iotests: Drop readlink -f
[qemu/ar7.git] / hw / block / m25p80.c
blob8dae779c76dec1df4b25e78af0d50887deb5300d
1 /*
2 * ST M25P80 emulator. Emulate all SPI flash devices based on the m25p80 command
3 * set. Known devices table current as of Jun/2012 and taken from linux.
4 * See drivers/mtd/devices/m25p80.c.
6 * Copyright (C) 2011 Edgar E. Iglesias <edgar.iglesias@gmail.com>
7 * Copyright (C) 2012 Peter A. G. Crosthwaite <peter.crosthwaite@petalogix.com>
8 * Copyright (C) 2012 PetaLogix
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License as
12 * published by the Free Software Foundation; either version 2 or
13 * (at your option) a later version of the License.
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
20 * You should have received a copy of the GNU General Public License along
21 * with this program; if not, see <http://www.gnu.org/licenses/>.
24 #include "qemu/osdep.h"
25 #include "qemu/units.h"
26 #include "sysemu/block-backend.h"
27 #include "hw/qdev-properties.h"
28 #include "hw/ssi/ssi.h"
29 #include "migration/vmstate.h"
30 #include "qemu/bitops.h"
31 #include "qemu/log.h"
32 #include "qemu/module.h"
33 #include "qemu/error-report.h"
34 #include "qapi/error.h"
35 #include "trace.h"
36 #include "qom/object.h"
38 /* Fields for FlashPartInfo->flags */
40 /* erase capabilities */
41 #define ER_4K 1
42 #define ER_32K 2
43 /* set to allow the page program command to write 0s back to 1. Useful for
44 * modelling EEPROM with SPI flash command set
46 #define EEPROM 0x100
48 /* 16 MiB max in 3 byte address mode */
49 #define MAX_3BYTES_SIZE 0x1000000
51 #define SPI_NOR_MAX_ID_LEN 6
53 typedef struct FlashPartInfo {
54 const char *part_name;
56 * This array stores the ID bytes.
57 * The first three bytes are the JEDIC ID.
58 * JEDEC ID zero means "no ID" (mostly older chips).
60 uint8_t id[SPI_NOR_MAX_ID_LEN];
61 uint8_t id_len;
62 /* there is confusion between manufacturers as to what a sector is. In this
63 * device model, a "sector" is the size that is erased by the ERASE_SECTOR
64 * command (opcode 0xd8).
66 uint32_t sector_size;
67 uint32_t n_sectors;
68 uint32_t page_size;
69 uint16_t flags;
71 * Big sized spi nor are often stacked devices, thus sometime
72 * replace chip erase with die erase.
73 * This field inform how many die is in the chip.
75 uint8_t die_cnt;
76 } FlashPartInfo;
78 /* adapted from linux */
79 /* Used when the "_ext_id" is two bytes at most */
80 #define INFO(_part_name, _jedec_id, _ext_id, _sector_size, _n_sectors, _flags)\
81 .part_name = _part_name,\
82 .id = {\
83 ((_jedec_id) >> 16) & 0xff,\
84 ((_jedec_id) >> 8) & 0xff,\
85 (_jedec_id) & 0xff,\
86 ((_ext_id) >> 8) & 0xff,\
87 (_ext_id) & 0xff,\
88 },\
89 .id_len = (!(_jedec_id) ? 0 : (3 + ((_ext_id) ? 2 : 0))),\
90 .sector_size = (_sector_size),\
91 .n_sectors = (_n_sectors),\
92 .page_size = 256,\
93 .flags = (_flags),\
94 .die_cnt = 0
96 #define INFO6(_part_name, _jedec_id, _ext_id, _sector_size, _n_sectors, _flags)\
97 .part_name = _part_name,\
98 .id = {\
99 ((_jedec_id) >> 16) & 0xff,\
100 ((_jedec_id) >> 8) & 0xff,\
101 (_jedec_id) & 0xff,\
102 ((_ext_id) >> 16) & 0xff,\
103 ((_ext_id) >> 8) & 0xff,\
104 (_ext_id) & 0xff,\
106 .id_len = 6,\
107 .sector_size = (_sector_size),\
108 .n_sectors = (_n_sectors),\
109 .page_size = 256,\
110 .flags = (_flags),\
111 .die_cnt = 0
113 #define INFO_STACKED(_part_name, _jedec_id, _ext_id, _sector_size, _n_sectors,\
114 _flags, _die_cnt)\
115 .part_name = _part_name,\
116 .id = {\
117 ((_jedec_id) >> 16) & 0xff,\
118 ((_jedec_id) >> 8) & 0xff,\
119 (_jedec_id) & 0xff,\
120 ((_ext_id) >> 8) & 0xff,\
121 (_ext_id) & 0xff,\
123 .id_len = (!(_jedec_id) ? 0 : (3 + ((_ext_id) ? 2 : 0))),\
124 .sector_size = (_sector_size),\
125 .n_sectors = (_n_sectors),\
126 .page_size = 256,\
127 .flags = (_flags),\
128 .die_cnt = _die_cnt
130 #define JEDEC_NUMONYX 0x20
131 #define JEDEC_WINBOND 0xEF
132 #define JEDEC_SPANSION 0x01
134 /* Numonyx (Micron) Configuration register macros */
135 #define VCFG_DUMMY 0x1
136 #define VCFG_WRAP_SEQUENTIAL 0x2
137 #define NVCFG_XIP_MODE_DISABLED (7 << 9)
138 #define NVCFG_XIP_MODE_MASK (7 << 9)
139 #define VCFG_XIP_MODE_ENABLED (1 << 3)
140 #define CFG_DUMMY_CLK_LEN 4
141 #define NVCFG_DUMMY_CLK_POS 12
142 #define VCFG_DUMMY_CLK_POS 4
143 #define EVCFG_OUT_DRIVER_STRENGTH_DEF 7
144 #define EVCFG_VPP_ACCELERATOR (1 << 3)
145 #define EVCFG_RESET_HOLD_ENABLED (1 << 4)
146 #define NVCFG_DUAL_IO_MASK (1 << 2)
147 #define EVCFG_DUAL_IO_ENABLED (1 << 6)
148 #define NVCFG_QUAD_IO_MASK (1 << 3)
149 #define EVCFG_QUAD_IO_ENABLED (1 << 7)
150 #define NVCFG_4BYTE_ADDR_MASK (1 << 0)
151 #define NVCFG_LOWER_SEGMENT_MASK (1 << 1)
153 /* Numonyx (Micron) Flag Status Register macros */
154 #define FSR_4BYTE_ADDR_MODE_ENABLED 0x1
155 #define FSR_FLASH_READY (1 << 7)
157 /* Spansion configuration registers macros. */
158 #define SPANSION_QUAD_CFG_POS 0
159 #define SPANSION_QUAD_CFG_LEN 1
160 #define SPANSION_DUMMY_CLK_POS 0
161 #define SPANSION_DUMMY_CLK_LEN 4
162 #define SPANSION_ADDR_LEN_POS 7
163 #define SPANSION_ADDR_LEN_LEN 1
166 * Spansion read mode command length in bytes,
167 * the mode is currently not supported.
170 #define SPANSION_CONTINUOUS_READ_MODE_CMD_LEN 1
171 #define WINBOND_CONTINUOUS_READ_MODE_CMD_LEN 1
173 static const FlashPartInfo known_devices[] = {
174 /* Atmel -- some are (confusingly) marketed as "DataFlash" */
175 { INFO("at25fs010", 0x1f6601, 0, 32 << 10, 4, ER_4K) },
176 { INFO("at25fs040", 0x1f6604, 0, 64 << 10, 8, ER_4K) },
178 { INFO("at25df041a", 0x1f4401, 0, 64 << 10, 8, ER_4K) },
179 { INFO("at25df321a", 0x1f4701, 0, 64 << 10, 64, ER_4K) },
180 { INFO("at25df641", 0x1f4800, 0, 64 << 10, 128, ER_4K) },
182 { INFO("at26f004", 0x1f0400, 0, 64 << 10, 8, ER_4K) },
183 { INFO("at26df081a", 0x1f4501, 0, 64 << 10, 16, ER_4K) },
184 { INFO("at26df161a", 0x1f4601, 0, 64 << 10, 32, ER_4K) },
185 { INFO("at26df321", 0x1f4700, 0, 64 << 10, 64, ER_4K) },
187 { INFO("at45db081d", 0x1f2500, 0, 64 << 10, 16, ER_4K) },
189 /* Atmel EEPROMS - it is assumed, that don't care bit in command
190 * is set to 0. Block protection is not supported.
192 { INFO("at25128a-nonjedec", 0x0, 0, 1, 131072, EEPROM) },
193 { INFO("at25256a-nonjedec", 0x0, 0, 1, 262144, EEPROM) },
195 /* EON -- en25xxx */
196 { INFO("en25f32", 0x1c3116, 0, 64 << 10, 64, ER_4K) },
197 { INFO("en25p32", 0x1c2016, 0, 64 << 10, 64, 0) },
198 { INFO("en25q32b", 0x1c3016, 0, 64 << 10, 64, 0) },
199 { INFO("en25p64", 0x1c2017, 0, 64 << 10, 128, 0) },
200 { INFO("en25q64", 0x1c3017, 0, 64 << 10, 128, ER_4K) },
202 /* GigaDevice */
203 { INFO("gd25q32", 0xc84016, 0, 64 << 10, 64, ER_4K) },
204 { INFO("gd25q64", 0xc84017, 0, 64 << 10, 128, ER_4K) },
206 /* Intel/Numonyx -- xxxs33b */
207 { INFO("160s33b", 0x898911, 0, 64 << 10, 32, 0) },
208 { INFO("320s33b", 0x898912, 0, 64 << 10, 64, 0) },
209 { INFO("640s33b", 0x898913, 0, 64 << 10, 128, 0) },
210 { INFO("n25q064", 0x20ba17, 0, 64 << 10, 128, 0) },
212 /* Macronix */
213 { INFO("mx25l2005a", 0xc22012, 0, 64 << 10, 4, ER_4K) },
214 { INFO("mx25l4005a", 0xc22013, 0, 64 << 10, 8, ER_4K) },
215 { INFO("mx25l8005", 0xc22014, 0, 64 << 10, 16, 0) },
216 { INFO("mx25l1606e", 0xc22015, 0, 64 << 10, 32, ER_4K) },
217 { INFO("mx25l3205d", 0xc22016, 0, 64 << 10, 64, 0) },
218 { INFO("mx25l6405d", 0xc22017, 0, 64 << 10, 128, 0) },
219 { INFO("mx25l12805d", 0xc22018, 0, 64 << 10, 256, 0) },
220 { INFO("mx25l12855e", 0xc22618, 0, 64 << 10, 256, 0) },
221 { INFO6("mx25l25635e", 0xc22019, 0xc22019, 64 << 10, 512, 0) },
222 { INFO("mx25l25655e", 0xc22619, 0, 64 << 10, 512, 0) },
223 { INFO("mx66l51235f", 0xc2201a, 0, 64 << 10, 1024, ER_4K | ER_32K) },
224 { INFO("mx66u51235f", 0xc2253a, 0, 64 << 10, 1024, ER_4K | ER_32K) },
225 { INFO("mx66u1g45g", 0xc2253b, 0, 64 << 10, 2048, ER_4K | ER_32K) },
226 { INFO("mx66l1g45g", 0xc2201b, 0, 64 << 10, 2048, ER_4K | ER_32K) },
228 /* Micron */
229 { INFO("n25q032a11", 0x20bb16, 0, 64 << 10, 64, ER_4K) },
230 { INFO("n25q032a13", 0x20ba16, 0, 64 << 10, 64, ER_4K) },
231 { INFO("n25q064a11", 0x20bb17, 0, 64 << 10, 128, ER_4K) },
232 { INFO("n25q064a13", 0x20ba17, 0, 64 << 10, 128, ER_4K) },
233 { INFO("n25q128a11", 0x20bb18, 0, 64 << 10, 256, ER_4K) },
234 { INFO("n25q128a13", 0x20ba18, 0, 64 << 10, 256, ER_4K) },
235 { INFO("n25q256a11", 0x20bb19, 0, 64 << 10, 512, ER_4K) },
236 { INFO("n25q256a13", 0x20ba19, 0, 64 << 10, 512, ER_4K) },
237 { INFO("n25q512a11", 0x20bb20, 0, 64 << 10, 1024, ER_4K) },
238 { INFO("n25q512a13", 0x20ba20, 0, 64 << 10, 1024, ER_4K) },
239 { INFO("n25q128", 0x20ba18, 0, 64 << 10, 256, 0) },
240 { INFO("n25q256a", 0x20ba19, 0, 64 << 10, 512, ER_4K) },
241 { INFO("n25q512a", 0x20ba20, 0, 64 << 10, 1024, ER_4K) },
242 { INFO("n25q512ax3", 0x20ba20, 0x1000, 64 << 10, 1024, ER_4K) },
243 { INFO("mt25ql512ab", 0x20ba20, 0x1044, 64 << 10, 1024, ER_4K | ER_32K) },
244 { INFO_STACKED("n25q00", 0x20ba21, 0x1000, 64 << 10, 2048, ER_4K, 4) },
245 { INFO_STACKED("n25q00a", 0x20bb21, 0x1000, 64 << 10, 2048, ER_4K, 4) },
246 { INFO_STACKED("mt25ql01g", 0x20ba21, 0x1040, 64 << 10, 2048, ER_4K, 2) },
247 { INFO_STACKED("mt25qu01g", 0x20bb21, 0x1040, 64 << 10, 2048, ER_4K, 2) },
249 /* Spansion -- single (large) sector size only, at least
250 * for the chips listed here (without boot sectors).
252 { INFO("s25sl032p", 0x010215, 0x4d00, 64 << 10, 64, ER_4K) },
253 { INFO("s25sl064p", 0x010216, 0x4d00, 64 << 10, 128, ER_4K) },
254 { INFO("s25fl256s0", 0x010219, 0x4d00, 256 << 10, 128, 0) },
255 { INFO("s25fl256s1", 0x010219, 0x4d01, 64 << 10, 512, 0) },
256 { INFO6("s25fl512s", 0x010220, 0x4d0080, 256 << 10, 256, 0) },
257 { INFO6("s70fl01gs", 0x010221, 0x4d0080, 256 << 10, 512, 0) },
258 { INFO("s25sl12800", 0x012018, 0x0300, 256 << 10, 64, 0) },
259 { INFO("s25sl12801", 0x012018, 0x0301, 64 << 10, 256, 0) },
260 { INFO("s25fl129p0", 0x012018, 0x4d00, 256 << 10, 64, 0) },
261 { INFO("s25fl129p1", 0x012018, 0x4d01, 64 << 10, 256, 0) },
262 { INFO("s25sl004a", 0x010212, 0, 64 << 10, 8, 0) },
263 { INFO("s25sl008a", 0x010213, 0, 64 << 10, 16, 0) },
264 { INFO("s25sl016a", 0x010214, 0, 64 << 10, 32, 0) },
265 { INFO("s25sl032a", 0x010215, 0, 64 << 10, 64, 0) },
266 { INFO("s25sl064a", 0x010216, 0, 64 << 10, 128, 0) },
267 { INFO("s25fl016k", 0xef4015, 0, 64 << 10, 32, ER_4K | ER_32K) },
268 { INFO("s25fl064k", 0xef4017, 0, 64 << 10, 128, ER_4K | ER_32K) },
270 /* Spansion -- boot sectors support */
271 { INFO6("s25fs512s", 0x010220, 0x4d0081, 256 << 10, 256, 0) },
272 { INFO6("s70fs01gs", 0x010221, 0x4d0081, 256 << 10, 512, 0) },
274 /* SST -- large erase sizes are "overlays", "sectors" are 4<< 10 */
275 { INFO("sst25vf040b", 0xbf258d, 0, 64 << 10, 8, ER_4K) },
276 { INFO("sst25vf080b", 0xbf258e, 0, 64 << 10, 16, ER_4K) },
277 { INFO("sst25vf016b", 0xbf2541, 0, 64 << 10, 32, ER_4K) },
278 { INFO("sst25vf032b", 0xbf254a, 0, 64 << 10, 64, ER_4K) },
279 { INFO("sst25wf512", 0xbf2501, 0, 64 << 10, 1, ER_4K) },
280 { INFO("sst25wf010", 0xbf2502, 0, 64 << 10, 2, ER_4K) },
281 { INFO("sst25wf020", 0xbf2503, 0, 64 << 10, 4, ER_4K) },
282 { INFO("sst25wf040", 0xbf2504, 0, 64 << 10, 8, ER_4K) },
283 { INFO("sst25wf080", 0xbf2505, 0, 64 << 10, 16, ER_4K) },
285 /* ST Microelectronics -- newer production may have feature updates */
286 { INFO("m25p05", 0x202010, 0, 32 << 10, 2, 0) },
287 { INFO("m25p10", 0x202011, 0, 32 << 10, 4, 0) },
288 { INFO("m25p20", 0x202012, 0, 64 << 10, 4, 0) },
289 { INFO("m25p40", 0x202013, 0, 64 << 10, 8, 0) },
290 { INFO("m25p80", 0x202014, 0, 64 << 10, 16, 0) },
291 { INFO("m25p16", 0x202015, 0, 64 << 10, 32, 0) },
292 { INFO("m25p32", 0x202016, 0, 64 << 10, 64, 0) },
293 { INFO("m25p64", 0x202017, 0, 64 << 10, 128, 0) },
294 { INFO("m25p128", 0x202018, 0, 256 << 10, 64, 0) },
295 { INFO("n25q032", 0x20ba16, 0, 64 << 10, 64, 0) },
297 { INFO("m45pe10", 0x204011, 0, 64 << 10, 2, 0) },
298 { INFO("m45pe80", 0x204014, 0, 64 << 10, 16, 0) },
299 { INFO("m45pe16", 0x204015, 0, 64 << 10, 32, 0) },
301 { INFO("m25pe20", 0x208012, 0, 64 << 10, 4, 0) },
302 { INFO("m25pe80", 0x208014, 0, 64 << 10, 16, 0) },
303 { INFO("m25pe16", 0x208015, 0, 64 << 10, 32, ER_4K) },
305 { INFO("m25px32", 0x207116, 0, 64 << 10, 64, ER_4K) },
306 { INFO("m25px32-s0", 0x207316, 0, 64 << 10, 64, ER_4K) },
307 { INFO("m25px32-s1", 0x206316, 0, 64 << 10, 64, ER_4K) },
308 { INFO("m25px64", 0x207117, 0, 64 << 10, 128, 0) },
310 /* Winbond -- w25x "blocks" are 64k, "sectors" are 4KiB */
311 { INFO("w25x10", 0xef3011, 0, 64 << 10, 2, ER_4K) },
312 { INFO("w25x20", 0xef3012, 0, 64 << 10, 4, ER_4K) },
313 { INFO("w25x40", 0xef3013, 0, 64 << 10, 8, ER_4K) },
314 { INFO("w25x80", 0xef3014, 0, 64 << 10, 16, ER_4K) },
315 { INFO("w25x16", 0xef3015, 0, 64 << 10, 32, ER_4K) },
316 { INFO("w25x32", 0xef3016, 0, 64 << 10, 64, ER_4K) },
317 { INFO("w25q32", 0xef4016, 0, 64 << 10, 64, ER_4K) },
318 { INFO("w25q32dw", 0xef6016, 0, 64 << 10, 64, ER_4K) },
319 { INFO("w25x64", 0xef3017, 0, 64 << 10, 128, ER_4K) },
320 { INFO("w25q64", 0xef4017, 0, 64 << 10, 128, ER_4K) },
321 { INFO("w25q80", 0xef5014, 0, 64 << 10, 16, ER_4K) },
322 { INFO("w25q80bl", 0xef4014, 0, 64 << 10, 16, ER_4K) },
323 { INFO("w25q256", 0xef4019, 0, 64 << 10, 512, ER_4K) },
324 { INFO("w25q512jv", 0xef4020, 0, 64 << 10, 1024, ER_4K) },
327 typedef enum {
328 NOP = 0,
329 WRSR = 0x1,
330 WRDI = 0x4,
331 RDSR = 0x5,
332 WREN = 0x6,
333 BRRD = 0x16,
334 BRWR = 0x17,
335 JEDEC_READ = 0x9f,
336 BULK_ERASE_60 = 0x60,
337 BULK_ERASE = 0xc7,
338 READ_FSR = 0x70,
339 RDCR = 0x15,
341 READ = 0x03,
342 READ4 = 0x13,
343 FAST_READ = 0x0b,
344 FAST_READ4 = 0x0c,
345 DOR = 0x3b,
346 DOR4 = 0x3c,
347 QOR = 0x6b,
348 QOR4 = 0x6c,
349 DIOR = 0xbb,
350 DIOR4 = 0xbc,
351 QIOR = 0xeb,
352 QIOR4 = 0xec,
354 PP = 0x02,
355 PP4 = 0x12,
356 PP4_4 = 0x3e,
357 DPP = 0xa2,
358 QPP = 0x32,
359 QPP_4 = 0x34,
360 RDID_90 = 0x90,
361 RDID_AB = 0xab,
363 ERASE_4K = 0x20,
364 ERASE4_4K = 0x21,
365 ERASE_32K = 0x52,
366 ERASE4_32K = 0x5c,
367 ERASE_SECTOR = 0xd8,
368 ERASE4_SECTOR = 0xdc,
370 EN_4BYTE_ADDR = 0xB7,
371 EX_4BYTE_ADDR = 0xE9,
373 EXTEND_ADDR_READ = 0xC8,
374 EXTEND_ADDR_WRITE = 0xC5,
376 RESET_ENABLE = 0x66,
377 RESET_MEMORY = 0x99,
380 * Micron: 0x35 - enable QPI
381 * Spansion: 0x35 - read control register
383 RDCR_EQIO = 0x35,
384 RSTQIO = 0xf5,
386 RNVCR = 0xB5,
387 WNVCR = 0xB1,
389 RVCR = 0x85,
390 WVCR = 0x81,
392 REVCR = 0x65,
393 WEVCR = 0x61,
395 DIE_ERASE = 0xC4,
396 } FlashCMD;
398 typedef enum {
399 STATE_IDLE,
400 STATE_PAGE_PROGRAM,
401 STATE_READ,
402 STATE_COLLECTING_DATA,
403 STATE_COLLECTING_VAR_LEN_DATA,
404 STATE_READING_DATA,
405 } CMDState;
407 typedef enum {
408 MAN_SPANSION,
409 MAN_MACRONIX,
410 MAN_NUMONYX,
411 MAN_WINBOND,
412 MAN_SST,
413 MAN_GENERIC,
414 } Manufacturer;
416 #define M25P80_INTERNAL_DATA_BUFFER_SZ 16
418 struct Flash {
419 SSISlave parent_obj;
421 BlockBackend *blk;
423 uint8_t *storage;
424 uint32_t size;
425 int page_size;
427 uint8_t state;
428 uint8_t data[M25P80_INTERNAL_DATA_BUFFER_SZ];
429 uint32_t len;
430 uint32_t pos;
431 bool data_read_loop;
432 uint8_t needed_bytes;
433 uint8_t cmd_in_progress;
434 uint32_t cur_addr;
435 uint32_t nonvolatile_cfg;
436 /* Configuration register for Macronix */
437 uint32_t volatile_cfg;
438 uint32_t enh_volatile_cfg;
439 /* Spansion cfg registers. */
440 uint8_t spansion_cr1nv;
441 uint8_t spansion_cr2nv;
442 uint8_t spansion_cr3nv;
443 uint8_t spansion_cr4nv;
444 uint8_t spansion_cr1v;
445 uint8_t spansion_cr2v;
446 uint8_t spansion_cr3v;
447 uint8_t spansion_cr4v;
448 bool write_enable;
449 bool four_bytes_address_mode;
450 bool reset_enable;
451 bool quad_enable;
452 uint8_t ear;
454 int64_t dirty_page;
456 const FlashPartInfo *pi;
459 typedef struct Flash Flash;
461 struct M25P80Class {
462 SSISlaveClass parent_class;
463 FlashPartInfo *pi;
465 typedef struct M25P80Class M25P80Class;
467 #define TYPE_M25P80 "m25p80-generic"
468 DECLARE_OBJ_CHECKERS(Flash, M25P80Class,
469 M25P80, TYPE_M25P80)
471 static inline Manufacturer get_man(Flash *s)
473 switch (s->pi->id[0]) {
474 case 0x20:
475 return MAN_NUMONYX;
476 case 0xEF:
477 return MAN_WINBOND;
478 case 0x01:
479 return MAN_SPANSION;
480 case 0xC2:
481 return MAN_MACRONIX;
482 case 0xBF:
483 return MAN_SST;
484 default:
485 return MAN_GENERIC;
489 static void blk_sync_complete(void *opaque, int ret)
491 QEMUIOVector *iov = opaque;
493 qemu_iovec_destroy(iov);
494 g_free(iov);
496 /* do nothing. Masters do not directly interact with the backing store,
497 * only the working copy so no mutexing required.
501 static void flash_sync_page(Flash *s, int page)
503 QEMUIOVector *iov;
505 if (!s->blk || blk_is_read_only(s->blk)) {
506 return;
509 iov = g_new(QEMUIOVector, 1);
510 qemu_iovec_init(iov, 1);
511 qemu_iovec_add(iov, s->storage + page * s->pi->page_size,
512 s->pi->page_size);
513 blk_aio_pwritev(s->blk, page * s->pi->page_size, iov, 0,
514 blk_sync_complete, iov);
517 static inline void flash_sync_area(Flash *s, int64_t off, int64_t len)
519 QEMUIOVector *iov;
521 if (!s->blk || blk_is_read_only(s->blk)) {
522 return;
525 assert(!(len % BDRV_SECTOR_SIZE));
526 iov = g_new(QEMUIOVector, 1);
527 qemu_iovec_init(iov, 1);
528 qemu_iovec_add(iov, s->storage + off, len);
529 blk_aio_pwritev(s->blk, off, iov, 0, blk_sync_complete, iov);
532 static void flash_erase(Flash *s, int offset, FlashCMD cmd)
534 uint32_t len;
535 uint8_t capa_to_assert = 0;
537 switch (cmd) {
538 case ERASE_4K:
539 case ERASE4_4K:
540 len = 4 * KiB;
541 capa_to_assert = ER_4K;
542 break;
543 case ERASE_32K:
544 case ERASE4_32K:
545 len = 32 * KiB;
546 capa_to_assert = ER_32K;
547 break;
548 case ERASE_SECTOR:
549 case ERASE4_SECTOR:
550 len = s->pi->sector_size;
551 break;
552 case BULK_ERASE:
553 len = s->size;
554 break;
555 case DIE_ERASE:
556 if (s->pi->die_cnt) {
557 len = s->size / s->pi->die_cnt;
558 offset = offset & (~(len - 1));
559 } else {
560 qemu_log_mask(LOG_GUEST_ERROR, "M25P80: die erase is not supported"
561 " by device\n");
562 return;
564 break;
565 default:
566 abort();
569 trace_m25p80_flash_erase(s, offset, len);
571 if ((s->pi->flags & capa_to_assert) != capa_to_assert) {
572 qemu_log_mask(LOG_GUEST_ERROR, "M25P80: %d erase size not supported by"
573 " device\n", len);
576 if (!s->write_enable) {
577 qemu_log_mask(LOG_GUEST_ERROR, "M25P80: erase with write protect!\n");
578 return;
580 memset(s->storage + offset, 0xff, len);
581 flash_sync_area(s, offset, len);
584 static inline void flash_sync_dirty(Flash *s, int64_t newpage)
586 if (s->dirty_page >= 0 && s->dirty_page != newpage) {
587 flash_sync_page(s, s->dirty_page);
588 s->dirty_page = newpage;
592 static inline
593 void flash_write8(Flash *s, uint32_t addr, uint8_t data)
595 uint32_t page = addr / s->pi->page_size;
596 uint8_t prev = s->storage[s->cur_addr];
598 if (!s->write_enable) {
599 qemu_log_mask(LOG_GUEST_ERROR, "M25P80: write with write protect!\n");
602 if ((prev ^ data) & data) {
603 trace_m25p80_programming_zero_to_one(s, addr, prev, data);
606 if (s->pi->flags & EEPROM) {
607 s->storage[s->cur_addr] = data;
608 } else {
609 s->storage[s->cur_addr] &= data;
612 flash_sync_dirty(s, page);
613 s->dirty_page = page;
616 static inline int get_addr_length(Flash *s)
618 /* check if eeprom is in use */
619 if (s->pi->flags == EEPROM) {
620 return 2;
623 switch (s->cmd_in_progress) {
624 case PP4:
625 case PP4_4:
626 case QPP_4:
627 case READ4:
628 case QIOR4:
629 case ERASE4_4K:
630 case ERASE4_32K:
631 case ERASE4_SECTOR:
632 case FAST_READ4:
633 case DOR4:
634 case QOR4:
635 case DIOR4:
636 return 4;
637 default:
638 return s->four_bytes_address_mode ? 4 : 3;
642 static void complete_collecting_data(Flash *s)
644 int i, n;
646 n = get_addr_length(s);
647 s->cur_addr = (n == 3 ? s->ear : 0);
648 for (i = 0; i < n; ++i) {
649 s->cur_addr <<= 8;
650 s->cur_addr |= s->data[i];
653 s->cur_addr &= s->size - 1;
655 s->state = STATE_IDLE;
657 trace_m25p80_complete_collecting(s, s->cmd_in_progress, n, s->ear,
658 s->cur_addr);
660 switch (s->cmd_in_progress) {
661 case DPP:
662 case QPP:
663 case QPP_4:
664 case PP:
665 case PP4:
666 case PP4_4:
667 s->state = STATE_PAGE_PROGRAM;
668 break;
669 case READ:
670 case READ4:
671 case FAST_READ:
672 case FAST_READ4:
673 case DOR:
674 case DOR4:
675 case QOR:
676 case QOR4:
677 case DIOR:
678 case DIOR4:
679 case QIOR:
680 case QIOR4:
681 s->state = STATE_READ;
682 break;
683 case ERASE_4K:
684 case ERASE4_4K:
685 case ERASE_32K:
686 case ERASE4_32K:
687 case ERASE_SECTOR:
688 case ERASE4_SECTOR:
689 case DIE_ERASE:
690 flash_erase(s, s->cur_addr, s->cmd_in_progress);
691 break;
692 case WRSR:
693 switch (get_man(s)) {
694 case MAN_SPANSION:
695 s->quad_enable = !!(s->data[1] & 0x02);
696 break;
697 case MAN_MACRONIX:
698 s->quad_enable = extract32(s->data[0], 6, 1);
699 if (s->len > 1) {
700 s->volatile_cfg = s->data[1];
701 s->four_bytes_address_mode = extract32(s->data[1], 5, 1);
703 break;
704 default:
705 break;
707 if (s->write_enable) {
708 s->write_enable = false;
710 break;
711 case BRWR:
712 case EXTEND_ADDR_WRITE:
713 s->ear = s->data[0];
714 break;
715 case WNVCR:
716 s->nonvolatile_cfg = s->data[0] | (s->data[1] << 8);
717 break;
718 case WVCR:
719 s->volatile_cfg = s->data[0];
720 break;
721 case WEVCR:
722 s->enh_volatile_cfg = s->data[0];
723 break;
724 case RDID_90:
725 case RDID_AB:
726 if (get_man(s) == MAN_SST) {
727 if (s->cur_addr <= 1) {
728 if (s->cur_addr) {
729 s->data[0] = s->pi->id[2];
730 s->data[1] = s->pi->id[0];
731 } else {
732 s->data[0] = s->pi->id[0];
733 s->data[1] = s->pi->id[2];
735 s->pos = 0;
736 s->len = 2;
737 s->data_read_loop = true;
738 s->state = STATE_READING_DATA;
739 } else {
740 qemu_log_mask(LOG_GUEST_ERROR,
741 "M25P80: Invalid read id address\n");
743 } else {
744 qemu_log_mask(LOG_GUEST_ERROR,
745 "M25P80: Read id (command 0x90/0xAB) is not supported"
746 " by device\n");
748 break;
749 default:
750 break;
754 static void reset_memory(Flash *s)
756 s->cmd_in_progress = NOP;
757 s->cur_addr = 0;
758 s->ear = 0;
759 s->four_bytes_address_mode = false;
760 s->len = 0;
761 s->needed_bytes = 0;
762 s->pos = 0;
763 s->state = STATE_IDLE;
764 s->write_enable = false;
765 s->reset_enable = false;
766 s->quad_enable = false;
768 switch (get_man(s)) {
769 case MAN_NUMONYX:
770 s->volatile_cfg = 0;
771 s->volatile_cfg |= VCFG_DUMMY;
772 s->volatile_cfg |= VCFG_WRAP_SEQUENTIAL;
773 if ((s->nonvolatile_cfg & NVCFG_XIP_MODE_MASK)
774 != NVCFG_XIP_MODE_DISABLED) {
775 s->volatile_cfg |= VCFG_XIP_MODE_ENABLED;
777 s->volatile_cfg |= deposit32(s->volatile_cfg,
778 VCFG_DUMMY_CLK_POS,
779 CFG_DUMMY_CLK_LEN,
780 extract32(s->nonvolatile_cfg,
781 NVCFG_DUMMY_CLK_POS,
782 CFG_DUMMY_CLK_LEN)
785 s->enh_volatile_cfg = 0;
786 s->enh_volatile_cfg |= EVCFG_OUT_DRIVER_STRENGTH_DEF;
787 s->enh_volatile_cfg |= EVCFG_VPP_ACCELERATOR;
788 s->enh_volatile_cfg |= EVCFG_RESET_HOLD_ENABLED;
789 if (s->nonvolatile_cfg & NVCFG_DUAL_IO_MASK) {
790 s->enh_volatile_cfg |= EVCFG_DUAL_IO_ENABLED;
792 if (s->nonvolatile_cfg & NVCFG_QUAD_IO_MASK) {
793 s->enh_volatile_cfg |= EVCFG_QUAD_IO_ENABLED;
795 if (!(s->nonvolatile_cfg & NVCFG_4BYTE_ADDR_MASK)) {
796 s->four_bytes_address_mode = true;
798 if (!(s->nonvolatile_cfg & NVCFG_LOWER_SEGMENT_MASK)) {
799 s->ear = s->size / MAX_3BYTES_SIZE - 1;
801 break;
802 case MAN_MACRONIX:
803 s->volatile_cfg = 0x7;
804 break;
805 case MAN_SPANSION:
806 s->spansion_cr1v = s->spansion_cr1nv;
807 s->spansion_cr2v = s->spansion_cr2nv;
808 s->spansion_cr3v = s->spansion_cr3nv;
809 s->spansion_cr4v = s->spansion_cr4nv;
810 s->quad_enable = extract32(s->spansion_cr1v,
811 SPANSION_QUAD_CFG_POS,
812 SPANSION_QUAD_CFG_LEN
814 s->four_bytes_address_mode = extract32(s->spansion_cr2v,
815 SPANSION_ADDR_LEN_POS,
816 SPANSION_ADDR_LEN_LEN
818 break;
819 default:
820 break;
823 trace_m25p80_reset_done(s);
826 static void decode_fast_read_cmd(Flash *s)
828 s->needed_bytes = get_addr_length(s);
829 switch (get_man(s)) {
830 /* Dummy cycles - modeled with bytes writes instead of bits */
831 case MAN_WINBOND:
832 s->needed_bytes += 8;
833 break;
834 case MAN_NUMONYX:
835 s->needed_bytes += extract32(s->volatile_cfg, 4, 4);
836 break;
837 case MAN_MACRONIX:
838 if (extract32(s->volatile_cfg, 6, 2) == 1) {
839 s->needed_bytes += 6;
840 } else {
841 s->needed_bytes += 8;
843 break;
844 case MAN_SPANSION:
845 s->needed_bytes += extract32(s->spansion_cr2v,
846 SPANSION_DUMMY_CLK_POS,
847 SPANSION_DUMMY_CLK_LEN
849 break;
850 default:
851 break;
853 s->pos = 0;
854 s->len = 0;
855 s->state = STATE_COLLECTING_DATA;
858 static void decode_dio_read_cmd(Flash *s)
860 s->needed_bytes = get_addr_length(s);
861 /* Dummy cycles modeled with bytes writes instead of bits */
862 switch (get_man(s)) {
863 case MAN_WINBOND:
864 s->needed_bytes += WINBOND_CONTINUOUS_READ_MODE_CMD_LEN;
865 break;
866 case MAN_SPANSION:
867 s->needed_bytes += SPANSION_CONTINUOUS_READ_MODE_CMD_LEN;
868 s->needed_bytes += extract32(s->spansion_cr2v,
869 SPANSION_DUMMY_CLK_POS,
870 SPANSION_DUMMY_CLK_LEN
872 break;
873 case MAN_NUMONYX:
874 s->needed_bytes += extract32(s->volatile_cfg, 4, 4);
875 break;
876 case MAN_MACRONIX:
877 switch (extract32(s->volatile_cfg, 6, 2)) {
878 case 1:
879 s->needed_bytes += 6;
880 break;
881 case 2:
882 s->needed_bytes += 8;
883 break;
884 default:
885 s->needed_bytes += 4;
886 break;
888 break;
889 default:
890 break;
892 s->pos = 0;
893 s->len = 0;
894 s->state = STATE_COLLECTING_DATA;
897 static void decode_qio_read_cmd(Flash *s)
899 s->needed_bytes = get_addr_length(s);
900 /* Dummy cycles modeled with bytes writes instead of bits */
901 switch (get_man(s)) {
902 case MAN_WINBOND:
903 s->needed_bytes += WINBOND_CONTINUOUS_READ_MODE_CMD_LEN;
904 s->needed_bytes += 4;
905 break;
906 case MAN_SPANSION:
907 s->needed_bytes += SPANSION_CONTINUOUS_READ_MODE_CMD_LEN;
908 s->needed_bytes += extract32(s->spansion_cr2v,
909 SPANSION_DUMMY_CLK_POS,
910 SPANSION_DUMMY_CLK_LEN
912 break;
913 case MAN_NUMONYX:
914 s->needed_bytes += extract32(s->volatile_cfg, 4, 4);
915 break;
916 case MAN_MACRONIX:
917 switch (extract32(s->volatile_cfg, 6, 2)) {
918 case 1:
919 s->needed_bytes += 4;
920 break;
921 case 2:
922 s->needed_bytes += 8;
923 break;
924 default:
925 s->needed_bytes += 6;
926 break;
928 break;
929 default:
930 break;
932 s->pos = 0;
933 s->len = 0;
934 s->state = STATE_COLLECTING_DATA;
937 static void decode_new_cmd(Flash *s, uint32_t value)
939 int i;
941 s->cmd_in_progress = value;
942 trace_m25p80_command_decoded(s, value);
944 if (value != RESET_MEMORY) {
945 s->reset_enable = false;
948 switch (value) {
950 case ERASE_4K:
951 case ERASE4_4K:
952 case ERASE_32K:
953 case ERASE4_32K:
954 case ERASE_SECTOR:
955 case ERASE4_SECTOR:
956 case READ:
957 case READ4:
958 case DPP:
959 case QPP:
960 case QPP_4:
961 case PP:
962 case PP4:
963 case PP4_4:
964 case DIE_ERASE:
965 case RDID_90:
966 case RDID_AB:
967 s->needed_bytes = get_addr_length(s);
968 s->pos = 0;
969 s->len = 0;
970 s->state = STATE_COLLECTING_DATA;
971 break;
973 case FAST_READ:
974 case FAST_READ4:
975 case DOR:
976 case DOR4:
977 case QOR:
978 case QOR4:
979 decode_fast_read_cmd(s);
980 break;
982 case DIOR:
983 case DIOR4:
984 decode_dio_read_cmd(s);
985 break;
987 case QIOR:
988 case QIOR4:
989 decode_qio_read_cmd(s);
990 break;
992 case WRSR:
993 if (s->write_enable) {
994 switch (get_man(s)) {
995 case MAN_SPANSION:
996 s->needed_bytes = 2;
997 s->state = STATE_COLLECTING_DATA;
998 break;
999 case MAN_MACRONIX:
1000 s->needed_bytes = 2;
1001 s->state = STATE_COLLECTING_VAR_LEN_DATA;
1002 break;
1003 default:
1004 s->needed_bytes = 1;
1005 s->state = STATE_COLLECTING_DATA;
1007 s->pos = 0;
1009 break;
1011 case WRDI:
1012 s->write_enable = false;
1013 break;
1014 case WREN:
1015 s->write_enable = true;
1016 break;
1018 case RDSR:
1019 s->data[0] = (!!s->write_enable) << 1;
1020 if (get_man(s) == MAN_MACRONIX) {
1021 s->data[0] |= (!!s->quad_enable) << 6;
1023 s->pos = 0;
1024 s->len = 1;
1025 s->data_read_loop = true;
1026 s->state = STATE_READING_DATA;
1027 break;
1029 case READ_FSR:
1030 s->data[0] = FSR_FLASH_READY;
1031 if (s->four_bytes_address_mode) {
1032 s->data[0] |= FSR_4BYTE_ADDR_MODE_ENABLED;
1034 s->pos = 0;
1035 s->len = 1;
1036 s->data_read_loop = true;
1037 s->state = STATE_READING_DATA;
1038 break;
1040 case JEDEC_READ:
1041 trace_m25p80_populated_jedec(s);
1042 for (i = 0; i < s->pi->id_len; i++) {
1043 s->data[i] = s->pi->id[i];
1045 for (; i < SPI_NOR_MAX_ID_LEN; i++) {
1046 s->data[i] = 0;
1049 s->len = SPI_NOR_MAX_ID_LEN;
1050 s->pos = 0;
1051 s->state = STATE_READING_DATA;
1052 break;
1054 case RDCR:
1055 s->data[0] = s->volatile_cfg & 0xFF;
1056 s->data[0] |= (!!s->four_bytes_address_mode) << 5;
1057 s->pos = 0;
1058 s->len = 1;
1059 s->state = STATE_READING_DATA;
1060 break;
1062 case BULK_ERASE_60:
1063 case BULK_ERASE:
1064 if (s->write_enable) {
1065 trace_m25p80_chip_erase(s);
1066 flash_erase(s, 0, BULK_ERASE);
1067 } else {
1068 qemu_log_mask(LOG_GUEST_ERROR, "M25P80: chip erase with write "
1069 "protect!\n");
1071 break;
1072 case NOP:
1073 break;
1074 case EN_4BYTE_ADDR:
1075 s->four_bytes_address_mode = true;
1076 break;
1077 case EX_4BYTE_ADDR:
1078 s->four_bytes_address_mode = false;
1079 break;
1080 case BRRD:
1081 case EXTEND_ADDR_READ:
1082 s->data[0] = s->ear;
1083 s->pos = 0;
1084 s->len = 1;
1085 s->state = STATE_READING_DATA;
1086 break;
1087 case BRWR:
1088 case EXTEND_ADDR_WRITE:
1089 if (s->write_enable) {
1090 s->needed_bytes = 1;
1091 s->pos = 0;
1092 s->len = 0;
1093 s->state = STATE_COLLECTING_DATA;
1095 break;
1096 case RNVCR:
1097 s->data[0] = s->nonvolatile_cfg & 0xFF;
1098 s->data[1] = (s->nonvolatile_cfg >> 8) & 0xFF;
1099 s->pos = 0;
1100 s->len = 2;
1101 s->state = STATE_READING_DATA;
1102 break;
1103 case WNVCR:
1104 if (s->write_enable && get_man(s) == MAN_NUMONYX) {
1105 s->needed_bytes = 2;
1106 s->pos = 0;
1107 s->len = 0;
1108 s->state = STATE_COLLECTING_DATA;
1110 break;
1111 case RVCR:
1112 s->data[0] = s->volatile_cfg & 0xFF;
1113 s->pos = 0;
1114 s->len = 1;
1115 s->state = STATE_READING_DATA;
1116 break;
1117 case WVCR:
1118 if (s->write_enable) {
1119 s->needed_bytes = 1;
1120 s->pos = 0;
1121 s->len = 0;
1122 s->state = STATE_COLLECTING_DATA;
1124 break;
1125 case REVCR:
1126 s->data[0] = s->enh_volatile_cfg & 0xFF;
1127 s->pos = 0;
1128 s->len = 1;
1129 s->state = STATE_READING_DATA;
1130 break;
1131 case WEVCR:
1132 if (s->write_enable) {
1133 s->needed_bytes = 1;
1134 s->pos = 0;
1135 s->len = 0;
1136 s->state = STATE_COLLECTING_DATA;
1138 break;
1139 case RESET_ENABLE:
1140 s->reset_enable = true;
1141 break;
1142 case RESET_MEMORY:
1143 if (s->reset_enable) {
1144 reset_memory(s);
1146 break;
1147 case RDCR_EQIO:
1148 switch (get_man(s)) {
1149 case MAN_SPANSION:
1150 s->data[0] = (!!s->quad_enable) << 1;
1151 s->pos = 0;
1152 s->len = 1;
1153 s->state = STATE_READING_DATA;
1154 break;
1155 case MAN_MACRONIX:
1156 s->quad_enable = true;
1157 break;
1158 default:
1159 break;
1161 break;
1162 case RSTQIO:
1163 s->quad_enable = false;
1164 break;
1165 default:
1166 s->pos = 0;
1167 s->len = 1;
1168 s->state = STATE_READING_DATA;
1169 s->data_read_loop = true;
1170 s->data[0] = 0;
1171 qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Unknown cmd %x\n", value);
1172 break;
1176 static int m25p80_cs(SSISlave *ss, bool select)
1178 Flash *s = M25P80(ss);
1180 if (select) {
1181 if (s->state == STATE_COLLECTING_VAR_LEN_DATA) {
1182 complete_collecting_data(s);
1184 s->len = 0;
1185 s->pos = 0;
1186 s->state = STATE_IDLE;
1187 flash_sync_dirty(s, -1);
1188 s->data_read_loop = false;
1191 trace_m25p80_select(s, select ? "de" : "");
1193 return 0;
1196 static uint32_t m25p80_transfer8(SSISlave *ss, uint32_t tx)
1198 Flash *s = M25P80(ss);
1199 uint32_t r = 0;
1201 trace_m25p80_transfer(s, s->state, s->len, s->needed_bytes, s->pos,
1202 s->cur_addr, (uint8_t)tx);
1204 switch (s->state) {
1206 case STATE_PAGE_PROGRAM:
1207 trace_m25p80_page_program(s, s->cur_addr, (uint8_t)tx);
1208 flash_write8(s, s->cur_addr, (uint8_t)tx);
1209 s->cur_addr = (s->cur_addr + 1) & (s->size - 1);
1210 break;
1212 case STATE_READ:
1213 r = s->storage[s->cur_addr];
1214 trace_m25p80_read_byte(s, s->cur_addr, (uint8_t)r);
1215 s->cur_addr = (s->cur_addr + 1) & (s->size - 1);
1216 break;
1218 case STATE_COLLECTING_DATA:
1219 case STATE_COLLECTING_VAR_LEN_DATA:
1221 if (s->len >= M25P80_INTERNAL_DATA_BUFFER_SZ) {
1222 qemu_log_mask(LOG_GUEST_ERROR,
1223 "M25P80: Write overrun internal data buffer. "
1224 "SPI controller (QEMU emulator or guest driver) "
1225 "is misbehaving\n");
1226 s->len = s->pos = 0;
1227 s->state = STATE_IDLE;
1228 break;
1231 s->data[s->len] = (uint8_t)tx;
1232 s->len++;
1234 if (s->len == s->needed_bytes) {
1235 complete_collecting_data(s);
1237 break;
1239 case STATE_READING_DATA:
1241 if (s->pos >= M25P80_INTERNAL_DATA_BUFFER_SZ) {
1242 qemu_log_mask(LOG_GUEST_ERROR,
1243 "M25P80: Read overrun internal data buffer. "
1244 "SPI controller (QEMU emulator or guest driver) "
1245 "is misbehaving\n");
1246 s->len = s->pos = 0;
1247 s->state = STATE_IDLE;
1248 break;
1251 r = s->data[s->pos];
1252 trace_m25p80_read_data(s, s->pos, (uint8_t)r);
1253 s->pos++;
1254 if (s->pos == s->len) {
1255 s->pos = 0;
1256 if (!s->data_read_loop) {
1257 s->state = STATE_IDLE;
1260 break;
1262 default:
1263 case STATE_IDLE:
1264 decode_new_cmd(s, (uint8_t)tx);
1265 break;
1268 return r;
1271 static void m25p80_realize(SSISlave *ss, Error **errp)
1273 Flash *s = M25P80(ss);
1274 M25P80Class *mc = M25P80_GET_CLASS(s);
1275 int ret;
1277 s->pi = mc->pi;
1279 s->size = s->pi->sector_size * s->pi->n_sectors;
1280 s->dirty_page = -1;
1282 if (s->blk) {
1283 uint64_t perm = BLK_PERM_CONSISTENT_READ |
1284 (blk_is_read_only(s->blk) ? 0 : BLK_PERM_WRITE);
1285 ret = blk_set_perm(s->blk, perm, BLK_PERM_ALL, errp);
1286 if (ret < 0) {
1287 return;
1290 trace_m25p80_binding(s);
1291 s->storage = blk_blockalign(s->blk, s->size);
1293 if (blk_pread(s->blk, 0, s->storage, s->size) != s->size) {
1294 error_setg(errp, "failed to read the initial flash content");
1295 return;
1297 } else {
1298 trace_m25p80_binding_no_bdrv(s);
1299 s->storage = blk_blockalign(NULL, s->size);
1300 memset(s->storage, 0xFF, s->size);
1304 static void m25p80_reset(DeviceState *d)
1306 Flash *s = M25P80(d);
1308 reset_memory(s);
1311 static int m25p80_pre_save(void *opaque)
1313 flash_sync_dirty((Flash *)opaque, -1);
1315 return 0;
1318 static Property m25p80_properties[] = {
1319 /* This is default value for Micron flash */
1320 DEFINE_PROP_UINT32("nonvolatile-cfg", Flash, nonvolatile_cfg, 0x8FFF),
1321 DEFINE_PROP_UINT8("spansion-cr1nv", Flash, spansion_cr1nv, 0x0),
1322 DEFINE_PROP_UINT8("spansion-cr2nv", Flash, spansion_cr2nv, 0x8),
1323 DEFINE_PROP_UINT8("spansion-cr3nv", Flash, spansion_cr3nv, 0x2),
1324 DEFINE_PROP_UINT8("spansion-cr4nv", Flash, spansion_cr4nv, 0x10),
1325 DEFINE_PROP_DRIVE("drive", Flash, blk),
1326 DEFINE_PROP_END_OF_LIST(),
1329 static int m25p80_pre_load(void *opaque)
1331 Flash *s = (Flash *)opaque;
1333 s->data_read_loop = false;
1334 return 0;
1337 static bool m25p80_data_read_loop_needed(void *opaque)
1339 Flash *s = (Flash *)opaque;
1341 return s->data_read_loop;
1344 static const VMStateDescription vmstate_m25p80_data_read_loop = {
1345 .name = "m25p80/data_read_loop",
1346 .version_id = 1,
1347 .minimum_version_id = 1,
1348 .needed = m25p80_data_read_loop_needed,
1349 .fields = (VMStateField[]) {
1350 VMSTATE_BOOL(data_read_loop, Flash),
1351 VMSTATE_END_OF_LIST()
1355 static const VMStateDescription vmstate_m25p80 = {
1356 .name = "m25p80",
1357 .version_id = 0,
1358 .minimum_version_id = 0,
1359 .pre_save = m25p80_pre_save,
1360 .pre_load = m25p80_pre_load,
1361 .fields = (VMStateField[]) {
1362 VMSTATE_UINT8(state, Flash),
1363 VMSTATE_UINT8_ARRAY(data, Flash, M25P80_INTERNAL_DATA_BUFFER_SZ),
1364 VMSTATE_UINT32(len, Flash),
1365 VMSTATE_UINT32(pos, Flash),
1366 VMSTATE_UINT8(needed_bytes, Flash),
1367 VMSTATE_UINT8(cmd_in_progress, Flash),
1368 VMSTATE_UINT32(cur_addr, Flash),
1369 VMSTATE_BOOL(write_enable, Flash),
1370 VMSTATE_BOOL(reset_enable, Flash),
1371 VMSTATE_UINT8(ear, Flash),
1372 VMSTATE_BOOL(four_bytes_address_mode, Flash),
1373 VMSTATE_UINT32(nonvolatile_cfg, Flash),
1374 VMSTATE_UINT32(volatile_cfg, Flash),
1375 VMSTATE_UINT32(enh_volatile_cfg, Flash),
1376 VMSTATE_BOOL(quad_enable, Flash),
1377 VMSTATE_UINT8(spansion_cr1nv, Flash),
1378 VMSTATE_UINT8(spansion_cr2nv, Flash),
1379 VMSTATE_UINT8(spansion_cr3nv, Flash),
1380 VMSTATE_UINT8(spansion_cr4nv, Flash),
1381 VMSTATE_END_OF_LIST()
1383 .subsections = (const VMStateDescription * []) {
1384 &vmstate_m25p80_data_read_loop,
1385 NULL
1389 static void m25p80_class_init(ObjectClass *klass, void *data)
1391 DeviceClass *dc = DEVICE_CLASS(klass);
1392 SSISlaveClass *k = SSI_SLAVE_CLASS(klass);
1393 M25P80Class *mc = M25P80_CLASS(klass);
1395 k->realize = m25p80_realize;
1396 k->transfer = m25p80_transfer8;
1397 k->set_cs = m25p80_cs;
1398 k->cs_polarity = SSI_CS_LOW;
1399 dc->vmsd = &vmstate_m25p80;
1400 device_class_set_props(dc, m25p80_properties);
1401 dc->reset = m25p80_reset;
1402 mc->pi = data;
1405 static const TypeInfo m25p80_info = {
1406 .name = TYPE_M25P80,
1407 .parent = TYPE_SSI_SLAVE,
1408 .instance_size = sizeof(Flash),
1409 .class_size = sizeof(M25P80Class),
1410 .abstract = true,
1413 static void m25p80_register_types(void)
1415 int i;
1417 type_register_static(&m25p80_info);
1418 for (i = 0; i < ARRAY_SIZE(known_devices); ++i) {
1419 TypeInfo ti = {
1420 .name = known_devices[i].part_name,
1421 .parent = TYPE_M25P80,
1422 .class_init = m25p80_class_init,
1423 .class_data = (void *)&known_devices[i],
1425 type_register(&ti);
1429 type_init(m25p80_register_types)