 value = 0xff;
859 for (i = 0; i < 8; i++) {
860 if (value & (1 << i)) {
861 int mask =
862 (irq < GIC_INTERNAL) ? (1 << cpu) : GIC_TARGET(irq + i);
863 int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK;
865 if (!GIC_TEST_ENABLED(irq + i, cm)) {
866 DPRINTF("Enabled IRQ %d\n", irq + i);
867 trace_gic_enable_irq(irq + i);
869 GIC_SET_ENABLED(irq + i, cm);
870 /* If a raised level triggered IRQ enabled then mark
871 is as pending. */
872 if (GIC_TEST_LEVEL(irq + i, mask)
873 && !GIC_TEST_EDGE_TRIGGER(irq + i)) {
874 DPRINTF("Set %d pending mask %x\n", irq + i, mask);
875 GIC_SET_PENDING(irq + i, mask);
879 } else if (offset < 0x200) {
880 /* Interrupt Clear Enable. */
881 irq = (offset - 0x180) * 8 + GIC_BASE_IRQ;
882 if (irq >= s->num_irq)
883 goto bad_reg;
884 if (irq < GIC_NR_SGIS) {
885 value = 0;
888 for (i = 0; i < 8; i++) {
889 if (value & (1 << i)) {
890 int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK;
892 if (GIC_TEST_ENABLED(irq + i, cm)) {
893 DPRINTF("Disabled IRQ %d\n", irq + i);
894 trace_gic_disable_irq(irq + i);
896 GIC_CLEAR_ENABLED(irq + i, cm);
899 } else if (offset < 0x280) {
900 /* Interrupt Set Pending. */
901 irq = (offset - 0x200) * 8 + GIC_BASE_IRQ;
902 if (irq >= s->num_irq)
903 goto bad_reg;
904 if (irq < GIC_NR_SGIS) {
905 value = 0;
908 for (i = 0; i < 8; i++) {
909 if (value & (1 << i)) {
910 GIC_SET_PENDING(irq + i, GIC_TARGET(irq + i));
913 } else if (offset < 0x300) {
914 /* Interrupt Clear Pending. */
915 irq = (offset - 0x280) * 8 + GIC_BASE_IRQ;
916 if (irq >= s->num_irq)
917 goto bad_reg;
918 if (irq < GIC_NR_SGIS) {
919 value = 0;
922 for (i = 0; i < 8; i++) {
923 /* ??? This currently clears the pending bit for all CPUs, even
924 for per-CPU interrupts. It's unclear whether this is the
925 corect behavior. */
926 if (value & (1 << i)) {
927 GIC_CLEAR_PENDING(irq + i, ALL_CPU_MASK);
930 } else if (offset < 0x400) {
931 /* Interrupt Active. */
932 goto bad_reg;
933 } else if (offset < 0x800) {
934 /* Interrupt Priority. */
935 irq = (offset - 0x400) + GIC_BASE_IRQ;
936 if (irq >= s->num_irq)
937 goto bad_reg;
938 gic_set_priority(s, cpu, irq, value, attrs);
939 } else if (offset < 0xc00) {
940 /* Interrupt CPU Target. RAZ/WI on uniprocessor GICs, with the
941 * annoying exception of the 11MPCore's GIC.
943 if (s->num_cpu != 1 || s->revision == REV_11MPCORE) {
944 irq = (offset - 0x800) + GIC_BASE_IRQ;
945 if (irq >= s->num_irq) {
946 goto bad_reg;
948 if (irq < 29) {
949 value = 0;
950 } else if (irq < GIC_INTERNAL) {
951 value = ALL_CPU_MASK;
953 s->irq_target[irq] = value & ALL_CPU_MASK;
955 } else if (offset < 0xf00) {
956 /* Interrupt Configuration. */
957 irq = (offset - 0xc00) * 4 + GIC_BASE_IRQ;
958 if (irq >= s->num_irq)
959 goto bad_reg;
960 if (irq < GIC_NR_SGIS)
961 value |= 0xaa;
962 for (i = 0; i < 4; i++) {
963 if (s->revision == REV_11MPCORE || s->revision == REV_NVIC) {
964 if (value & (1 << (i * 2))) {
965 GIC_SET_MODEL(irq + i);
966 } else {
967 GIC_CLEAR_MODEL(irq + i);
970 if (value & (2 << (i * 2))) {
971 GIC_SET_EDGE_TRIGGER(irq + i);
972 } else {
973 GIC_CLEAR_EDGE_TRIGGER(irq + i);
976 } else if (offset < 0xf10) {
977 /* 0xf00 is only handled for 32-bit writes. */
978 goto bad_reg;
979 } else if (offset < 0xf20) {
980 /* GICD_CPENDSGIRn */
981 if (s->revision == REV_11MPCORE || s->revision == REV_NVIC) {
982 goto bad_reg;
984 irq = (offset - 0xf10);
986 s->sgi_pending[irq][cpu] &= ~value;
987 if (s->sgi_pending[irq][cpu] == 0) {
988 GIC_CLEAR_PENDING(irq, 1 << cpu);
990 } else if (offset < 0xf30) {
991 /* GICD_SPENDSGIRn */
992 if (s->revision == REV_11MPCORE || s->revision == REV_NVIC) {
993 goto bad_reg;
995 irq = (offset - 0xf20);
997 GIC_SET_PENDING(irq, 1 << cpu);
998 s->sgi_pending[irq][cpu] |= value;
999 } else {
1000 goto bad_reg;
1002 gic_update(s);
1003 return;
1004 bad_reg:
1005 qemu_log_mask(LOG_GUEST_ERROR,
1006 "gic_dist_writeb: Bad offset %x\n", (int)offset);
1009 static void gic_dist_writew(void *opaque, hwaddr offset,
1010 uint32_t value, MemTxAttrs attrs)
1012 gic_dist_writeb(opaque, offset, value & 0xff, attrs);
1013 gic_dist_writeb(opaque, offset + 1, value >> 8, attrs);
1016 static void gic_dist_writel(void *opaque, hwaddr offset,
1017 uint32_t value, MemTxAttrs attrs)
1019 GICState *s = (GICState *)opaque;
1020 if (offset == 0xf00) {
1021 int cpu;
1022 int irq;
1023 int mask;
1024 int target_cpu;
1026 cpu = gic_get_current_cpu(s);
1027 irq = value & 0x3ff;
1028 switch ((value >> 24) & 3) {
1029 case 0:
1030 mask = (value >> 16) & ALL_CPU_MASK;
1031 break;
1032 case 1:
1033 mask = ALL_CPU_MASK ^ (1 << cpu);
1034 break;
1035 case 2:
1036 mask = 1 << cpu;
1037 break;
1038 default:
1039 DPRINTF("Bad Soft Int target filter\n");
1040 mask = ALL_CPU_MASK;
1041 break;
1043 GIC_SET_PENDING(irq, mask);
1044 target_cpu = ctz32(mask);
1045 while (target_cpu < GIC_NCPU) {
1046 s->sgi_pending[irq][target_cpu] |= (1 << cpu);
1047 mask &= ~(1 << target_cpu);
1048 target_cpu = ctz32(mask);
1050 gic_update(s);
1051 return;
1053 gic_dist_writew(opaque, offset, value & 0xffff, attrs);
1054 gic_dist_writew(opaque, offset + 2, value >> 16, attrs);
1057 static MemTxResult gic_dist_write(void *opaque, hwaddr offset, uint64_t data,
1058 unsigned size, MemTxAttrs attrs)
1060 switch (size) {
1061 case 1:
1062 gic_dist_writeb(opaque, offset, data, attrs);
1063 return MEMTX_OK;
1064 case 2:
1065 gic_dist_writew(opaque, offset, data, attrs);
1066 return MEMTX_OK;
1067 case 4:
1068 gic_dist_writel(opaque, offset, data, attrs);
1069 return MEMTX_OK;
1070 default:
1071 return MEMTX_ERROR;
1075 static inline uint32_t gic_apr_ns_view(GICState *s, int cpu, int regno)
1077 /* Return the Nonsecure view of GICC_APR<regno>. This is the
1078 * second half of GICC_NSAPR.
1080 switch (GIC_MIN_BPR) {
1081 case 0:
1082 if (regno < 2) {
1083 return s->nsapr[regno + 2][cpu];
1085 break;
1086 case 1:
1087 if (regno == 0) {
1088 return s->nsapr[regno + 1][cpu];
1090 break;
1091 case 2:
1092 if (regno == 0) {
1093 return extract32(s->nsapr[0][cpu], 16, 16);
1095 break;
1096 case 3:
1097 if (regno == 0) {
1098 return extract32(s->nsapr[0][cpu], 8, 8);
1100 break;
1101 default:
1102 g_assert_not_reached();
1104 return 0;
1107 static inline void gic_apr_write_ns_view(GICState *s, int cpu, int regno,
1108 uint32_t value)
1110 /* Write the Nonsecure view of GICC_APR<regno>. */
1111 switch (GIC_MIN_BPR) {
1112 case 0:
1113 if (regno < 2) {
1114 s->nsapr[regno + 2][cpu] = value;
1116 break;
1117 case 1:
1118 if (regno == 0) {
1119 s->nsapr[regno + 1][cpu] = value;
1121 break;
1122 case 2:
1123 if (regno == 0) {
1124 s->nsapr[0][cpu] = deposit32(s->nsapr[0][cpu], 16, 16, value);
1126 break;
1127 case 3:
1128 if (regno == 0) {
1129 s->nsapr[0][cpu] = deposit32(s->nsapr[0][cpu], 8, 8, value);
1131 break;
1132 default:
1133 g_assert_not_reached();
1137 static MemTxResult gic_cpu_read(GICState *s, int cpu, int offset,
1138 uint64_t *data, MemTxAttrs attrs)
1140 switch (offset) {
1141 case 0x00: /* Control */
1142 *data = gic_get_cpu_control(s, cpu, attrs);
1143 break;
1144 case 0x04: /* Priority mask */
1145 *data = gic_get_priority_mask(s, cpu, attrs);
1146 break;
1147 case 0x08: /* Binary Point */
1148 if (s->security_extn && !attrs.secure) {
1149 /* BPR is banked. Non-secure copy stored in ABPR. */
1150 *data = s->abpr[cpu];
1151 } else {
1152 *data = s->bpr[cpu];
1154 break;
1155 case 0x0c: /* Acknowledge */
1156 *data = gic_acknowledge_irq(s, cpu, attrs);
1157 break;
1158 case 0x14: /* Running Priority */
1159 *data = gic_get_running_priority(s, cpu, attrs);
1160 break;
1161 case 0x18: /* Highest Pending Interrupt */
1162 *data = gic_get_current_pending_irq(s, cpu, attrs);
1163 break;
1164 case 0x1c: /* Aliased Binary Point */
1165 /* GIC v2, no security: ABPR
1166 * GIC v1, no security: not implemented (RAZ/WI)
1167 * With security extensions, secure access: ABPR (alias of NS BPR)
1168 * With security extensions, nonsecure access: RAZ/WI
1170 if (!gic_has_groups(s) || (s->security_extn && !attrs.secure)) {
1171 *data = 0;
1172 } else {
1173 *data = s->abpr[cpu];
1175 break;
1176 case 0xd0: case 0xd4: case 0xd8: case 0xdc:
1178 int regno = (offset - 0xd0) / 4;
1180 if (regno >= GIC_NR_APRS || s->revision != 2) {
1181 *data = 0;
1182 } else if (s->security_extn && !attrs.secure) {
1183 /* NS view of GICC_APR<n> is the top half of GIC_NSAPR<n> */
1184 *data = gic_apr_ns_view(s, regno, cpu);
1185 } else {
1186 *data = s->apr[regno][cpu];
1188 break;
1190 case 0xe0: case 0xe4: case 0xe8: case 0xec:
1192 int regno = (offset - 0xe0) / 4;
1194 if (regno >= GIC_NR_APRS || s->revision != 2 || !gic_has_groups(s) ||
1195 (s->security_extn && !attrs.secure)) {
1196 *data = 0;
1197 } else {
1198 *data = s->nsapr[regno][cpu];
1200 break;
1202 default:
1203 qemu_log_mask(LOG_GUEST_ERROR,
1204 "gic_cpu_read: Bad offset %x\n", (int)offset);
1205 return MEMTX_ERROR;
1207 return MEMTX_OK;
1210 static MemTxResult gic_cpu_write(GICState *s, int cpu, int offset,
1211 uint32_t value, MemTxAttrs attrs)
1213 switch (offset) {
1214 case 0x00: /* Control */
1215 gic_set_cpu_control(s, cpu, value, attrs);
1216 break;
1217 case 0x04: /* Priority mask */
1218 gic_set_priority_mask(s, cpu, value, attrs);
1219 break;
1220 case 0x08: /* Binary Point */
1221 if (s->security_extn && !attrs.secure) {
1222 s->abpr[cpu] = MAX(value & 0x7, GIC_MIN_ABPR);
1223 } else {
1224 s->bpr[cpu] = MAX(value & 0x7, GIC_MIN_BPR);
1226 break;
1227 case 0x10: /* End Of Interrupt */
1228 gic_complete_irq(s, cpu, value & 0x3ff, attrs);
1229 return MEMTX_OK;
1230 case 0x1c: /* Aliased Binary Point */
1231 if (!gic_has_groups(s) || (s->security_extn && !attrs.secure)) {
1232 /* unimplemented, or NS access: RAZ/WI */
1233 return MEMTX_OK;
1234 } else {
1235 s->abpr[cpu] = MAX(value & 0x7, GIC_MIN_ABPR);
1237 break;
1238 case 0xd0: case 0xd4: case 0xd8: case 0xdc:
1240 int regno = (offset - 0xd0) / 4;
1242 if (regno >= GIC_NR_APRS || s->revision != 2) {
1243 return MEMTX_OK;
1245 if (s->security_extn && !attrs.secure) {
1246 /* NS view of GICC_APR<n> is the top half of GIC_NSAPR<n> */
1247 gic_apr_write_ns_view(s, regno, cpu, value);
1248 } else {
1249 s->apr[regno][cpu] = value;
1251 break;
1253 case 0xe0: case 0xe4: case 0xe8: case 0xec:
1255 int regno = (offset - 0xe0) / 4;
1257 if (regno >= GIC_NR_APRS || s->revision != 2) {
1258 return MEMTX_OK;
1260 if (!gic_has_groups(s) || (s->security_extn && !attrs.secure)) {
1261 return MEMTX_OK;
1263 s->nsapr[regno][cpu] = value;
1264 break;
1266 case 0x1000:
1267 /* GICC_DIR */
1268 gic_deactivate_irq(s, cpu, value & 0x3ff, attrs);
1269 break;
1270 default:
1271 qemu_log_mask(LOG_GUEST_ERROR,
1272 "gic_cpu_write: Bad offset %x\n", (int)offset);
1273 return MEMTX_ERROR;
1275 gic_update(s);
1276 return MEMTX_OK;
1279 /* Wrappers to read/write the GIC CPU interface for the current CPU */
1280 static MemTxResult gic_thiscpu_read(void *opaque, hwaddr addr, uint64_t *data,
1281 unsigned size, MemTxAttrs attrs)
1283 GICState *s = (GICState *)opaque;
1284 return gic_cpu_read(s, gic_get_current_cpu(s), addr, data, attrs);
1287 static MemTxResult gic_thiscpu_write(void *opaque, hwaddr addr,
1288 uint64_t value, unsigned size,
1289 MemTxAttrs attrs)
1291 GICState *s = (GICState *)opaque;
1292 return gic_cpu_write(s, gic_get_current_cpu(s), addr, value, attrs);
1295 /* Wrappers to read/write the GIC CPU interface for a specific CPU.
1296 * These just decode the opaque pointer into GICState* + cpu id.
1298 static MemTxResult gic_do_cpu_read(void *opaque, hwaddr addr, uint64_t *data,
1299 unsigned size, MemTxAttrs attrs)
1301 GICState **backref = (GICState **)opaque;
1302 GICState *s = *backref;
1303 int id = (backref - s->backref);
1304 return gic_cpu_read(s, id, addr, data, attrs);
1307 static MemTxResult gic_do_cpu_write(void *opaque, hwaddr addr,
1308 uint64_t value, unsigned size,
1309 MemTxAttrs attrs)
1311 GICState **backref = (GICState **)opaque;
1312 GICState *s = *backref;
1313 int id = (backref - s->backref);
1314 return gic_cpu_write(s, id, addr, value, attrs);
1317 static const MemoryRegionOps gic_ops[2] = {
1319 .read_with_attrs = gic_dist_read,
1320 .write_with_attrs = gic_dist_write,
1321 .endianness = DEVICE_NATIVE_ENDIAN,
1324 .read_with_attrs = gic_thiscpu_read,
1325 .write_with_attrs = gic_thiscpu_write,
1326 .endianness = DEVICE_NATIVE_ENDIAN,
1330 static const MemoryRegionOps gic_cpu_ops = {
1331 .read_with_attrs = gic_do_cpu_read,
1332 .write_with_attrs = gic_do_cpu_write,
1333 .endianness = DEVICE_NATIVE_ENDIAN,
1336 /* This function is used by nvic model */
1337 void gic_init_irqs_and_distributor(GICState *s)
1339 gic_init_irqs_and_mmio(s, gic_set_irq, gic_ops);
1342 static void arm_gic_realize(DeviceState *dev, Error **errp)
1344 /* Device instance realize function for the GIC sysbus device */
1345 int i;
1346 GICState *s = ARM_GIC(dev);
1347 SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
1348 ARMGICClass *agc = ARM_GIC_GET_CLASS(s);
1349 Error *local_err = NULL;
1351 agc->parent_realize(dev, &local_err);
1352 if (local_err) {
1353 error_propagate(errp, local_err);
1354 return;
1357 /* This creates distributor and main CPU interface (s->cpuiomem[0]) */
1358 gic_init_irqs_and_mmio(s, gic_set_irq, gic_ops);
1360 /* Extra core-specific regions for the CPU interfaces. This is
1361 * necessary for "franken-GIC" implementations, for example on
1362 * Exynos 4.
1363 * NB that the memory region size of 0x100 applies for the 11MPCore
1364 * and also cores following the GIC v1 spec (ie A9).
1365 * GIC v2 defines a larger memory region (0x1000) so this will need
1366 * to be extended when we implement A15.
1368 for (i = 0; i < s->num_cpu; i++) {
1369 s->backref[i] = s;
1370 memory_region_init_io(&s->cpuiomem[i+1], OBJECT(s), &gic_cpu_ops,
1371 &s->backref[i], "gic_cpu", 0x100);
1372 sysbus_init_mmio(sbd, &s->cpuiomem[i+1]);
1376 static void arm_gic_class_init(ObjectClass *klass, void *data)
1378 DeviceClass *dc = DEVICE_CLASS(klass);
1379 ARMGICClass *agc = ARM_GIC_CLASS(klass);
1381 agc->parent_realize = dc->realize;
1382 dc->realize = arm_gic_realize;
1385 static const TypeInfo arm_gic_info = {
1386 .name = TYPE_ARM_GIC,
1387 .parent = TYPE_ARM_GIC_COMMON,
1388 .instance_size = sizeof(GICState),
1389 .class_init = arm_gic_class_init,
1390 .class_size = sizeof(ARMGICClass),
1393 static void arm_gic_register_types(void)
1395 type_register_static(&arm_gic_info);
1398 type_init(arm_gic_register_types)