target/i386: Return 'indefinite integer value' for invalid SSE fp->int conversions
[qemu/ar7.git] / hw / arm / virt.c
blob02510acb8166899957d01de51c32b5d43dd63157
1 /*
2 * ARM mach-virt emulation
4 * Copyright (c) 2013 Linaro Limited
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2 or later, as published by the Free Software Foundation.
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
15 * You should have received a copy of the GNU General Public License along with
16 * this program. If not, see <http://www.gnu.org/licenses/>.
18 * Emulate a virtual board which works by passing Linux all the information
19 * it needs about what devices are present via the device tree.
20 * There are some restrictions about what we can do here:
21 * + we can only present devices whose Linux drivers will work based
22 * purely on the device tree with no platform data at all
23 * + we want to present a very stripped-down minimalist platform,
24 * both because this reduces the security attack surface from the guest
25 * and also because it reduces our exposure to being broken when
26 * the kernel updates its device tree bindings and requires further
27 * information in a device binding that we aren't providing.
28 * This is essentially the same approach kvmtool uses.
31 #include "qemu/osdep.h"
32 #include "qemu-common.h"
33 #include "qemu/units.h"
34 #include "qemu/option.h"
35 #include "qapi/error.h"
36 #include "hw/sysbus.h"
37 #include "hw/boards.h"
38 #include "hw/arm/boot.h"
39 #include "hw/arm/primecell.h"
40 #include "hw/arm/virt.h"
41 #include "hw/block/flash.h"
42 #include "hw/vfio/vfio-calxeda-xgmac.h"
43 #include "hw/vfio/vfio-amd-xgbe.h"
44 #include "hw/display/ramfb.h"
45 #include "net/net.h"
46 #include "sysemu/device_tree.h"
47 #include "sysemu/numa.h"
48 #include "sysemu/runstate.h"
49 #include "sysemu/sysemu.h"
50 #include "sysemu/kvm.h"
51 #include "hw/loader.h"
52 #include "exec/address-spaces.h"
53 #include "qemu/bitops.h"
54 #include "qemu/error-report.h"
55 #include "qemu/module.h"
56 #include "hw/pci-host/gpex.h"
57 #include "hw/arm/sysbus-fdt.h"
58 #include "hw/platform-bus.h"
59 #include "hw/qdev-properties.h"
60 #include "hw/arm/fdt.h"
61 #include "hw/intc/arm_gic.h"
62 #include "hw/intc/arm_gicv3_common.h"
63 #include "hw/irq.h"
64 #include "kvm_arm.h"
65 #include "hw/firmware/smbios.h"
66 #include "qapi/visitor.h"
67 #include "standard-headers/linux/input.h"
68 #include "hw/arm/smmuv3.h"
69 #include "hw/acpi/acpi.h"
70 #include "target/arm/internals.h"
72 #define DEFINE_VIRT_MACHINE_LATEST(major, minor, latest) \
73 static void virt_##major##_##minor##_class_init(ObjectClass *oc, \
74 void *data) \
75 { \
76 MachineClass *mc = MACHINE_CLASS(oc); \
77 virt_machine_##major##_##minor##_options(mc); \
78 mc->desc = "QEMU " # major "." # minor " ARM Virtual Machine"; \
79 if (latest) { \
80 mc->alias = "virt"; \
81 } \
82 } \
83 static const TypeInfo machvirt_##major##_##minor##_info = { \
84 .name = MACHINE_TYPE_NAME("virt-" # major "." # minor), \
85 .parent = TYPE_VIRT_MACHINE, \
86 .class_init = virt_##major##_##minor##_class_init, \
87 }; \
88 static void machvirt_machine_##major##_##minor##_init(void) \
89 { \
90 type_register_static(&machvirt_##major##_##minor##_info); \
91 } \
92 type_init(machvirt_machine_##major##_##minor##_init);
94 #define DEFINE_VIRT_MACHINE_AS_LATEST(major, minor) \
95 DEFINE_VIRT_MACHINE_LATEST(major, minor, true)
96 #define DEFINE_VIRT_MACHINE(major, minor) \
97 DEFINE_VIRT_MACHINE_LATEST(major, minor, false)
100 /* Number of external interrupt lines to configure the GIC with */
101 #define NUM_IRQS 256
103 #define PLATFORM_BUS_NUM_IRQS 64
105 /* Legacy RAM limit in GB (< version 4.0) */
106 #define LEGACY_RAMLIMIT_GB 255
107 #define LEGACY_RAMLIMIT_BYTES (LEGACY_RAMLIMIT_GB * GiB)
109 /* Addresses and sizes of our components.
110 * 0..128MB is space for a flash device so we can run bootrom code such as UEFI.
111 * 128MB..256MB is used for miscellaneous device I/O.
112 * 256MB..1GB is reserved for possible future PCI support (ie where the
113 * PCI memory window will go if we add a PCI host controller).
114 * 1GB and up is RAM (which may happily spill over into the
115 * high memory region beyond 4GB).
116 * This represents a compromise between how much RAM can be given to
117 * a 32 bit VM and leaving space for expansion and in particular for PCI.
118 * Note that devices should generally be placed at multiples of 0x10000,
119 * to accommodate guests using 64K pages.
121 static const MemMapEntry base_memmap[] = {
122 /* Space up to 0x8000000 is reserved for a boot ROM */
123 [VIRT_FLASH] = { 0, 0x08000000 },
124 [VIRT_CPUPERIPHS] = { 0x08000000, 0x00020000 },
125 /* GIC distributor and CPU interfaces sit inside the CPU peripheral space */
126 [VIRT_GIC_DIST] = { 0x08000000, 0x00010000 },
127 [VIRT_GIC_CPU] = { 0x08010000, 0x00010000 },
128 [VIRT_GIC_V2M] = { 0x08020000, 0x00001000 },
129 [VIRT_GIC_HYP] = { 0x08030000, 0x00010000 },
130 [VIRT_GIC_VCPU] = { 0x08040000, 0x00010000 },
131 /* The space in between here is reserved for GICv3 CPU/vCPU/HYP */
132 [VIRT_GIC_ITS] = { 0x08080000, 0x00020000 },
133 /* This redistributor space allows up to 2*64kB*123 CPUs */
134 [VIRT_GIC_REDIST] = { 0x080A0000, 0x00F60000 },
135 [VIRT_UART] = { 0x09000000, 0x00001000 },
136 [VIRT_RTC] = { 0x09010000, 0x00001000 },
137 [VIRT_FW_CFG] = { 0x09020000, 0x00000018 },
138 [VIRT_GPIO] = { 0x09030000, 0x00001000 },
139 [VIRT_SECURE_UART] = { 0x09040000, 0x00001000 },
140 [VIRT_SMMU] = { 0x09050000, 0x00020000 },
141 [VIRT_MMIO] = { 0x0a000000, 0x00000200 },
142 /* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */
143 [VIRT_PLATFORM_BUS] = { 0x0c000000, 0x02000000 },
144 [VIRT_SECURE_MEM] = { 0x0e000000, 0x01000000 },
145 [VIRT_PCIE_MMIO] = { 0x10000000, 0x2eff0000 },
146 [VIRT_PCIE_PIO] = { 0x3eff0000, 0x00010000 },
147 [VIRT_PCIE_ECAM] = { 0x3f000000, 0x01000000 },
148 /* Actual RAM size depends on initial RAM and device memory settings */
149 [VIRT_MEM] = { GiB, LEGACY_RAMLIMIT_BYTES },
153 * Highmem IO Regions: This memory map is floating, located after the RAM.
154 * Each MemMapEntry base (GPA) will be dynamically computed, depending on the
155 * top of the RAM, so that its base get the same alignment as the size,
156 * ie. a 512GiB entry will be aligned on a 512GiB boundary. If there is
157 * less than 256GiB of RAM, the floating area starts at the 256GiB mark.
158 * Note the extended_memmap is sized so that it eventually also includes the
159 * base_memmap entries (VIRT_HIGH_GIC_REDIST2 index is greater than the last
160 * index of base_memmap).
162 static MemMapEntry extended_memmap[] = {
163 /* Additional 64 MB redist region (can contain up to 512 redistributors) */
164 [VIRT_HIGH_GIC_REDIST2] = { 0x0, 64 * MiB },
165 [VIRT_HIGH_PCIE_ECAM] = { 0x0, 256 * MiB },
166 /* Second PCIe window */
167 [VIRT_HIGH_PCIE_MMIO] = { 0x0, 512 * GiB },
170 static const int a15irqmap[] = {
171 [VIRT_UART] = 1,
172 [VIRT_RTC] = 2,
173 [VIRT_PCIE] = 3, /* ... to 6 */
174 [VIRT_GPIO] = 7,
175 [VIRT_SECURE_UART] = 8,
176 [VIRT_MMIO] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */
177 [VIRT_GIC_V2M] = 48, /* ...to 48 + NUM_GICV2M_SPIS - 1 */
178 [VIRT_SMMU] = 74, /* ...to 74 + NUM_SMMU_IRQS - 1 */
179 [VIRT_PLATFORM_BUS] = 112, /* ...to 112 + PLATFORM_BUS_NUM_IRQS -1 */
182 static const char *valid_cpus[] = {
183 ARM_CPU_TYPE_NAME("cortex-a7"),
184 ARM_CPU_TYPE_NAME("cortex-a15"),
185 ARM_CPU_TYPE_NAME("cortex-a53"),
186 ARM_CPU_TYPE_NAME("cortex-a57"),
187 ARM_CPU_TYPE_NAME("cortex-a72"),
188 ARM_CPU_TYPE_NAME("host"),
189 ARM_CPU_TYPE_NAME("max"),
192 static bool cpu_type_valid(const char *cpu)
194 int i;
196 for (i = 0; i < ARRAY_SIZE(valid_cpus); i++) {
197 if (strcmp(cpu, valid_cpus[i]) == 0) {
198 return true;
201 return false;
204 static void create_fdt(VirtMachineState *vms)
206 void *fdt = create_device_tree(&vms->fdt_size);
208 if (!fdt) {
209 error_report("create_device_tree() failed");
210 exit(1);
213 vms->fdt = fdt;
215 /* Header */
216 qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,dummy-virt");
217 qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2);
218 qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2);
220 /* /chosen must exist for load_dtb to fill in necessary properties later */
221 qemu_fdt_add_subnode(fdt, "/chosen");
223 /* Clock node, for the benefit of the UART. The kernel device tree
224 * binding documentation claims the PL011 node clock properties are
225 * optional but in practice if you omit them the kernel refuses to
226 * probe for the device.
228 vms->clock_phandle = qemu_fdt_alloc_phandle(fdt);
229 qemu_fdt_add_subnode(fdt, "/apb-pclk");
230 qemu_fdt_setprop_string(fdt, "/apb-pclk", "compatible", "fixed-clock");
231 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "#clock-cells", 0x0);
232 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "clock-frequency", 24000000);
233 qemu_fdt_setprop_string(fdt, "/apb-pclk", "clock-output-names",
234 "clk24mhz");
235 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "phandle", vms->clock_phandle);
237 if (have_numa_distance) {
238 int size = nb_numa_nodes * nb_numa_nodes * 3 * sizeof(uint32_t);
239 uint32_t *matrix = g_malloc0(size);
240 int idx, i, j;
242 for (i = 0; i < nb_numa_nodes; i++) {
243 for (j = 0; j < nb_numa_nodes; j++) {
244 idx = (i * nb_numa_nodes + j) * 3;
245 matrix[idx + 0] = cpu_to_be32(i);
246 matrix[idx + 1] = cpu_to_be32(j);
247 matrix[idx + 2] = cpu_to_be32(numa_info[i].distance[j]);
251 qemu_fdt_add_subnode(fdt, "/distance-map");
252 qemu_fdt_setprop_string(fdt, "/distance-map", "compatible",
253 "numa-distance-map-v1");
254 qemu_fdt_setprop(fdt, "/distance-map", "distance-matrix",
255 matrix, size);
256 g_free(matrix);
260 static void fdt_add_timer_nodes(const VirtMachineState *vms)
262 /* On real hardware these interrupts are level-triggered.
263 * On KVM they were edge-triggered before host kernel version 4.4,
264 * and level-triggered afterwards.
265 * On emulated QEMU they are level-triggered.
267 * Getting the DTB info about them wrong is awkward for some
268 * guest kernels:
269 * pre-4.8 ignore the DT and leave the interrupt configured
270 * with whatever the GIC reset value (or the bootloader) left it at
271 * 4.8 before rc6 honour the incorrect data by programming it back
272 * into the GIC, causing problems
273 * 4.8rc6 and later ignore the DT and always write "level triggered"
274 * into the GIC
276 * For backwards-compatibility, virt-2.8 and earlier will continue
277 * to say these are edge-triggered, but later machines will report
278 * the correct information.
280 ARMCPU *armcpu;
281 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
282 uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
284 if (vmc->claim_edge_triggered_timers) {
285 irqflags = GIC_FDT_IRQ_FLAGS_EDGE_LO_HI;
288 if (vms->gic_version == 2) {
289 irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
290 GIC_FDT_IRQ_PPI_CPU_WIDTH,
291 (1 << vms->smp_cpus) - 1);
294 qemu_fdt_add_subnode(vms->fdt, "/timer");
296 armcpu = ARM_CPU(qemu_get_cpu(0));
297 if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
298 const char compat[] = "arm,armv8-timer\0arm,armv7-timer";
299 qemu_fdt_setprop(vms->fdt, "/timer", "compatible",
300 compat, sizeof(compat));
301 } else {
302 qemu_fdt_setprop_string(vms->fdt, "/timer", "compatible",
303 "arm,armv7-timer");
305 qemu_fdt_setprop(vms->fdt, "/timer", "always-on", NULL, 0);
306 qemu_fdt_setprop_cells(vms->fdt, "/timer", "interrupts",
307 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_S_EL1_IRQ, irqflags,
308 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL1_IRQ, irqflags,
309 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_VIRT_IRQ, irqflags,
310 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL2_IRQ, irqflags);
313 static void fdt_add_cpu_nodes(const VirtMachineState *vms)
315 int cpu;
316 int addr_cells = 1;
317 const MachineState *ms = MACHINE(vms);
320 * From Documentation/devicetree/bindings/arm/cpus.txt
321 * On ARM v8 64-bit systems value should be set to 2,
322 * that corresponds to the MPIDR_EL1 register size.
323 * If MPIDR_EL1[63:32] value is equal to 0 on all CPUs
324 * in the system, #address-cells can be set to 1, since
325 * MPIDR_EL1[63:32] bits are not used for CPUs
326 * identification.
328 * Here we actually don't know whether our system is 32- or 64-bit one.
329 * The simplest way to go is to examine affinity IDs of all our CPUs. If
330 * at least one of them has Aff3 populated, we set #address-cells to 2.
332 for (cpu = 0; cpu < vms->smp_cpus; cpu++) {
333 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
335 if (armcpu->mp_affinity & ARM_AFF3_MASK) {
336 addr_cells = 2;
337 break;
341 qemu_fdt_add_subnode(vms->fdt, "/cpus");
342 qemu_fdt_setprop_cell(vms->fdt, "/cpus", "#address-cells", addr_cells);
343 qemu_fdt_setprop_cell(vms->fdt, "/cpus", "#size-cells", 0x0);
345 for (cpu = vms->smp_cpus - 1; cpu >= 0; cpu--) {
346 char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu);
347 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
348 CPUState *cs = CPU(armcpu);
350 qemu_fdt_add_subnode(vms->fdt, nodename);
351 qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "cpu");
352 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible",
353 armcpu->dtb_compatible);
355 if (vms->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED
356 && vms->smp_cpus > 1) {
357 qemu_fdt_setprop_string(vms->fdt, nodename,
358 "enable-method", "psci");
361 if (addr_cells == 2) {
362 qemu_fdt_setprop_u64(vms->fdt, nodename, "reg",
363 armcpu->mp_affinity);
364 } else {
365 qemu_fdt_setprop_cell(vms->fdt, nodename, "reg",
366 armcpu->mp_affinity);
369 if (ms->possible_cpus->cpus[cs->cpu_index].props.has_node_id) {
370 qemu_fdt_setprop_cell(vms->fdt, nodename, "numa-node-id",
371 ms->possible_cpus->cpus[cs->cpu_index].props.node_id);
374 g_free(nodename);
378 static void fdt_add_its_gic_node(VirtMachineState *vms)
380 char *nodename;
382 vms->msi_phandle = qemu_fdt_alloc_phandle(vms->fdt);
383 nodename = g_strdup_printf("/intc/its@%" PRIx64,
384 vms->memmap[VIRT_GIC_ITS].base);
385 qemu_fdt_add_subnode(vms->fdt, nodename);
386 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible",
387 "arm,gic-v3-its");
388 qemu_fdt_setprop(vms->fdt, nodename, "msi-controller", NULL, 0);
389 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
390 2, vms->memmap[VIRT_GIC_ITS].base,
391 2, vms->memmap[VIRT_GIC_ITS].size);
392 qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", vms->msi_phandle);
393 g_free(nodename);
396 static void fdt_add_v2m_gic_node(VirtMachineState *vms)
398 char *nodename;
400 nodename = g_strdup_printf("/intc/v2m@%" PRIx64,
401 vms->memmap[VIRT_GIC_V2M].base);
402 vms->msi_phandle = qemu_fdt_alloc_phandle(vms->fdt);
403 qemu_fdt_add_subnode(vms->fdt, nodename);
404 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible",
405 "arm,gic-v2m-frame");
406 qemu_fdt_setprop(vms->fdt, nodename, "msi-controller", NULL, 0);
407 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
408 2, vms->memmap[VIRT_GIC_V2M].base,
409 2, vms->memmap[VIRT_GIC_V2M].size);
410 qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", vms->msi_phandle);
411 g_free(nodename);
414 static void fdt_add_gic_node(VirtMachineState *vms)
416 char *nodename;
418 vms->gic_phandle = qemu_fdt_alloc_phandle(vms->fdt);
419 qemu_fdt_setprop_cell(vms->fdt, "/", "interrupt-parent", vms->gic_phandle);
421 nodename = g_strdup_printf("/intc@%" PRIx64,
422 vms->memmap[VIRT_GIC_DIST].base);
423 qemu_fdt_add_subnode(vms->fdt, nodename);
424 qemu_fdt_setprop_cell(vms->fdt, nodename, "#interrupt-cells", 3);
425 qemu_fdt_setprop(vms->fdt, nodename, "interrupt-controller", NULL, 0);
426 qemu_fdt_setprop_cell(vms->fdt, nodename, "#address-cells", 0x2);
427 qemu_fdt_setprop_cell(vms->fdt, nodename, "#size-cells", 0x2);
428 qemu_fdt_setprop(vms->fdt, nodename, "ranges", NULL, 0);
429 if (vms->gic_version == 3) {
430 int nb_redist_regions = virt_gicv3_redist_region_count(vms);
432 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible",
433 "arm,gic-v3");
435 qemu_fdt_setprop_cell(vms->fdt, nodename,
436 "#redistributor-regions", nb_redist_regions);
438 if (nb_redist_regions == 1) {
439 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
440 2, vms->memmap[VIRT_GIC_DIST].base,
441 2, vms->memmap[VIRT_GIC_DIST].size,
442 2, vms->memmap[VIRT_GIC_REDIST].base,
443 2, vms->memmap[VIRT_GIC_REDIST].size);
444 } else {
445 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
446 2, vms->memmap[VIRT_GIC_DIST].base,
447 2, vms->memmap[VIRT_GIC_DIST].size,
448 2, vms->memmap[VIRT_GIC_REDIST].base,
449 2, vms->memmap[VIRT_GIC_REDIST].size,
450 2, vms->memmap[VIRT_HIGH_GIC_REDIST2].base,
451 2, vms->memmap[VIRT_HIGH_GIC_REDIST2].size);
454 if (vms->virt) {
455 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
456 GIC_FDT_IRQ_TYPE_PPI, ARCH_GIC_MAINT_IRQ,
457 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
459 } else {
460 /* 'cortex-a15-gic' means 'GIC v2' */
461 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible",
462 "arm,cortex-a15-gic");
463 if (!vms->virt) {
464 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
465 2, vms->memmap[VIRT_GIC_DIST].base,
466 2, vms->memmap[VIRT_GIC_DIST].size,
467 2, vms->memmap[VIRT_GIC_CPU].base,
468 2, vms->memmap[VIRT_GIC_CPU].size);
469 } else {
470 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
471 2, vms->memmap[VIRT_GIC_DIST].base,
472 2, vms->memmap[VIRT_GIC_DIST].size,
473 2, vms->memmap[VIRT_GIC_CPU].base,
474 2, vms->memmap[VIRT_GIC_CPU].size,
475 2, vms->memmap[VIRT_GIC_HYP].base,
476 2, vms->memmap[VIRT_GIC_HYP].size,
477 2, vms->memmap[VIRT_GIC_VCPU].base,
478 2, vms->memmap[VIRT_GIC_VCPU].size);
479 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
480 GIC_FDT_IRQ_TYPE_PPI, ARCH_GIC_MAINT_IRQ,
481 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
485 qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", vms->gic_phandle);
486 g_free(nodename);
489 static void fdt_add_pmu_nodes(const VirtMachineState *vms)
491 CPUState *cpu;
492 ARMCPU *armcpu;
493 uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
495 CPU_FOREACH(cpu) {
496 armcpu = ARM_CPU(cpu);
497 if (!arm_feature(&armcpu->env, ARM_FEATURE_PMU)) {
498 return;
500 if (kvm_enabled()) {
501 if (kvm_irqchip_in_kernel()) {
502 kvm_arm_pmu_set_irq(cpu, PPI(VIRTUAL_PMU_IRQ));
504 kvm_arm_pmu_init(cpu);
508 if (vms->gic_version == 2) {
509 irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
510 GIC_FDT_IRQ_PPI_CPU_WIDTH,
511 (1 << vms->smp_cpus) - 1);
514 armcpu = ARM_CPU(qemu_get_cpu(0));
515 qemu_fdt_add_subnode(vms->fdt, "/pmu");
516 if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
517 const char compat[] = "arm,armv8-pmuv3";
518 qemu_fdt_setprop(vms->fdt, "/pmu", "compatible",
519 compat, sizeof(compat));
520 qemu_fdt_setprop_cells(vms->fdt, "/pmu", "interrupts",
521 GIC_FDT_IRQ_TYPE_PPI, VIRTUAL_PMU_IRQ, irqflags);
525 static void create_its(VirtMachineState *vms, DeviceState *gicdev)
527 const char *itsclass = its_class_name();
528 DeviceState *dev;
530 if (!itsclass) {
531 /* Do nothing if not supported */
532 return;
535 dev = qdev_create(NULL, itsclass);
537 object_property_set_link(OBJECT(dev), OBJECT(gicdev), "parent-gicv3",
538 &error_abort);
539 qdev_init_nofail(dev);
540 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_ITS].base);
542 fdt_add_its_gic_node(vms);
545 static void create_v2m(VirtMachineState *vms, qemu_irq *pic)
547 int i;
548 int irq = vms->irqmap[VIRT_GIC_V2M];
549 DeviceState *dev;
551 dev = qdev_create(NULL, "arm-gicv2m");
552 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_V2M].base);
553 qdev_prop_set_uint32(dev, "base-spi", irq);
554 qdev_prop_set_uint32(dev, "num-spi", NUM_GICV2M_SPIS);
555 qdev_init_nofail(dev);
557 for (i = 0; i < NUM_GICV2M_SPIS; i++) {
558 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]);
561 fdt_add_v2m_gic_node(vms);
564 static void create_gic(VirtMachineState *vms, qemu_irq *pic)
566 MachineState *ms = MACHINE(vms);
567 /* We create a standalone GIC */
568 DeviceState *gicdev;
569 SysBusDevice *gicbusdev;
570 const char *gictype;
571 int type = vms->gic_version, i;
572 unsigned int smp_cpus = ms->smp.cpus;
573 uint32_t nb_redist_regions = 0;
575 gictype = (type == 3) ? gicv3_class_name() : gic_class_name();
577 gicdev = qdev_create(NULL, gictype);
578 qdev_prop_set_uint32(gicdev, "revision", type);
579 qdev_prop_set_uint32(gicdev, "num-cpu", smp_cpus);
580 /* Note that the num-irq property counts both internal and external
581 * interrupts; there are always 32 of the former (mandated by GIC spec).
583 qdev_prop_set_uint32(gicdev, "num-irq", NUM_IRQS + 32);
584 if (!kvm_irqchip_in_kernel()) {
585 qdev_prop_set_bit(gicdev, "has-security-extensions", vms->secure);
588 if (type == 3) {
589 uint32_t redist0_capacity =
590 vms->memmap[VIRT_GIC_REDIST].size / GICV3_REDIST_SIZE;
591 uint32_t redist0_count = MIN(smp_cpus, redist0_capacity);
593 nb_redist_regions = virt_gicv3_redist_region_count(vms);
595 qdev_prop_set_uint32(gicdev, "len-redist-region-count",
596 nb_redist_regions);
597 qdev_prop_set_uint32(gicdev, "redist-region-count[0]", redist0_count);
599 if (nb_redist_regions == 2) {
600 uint32_t redist1_capacity =
601 vms->memmap[VIRT_HIGH_GIC_REDIST2].size / GICV3_REDIST_SIZE;
603 qdev_prop_set_uint32(gicdev, "redist-region-count[1]",
604 MIN(smp_cpus - redist0_count, redist1_capacity));
606 } else {
607 if (!kvm_irqchip_in_kernel()) {
608 qdev_prop_set_bit(gicdev, "has-virtualization-extensions",
609 vms->virt);
612 qdev_init_nofail(gicdev);
613 gicbusdev = SYS_BUS_DEVICE(gicdev);
614 sysbus_mmio_map(gicbusdev, 0, vms->memmap[VIRT_GIC_DIST].base);
615 if (type == 3) {
616 sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_REDIST].base);
617 if (nb_redist_regions == 2) {
618 sysbus_mmio_map(gicbusdev, 2,
619 vms->memmap[VIRT_HIGH_GIC_REDIST2].base);
621 } else {
622 sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_CPU].base);
623 if (vms->virt) {
624 sysbus_mmio_map(gicbusdev, 2, vms->memmap[VIRT_GIC_HYP].base);
625 sysbus_mmio_map(gicbusdev, 3, vms->memmap[VIRT_GIC_VCPU].base);
629 /* Wire the outputs from each CPU's generic timer and the GICv3
630 * maintenance interrupt signal to the appropriate GIC PPI inputs,
631 * and the GIC's IRQ/FIQ/VIRQ/VFIQ interrupt outputs to the CPU's inputs.
633 for (i = 0; i < smp_cpus; i++) {
634 DeviceState *cpudev = DEVICE(qemu_get_cpu(i));
635 int ppibase = NUM_IRQS + i * GIC_INTERNAL + GIC_NR_SGIS;
636 int irq;
637 /* Mapping from the output timer irq lines from the CPU to the
638 * GIC PPI inputs we use for the virt board.
640 const int timer_irq[] = {
641 [GTIMER_PHYS] = ARCH_TIMER_NS_EL1_IRQ,
642 [GTIMER_VIRT] = ARCH_TIMER_VIRT_IRQ,
643 [GTIMER_HYP] = ARCH_TIMER_NS_EL2_IRQ,
644 [GTIMER_SEC] = ARCH_TIMER_S_EL1_IRQ,
647 for (irq = 0; irq < ARRAY_SIZE(timer_irq); irq++) {
648 qdev_connect_gpio_out(cpudev, irq,
649 qdev_get_gpio_in(gicdev,
650 ppibase + timer_irq[irq]));
653 if (type == 3) {
654 qemu_irq irq = qdev_get_gpio_in(gicdev,
655 ppibase + ARCH_GIC_MAINT_IRQ);
656 qdev_connect_gpio_out_named(cpudev, "gicv3-maintenance-interrupt",
657 0, irq);
658 } else if (vms->virt) {
659 qemu_irq irq = qdev_get_gpio_in(gicdev,
660 ppibase + ARCH_GIC_MAINT_IRQ);
661 sysbus_connect_irq(gicbusdev, i + 4 * smp_cpus, irq);
664 qdev_connect_gpio_out_named(cpudev, "pmu-interrupt", 0,
665 qdev_get_gpio_in(gicdev, ppibase
666 + VIRTUAL_PMU_IRQ));
668 sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ));
669 sysbus_connect_irq(gicbusdev, i + smp_cpus,
670 qdev_get_gpio_in(cpudev, ARM_CPU_FIQ));
671 sysbus_connect_irq(gicbusdev, i + 2 * smp_cpus,
672 qdev_get_gpio_in(cpudev, ARM_CPU_VIRQ));
673 sysbus_connect_irq(gicbusdev, i + 3 * smp_cpus,
674 qdev_get_gpio_in(cpudev, ARM_CPU_VFIQ));
677 for (i = 0; i < NUM_IRQS; i++) {
678 pic[i] = qdev_get_gpio_in(gicdev, i);
681 fdt_add_gic_node(vms);
683 if (type == 3 && vms->its) {
684 create_its(vms, gicdev);
685 } else if (type == 2) {
686 create_v2m(vms, pic);
690 static void create_uart(const VirtMachineState *vms, qemu_irq *pic, int uart,
691 MemoryRegion *mem, Chardev *chr)
693 char *nodename;
694 hwaddr base = vms->memmap[uart].base;
695 hwaddr size = vms->memmap[uart].size;
696 int irq = vms->irqmap[uart];
697 const char compat[] = "arm,pl011\0arm,primecell";
698 const char clocknames[] = "uartclk\0apb_pclk";
699 DeviceState *dev = qdev_create(NULL, "pl011");
700 SysBusDevice *s = SYS_BUS_DEVICE(dev);
702 qdev_prop_set_chr(dev, "chardev", chr);
703 qdev_init_nofail(dev);
704 memory_region_add_subregion(mem, base,
705 sysbus_mmio_get_region(s, 0));
706 sysbus_connect_irq(s, 0, pic[irq]);
708 nodename = g_strdup_printf("/pl011@%" PRIx64, base);
709 qemu_fdt_add_subnode(vms->fdt, nodename);
710 /* Note that we can't use setprop_string because of the embedded NUL */
711 qemu_fdt_setprop(vms->fdt, nodename, "compatible",
712 compat, sizeof(compat));
713 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
714 2, base, 2, size);
715 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
716 GIC_FDT_IRQ_TYPE_SPI, irq,
717 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
718 qemu_fdt_setprop_cells(vms->fdt, nodename, "clocks",
719 vms->clock_phandle, vms->clock_phandle);
720 qemu_fdt_setprop(vms->fdt, nodename, "clock-names",
721 clocknames, sizeof(clocknames));
723 if (uart == VIRT_UART) {
724 qemu_fdt_setprop_string(vms->fdt, "/chosen", "stdout-path", nodename);
725 } else {
726 /* Mark as not usable by the normal world */
727 qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled");
728 qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay");
730 qemu_fdt_add_subnode(vms->fdt, "/secure-chosen");
731 qemu_fdt_setprop_string(vms->fdt, "/secure-chosen", "stdout-path",
732 nodename);
735 g_free(nodename);
738 static void create_rtc(const VirtMachineState *vms, qemu_irq *pic)
740 char *nodename;
741 hwaddr base = vms->memmap[VIRT_RTC].base;
742 hwaddr size = vms->memmap[VIRT_RTC].size;
743 int irq = vms->irqmap[VIRT_RTC];
744 const char compat[] = "arm,pl031\0arm,primecell";
746 sysbus_create_simple("pl031", base, pic[irq]);
748 nodename = g_strdup_printf("/pl031@%" PRIx64, base);
749 qemu_fdt_add_subnode(vms->fdt, nodename);
750 qemu_fdt_setprop(vms->fdt, nodename, "compatible", compat, sizeof(compat));
751 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
752 2, base, 2, size);
753 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
754 GIC_FDT_IRQ_TYPE_SPI, irq,
755 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
756 qemu_fdt_setprop_cell(vms->fdt, nodename, "clocks", vms->clock_phandle);
757 qemu_fdt_setprop_string(vms->fdt, nodename, "clock-names", "apb_pclk");
758 g_free(nodename);
761 static DeviceState *gpio_key_dev;
762 static void virt_powerdown_req(Notifier *n, void *opaque)
764 /* use gpio Pin 3 for power button event */
765 qemu_set_irq(qdev_get_gpio_in(gpio_key_dev, 0), 1);
768 static Notifier virt_system_powerdown_notifier = {
769 .notify = virt_powerdown_req
772 static void create_gpio(const VirtMachineState *vms, qemu_irq *pic)
774 char *nodename;
775 DeviceState *pl061_dev;
776 hwaddr base = vms->memmap[VIRT_GPIO].base;
777 hwaddr size = vms->memmap[VIRT_GPIO].size;
778 int irq = vms->irqmap[VIRT_GPIO];
779 const char compat[] = "arm,pl061\0arm,primecell";
781 pl061_dev = sysbus_create_simple("pl061", base, pic[irq]);
783 uint32_t phandle = qemu_fdt_alloc_phandle(vms->fdt);
784 nodename = g_strdup_printf("/pl061@%" PRIx64, base);
785 qemu_fdt_add_subnode(vms->fdt, nodename);
786 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
787 2, base, 2, size);
788 qemu_fdt_setprop(vms->fdt, nodename, "compatible", compat, sizeof(compat));
789 qemu_fdt_setprop_cell(vms->fdt, nodename, "#gpio-cells", 2);
790 qemu_fdt_setprop(vms->fdt, nodename, "gpio-controller", NULL, 0);
791 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
792 GIC_FDT_IRQ_TYPE_SPI, irq,
793 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
794 qemu_fdt_setprop_cell(vms->fdt, nodename, "clocks", vms->clock_phandle);
795 qemu_fdt_setprop_string(vms->fdt, nodename, "clock-names", "apb_pclk");
796 qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", phandle);
798 gpio_key_dev = sysbus_create_simple("gpio-key", -1,
799 qdev_get_gpio_in(pl061_dev, 3));
800 qemu_fdt_add_subnode(vms->fdt, "/gpio-keys");
801 qemu_fdt_setprop_string(vms->fdt, "/gpio-keys", "compatible", "gpio-keys");
802 qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys", "#size-cells", 0);
803 qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys", "#address-cells", 1);
805 qemu_fdt_add_subnode(vms->fdt, "/gpio-keys/poweroff");
806 qemu_fdt_setprop_string(vms->fdt, "/gpio-keys/poweroff",
807 "label", "GPIO Key Poweroff");
808 qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys/poweroff", "linux,code",
809 KEY_POWER);
810 qemu_fdt_setprop_cells(vms->fdt, "/gpio-keys/poweroff",
811 "gpios", phandle, 3, 0);
813 /* connect powerdown request */
814 qemu_register_powerdown_notifier(&virt_system_powerdown_notifier);
816 g_free(nodename);
819 static void create_virtio_devices(const VirtMachineState *vms, qemu_irq *pic)
821 int i;
822 hwaddr size = vms->memmap[VIRT_MMIO].size;
824 /* We create the transports in forwards order. Since qbus_realize()
825 * prepends (not appends) new child buses, the incrementing loop below will
826 * create a list of virtio-mmio buses with decreasing base addresses.
828 * When a -device option is processed from the command line,
829 * qbus_find_recursive() picks the next free virtio-mmio bus in forwards
830 * order. The upshot is that -device options in increasing command line
831 * order are mapped to virtio-mmio buses with decreasing base addresses.
833 * When this code was originally written, that arrangement ensured that the
834 * guest Linux kernel would give the lowest "name" (/dev/vda, eth0, etc) to
835 * the first -device on the command line. (The end-to-end order is a
836 * function of this loop, qbus_realize(), qbus_find_recursive(), and the
837 * guest kernel's name-to-address assignment strategy.)
839 * Meanwhile, the kernel's traversal seems to have been reversed; see eg.
840 * the message, if not necessarily the code, of commit 70161ff336.
841 * Therefore the loop now establishes the inverse of the original intent.
843 * Unfortunately, we can't counteract the kernel change by reversing the
844 * loop; it would break existing command lines.
846 * In any case, the kernel makes no guarantee about the stability of
847 * enumeration order of virtio devices (as demonstrated by it changing
848 * between kernel versions). For reliable and stable identification
849 * of disks users must use UUIDs or similar mechanisms.
851 for (i = 0; i < NUM_VIRTIO_TRANSPORTS; i++) {
852 int irq = vms->irqmap[VIRT_MMIO] + i;
853 hwaddr base = vms->memmap[VIRT_MMIO].base + i * size;
855 sysbus_create_simple("virtio-mmio", base, pic[irq]);
858 /* We add dtb nodes in reverse order so that they appear in the finished
859 * device tree lowest address first.
861 * Note that this mapping is independent of the loop above. The previous
862 * loop influences virtio device to virtio transport assignment, whereas
863 * this loop controls how virtio transports are laid out in the dtb.
865 for (i = NUM_VIRTIO_TRANSPORTS - 1; i >= 0; i--) {
866 char *nodename;
867 int irq = vms->irqmap[VIRT_MMIO] + i;
868 hwaddr base = vms->memmap[VIRT_MMIO].base + i * size;
870 nodename = g_strdup_printf("/virtio_mmio@%" PRIx64, base);
871 qemu_fdt_add_subnode(vms->fdt, nodename);
872 qemu_fdt_setprop_string(vms->fdt, nodename,
873 "compatible", "virtio,mmio");
874 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
875 2, base, 2, size);
876 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
877 GIC_FDT_IRQ_TYPE_SPI, irq,
878 GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
879 qemu_fdt_setprop(vms->fdt, nodename, "dma-coherent", NULL, 0);
880 g_free(nodename);
884 #define VIRT_FLASH_SECTOR_SIZE (256 * KiB)
886 static PFlashCFI01 *virt_flash_create1(VirtMachineState *vms,
887 const char *name,
888 const char *alias_prop_name)
891 * Create a single flash device. We use the same parameters as
892 * the flash devices on the Versatile Express board.
894 DeviceState *dev = qdev_create(NULL, TYPE_PFLASH_CFI01);
896 qdev_prop_set_uint64(dev, "sector-length", VIRT_FLASH_SECTOR_SIZE);
897 qdev_prop_set_uint8(dev, "width", 4);
898 qdev_prop_set_uint8(dev, "device-width", 2);
899 qdev_prop_set_bit(dev, "big-endian", false);
900 qdev_prop_set_uint16(dev, "id0", 0x89);
901 qdev_prop_set_uint16(dev, "id1", 0x18);
902 qdev_prop_set_uint16(dev, "id2", 0x00);
903 qdev_prop_set_uint16(dev, "id3", 0x00);
904 qdev_prop_set_string(dev, "name", name);
905 object_property_add_child(OBJECT(vms), name, OBJECT(dev),
906 &error_abort);
907 object_property_add_alias(OBJECT(vms), alias_prop_name,
908 OBJECT(dev), "drive", &error_abort);
909 return PFLASH_CFI01(dev);
912 static void virt_flash_create(VirtMachineState *vms)
914 vms->flash[0] = virt_flash_create1(vms, "virt.flash0", "pflash0");
915 vms->flash[1] = virt_flash_create1(vms, "virt.flash1", "pflash1");
918 static void virt_flash_map1(PFlashCFI01 *flash,
919 hwaddr base, hwaddr size,
920 MemoryRegion *sysmem)
922 DeviceState *dev = DEVICE(flash);
924 assert(size % VIRT_FLASH_SECTOR_SIZE == 0);
925 assert(size / VIRT_FLASH_SECTOR_SIZE <= UINT32_MAX);
926 qdev_prop_set_uint32(dev, "num-blocks", size / VIRT_FLASH_SECTOR_SIZE);
927 qdev_init_nofail(dev);
929 memory_region_add_subregion(sysmem, base,
930 sysbus_mmio_get_region(SYS_BUS_DEVICE(dev),
931 0));
934 static void virt_flash_map(VirtMachineState *vms,
935 MemoryRegion *sysmem,
936 MemoryRegion *secure_sysmem)
939 * Map two flash devices to fill the VIRT_FLASH space in the memmap.
940 * sysmem is the system memory space. secure_sysmem is the secure view
941 * of the system, and the first flash device should be made visible only
942 * there. The second flash device is visible to both secure and nonsecure.
943 * If sysmem == secure_sysmem this means there is no separate Secure
944 * address space and both flash devices are generally visible.
946 hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2;
947 hwaddr flashbase = vms->memmap[VIRT_FLASH].base;
949 virt_flash_map1(vms->flash[0], flashbase, flashsize,
950 secure_sysmem);
951 virt_flash_map1(vms->flash[1], flashbase + flashsize, flashsize,
952 sysmem);
955 static void virt_flash_fdt(VirtMachineState *vms,
956 MemoryRegion *sysmem,
957 MemoryRegion *secure_sysmem)
959 hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2;
960 hwaddr flashbase = vms->memmap[VIRT_FLASH].base;
961 char *nodename;
963 if (sysmem == secure_sysmem) {
964 /* Report both flash devices as a single node in the DT */
965 nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
966 qemu_fdt_add_subnode(vms->fdt, nodename);
967 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash");
968 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
969 2, flashbase, 2, flashsize,
970 2, flashbase + flashsize, 2, flashsize);
971 qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4);
972 g_free(nodename);
973 } else {
975 * Report the devices as separate nodes so we can mark one as
976 * only visible to the secure world.
978 nodename = g_strdup_printf("/secflash@%" PRIx64, flashbase);
979 qemu_fdt_add_subnode(vms->fdt, nodename);
980 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash");
981 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
982 2, flashbase, 2, flashsize);
983 qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4);
984 qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled");
985 qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay");
986 g_free(nodename);
988 nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
989 qemu_fdt_add_subnode(vms->fdt, nodename);
990 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash");
991 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
992 2, flashbase + flashsize, 2, flashsize);
993 qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4);
994 g_free(nodename);
998 static bool virt_firmware_init(VirtMachineState *vms,
999 MemoryRegion *sysmem,
1000 MemoryRegion *secure_sysmem)
1002 int i;
1003 BlockBackend *pflash_blk0;
1005 /* Map legacy -drive if=pflash to machine properties */
1006 for (i = 0; i < ARRAY_SIZE(vms->flash); i++) {
1007 pflash_cfi01_legacy_drive(vms->flash[i],
1008 drive_get(IF_PFLASH, 0, i));
1011 virt_flash_map(vms, sysmem, secure_sysmem);
1013 pflash_blk0 = pflash_cfi01_get_blk(vms->flash[0]);
1015 if (bios_name) {
1016 char *fname;
1017 MemoryRegion *mr;
1018 int image_size;
1020 if (pflash_blk0) {
1021 error_report("The contents of the first flash device may be "
1022 "specified with -bios or with -drive if=pflash... "
1023 "but you cannot use both options at once");
1024 exit(1);
1027 /* Fall back to -bios */
1029 fname = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
1030 if (!fname) {
1031 error_report("Could not find ROM image '%s'", bios_name);
1032 exit(1);
1034 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(vms->flash[0]), 0);
1035 image_size = load_image_mr(fname, mr);
1036 g_free(fname);
1037 if (image_size < 0) {
1038 error_report("Could not load ROM image '%s'", bios_name);
1039 exit(1);
1043 return pflash_blk0 || bios_name;
1046 static FWCfgState *create_fw_cfg(const VirtMachineState *vms, AddressSpace *as)
1048 MachineState *ms = MACHINE(vms);
1049 hwaddr base = vms->memmap[VIRT_FW_CFG].base;
1050 hwaddr size = vms->memmap[VIRT_FW_CFG].size;
1051 FWCfgState *fw_cfg;
1052 char *nodename;
1054 fw_cfg = fw_cfg_init_mem_wide(base + 8, base, 8, base + 16, as);
1055 fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, (uint16_t)ms->smp.cpus);
1057 nodename = g_strdup_printf("/fw-cfg@%" PRIx64, base);
1058 qemu_fdt_add_subnode(vms->fdt, nodename);
1059 qemu_fdt_setprop_string(vms->fdt, nodename,
1060 "compatible", "qemu,fw-cfg-mmio");
1061 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
1062 2, base, 2, size);
1063 qemu_fdt_setprop(vms->fdt, nodename, "dma-coherent", NULL, 0);
1064 g_free(nodename);
1065 return fw_cfg;
1068 static void create_pcie_irq_map(const VirtMachineState *vms,
1069 uint32_t gic_phandle,
1070 int first_irq, const char *nodename)
1072 int devfn, pin;
1073 uint32_t full_irq_map[4 * 4 * 10] = { 0 };
1074 uint32_t *irq_map = full_irq_map;
1076 for (devfn = 0; devfn <= 0x18; devfn += 0x8) {
1077 for (pin = 0; pin < 4; pin++) {
1078 int irq_type = GIC_FDT_IRQ_TYPE_SPI;
1079 int irq_nr = first_irq + ((pin + PCI_SLOT(devfn)) % PCI_NUM_PINS);
1080 int irq_level = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
1081 int i;
1083 uint32_t map[] = {
1084 devfn << 8, 0, 0, /* devfn */
1085 pin + 1, /* PCI pin */
1086 gic_phandle, 0, 0, irq_type, irq_nr, irq_level }; /* GIC irq */
1088 /* Convert map to big endian */
1089 for (i = 0; i < 10; i++) {
1090 irq_map[i] = cpu_to_be32(map[i]);
1092 irq_map += 10;
1096 qemu_fdt_setprop(vms->fdt, nodename, "interrupt-map",
1097 full_irq_map, sizeof(full_irq_map));
1099 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupt-map-mask",
1100 0x1800, 0, 0, /* devfn (PCI_SLOT(3)) */
1101 0x7 /* PCI irq */);
1104 static void create_smmu(const VirtMachineState *vms, qemu_irq *pic,
1105 PCIBus *bus)
1107 char *node;
1108 const char compat[] = "arm,smmu-v3";
1109 int irq = vms->irqmap[VIRT_SMMU];
1110 int i;
1111 hwaddr base = vms->memmap[VIRT_SMMU].base;
1112 hwaddr size = vms->memmap[VIRT_SMMU].size;
1113 const char irq_names[] = "eventq\0priq\0cmdq-sync\0gerror";
1114 DeviceState *dev;
1116 if (vms->iommu != VIRT_IOMMU_SMMUV3 || !vms->iommu_phandle) {
1117 return;
1120 dev = qdev_create(NULL, "arm-smmuv3");
1122 object_property_set_link(OBJECT(dev), OBJECT(bus), "primary-bus",
1123 &error_abort);
1124 qdev_init_nofail(dev);
1125 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base);
1126 for (i = 0; i < NUM_SMMU_IRQS; i++) {
1127 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]);
1130 node = g_strdup_printf("/smmuv3@%" PRIx64, base);
1131 qemu_fdt_add_subnode(vms->fdt, node);
1132 qemu_fdt_setprop(vms->fdt, node, "compatible", compat, sizeof(compat));
1133 qemu_fdt_setprop_sized_cells(vms->fdt, node, "reg", 2, base, 2, size);
1135 qemu_fdt_setprop_cells(vms->fdt, node, "interrupts",
1136 GIC_FDT_IRQ_TYPE_SPI, irq , GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
1137 GIC_FDT_IRQ_TYPE_SPI, irq + 1, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
1138 GIC_FDT_IRQ_TYPE_SPI, irq + 2, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
1139 GIC_FDT_IRQ_TYPE_SPI, irq + 3, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
1141 qemu_fdt_setprop(vms->fdt, node, "interrupt-names", irq_names,
1142 sizeof(irq_names));
1144 qemu_fdt_setprop_cell(vms->fdt, node, "clocks", vms->clock_phandle);
1145 qemu_fdt_setprop_string(vms->fdt, node, "clock-names", "apb_pclk");
1146 qemu_fdt_setprop(vms->fdt, node, "dma-coherent", NULL, 0);
1148 qemu_fdt_setprop_cell(vms->fdt, node, "#iommu-cells", 1);
1150 qemu_fdt_setprop_cell(vms->fdt, node, "phandle", vms->iommu_phandle);
1151 g_free(node);
1154 static void create_pcie(VirtMachineState *vms, qemu_irq *pic)
1156 hwaddr base_mmio = vms->memmap[VIRT_PCIE_MMIO].base;
1157 hwaddr size_mmio = vms->memmap[VIRT_PCIE_MMIO].size;
1158 hwaddr base_mmio_high = vms->memmap[VIRT_HIGH_PCIE_MMIO].base;
1159 hwaddr size_mmio_high = vms->memmap[VIRT_HIGH_PCIE_MMIO].size;
1160 hwaddr base_pio = vms->memmap[VIRT_PCIE_PIO].base;
1161 hwaddr size_pio = vms->memmap[VIRT_PCIE_PIO].size;
1162 hwaddr base_ecam, size_ecam;
1163 hwaddr base = base_mmio;
1164 int nr_pcie_buses;
1165 int irq = vms->irqmap[VIRT_PCIE];
1166 MemoryRegion *mmio_alias;
1167 MemoryRegion *mmio_reg;
1168 MemoryRegion *ecam_alias;
1169 MemoryRegion *ecam_reg;
1170 DeviceState *dev;
1171 char *nodename;
1172 int i, ecam_id;
1173 PCIHostState *pci;
1175 dev = qdev_create(NULL, TYPE_GPEX_HOST);
1176 qdev_init_nofail(dev);
1178 ecam_id = VIRT_ECAM_ID(vms->highmem_ecam);
1179 base_ecam = vms->memmap[ecam_id].base;
1180 size_ecam = vms->memmap[ecam_id].size;
1181 nr_pcie_buses = size_ecam / PCIE_MMCFG_SIZE_MIN;
1182 /* Map only the first size_ecam bytes of ECAM space */
1183 ecam_alias = g_new0(MemoryRegion, 1);
1184 ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0);
1185 memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam",
1186 ecam_reg, 0, size_ecam);
1187 memory_region_add_subregion(get_system_memory(), base_ecam, ecam_alias);
1189 /* Map the MMIO window into system address space so as to expose
1190 * the section of PCI MMIO space which starts at the same base address
1191 * (ie 1:1 mapping for that part of PCI MMIO space visible through
1192 * the window).
1194 mmio_alias = g_new0(MemoryRegion, 1);
1195 mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1);
1196 memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio",
1197 mmio_reg, base_mmio, size_mmio);
1198 memory_region_add_subregion(get_system_memory(), base_mmio, mmio_alias);
1200 if (vms->highmem) {
1201 /* Map high MMIO space */
1202 MemoryRegion *high_mmio_alias = g_new0(MemoryRegion, 1);
1204 memory_region_init_alias(high_mmio_alias, OBJECT(dev), "pcie-mmio-high",
1205 mmio_reg, base_mmio_high, size_mmio_high);
1206 memory_region_add_subregion(get_system_memory(), base_mmio_high,
1207 high_mmio_alias);
1210 /* Map IO port space */
1211 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, base_pio);
1213 for (i = 0; i < GPEX_NUM_IRQS; i++) {
1214 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]);
1215 gpex_set_irq_num(GPEX_HOST(dev), i, irq + i);
1218 pci = PCI_HOST_BRIDGE(dev);
1219 if (pci->bus) {
1220 for (i = 0; i < nb_nics; i++) {
1221 NICInfo *nd = &nd_table[i];
1223 if (!nd->model) {
1224 nd->model = g_strdup("virtio");
1227 pci_nic_init_nofail(nd, pci->bus, nd->model, NULL);
1231 nodename = g_strdup_printf("/pcie@%" PRIx64, base);
1232 qemu_fdt_add_subnode(vms->fdt, nodename);
1233 qemu_fdt_setprop_string(vms->fdt, nodename,
1234 "compatible", "pci-host-ecam-generic");
1235 qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "pci");
1236 qemu_fdt_setprop_cell(vms->fdt, nodename, "#address-cells", 3);
1237 qemu_fdt_setprop_cell(vms->fdt, nodename, "#size-cells", 2);
1238 qemu_fdt_setprop_cell(vms->fdt, nodename, "linux,pci-domain", 0);
1239 qemu_fdt_setprop_cells(vms->fdt, nodename, "bus-range", 0,
1240 nr_pcie_buses - 1);
1241 qemu_fdt_setprop(vms->fdt, nodename, "dma-coherent", NULL, 0);
1243 if (vms->msi_phandle) {
1244 qemu_fdt_setprop_cells(vms->fdt, nodename, "msi-parent",
1245 vms->msi_phandle);
1248 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
1249 2, base_ecam, 2, size_ecam);
1251 if (vms->highmem) {
1252 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "ranges",
1253 1, FDT_PCI_RANGE_IOPORT, 2, 0,
1254 2, base_pio, 2, size_pio,
1255 1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
1256 2, base_mmio, 2, size_mmio,
1257 1, FDT_PCI_RANGE_MMIO_64BIT,
1258 2, base_mmio_high,
1259 2, base_mmio_high, 2, size_mmio_high);
1260 } else {
1261 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "ranges",
1262 1, FDT_PCI_RANGE_IOPORT, 2, 0,
1263 2, base_pio, 2, size_pio,
1264 1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
1265 2, base_mmio, 2, size_mmio);
1268 qemu_fdt_setprop_cell(vms->fdt, nodename, "#interrupt-cells", 1);
1269 create_pcie_irq_map(vms, vms->gic_phandle, irq, nodename);
1271 if (vms->iommu) {
1272 vms->iommu_phandle = qemu_fdt_alloc_phandle(vms->fdt);
1274 create_smmu(vms, pic, pci->bus);
1276 qemu_fdt_setprop_cells(vms->fdt, nodename, "iommu-map",
1277 0x0, vms->iommu_phandle, 0x0, 0x10000);
1280 g_free(nodename);
1283 static void create_platform_bus(VirtMachineState *vms, qemu_irq *pic)
1285 DeviceState *dev;
1286 SysBusDevice *s;
1287 int i;
1288 MemoryRegion *sysmem = get_system_memory();
1290 dev = qdev_create(NULL, TYPE_PLATFORM_BUS_DEVICE);
1291 dev->id = TYPE_PLATFORM_BUS_DEVICE;
1292 qdev_prop_set_uint32(dev, "num_irqs", PLATFORM_BUS_NUM_IRQS);
1293 qdev_prop_set_uint32(dev, "mmio_size", vms->memmap[VIRT_PLATFORM_BUS].size);
1294 qdev_init_nofail(dev);
1295 vms->platform_bus_dev = dev;
1297 s = SYS_BUS_DEVICE(dev);
1298 for (i = 0; i < PLATFORM_BUS_NUM_IRQS; i++) {
1299 int irqn = vms->irqmap[VIRT_PLATFORM_BUS] + i;
1300 sysbus_connect_irq(s, i, pic[irqn]);
1303 memory_region_add_subregion(sysmem,
1304 vms->memmap[VIRT_PLATFORM_BUS].base,
1305 sysbus_mmio_get_region(s, 0));
1308 static void create_secure_ram(VirtMachineState *vms,
1309 MemoryRegion *secure_sysmem)
1311 MemoryRegion *secram = g_new(MemoryRegion, 1);
1312 char *nodename;
1313 hwaddr base = vms->memmap[VIRT_SECURE_MEM].base;
1314 hwaddr size = vms->memmap[VIRT_SECURE_MEM].size;
1316 memory_region_init_ram(secram, NULL, "virt.secure-ram", size,
1317 &error_fatal);
1318 memory_region_add_subregion(secure_sysmem, base, secram);
1320 nodename = g_strdup_printf("/secram@%" PRIx64, base);
1321 qemu_fdt_add_subnode(vms->fdt, nodename);
1322 qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "memory");
1323 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 2, base, 2, size);
1324 qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled");
1325 qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay");
1327 g_free(nodename);
1330 static void *machvirt_dtb(const struct arm_boot_info *binfo, int *fdt_size)
1332 const VirtMachineState *board = container_of(binfo, VirtMachineState,
1333 bootinfo);
1335 *fdt_size = board->fdt_size;
1336 return board->fdt;
1339 static void virt_build_smbios(VirtMachineState *vms)
1341 MachineClass *mc = MACHINE_GET_CLASS(vms);
1342 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
1343 uint8_t *smbios_tables, *smbios_anchor;
1344 size_t smbios_tables_len, smbios_anchor_len;
1345 const char *product = "QEMU Virtual Machine";
1347 if (kvm_enabled()) {
1348 product = "KVM Virtual Machine";
1351 smbios_set_defaults("QEMU", product,
1352 vmc->smbios_old_sys_ver ? "1.0" : mc->name, false,
1353 true, SMBIOS_ENTRY_POINT_30);
1355 smbios_get_tables(MACHINE(vms), NULL, 0, &smbios_tables, &smbios_tables_len,
1356 &smbios_anchor, &smbios_anchor_len);
1358 if (smbios_anchor) {
1359 fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-tables",
1360 smbios_tables, smbios_tables_len);
1361 fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-anchor",
1362 smbios_anchor, smbios_anchor_len);
1366 static
1367 void virt_machine_done(Notifier *notifier, void *data)
1369 VirtMachineState *vms = container_of(notifier, VirtMachineState,
1370 machine_done);
1371 ARMCPU *cpu = ARM_CPU(first_cpu);
1372 struct arm_boot_info *info = &vms->bootinfo;
1373 AddressSpace *as = arm_boot_address_space(cpu, info);
1376 * If the user provided a dtb, we assume the dynamic sysbus nodes
1377 * already are integrated there. This corresponds to a use case where
1378 * the dynamic sysbus nodes are complex and their generation is not yet
1379 * supported. In that case the user can take charge of the guest dt
1380 * while qemu takes charge of the qom stuff.
1382 if (info->dtb_filename == NULL) {
1383 platform_bus_add_all_fdt_nodes(vms->fdt, "/intc",
1384 vms->memmap[VIRT_PLATFORM_BUS].base,
1385 vms->memmap[VIRT_PLATFORM_BUS].size,
1386 vms->irqmap[VIRT_PLATFORM_BUS]);
1388 if (arm_load_dtb(info->dtb_start, info, info->dtb_limit, as) < 0) {
1389 exit(1);
1392 virt_acpi_setup(vms);
1393 virt_build_smbios(vms);
1396 static uint64_t virt_cpu_mp_affinity(VirtMachineState *vms, int idx)
1398 uint8_t clustersz = ARM_DEFAULT_CPUS_PER_CLUSTER;
1399 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
1401 if (!vmc->disallow_affinity_adjustment) {
1402 /* Adjust MPIDR like 64-bit KVM hosts, which incorporate the
1403 * GIC's target-list limitations. 32-bit KVM hosts currently
1404 * always create clusters of 4 CPUs, but that is expected to
1405 * change when they gain support for gicv3. When KVM is enabled
1406 * it will override the changes we make here, therefore our
1407 * purposes are to make TCG consistent (with 64-bit KVM hosts)
1408 * and to improve SGI efficiency.
1410 if (vms->gic_version == 3) {
1411 clustersz = GICV3_TARGETLIST_BITS;
1412 } else {
1413 clustersz = GIC_TARGETLIST_BITS;
1416 return arm_cpu_mp_affinity(idx, clustersz);
1419 static void virt_set_memmap(VirtMachineState *vms)
1421 MachineState *ms = MACHINE(vms);
1422 hwaddr base, device_memory_base, device_memory_size;
1423 int i;
1425 vms->memmap = extended_memmap;
1427 for (i = 0; i < ARRAY_SIZE(base_memmap); i++) {
1428 vms->memmap[i] = base_memmap[i];
1431 if (ms->ram_slots > ACPI_MAX_RAM_SLOTS) {
1432 error_report("unsupported number of memory slots: %"PRIu64,
1433 ms->ram_slots);
1434 exit(EXIT_FAILURE);
1438 * We compute the base of the high IO region depending on the
1439 * amount of initial and device memory. The device memory start/size
1440 * is aligned on 1GiB. We never put the high IO region below 256GiB
1441 * so that if maxram_size is < 255GiB we keep the legacy memory map.
1442 * The device region size assumes 1GiB page max alignment per slot.
1444 device_memory_base =
1445 ROUND_UP(vms->memmap[VIRT_MEM].base + ms->ram_size, GiB);
1446 device_memory_size = ms->maxram_size - ms->ram_size + ms->ram_slots * GiB;
1448 /* Base address of the high IO region */
1449 base = device_memory_base + ROUND_UP(device_memory_size, GiB);
1450 if (base < device_memory_base) {
1451 error_report("maxmem/slots too huge");
1452 exit(EXIT_FAILURE);
1454 if (base < vms->memmap[VIRT_MEM].base + LEGACY_RAMLIMIT_BYTES) {
1455 base = vms->memmap[VIRT_MEM].base + LEGACY_RAMLIMIT_BYTES;
1458 for (i = VIRT_LOWMEMMAP_LAST; i < ARRAY_SIZE(extended_memmap); i++) {
1459 hwaddr size = extended_memmap[i].size;
1461 base = ROUND_UP(base, size);
1462 vms->memmap[i].base = base;
1463 vms->memmap[i].size = size;
1464 base += size;
1466 vms->highest_gpa = base - 1;
1467 if (device_memory_size > 0) {
1468 ms->device_memory = g_malloc0(sizeof(*ms->device_memory));
1469 ms->device_memory->base = device_memory_base;
1470 memory_region_init(&ms->device_memory->mr, OBJECT(vms),
1471 "device-memory", device_memory_size);
1475 static void machvirt_init(MachineState *machine)
1477 VirtMachineState *vms = VIRT_MACHINE(machine);
1478 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(machine);
1479 MachineClass *mc = MACHINE_GET_CLASS(machine);
1480 const CPUArchIdList *possible_cpus;
1481 qemu_irq pic[NUM_IRQS];
1482 MemoryRegion *sysmem = get_system_memory();
1483 MemoryRegion *secure_sysmem = NULL;
1484 int n, virt_max_cpus;
1485 MemoryRegion *ram = g_new(MemoryRegion, 1);
1486 bool firmware_loaded;
1487 bool aarch64 = true;
1488 unsigned int smp_cpus = machine->smp.cpus;
1489 unsigned int max_cpus = machine->smp.max_cpus;
1492 * In accelerated mode, the memory map is computed earlier in kvm_type()
1493 * to create a VM with the right number of IPA bits.
1495 if (!vms->memmap) {
1496 virt_set_memmap(vms);
1499 /* We can probe only here because during property set
1500 * KVM is not available yet
1502 if (vms->gic_version <= 0) {
1503 /* "host" or "max" */
1504 if (!kvm_enabled()) {
1505 if (vms->gic_version == 0) {
1506 error_report("gic-version=host requires KVM");
1507 exit(1);
1508 } else {
1509 /* "max": currently means 3 for TCG */
1510 vms->gic_version = 3;
1512 } else {
1513 vms->gic_version = kvm_arm_vgic_probe();
1514 if (!vms->gic_version) {
1515 error_report(
1516 "Unable to determine GIC version supported by host");
1517 exit(1);
1522 if (!cpu_type_valid(machine->cpu_type)) {
1523 error_report("mach-virt: CPU type %s not supported", machine->cpu_type);
1524 exit(1);
1527 if (vms->secure) {
1528 if (kvm_enabled()) {
1529 error_report("mach-virt: KVM does not support Security extensions");
1530 exit(1);
1534 * The Secure view of the world is the same as the NonSecure,
1535 * but with a few extra devices. Create it as a container region
1536 * containing the system memory at low priority; any secure-only
1537 * devices go in at higher priority and take precedence.
1539 secure_sysmem = g_new(MemoryRegion, 1);
1540 memory_region_init(secure_sysmem, OBJECT(machine), "secure-memory",
1541 UINT64_MAX);
1542 memory_region_add_subregion_overlap(secure_sysmem, 0, sysmem, -1);
1545 firmware_loaded = virt_firmware_init(vms, sysmem,
1546 secure_sysmem ?: sysmem);
1548 /* If we have an EL3 boot ROM then the assumption is that it will
1549 * implement PSCI itself, so disable QEMU's internal implementation
1550 * so it doesn't get in the way. Instead of starting secondary
1551 * CPUs in PSCI powerdown state we will start them all running and
1552 * let the boot ROM sort them out.
1553 * The usual case is that we do use QEMU's PSCI implementation;
1554 * if the guest has EL2 then we will use SMC as the conduit,
1555 * and otherwise we will use HVC (for backwards compatibility and
1556 * because if we're using KVM then we must use HVC).
1558 if (vms->secure && firmware_loaded) {
1559 vms->psci_conduit = QEMU_PSCI_CONDUIT_DISABLED;
1560 } else if (vms->virt) {
1561 vms->psci_conduit = QEMU_PSCI_CONDUIT_SMC;
1562 } else {
1563 vms->psci_conduit = QEMU_PSCI_CONDUIT_HVC;
1566 /* The maximum number of CPUs depends on the GIC version, or on how
1567 * many redistributors we can fit into the memory map.
1569 if (vms->gic_version == 3) {
1570 virt_max_cpus =
1571 vms->memmap[VIRT_GIC_REDIST].size / GICV3_REDIST_SIZE;
1572 virt_max_cpus +=
1573 vms->memmap[VIRT_HIGH_GIC_REDIST2].size / GICV3_REDIST_SIZE;
1574 } else {
1575 virt_max_cpus = GIC_NCPU;
1578 if (max_cpus > virt_max_cpus) {
1579 error_report("Number of SMP CPUs requested (%d) exceeds max CPUs "
1580 "supported by machine 'mach-virt' (%d)",
1581 max_cpus, virt_max_cpus);
1582 exit(1);
1585 vms->smp_cpus = smp_cpus;
1587 if (vms->virt && kvm_enabled()) {
1588 error_report("mach-virt: KVM does not support providing "
1589 "Virtualization extensions to the guest CPU");
1590 exit(1);
1593 create_fdt(vms);
1595 possible_cpus = mc->possible_cpu_arch_ids(machine);
1596 for (n = 0; n < possible_cpus->len; n++) {
1597 Object *cpuobj;
1598 CPUState *cs;
1600 if (n >= smp_cpus) {
1601 break;
1604 cpuobj = object_new(possible_cpus->cpus[n].type);
1605 object_property_set_int(cpuobj, possible_cpus->cpus[n].arch_id,
1606 "mp-affinity", NULL);
1608 cs = CPU(cpuobj);
1609 cs->cpu_index = n;
1611 numa_cpu_pre_plug(&possible_cpus->cpus[cs->cpu_index], DEVICE(cpuobj),
1612 &error_fatal);
1614 aarch64 &= object_property_get_bool(cpuobj, "aarch64", NULL);
1616 if (!vms->secure) {
1617 object_property_set_bool(cpuobj, false, "has_el3", NULL);
1620 if (!vms->virt && object_property_find(cpuobj, "has_el2", NULL)) {
1621 object_property_set_bool(cpuobj, false, "has_el2", NULL);
1624 if (vms->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED) {
1625 object_property_set_int(cpuobj, vms->psci_conduit,
1626 "psci-conduit", NULL);
1628 /* Secondary CPUs start in PSCI powered-down state */
1629 if (n > 0) {
1630 object_property_set_bool(cpuobj, true,
1631 "start-powered-off", NULL);
1635 if (vmc->no_pmu && object_property_find(cpuobj, "pmu", NULL)) {
1636 object_property_set_bool(cpuobj, false, "pmu", NULL);
1639 if (object_property_find(cpuobj, "reset-cbar", NULL)) {
1640 object_property_set_int(cpuobj, vms->memmap[VIRT_CPUPERIPHS].base,
1641 "reset-cbar", &error_abort);
1644 object_property_set_link(cpuobj, OBJECT(sysmem), "memory",
1645 &error_abort);
1646 if (vms->secure) {
1647 object_property_set_link(cpuobj, OBJECT(secure_sysmem),
1648 "secure-memory", &error_abort);
1651 object_property_set_bool(cpuobj, true, "realized", &error_fatal);
1652 object_unref(cpuobj);
1654 fdt_add_timer_nodes(vms);
1655 fdt_add_cpu_nodes(vms);
1657 if (!kvm_enabled()) {
1658 ARMCPU *cpu = ARM_CPU(first_cpu);
1659 bool aarch64 = object_property_get_bool(OBJECT(cpu), "aarch64", NULL);
1661 if (aarch64 && vms->highmem) {
1662 int requested_pa_size, pamax = arm_pamax(cpu);
1664 requested_pa_size = 64 - clz64(vms->highest_gpa);
1665 if (pamax < requested_pa_size) {
1666 error_report("VCPU supports less PA bits (%d) than requested "
1667 "by the memory map (%d)", pamax, requested_pa_size);
1668 exit(1);
1673 memory_region_allocate_system_memory(ram, NULL, "mach-virt.ram",
1674 machine->ram_size);
1675 memory_region_add_subregion(sysmem, vms->memmap[VIRT_MEM].base, ram);
1676 if (machine->device_memory) {
1677 memory_region_add_subregion(sysmem, machine->device_memory->base,
1678 &machine->device_memory->mr);
1681 virt_flash_fdt(vms, sysmem, secure_sysmem ?: sysmem);
1683 create_gic(vms, pic);
1685 fdt_add_pmu_nodes(vms);
1687 create_uart(vms, pic, VIRT_UART, sysmem, serial_hd(0));
1689 if (vms->secure) {
1690 create_secure_ram(vms, secure_sysmem);
1691 create_uart(vms, pic, VIRT_SECURE_UART, secure_sysmem, serial_hd(1));
1694 vms->highmem_ecam &= vms->highmem && (!firmware_loaded || aarch64);
1696 create_rtc(vms, pic);
1698 create_pcie(vms, pic);
1700 create_gpio(vms, pic);
1702 /* Create mmio transports, so the user can create virtio backends
1703 * (which will be automatically plugged in to the transports). If
1704 * no backend is created the transport will just sit harmlessly idle.
1706 create_virtio_devices(vms, pic);
1708 vms->fw_cfg = create_fw_cfg(vms, &address_space_memory);
1709 rom_set_fw(vms->fw_cfg);
1711 create_platform_bus(vms, pic);
1713 vms->bootinfo.ram_size = machine->ram_size;
1714 vms->bootinfo.kernel_filename = machine->kernel_filename;
1715 vms->bootinfo.kernel_cmdline = machine->kernel_cmdline;
1716 vms->bootinfo.initrd_filename = machine->initrd_filename;
1717 vms->bootinfo.nb_cpus = smp_cpus;
1718 vms->bootinfo.board_id = -1;
1719 vms->bootinfo.loader_start = vms->memmap[VIRT_MEM].base;
1720 vms->bootinfo.get_dtb = machvirt_dtb;
1721 vms->bootinfo.skip_dtb_autoload = true;
1722 vms->bootinfo.firmware_loaded = firmware_loaded;
1723 arm_load_kernel(ARM_CPU(first_cpu), &vms->bootinfo);
1725 vms->machine_done.notify = virt_machine_done;
1726 qemu_add_machine_init_done_notifier(&vms->machine_done);
1729 static bool virt_get_secure(Object *obj, Error **errp)
1731 VirtMachineState *vms = VIRT_MACHINE(obj);
1733 return vms->secure;
1736 static void virt_set_secure(Object *obj, bool value, Error **errp)
1738 VirtMachineState *vms = VIRT_MACHINE(obj);
1740 vms->secure = value;
1743 static bool virt_get_virt(Object *obj, Error **errp)
1745 VirtMachineState *vms = VIRT_MACHINE(obj);
1747 return vms->virt;
1750 static void virt_set_virt(Object *obj, bool value, Error **errp)
1752 VirtMachineState *vms = VIRT_MACHINE(obj);
1754 vms->virt = value;
1757 static bool virt_get_highmem(Object *obj, Error **errp)
1759 VirtMachineState *vms = VIRT_MACHINE(obj);
1761 return vms->highmem;
1764 static void virt_set_highmem(Object *obj, bool value, Error **errp)
1766 VirtMachineState *vms = VIRT_MACHINE(obj);
1768 vms->highmem = value;
1771 static bool virt_get_its(Object *obj, Error **errp)
1773 VirtMachineState *vms = VIRT_MACHINE(obj);
1775 return vms->its;
1778 static void virt_set_its(Object *obj, bool value, Error **errp)
1780 VirtMachineState *vms = VIRT_MACHINE(obj);
1782 vms->its = value;
1785 static char *virt_get_gic_version(Object *obj, Error **errp)
1787 VirtMachineState *vms = VIRT_MACHINE(obj);
1788 const char *val = vms->gic_version == 3 ? "3" : "2";
1790 return g_strdup(val);
1793 static void virt_set_gic_version(Object *obj, const char *value, Error **errp)
1795 VirtMachineState *vms = VIRT_MACHINE(obj);
1797 if (!strcmp(value, "3")) {
1798 vms->gic_version = 3;
1799 } else if (!strcmp(value, "2")) {
1800 vms->gic_version = 2;
1801 } else if (!strcmp(value, "host")) {
1802 vms->gic_version = 0; /* Will probe later */
1803 } else if (!strcmp(value, "max")) {
1804 vms->gic_version = -1; /* Will probe later */
1805 } else {
1806 error_setg(errp, "Invalid gic-version value");
1807 error_append_hint(errp, "Valid values are 3, 2, host, max.\n");
1811 static char *virt_get_iommu(Object *obj, Error **errp)
1813 VirtMachineState *vms = VIRT_MACHINE(obj);
1815 switch (vms->iommu) {
1816 case VIRT_IOMMU_NONE:
1817 return g_strdup("none");
1818 case VIRT_IOMMU_SMMUV3:
1819 return g_strdup("smmuv3");
1820 default:
1821 g_assert_not_reached();
1825 static void virt_set_iommu(Object *obj, const char *value, Error **errp)
1827 VirtMachineState *vms = VIRT_MACHINE(obj);
1829 if (!strcmp(value, "smmuv3")) {
1830 vms->iommu = VIRT_IOMMU_SMMUV3;
1831 } else if (!strcmp(value, "none")) {
1832 vms->iommu = VIRT_IOMMU_NONE;
1833 } else {
1834 error_setg(errp, "Invalid iommu value");
1835 error_append_hint(errp, "Valid values are none, smmuv3.\n");
1839 static CpuInstanceProperties
1840 virt_cpu_index_to_props(MachineState *ms, unsigned cpu_index)
1842 MachineClass *mc = MACHINE_GET_CLASS(ms);
1843 const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms);
1845 assert(cpu_index < possible_cpus->len);
1846 return possible_cpus->cpus[cpu_index].props;
1849 static int64_t virt_get_default_cpu_node_id(const MachineState *ms, int idx)
1851 return idx % nb_numa_nodes;
1854 static const CPUArchIdList *virt_possible_cpu_arch_ids(MachineState *ms)
1856 int n;
1857 unsigned int max_cpus = ms->smp.max_cpus;
1858 VirtMachineState *vms = VIRT_MACHINE(ms);
1860 if (ms->possible_cpus) {
1861 assert(ms->possible_cpus->len == max_cpus);
1862 return ms->possible_cpus;
1865 ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
1866 sizeof(CPUArchId) * max_cpus);
1867 ms->possible_cpus->len = max_cpus;
1868 for (n = 0; n < ms->possible_cpus->len; n++) {
1869 ms->possible_cpus->cpus[n].type = ms->cpu_type;
1870 ms->possible_cpus->cpus[n].arch_id =
1871 virt_cpu_mp_affinity(vms, n);
1872 ms->possible_cpus->cpus[n].props.has_thread_id = true;
1873 ms->possible_cpus->cpus[n].props.thread_id = n;
1875 return ms->possible_cpus;
1878 static void virt_machine_device_plug_cb(HotplugHandler *hotplug_dev,
1879 DeviceState *dev, Error **errp)
1881 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
1883 if (vms->platform_bus_dev) {
1884 if (object_dynamic_cast(OBJECT(dev), TYPE_SYS_BUS_DEVICE)) {
1885 platform_bus_link_device(PLATFORM_BUS_DEVICE(vms->platform_bus_dev),
1886 SYS_BUS_DEVICE(dev));
1891 static HotplugHandler *virt_machine_get_hotplug_handler(MachineState *machine,
1892 DeviceState *dev)
1894 if (object_dynamic_cast(OBJECT(dev), TYPE_SYS_BUS_DEVICE)) {
1895 return HOTPLUG_HANDLER(machine);
1898 return NULL;
1902 * for arm64 kvm_type [7-0] encodes the requested number of bits
1903 * in the IPA address space
1905 static int virt_kvm_type(MachineState *ms, const char *type_str)
1907 VirtMachineState *vms = VIRT_MACHINE(ms);
1908 int max_vm_pa_size = kvm_arm_get_max_vm_ipa_size(ms);
1909 int requested_pa_size;
1911 /* we freeze the memory map to compute the highest gpa */
1912 virt_set_memmap(vms);
1914 requested_pa_size = 64 - clz64(vms->highest_gpa);
1916 if (requested_pa_size > max_vm_pa_size) {
1917 error_report("-m and ,maxmem option values "
1918 "require an IPA range (%d bits) larger than "
1919 "the one supported by the host (%d bits)",
1920 requested_pa_size, max_vm_pa_size);
1921 exit(1);
1924 * By default we return 0 which corresponds to an implicit legacy
1925 * 40b IPA setting. Otherwise we return the actual requested PA
1926 * logsize
1928 return requested_pa_size > 40 ? requested_pa_size : 0;
1931 static void virt_machine_class_init(ObjectClass *oc, void *data)
1933 MachineClass *mc = MACHINE_CLASS(oc);
1934 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
1936 mc->init = machvirt_init;
1937 /* Start with max_cpus set to 512, which is the maximum supported by KVM.
1938 * The value may be reduced later when we have more information about the
1939 * configuration of the particular instance.
1941 mc->max_cpus = 512;
1942 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_CALXEDA_XGMAC);
1943 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_AMD_XGBE);
1944 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_RAMFB_DEVICE);
1945 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_PLATFORM);
1946 mc->block_default_type = IF_VIRTIO;
1947 mc->no_cdrom = 1;
1948 mc->pci_allow_0_address = true;
1949 /* We know we will never create a pre-ARMv7 CPU which needs 1K pages */
1950 mc->minimum_page_bits = 12;
1951 mc->possible_cpu_arch_ids = virt_possible_cpu_arch_ids;
1952 mc->cpu_index_to_instance_props = virt_cpu_index_to_props;
1953 mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-a15");
1954 mc->get_default_cpu_node_id = virt_get_default_cpu_node_id;
1955 mc->kvm_type = virt_kvm_type;
1956 assert(!mc->get_hotplug_handler);
1957 mc->get_hotplug_handler = virt_machine_get_hotplug_handler;
1958 hc->plug = virt_machine_device_plug_cb;
1959 mc->numa_mem_supported = true;
1962 static void virt_instance_init(Object *obj)
1964 VirtMachineState *vms = VIRT_MACHINE(obj);
1965 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
1967 /* EL3 is disabled by default on virt: this makes us consistent
1968 * between KVM and TCG for this board, and it also allows us to
1969 * boot UEFI blobs which assume no TrustZone support.
1971 vms->secure = false;
1972 object_property_add_bool(obj, "secure", virt_get_secure,
1973 virt_set_secure, NULL);
1974 object_property_set_description(obj, "secure",
1975 "Set on/off to enable/disable the ARM "
1976 "Security Extensions (TrustZone)",
1977 NULL);
1979 /* EL2 is also disabled by default, for similar reasons */
1980 vms->virt = false;
1981 object_property_add_bool(obj, "virtualization", virt_get_virt,
1982 virt_set_virt, NULL);
1983 object_property_set_description(obj, "virtualization",
1984 "Set on/off to enable/disable emulating a "
1985 "guest CPU which implements the ARM "
1986 "Virtualization Extensions",
1987 NULL);
1989 /* High memory is enabled by default */
1990 vms->highmem = true;
1991 object_property_add_bool(obj, "highmem", virt_get_highmem,
1992 virt_set_highmem, NULL);
1993 object_property_set_description(obj, "highmem",
1994 "Set on/off to enable/disable using "
1995 "physical address space above 32 bits",
1996 NULL);
1997 /* Default GIC type is v2 */
1998 vms->gic_version = 2;
1999 object_property_add_str(obj, "gic-version", virt_get_gic_version,
2000 virt_set_gic_version, NULL);
2001 object_property_set_description(obj, "gic-version",
2002 "Set GIC version. "
2003 "Valid values are 2, 3 and host", NULL);
2005 vms->highmem_ecam = !vmc->no_highmem_ecam;
2007 if (vmc->no_its) {
2008 vms->its = false;
2009 } else {
2010 /* Default allows ITS instantiation */
2011 vms->its = true;
2012 object_property_add_bool(obj, "its", virt_get_its,
2013 virt_set_its, NULL);
2014 object_property_set_description(obj, "its",
2015 "Set on/off to enable/disable "
2016 "ITS instantiation",
2017 NULL);
2020 /* Default disallows iommu instantiation */
2021 vms->iommu = VIRT_IOMMU_NONE;
2022 object_property_add_str(obj, "iommu", virt_get_iommu, virt_set_iommu, NULL);
2023 object_property_set_description(obj, "iommu",
2024 "Set the IOMMU type. "
2025 "Valid values are none and smmuv3",
2026 NULL);
2028 vms->irqmap = a15irqmap;
2030 virt_flash_create(vms);
2033 static const TypeInfo virt_machine_info = {
2034 .name = TYPE_VIRT_MACHINE,
2035 .parent = TYPE_MACHINE,
2036 .abstract = true,
2037 .instance_size = sizeof(VirtMachineState),
2038 .class_size = sizeof(VirtMachineClass),
2039 .class_init = virt_machine_class_init,
2040 .instance_init = virt_instance_init,
2041 .interfaces = (InterfaceInfo[]) {
2042 { TYPE_HOTPLUG_HANDLER },
2047 static void machvirt_machine_init(void)
2049 type_register_static(&virt_machine_info);
2051 type_init(machvirt_machine_init);
2053 static void virt_machine_4_1_options(MachineClass *mc)
2056 DEFINE_VIRT_MACHINE_AS_LATEST(4, 1)
2058 static void virt_machine_4_0_options(MachineClass *mc)
2060 virt_machine_4_1_options(mc);
2061 compat_props_add(mc->compat_props, hw_compat_4_0, hw_compat_4_0_len);
2063 DEFINE_VIRT_MACHINE(4, 0)
2065 static void virt_machine_3_1_options(MachineClass *mc)
2067 virt_machine_4_0_options(mc);
2068 compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len);
2070 DEFINE_VIRT_MACHINE(3, 1)
2072 static void virt_machine_3_0_options(MachineClass *mc)
2074 virt_machine_3_1_options(mc);
2075 compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len);
2077 DEFINE_VIRT_MACHINE(3, 0)
2079 static void virt_machine_2_12_options(MachineClass *mc)
2081 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2083 virt_machine_3_0_options(mc);
2084 compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len);
2085 vmc->no_highmem_ecam = true;
2086 mc->max_cpus = 255;
2088 DEFINE_VIRT_MACHINE(2, 12)
2090 static void virt_machine_2_11_options(MachineClass *mc)
2092 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2094 virt_machine_2_12_options(mc);
2095 compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len);
2096 vmc->smbios_old_sys_ver = true;
2098 DEFINE_VIRT_MACHINE(2, 11)
2100 static void virt_machine_2_10_options(MachineClass *mc)
2102 virt_machine_2_11_options(mc);
2103 compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len);
2104 /* before 2.11 we never faulted accesses to bad addresses */
2105 mc->ignore_memory_transaction_failures = true;
2107 DEFINE_VIRT_MACHINE(2, 10)
2109 static void virt_machine_2_9_options(MachineClass *mc)
2111 virt_machine_2_10_options(mc);
2112 compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len);
2114 DEFINE_VIRT_MACHINE(2, 9)
2116 static void virt_machine_2_8_options(MachineClass *mc)
2118 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2120 virt_machine_2_9_options(mc);
2121 compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len);
2122 /* For 2.8 and earlier we falsely claimed in the DT that
2123 * our timers were edge-triggered, not level-triggered.
2125 vmc->claim_edge_triggered_timers = true;
2127 DEFINE_VIRT_MACHINE(2, 8)
2129 static void virt_machine_2_7_options(MachineClass *mc)
2131 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2133 virt_machine_2_8_options(mc);
2134 compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len);
2135 /* ITS was introduced with 2.8 */
2136 vmc->no_its = true;
2137 /* Stick with 1K pages for migration compatibility */
2138 mc->minimum_page_bits = 0;
2140 DEFINE_VIRT_MACHINE(2, 7)
2142 static void virt_machine_2_6_options(MachineClass *mc)
2144 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2146 virt_machine_2_7_options(mc);
2147 compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len);
2148 vmc->disallow_affinity_adjustment = true;
2149 /* Disable PMU for 2.6 as PMU support was first introduced in 2.7 */
2150 vmc->no_pmu = true;
2152 DEFINE_VIRT_MACHINE(2, 6)