2 * ARM mach-virt emulation
4 * Copyright (c) 2013 Linaro Limited
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2 or later, as published by the Free Software Foundation.
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 * You should have received a copy of the GNU General Public License along with
16 * this program. If not, see <http://www.gnu.org/licenses/>.
18 * Emulate a virtual board which works by passing Linux all the information
19 * it needs about what devices are present via the device tree.
20 * There are some restrictions about what we can do here:
21 * + we can only present devices whose Linux drivers will work based
22 * purely on the device tree with no platform data at all
23 * + we want to present a very stripped-down minimalist platform,
24 * both because this reduces the security attack surface from the guest
25 * and also because it reduces our exposure to being broken when
26 * the kernel updates its device tree bindings and requires further
27 * information in a device binding that we aren't providing.
28 * This is essentially the same approach kvmtool uses.
31 #include "qemu/osdep.h"
32 #include "qemu-common.h"
33 #include "qemu/units.h"
34 #include "qemu/option.h"
35 #include "qapi/error.h"
36 #include "hw/sysbus.h"
37 #include "hw/boards.h"
38 #include "hw/arm/boot.h"
39 #include "hw/arm/primecell.h"
40 #include "hw/arm/virt.h"
41 #include "hw/block/flash.h"
42 #include "hw/vfio/vfio-calxeda-xgmac.h"
43 #include "hw/vfio/vfio-amd-xgbe.h"
44 #include "hw/display/ramfb.h"
46 #include "sysemu/device_tree.h"
47 #include "sysemu/numa.h"
48 #include "sysemu/runstate.h"
49 #include "sysemu/sysemu.h"
50 #include "sysemu/kvm.h"
51 #include "hw/loader.h"
52 #include "exec/address-spaces.h"
53 #include "qemu/bitops.h"
54 #include "qemu/error-report.h"
55 #include "qemu/module.h"
56 #include "hw/pci-host/gpex.h"
57 #include "hw/arm/sysbus-fdt.h"
58 #include "hw/platform-bus.h"
59 #include "hw/qdev-properties.h"
60 #include "hw/arm/fdt.h"
61 #include "hw/intc/arm_gic.h"
62 #include "hw/intc/arm_gicv3_common.h"
65 #include "hw/firmware/smbios.h"
66 #include "qapi/visitor.h"
67 #include "standard-headers/linux/input.h"
68 #include "hw/arm/smmuv3.h"
69 #include "hw/acpi/acpi.h"
70 #include "target/arm/internals.h"
72 #define DEFINE_VIRT_MACHINE_LATEST(major, minor, latest) \
73 static void virt_##major##_##minor##_class_init(ObjectClass *oc, \
76 MachineClass *mc = MACHINE_CLASS(oc); \
77 virt_machine_##major##_##minor##_options(mc); \
78 mc->desc = "QEMU " # major "." # minor " ARM Virtual Machine"; \
83 static const TypeInfo machvirt_##major##_##minor##_info = { \
84 .name = MACHINE_TYPE_NAME("virt-" # major "." # minor), \
85 .parent = TYPE_VIRT_MACHINE, \
86 .class_init = virt_##major##_##minor##_class_init, \
88 static void machvirt_machine_##major##_##minor##_init(void) \
90 type_register_static(&machvirt_##major##_##minor##_info); \
92 type_init(machvirt_machine_##major##_##minor##_init);
94 #define DEFINE_VIRT_MACHINE_AS_LATEST(major, minor) \
95 DEFINE_VIRT_MACHINE_LATEST(major, minor, true)
96 #define DEFINE_VIRT_MACHINE(major, minor) \
97 DEFINE_VIRT_MACHINE_LATEST(major, minor, false)
100 /* Number of external interrupt lines to configure the GIC with */
103 #define PLATFORM_BUS_NUM_IRQS 64
105 /* Legacy RAM limit in GB (< version 4.0) */
106 #define LEGACY_RAMLIMIT_GB 255
107 #define LEGACY_RAMLIMIT_BYTES (LEGACY_RAMLIMIT_GB * GiB)
109 /* Addresses and sizes of our components.
110 * 0..128MB is space for a flash device so we can run bootrom code such as UEFI.
111 * 128MB..256MB is used for miscellaneous device I/O.
112 * 256MB..1GB is reserved for possible future PCI support (ie where the
113 * PCI memory window will go if we add a PCI host controller).
114 * 1GB and up is RAM (which may happily spill over into the
115 * high memory region beyond 4GB).
116 * This represents a compromise between how much RAM can be given to
117 * a 32 bit VM and leaving space for expansion and in particular for PCI.
118 * Note that devices should generally be placed at multiples of 0x10000,
119 * to accommodate guests using 64K pages.
121 static const MemMapEntry base_memmap
[] = {
122 /* Space up to 0x8000000 is reserved for a boot ROM */
123 [VIRT_FLASH
] = { 0, 0x08000000 },
124 [VIRT_CPUPERIPHS
] = { 0x08000000, 0x00020000 },
125 /* GIC distributor and CPU interfaces sit inside the CPU peripheral space */
126 [VIRT_GIC_DIST
] = { 0x08000000, 0x00010000 },
127 [VIRT_GIC_CPU
] = { 0x08010000, 0x00010000 },
128 [VIRT_GIC_V2M
] = { 0x08020000, 0x00001000 },
129 [VIRT_GIC_HYP
] = { 0x08030000, 0x00010000 },
130 [VIRT_GIC_VCPU
] = { 0x08040000, 0x00010000 },
131 /* The space in between here is reserved for GICv3 CPU/vCPU/HYP */
132 [VIRT_GIC_ITS
] = { 0x08080000, 0x00020000 },
133 /* This redistributor space allows up to 2*64kB*123 CPUs */
134 [VIRT_GIC_REDIST
] = { 0x080A0000, 0x00F60000 },
135 [VIRT_UART
] = { 0x09000000, 0x00001000 },
136 [VIRT_RTC
] = { 0x09010000, 0x00001000 },
137 [VIRT_FW_CFG
] = { 0x09020000, 0x00000018 },
138 [VIRT_GPIO
] = { 0x09030000, 0x00001000 },
139 [VIRT_SECURE_UART
] = { 0x09040000, 0x00001000 },
140 [VIRT_SMMU
] = { 0x09050000, 0x00020000 },
141 [VIRT_MMIO
] = { 0x0a000000, 0x00000200 },
142 /* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */
143 [VIRT_PLATFORM_BUS
] = { 0x0c000000, 0x02000000 },
144 [VIRT_SECURE_MEM
] = { 0x0e000000, 0x01000000 },
145 [VIRT_PCIE_MMIO
] = { 0x10000000, 0x2eff0000 },
146 [VIRT_PCIE_PIO
] = { 0x3eff0000, 0x00010000 },
147 [VIRT_PCIE_ECAM
] = { 0x3f000000, 0x01000000 },
148 /* Actual RAM size depends on initial RAM and device memory settings */
149 [VIRT_MEM
] = { GiB
, LEGACY_RAMLIMIT_BYTES
},
153 * Highmem IO Regions: This memory map is floating, located after the RAM.
154 * Each MemMapEntry base (GPA) will be dynamically computed, depending on the
155 * top of the RAM, so that its base get the same alignment as the size,
156 * ie. a 512GiB entry will be aligned on a 512GiB boundary. If there is
157 * less than 256GiB of RAM, the floating area starts at the 256GiB mark.
158 * Note the extended_memmap is sized so that it eventually also includes the
159 * base_memmap entries (VIRT_HIGH_GIC_REDIST2 index is greater than the last
160 * index of base_memmap).
162 static MemMapEntry extended_memmap
[] = {
163 /* Additional 64 MB redist region (can contain up to 512 redistributors) */
164 [VIRT_HIGH_GIC_REDIST2
] = { 0x0, 64 * MiB
},
165 [VIRT_HIGH_PCIE_ECAM
] = { 0x0, 256 * MiB
},
166 /* Second PCIe window */
167 [VIRT_HIGH_PCIE_MMIO
] = { 0x0, 512 * GiB
},
170 static const int a15irqmap
[] = {
173 [VIRT_PCIE
] = 3, /* ... to 6 */
175 [VIRT_SECURE_UART
] = 8,
176 [VIRT_MMIO
] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */
177 [VIRT_GIC_V2M
] = 48, /* ...to 48 + NUM_GICV2M_SPIS - 1 */
178 [VIRT_SMMU
] = 74, /* ...to 74 + NUM_SMMU_IRQS - 1 */
179 [VIRT_PLATFORM_BUS
] = 112, /* ...to 112 + PLATFORM_BUS_NUM_IRQS -1 */
182 static const char *valid_cpus
[] = {
183 ARM_CPU_TYPE_NAME("cortex-a7"),
184 ARM_CPU_TYPE_NAME("cortex-a15"),
185 ARM_CPU_TYPE_NAME("cortex-a53"),
186 ARM_CPU_TYPE_NAME("cortex-a57"),
187 ARM_CPU_TYPE_NAME("cortex-a72"),
188 ARM_CPU_TYPE_NAME("host"),
189 ARM_CPU_TYPE_NAME("max"),
192 static bool cpu_type_valid(const char *cpu
)
196 for (i
= 0; i
< ARRAY_SIZE(valid_cpus
); i
++) {
197 if (strcmp(cpu
, valid_cpus
[i
]) == 0) {
204 static void create_fdt(VirtMachineState
*vms
)
206 void *fdt
= create_device_tree(&vms
->fdt_size
);
209 error_report("create_device_tree() failed");
216 qemu_fdt_setprop_string(fdt
, "/", "compatible", "linux,dummy-virt");
217 qemu_fdt_setprop_cell(fdt
, "/", "#address-cells", 0x2);
218 qemu_fdt_setprop_cell(fdt
, "/", "#size-cells", 0x2);
220 /* /chosen must exist for load_dtb to fill in necessary properties later */
221 qemu_fdt_add_subnode(fdt
, "/chosen");
223 /* Clock node, for the benefit of the UART. The kernel device tree
224 * binding documentation claims the PL011 node clock properties are
225 * optional but in practice if you omit them the kernel refuses to
226 * probe for the device.
228 vms
->clock_phandle
= qemu_fdt_alloc_phandle(fdt
);
229 qemu_fdt_add_subnode(fdt
, "/apb-pclk");
230 qemu_fdt_setprop_string(fdt
, "/apb-pclk", "compatible", "fixed-clock");
231 qemu_fdt_setprop_cell(fdt
, "/apb-pclk", "#clock-cells", 0x0);
232 qemu_fdt_setprop_cell(fdt
, "/apb-pclk", "clock-frequency", 24000000);
233 qemu_fdt_setprop_string(fdt
, "/apb-pclk", "clock-output-names",
235 qemu_fdt_setprop_cell(fdt
, "/apb-pclk", "phandle", vms
->clock_phandle
);
237 if (have_numa_distance
) {
238 int size
= nb_numa_nodes
* nb_numa_nodes
* 3 * sizeof(uint32_t);
239 uint32_t *matrix
= g_malloc0(size
);
242 for (i
= 0; i
< nb_numa_nodes
; i
++) {
243 for (j
= 0; j
< nb_numa_nodes
; j
++) {
244 idx
= (i
* nb_numa_nodes
+ j
) * 3;
245 matrix
[idx
+ 0] = cpu_to_be32(i
);
246 matrix
[idx
+ 1] = cpu_to_be32(j
);
247 matrix
[idx
+ 2] = cpu_to_be32(numa_info
[i
].distance
[j
]);
251 qemu_fdt_add_subnode(fdt
, "/distance-map");
252 qemu_fdt_setprop_string(fdt
, "/distance-map", "compatible",
253 "numa-distance-map-v1");
254 qemu_fdt_setprop(fdt
, "/distance-map", "distance-matrix",
260 static void fdt_add_timer_nodes(const VirtMachineState
*vms
)
262 /* On real hardware these interrupts are level-triggered.
263 * On KVM they were edge-triggered before host kernel version 4.4,
264 * and level-triggered afterwards.
265 * On emulated QEMU they are level-triggered.
267 * Getting the DTB info about them wrong is awkward for some
269 * pre-4.8 ignore the DT and leave the interrupt configured
270 * with whatever the GIC reset value (or the bootloader) left it at
271 * 4.8 before rc6 honour the incorrect data by programming it back
272 * into the GIC, causing problems
273 * 4.8rc6 and later ignore the DT and always write "level triggered"
276 * For backwards-compatibility, virt-2.8 and earlier will continue
277 * to say these are edge-triggered, but later machines will report
278 * the correct information.
281 VirtMachineClass
*vmc
= VIRT_MACHINE_GET_CLASS(vms
);
282 uint32_t irqflags
= GIC_FDT_IRQ_FLAGS_LEVEL_HI
;
284 if (vmc
->claim_edge_triggered_timers
) {
285 irqflags
= GIC_FDT_IRQ_FLAGS_EDGE_LO_HI
;
288 if (vms
->gic_version
== 2) {
289 irqflags
= deposit32(irqflags
, GIC_FDT_IRQ_PPI_CPU_START
,
290 GIC_FDT_IRQ_PPI_CPU_WIDTH
,
291 (1 << vms
->smp_cpus
) - 1);
294 qemu_fdt_add_subnode(vms
->fdt
, "/timer");
296 armcpu
= ARM_CPU(qemu_get_cpu(0));
297 if (arm_feature(&armcpu
->env
, ARM_FEATURE_V8
)) {
298 const char compat
[] = "arm,armv8-timer\0arm,armv7-timer";
299 qemu_fdt_setprop(vms
->fdt
, "/timer", "compatible",
300 compat
, sizeof(compat
));
302 qemu_fdt_setprop_string(vms
->fdt
, "/timer", "compatible",
305 qemu_fdt_setprop(vms
->fdt
, "/timer", "always-on", NULL
, 0);
306 qemu_fdt_setprop_cells(vms
->fdt
, "/timer", "interrupts",
307 GIC_FDT_IRQ_TYPE_PPI
, ARCH_TIMER_S_EL1_IRQ
, irqflags
,
308 GIC_FDT_IRQ_TYPE_PPI
, ARCH_TIMER_NS_EL1_IRQ
, irqflags
,
309 GIC_FDT_IRQ_TYPE_PPI
, ARCH_TIMER_VIRT_IRQ
, irqflags
,
310 GIC_FDT_IRQ_TYPE_PPI
, ARCH_TIMER_NS_EL2_IRQ
, irqflags
);
313 static void fdt_add_cpu_nodes(const VirtMachineState
*vms
)
317 const MachineState
*ms
= MACHINE(vms
);
320 * From Documentation/devicetree/bindings/arm/cpus.txt
321 * On ARM v8 64-bit systems value should be set to 2,
322 * that corresponds to the MPIDR_EL1 register size.
323 * If MPIDR_EL1[63:32] value is equal to 0 on all CPUs
324 * in the system, #address-cells can be set to 1, since
325 * MPIDR_EL1[63:32] bits are not used for CPUs
328 * Here we actually don't know whether our system is 32- or 64-bit one.
329 * The simplest way to go is to examine affinity IDs of all our CPUs. If
330 * at least one of them has Aff3 populated, we set #address-cells to 2.
332 for (cpu
= 0; cpu
< vms
->smp_cpus
; cpu
++) {
333 ARMCPU
*armcpu
= ARM_CPU(qemu_get_cpu(cpu
));
335 if (armcpu
->mp_affinity
& ARM_AFF3_MASK
) {
341 qemu_fdt_add_subnode(vms
->fdt
, "/cpus");
342 qemu_fdt_setprop_cell(vms
->fdt
, "/cpus", "#address-cells", addr_cells
);
343 qemu_fdt_setprop_cell(vms
->fdt
, "/cpus", "#size-cells", 0x0);
345 for (cpu
= vms
->smp_cpus
- 1; cpu
>= 0; cpu
--) {
346 char *nodename
= g_strdup_printf("/cpus/cpu@%d", cpu
);
347 ARMCPU
*armcpu
= ARM_CPU(qemu_get_cpu(cpu
));
348 CPUState
*cs
= CPU(armcpu
);
350 qemu_fdt_add_subnode(vms
->fdt
, nodename
);
351 qemu_fdt_setprop_string(vms
->fdt
, nodename
, "device_type", "cpu");
352 qemu_fdt_setprop_string(vms
->fdt
, nodename
, "compatible",
353 armcpu
->dtb_compatible
);
355 if (vms
->psci_conduit
!= QEMU_PSCI_CONDUIT_DISABLED
356 && vms
->smp_cpus
> 1) {
357 qemu_fdt_setprop_string(vms
->fdt
, nodename
,
358 "enable-method", "psci");
361 if (addr_cells
== 2) {
362 qemu_fdt_setprop_u64(vms
->fdt
, nodename
, "reg",
363 armcpu
->mp_affinity
);
365 qemu_fdt_setprop_cell(vms
->fdt
, nodename
, "reg",
366 armcpu
->mp_affinity
);
369 if (ms
->possible_cpus
->cpus
[cs
->cpu_index
].props
.has_node_id
) {
370 qemu_fdt_setprop_cell(vms
->fdt
, nodename
, "numa-node-id",
371 ms
->possible_cpus
->cpus
[cs
->cpu_index
].props
.node_id
);
378 static void fdt_add_its_gic_node(VirtMachineState
*vms
)
382 vms
->msi_phandle
= qemu_fdt_alloc_phandle(vms
->fdt
);
383 nodename
= g_strdup_printf("/intc/its@%" PRIx64
,
384 vms
->memmap
[VIRT_GIC_ITS
].base
);
385 qemu_fdt_add_subnode(vms
->fdt
, nodename
);
386 qemu_fdt_setprop_string(vms
->fdt
, nodename
, "compatible",
388 qemu_fdt_setprop(vms
->fdt
, nodename
, "msi-controller", NULL
, 0);
389 qemu_fdt_setprop_sized_cells(vms
->fdt
, nodename
, "reg",
390 2, vms
->memmap
[VIRT_GIC_ITS
].base
,
391 2, vms
->memmap
[VIRT_GIC_ITS
].size
);
392 qemu_fdt_setprop_cell(vms
->fdt
, nodename
, "phandle", vms
->msi_phandle
);
396 static void fdt_add_v2m_gic_node(VirtMachineState
*vms
)
400 nodename
= g_strdup_printf("/intc/v2m@%" PRIx64
,
401 vms
->memmap
[VIRT_GIC_V2M
].base
);
402 vms
->msi_phandle
= qemu_fdt_alloc_phandle(vms
->fdt
);
403 qemu_fdt_add_subnode(vms
->fdt
, nodename
);
404 qemu_fdt_setprop_string(vms
->fdt
, nodename
, "compatible",
405 "arm,gic-v2m-frame");
406 qemu_fdt_setprop(vms
->fdt
, nodename
, "msi-controller", NULL
, 0);
407 qemu_fdt_setprop_sized_cells(vms
->fdt
, nodename
, "reg",
408 2, vms
->memmap
[VIRT_GIC_V2M
].base
,
409 2, vms
->memmap
[VIRT_GIC_V2M
].size
);
410 qemu_fdt_setprop_cell(vms
->fdt
, nodename
, "phandle", vms
->msi_phandle
);
414 static void fdt_add_gic_node(VirtMachineState
*vms
)
418 vms
->gic_phandle
= qemu_fdt_alloc_phandle(vms
->fdt
);
419 qemu_fdt_setprop_cell(vms
->fdt
, "/", "interrupt-parent", vms
->gic_phandle
);
421 nodename
= g_strdup_printf("/intc@%" PRIx64
,
422 vms
->memmap
[VIRT_GIC_DIST
].base
);
423 qemu_fdt_add_subnode(vms
->fdt
, nodename
);
424 qemu_fdt_setprop_cell(vms
->fdt
, nodename
, "#interrupt-cells", 3);
425 qemu_fdt_setprop(vms
->fdt
, nodename
, "interrupt-controller", NULL
, 0);
426 qemu_fdt_setprop_cell(vms
->fdt
, nodename
, "#address-cells", 0x2);
427 qemu_fdt_setprop_cell(vms
->fdt
, nodename
, "#size-cells", 0x2);
428 qemu_fdt_setprop(vms
->fdt
, nodename
, "ranges", NULL
, 0);
429 if (vms
->gic_version
== 3) {
430 int nb_redist_regions
= virt_gicv3_redist_region_count(vms
);
432 qemu_fdt_setprop_string(vms
->fdt
, nodename
, "compatible",
435 qemu_fdt_setprop_cell(vms
->fdt
, nodename
,
436 "#redistributor-regions", nb_redist_regions
);
438 if (nb_redist_regions
== 1) {
439 qemu_fdt_setprop_sized_cells(vms
->fdt
, nodename
, "reg",
440 2, vms
->memmap
[VIRT_GIC_DIST
].base
,
441 2, vms
->memmap
[VIRT_GIC_DIST
].size
,
442 2, vms
->memmap
[VIRT_GIC_REDIST
].base
,
443 2, vms
->memmap
[VIRT_GIC_REDIST
].size
);
445 qemu_fdt_setprop_sized_cells(vms
->fdt
, nodename
, "reg",
446 2, vms
->memmap
[VIRT_GIC_DIST
].base
,
447 2, vms
->memmap
[VIRT_GIC_DIST
].size
,
448 2, vms
->memmap
[VIRT_GIC_REDIST
].base
,
449 2, vms
->memmap
[VIRT_GIC_REDIST
].size
,
450 2, vms
->memmap
[VIRT_HIGH_GIC_REDIST2
].base
,
451 2, vms
->memmap
[VIRT_HIGH_GIC_REDIST2
].size
);
455 qemu_fdt_setprop_cells(vms
->fdt
, nodename
, "interrupts",
456 GIC_FDT_IRQ_TYPE_PPI
, ARCH_GIC_MAINT_IRQ
,
457 GIC_FDT_IRQ_FLAGS_LEVEL_HI
);
460 /* 'cortex-a15-gic' means 'GIC v2' */
461 qemu_fdt_setprop_string(vms
->fdt
, nodename
, "compatible",
462 "arm,cortex-a15-gic");
464 qemu_fdt_setprop_sized_cells(vms
->fdt
, nodename
, "reg",
465 2, vms
->memmap
[VIRT_GIC_DIST
].base
,
466 2, vms
->memmap
[VIRT_GIC_DIST
].size
,
467 2, vms
->memmap
[VIRT_GIC_CPU
].base
,
468 2, vms
->memmap
[VIRT_GIC_CPU
].size
);
470 qemu_fdt_setprop_sized_cells(vms
->fdt
, nodename
, "reg",
471 2, vms
->memmap
[VIRT_GIC_DIST
].base
,
472 2, vms
->memmap
[VIRT_GIC_DIST
].size
,
473 2, vms
->memmap
[VIRT_GIC_CPU
].base
,
474 2, vms
->memmap
[VIRT_GIC_CPU
].size
,
475 2, vms
->memmap
[VIRT_GIC_HYP
].base
,
476 2, vms
->memmap
[VIRT_GIC_HYP
].size
,
477 2, vms
->memmap
[VIRT_GIC_VCPU
].base
,
478 2, vms
->memmap
[VIRT_GIC_VCPU
].size
);
479 qemu_fdt_setprop_cells(vms
->fdt
, nodename
, "interrupts",
480 GIC_FDT_IRQ_TYPE_PPI
, ARCH_GIC_MAINT_IRQ
,
481 GIC_FDT_IRQ_FLAGS_LEVEL_HI
);
485 qemu_fdt_setprop_cell(vms
->fdt
, nodename
, "phandle", vms
->gic_phandle
);
489 static void fdt_add_pmu_nodes(const VirtMachineState
*vms
)
493 uint32_t irqflags
= GIC_FDT_IRQ_FLAGS_LEVEL_HI
;
496 armcpu
= ARM_CPU(cpu
);
497 if (!arm_feature(&armcpu
->env
, ARM_FEATURE_PMU
)) {
501 if (kvm_irqchip_in_kernel()) {
502 kvm_arm_pmu_set_irq(cpu
, PPI(VIRTUAL_PMU_IRQ
));
504 kvm_arm_pmu_init(cpu
);
508 if (vms
->gic_version
== 2) {
509 irqflags
= deposit32(irqflags
, GIC_FDT_IRQ_PPI_CPU_START
,
510 GIC_FDT_IRQ_PPI_CPU_WIDTH
,
511 (1 << vms
->smp_cpus
) - 1);
514 armcpu
= ARM_CPU(qemu_get_cpu(0));
515 qemu_fdt_add_subnode(vms
->fdt
, "/pmu");
516 if (arm_feature(&armcpu
->env
, ARM_FEATURE_V8
)) {
517 const char compat
[] = "arm,armv8-pmuv3";
518 qemu_fdt_setprop(vms
->fdt
, "/pmu", "compatible",
519 compat
, sizeof(compat
));
520 qemu_fdt_setprop_cells(vms
->fdt
, "/pmu", "interrupts",
521 GIC_FDT_IRQ_TYPE_PPI
, VIRTUAL_PMU_IRQ
, irqflags
);
525 static void create_its(VirtMachineState
*vms
, DeviceState
*gicdev
)
527 const char *itsclass
= its_class_name();
531 /* Do nothing if not supported */
535 dev
= qdev_create(NULL
, itsclass
);
537 object_property_set_link(OBJECT(dev
), OBJECT(gicdev
), "parent-gicv3",
539 qdev_init_nofail(dev
);
540 sysbus_mmio_map(SYS_BUS_DEVICE(dev
), 0, vms
->memmap
[VIRT_GIC_ITS
].base
);
542 fdt_add_its_gic_node(vms
);
545 static void create_v2m(VirtMachineState
*vms
, qemu_irq
*pic
)
548 int irq
= vms
->irqmap
[VIRT_GIC_V2M
];
551 dev
= qdev_create(NULL
, "arm-gicv2m");
552 sysbus_mmio_map(SYS_BUS_DEVICE(dev
), 0, vms
->memmap
[VIRT_GIC_V2M
].base
);
553 qdev_prop_set_uint32(dev
, "base-spi", irq
);
554 qdev_prop_set_uint32(dev
, "num-spi", NUM_GICV2M_SPIS
);
555 qdev_init_nofail(dev
);
557 for (i
= 0; i
< NUM_GICV2M_SPIS
; i
++) {
558 sysbus_connect_irq(SYS_BUS_DEVICE(dev
), i
, pic
[irq
+ i
]);
561 fdt_add_v2m_gic_node(vms
);
564 static void create_gic(VirtMachineState
*vms
, qemu_irq
*pic
)
566 MachineState
*ms
= MACHINE(vms
);
567 /* We create a standalone GIC */
569 SysBusDevice
*gicbusdev
;
571 int type
= vms
->gic_version
, i
;
572 unsigned int smp_cpus
= ms
->smp
.cpus
;
573 uint32_t nb_redist_regions
= 0;
575 gictype
= (type
== 3) ? gicv3_class_name() : gic_class_name();
577 gicdev
= qdev_create(NULL
, gictype
);
578 qdev_prop_set_uint32(gicdev
, "revision", type
);
579 qdev_prop_set_uint32(gicdev
, "num-cpu", smp_cpus
);
580 /* Note that the num-irq property counts both internal and external
581 * interrupts; there are always 32 of the former (mandated by GIC spec).
583 qdev_prop_set_uint32(gicdev
, "num-irq", NUM_IRQS
+ 32);
584 if (!kvm_irqchip_in_kernel()) {
585 qdev_prop_set_bit(gicdev
, "has-security-extensions", vms
->secure
);
589 uint32_t redist0_capacity
=
590 vms
->memmap
[VIRT_GIC_REDIST
].size
/ GICV3_REDIST_SIZE
;
591 uint32_t redist0_count
= MIN(smp_cpus
, redist0_capacity
);
593 nb_redist_regions
= virt_gicv3_redist_region_count(vms
);
595 qdev_prop_set_uint32(gicdev
, "len-redist-region-count",
597 qdev_prop_set_uint32(gicdev
, "redist-region-count[0]", redist0_count
);
599 if (nb_redist_regions
== 2) {
600 uint32_t redist1_capacity
=
601 vms
->memmap
[VIRT_HIGH_GIC_REDIST2
].size
/ GICV3_REDIST_SIZE
;
603 qdev_prop_set_uint32(gicdev
, "redist-region-count[1]",
604 MIN(smp_cpus
- redist0_count
, redist1_capacity
));
607 if (!kvm_irqchip_in_kernel()) {
608 qdev_prop_set_bit(gicdev
, "has-virtualization-extensions",
612 qdev_init_nofail(gicdev
);
613 gicbusdev
= SYS_BUS_DEVICE(gicdev
);
614 sysbus_mmio_map(gicbusdev
, 0, vms
->memmap
[VIRT_GIC_DIST
].base
);
616 sysbus_mmio_map(gicbusdev
, 1, vms
->memmap
[VIRT_GIC_REDIST
].base
);
617 if (nb_redist_regions
== 2) {
618 sysbus_mmio_map(gicbusdev
, 2,
619 vms
->memmap
[VIRT_HIGH_GIC_REDIST2
].base
);
622 sysbus_mmio_map(gicbusdev
, 1, vms
->memmap
[VIRT_GIC_CPU
].base
);
624 sysbus_mmio_map(gicbusdev
, 2, vms
->memmap
[VIRT_GIC_HYP
].base
);
625 sysbus_mmio_map(gicbusdev
, 3, vms
->memmap
[VIRT_GIC_VCPU
].base
);
629 /* Wire the outputs from each CPU's generic timer and the GICv3
630 * maintenance interrupt signal to the appropriate GIC PPI inputs,
631 * and the GIC's IRQ/FIQ/VIRQ/VFIQ interrupt outputs to the CPU's inputs.
633 for (i
= 0; i
< smp_cpus
; i
++) {
634 DeviceState
*cpudev
= DEVICE(qemu_get_cpu(i
));
635 int ppibase
= NUM_IRQS
+ i
* GIC_INTERNAL
+ GIC_NR_SGIS
;
637 /* Mapping from the output timer irq lines from the CPU to the
638 * GIC PPI inputs we use for the virt board.
640 const int timer_irq
[] = {
641 [GTIMER_PHYS
] = ARCH_TIMER_NS_EL1_IRQ
,
642 [GTIMER_VIRT
] = ARCH_TIMER_VIRT_IRQ
,
643 [GTIMER_HYP
] = ARCH_TIMER_NS_EL2_IRQ
,
644 [GTIMER_SEC
] = ARCH_TIMER_S_EL1_IRQ
,
647 for (irq
= 0; irq
< ARRAY_SIZE(timer_irq
); irq
++) {
648 qdev_connect_gpio_out(cpudev
, irq
,
649 qdev_get_gpio_in(gicdev
,
650 ppibase
+ timer_irq
[irq
]));
654 qemu_irq irq
= qdev_get_gpio_in(gicdev
,
655 ppibase
+ ARCH_GIC_MAINT_IRQ
);
656 qdev_connect_gpio_out_named(cpudev
, "gicv3-maintenance-interrupt",
658 } else if (vms
->virt
) {
659 qemu_irq irq
= qdev_get_gpio_in(gicdev
,
660 ppibase
+ ARCH_GIC_MAINT_IRQ
);
661 sysbus_connect_irq(gicbusdev
, i
+ 4 * smp_cpus
, irq
);
664 qdev_connect_gpio_out_named(cpudev
, "pmu-interrupt", 0,
665 qdev_get_gpio_in(gicdev
, ppibase
668 sysbus_connect_irq(gicbusdev
, i
, qdev_get_gpio_in(cpudev
, ARM_CPU_IRQ
));
669 sysbus_connect_irq(gicbusdev
, i
+ smp_cpus
,
670 qdev_get_gpio_in(cpudev
, ARM_CPU_FIQ
));
671 sysbus_connect_irq(gicbusdev
, i
+ 2 * smp_cpus
,
672 qdev_get_gpio_in(cpudev
, ARM_CPU_VIRQ
));
673 sysbus_connect_irq(gicbusdev
, i
+ 3 * smp_cpus
,
674 qdev_get_gpio_in(cpudev
, ARM_CPU_VFIQ
));
677 for (i
= 0; i
< NUM_IRQS
; i
++) {
678 pic
[i
] = qdev_get_gpio_in(gicdev
, i
);
681 fdt_add_gic_node(vms
);
683 if (type
== 3 && vms
->its
) {
684 create_its(vms
, gicdev
);
685 } else if (type
== 2) {
686 create_v2m(vms
, pic
);
690 static void create_uart(const VirtMachineState
*vms
, qemu_irq
*pic
, int uart
,
691 MemoryRegion
*mem
, Chardev
*chr
)
694 hwaddr base
= vms
->memmap
[uart
].base
;
695 hwaddr size
= vms
->memmap
[uart
].size
;
696 int irq
= vms
->irqmap
[uart
];
697 const char compat
[] = "arm,pl011\0arm,primecell";
698 const char clocknames
[] = "uartclk\0apb_pclk";
699 DeviceState
*dev
= qdev_create(NULL
, "pl011");
700 SysBusDevice
*s
= SYS_BUS_DEVICE(dev
);
702 qdev_prop_set_chr(dev
, "chardev", chr
);
703 qdev_init_nofail(dev
);
704 memory_region_add_subregion(mem
, base
,
705 sysbus_mmio_get_region(s
, 0));
706 sysbus_connect_irq(s
, 0, pic
[irq
]);
708 nodename
= g_strdup_printf("/pl011@%" PRIx64
, base
);
709 qemu_fdt_add_subnode(vms
->fdt
, nodename
);
710 /* Note that we can't use setprop_string because of the embedded NUL */
711 qemu_fdt_setprop(vms
->fdt
, nodename
, "compatible",
712 compat
, sizeof(compat
));
713 qemu_fdt_setprop_sized_cells(vms
->fdt
, nodename
, "reg",
715 qemu_fdt_setprop_cells(vms
->fdt
, nodename
, "interrupts",
716 GIC_FDT_IRQ_TYPE_SPI
, irq
,
717 GIC_FDT_IRQ_FLAGS_LEVEL_HI
);
718 qemu_fdt_setprop_cells(vms
->fdt
, nodename
, "clocks",
719 vms
->clock_phandle
, vms
->clock_phandle
);
720 qemu_fdt_setprop(vms
->fdt
, nodename
, "clock-names",
721 clocknames
, sizeof(clocknames
));
723 if (uart
== VIRT_UART
) {
724 qemu_fdt_setprop_string(vms
->fdt
, "/chosen", "stdout-path", nodename
);
726 /* Mark as not usable by the normal world */
727 qemu_fdt_setprop_string(vms
->fdt
, nodename
, "status", "disabled");
728 qemu_fdt_setprop_string(vms
->fdt
, nodename
, "secure-status", "okay");
730 qemu_fdt_add_subnode(vms
->fdt
, "/secure-chosen");
731 qemu_fdt_setprop_string(vms
->fdt
, "/secure-chosen", "stdout-path",
738 static void create_rtc(const VirtMachineState
*vms
, qemu_irq
*pic
)
741 hwaddr base
= vms
->memmap
[VIRT_RTC
].base
;
742 hwaddr size
= vms
->memmap
[VIRT_RTC
].size
;
743 int irq
= vms
->irqmap
[VIRT_RTC
];
744 const char compat
[] = "arm,pl031\0arm,primecell";
746 sysbus_create_simple("pl031", base
, pic
[irq
]);
748 nodename
= g_strdup_printf("/pl031@%" PRIx64
, base
);
749 qemu_fdt_add_subnode(vms
->fdt
, nodename
);
750 qemu_fdt_setprop(vms
->fdt
, nodename
, "compatible", compat
, sizeof(compat
));
751 qemu_fdt_setprop_sized_cells(vms
->fdt
, nodename
, "reg",
753 qemu_fdt_setprop_cells(vms
->fdt
, nodename
, "interrupts",
754 GIC_FDT_IRQ_TYPE_SPI
, irq
,
755 GIC_FDT_IRQ_FLAGS_LEVEL_HI
);
756 qemu_fdt_setprop_cell(vms
->fdt
, nodename
, "clocks", vms
->clock_phandle
);
757 qemu_fdt_setprop_string(vms
->fdt
, nodename
, "clock-names", "apb_pclk");
761 static DeviceState
*gpio_key_dev
;
762 static void virt_powerdown_req(Notifier
*n
, void *opaque
)
764 /* use gpio Pin 3 for power button event */
765 qemu_set_irq(qdev_get_gpio_in(gpio_key_dev
, 0), 1);
768 static Notifier virt_system_powerdown_notifier
= {
769 .notify
= virt_powerdown_req
772 static void create_gpio(const VirtMachineState
*vms
, qemu_irq
*pic
)
775 DeviceState
*pl061_dev
;
776 hwaddr base
= vms
->memmap
[VIRT_GPIO
].base
;
777 hwaddr size
= vms
->memmap
[VIRT_GPIO
].size
;
778 int irq
= vms
->irqmap
[VIRT_GPIO
];
779 const char compat
[] = "arm,pl061\0arm,primecell";
781 pl061_dev
= sysbus_create_simple("pl061", base
, pic
[irq
]);
783 uint32_t phandle
= qemu_fdt_alloc_phandle(vms
->fdt
);
784 nodename
= g_strdup_printf("/pl061@%" PRIx64
, base
);
785 qemu_fdt_add_subnode(vms
->fdt
, nodename
);
786 qemu_fdt_setprop_sized_cells(vms
->fdt
, nodename
, "reg",
788 qemu_fdt_setprop(vms
->fdt
, nodename
, "compatible", compat
, sizeof(compat
));
789 qemu_fdt_setprop_cell(vms
->fdt
, nodename
, "#gpio-cells", 2);
790 qemu_fdt_setprop(vms
->fdt
, nodename
, "gpio-controller", NULL
, 0);
791 qemu_fdt_setprop_cells(vms
->fdt
, nodename
, "interrupts",
792 GIC_FDT_IRQ_TYPE_SPI
, irq
,
793 GIC_FDT_IRQ_FLAGS_LEVEL_HI
);
794 qemu_fdt_setprop_cell(vms
->fdt
, nodename
, "clocks", vms
->clock_phandle
);
795 qemu_fdt_setprop_string(vms
->fdt
, nodename
, "clock-names", "apb_pclk");
796 qemu_fdt_setprop_cell(vms
->fdt
, nodename
, "phandle", phandle
);
798 gpio_key_dev
= sysbus_create_simple("gpio-key", -1,
799 qdev_get_gpio_in(pl061_dev
, 3));
800 qemu_fdt_add_subnode(vms
->fdt
, "/gpio-keys");
801 qemu_fdt_setprop_string(vms
->fdt
, "/gpio-keys", "compatible", "gpio-keys");
802 qemu_fdt_setprop_cell(vms
->fdt
, "/gpio-keys", "#size-cells", 0);
803 qemu_fdt_setprop_cell(vms
->fdt
, "/gpio-keys", "#address-cells", 1);
805 qemu_fdt_add_subnode(vms
->fdt
, "/gpio-keys/poweroff");
806 qemu_fdt_setprop_string(vms
->fdt
, "/gpio-keys/poweroff",
807 "label", "GPIO Key Poweroff");
808 qemu_fdt_setprop_cell(vms
->fdt
, "/gpio-keys/poweroff", "linux,code",
810 qemu_fdt_setprop_cells(vms
->fdt
, "/gpio-keys/poweroff",
811 "gpios", phandle
, 3, 0);
813 /* connect powerdown request */
814 qemu_register_powerdown_notifier(&virt_system_powerdown_notifier
);
819 static void create_virtio_devices(const VirtMachineState
*vms
, qemu_irq
*pic
)
822 hwaddr size
= vms
->memmap
[VIRT_MMIO
].size
;
824 /* We create the transports in forwards order. Since qbus_realize()
825 * prepends (not appends) new child buses, the incrementing loop below will
826 * create a list of virtio-mmio buses with decreasing base addresses.
828 * When a -device option is processed from the command line,
829 * qbus_find_recursive() picks the next free virtio-mmio bus in forwards
830 * order. The upshot is that -device options in increasing command line
831 * order are mapped to virtio-mmio buses with decreasing base addresses.
833 * When this code was originally written, that arrangement ensured that the
834 * guest Linux kernel would give the lowest "name" (/dev/vda, eth0, etc) to
835 * the first -device on the command line. (The end-to-end order is a
836 * function of this loop, qbus_realize(), qbus_find_recursive(), and the
837 * guest kernel's name-to-address assignment strategy.)
839 * Meanwhile, the kernel's traversal seems to have been reversed; see eg.
840 * the message, if not necessarily the code, of commit 70161ff336.
841 * Therefore the loop now establishes the inverse of the original intent.
843 * Unfortunately, we can't counteract the kernel change by reversing the
844 * loop; it would break existing command lines.
846 * In any case, the kernel makes no guarantee about the stability of
847 * enumeration order of virtio devices (as demonstrated by it changing
848 * between kernel versions). For reliable and stable identification
849 * of disks users must use UUIDs or similar mechanisms.
851 for (i
= 0; i
< NUM_VIRTIO_TRANSPORTS
; i
++) {
852 int irq
= vms
->irqmap
[VIRT_MMIO
] + i
;
853 hwaddr base
= vms
->memmap
[VIRT_MMIO
].base
+ i
* size
;
855 sysbus_create_simple("virtio-mmio", base
, pic
[irq
]);
858 /* We add dtb nodes in reverse order so that they appear in the finished
859 * device tree lowest address first.
861 * Note that this mapping is independent of the loop above. The previous
862 * loop influences virtio device to virtio transport assignment, whereas
863 * this loop controls how virtio transports are laid out in the dtb.
865 for (i
= NUM_VIRTIO_TRANSPORTS
- 1; i
>= 0; i
--) {
867 int irq
= vms
->irqmap
[VIRT_MMIO
] + i
;
868 hwaddr base
= vms
->memmap
[VIRT_MMIO
].base
+ i
* size
;
870 nodename
= g_strdup_printf("/virtio_mmio@%" PRIx64
, base
);
871 qemu_fdt_add_subnode(vms
->fdt
, nodename
);
872 qemu_fdt_setprop_string(vms
->fdt
, nodename
,
873 "compatible", "virtio,mmio");
874 qemu_fdt_setprop_sized_cells(vms
->fdt
, nodename
, "reg",
876 qemu_fdt_setprop_cells(vms
->fdt
, nodename
, "interrupts",
877 GIC_FDT_IRQ_TYPE_SPI
, irq
,
878 GIC_FDT_IRQ_FLAGS_EDGE_LO_HI
);
879 qemu_fdt_setprop(vms
->fdt
, nodename
, "dma-coherent", NULL
, 0);
884 #define VIRT_FLASH_SECTOR_SIZE (256 * KiB)
886 static PFlashCFI01
*virt_flash_create1(VirtMachineState
*vms
,
888 const char *alias_prop_name
)
891 * Create a single flash device. We use the same parameters as
892 * the flash devices on the Versatile Express board.
894 DeviceState
*dev
= qdev_create(NULL
, TYPE_PFLASH_CFI01
);
896 qdev_prop_set_uint64(dev
, "sector-length", VIRT_FLASH_SECTOR_SIZE
);
897 qdev_prop_set_uint8(dev
, "width", 4);
898 qdev_prop_set_uint8(dev
, "device-width", 2);
899 qdev_prop_set_bit(dev
, "big-endian", false);
900 qdev_prop_set_uint16(dev
, "id0", 0x89);
901 qdev_prop_set_uint16(dev
, "id1", 0x18);
902 qdev_prop_set_uint16(dev
, "id2", 0x00);
903 qdev_prop_set_uint16(dev
, "id3", 0x00);
904 qdev_prop_set_string(dev
, "name", name
);
905 object_property_add_child(OBJECT(vms
), name
, OBJECT(dev
),
907 object_property_add_alias(OBJECT(vms
), alias_prop_name
,
908 OBJECT(dev
), "drive", &error_abort
);
909 return PFLASH_CFI01(dev
);
912 static void virt_flash_create(VirtMachineState
*vms
)
914 vms
->flash
[0] = virt_flash_create1(vms
, "virt.flash0", "pflash0");
915 vms
->flash
[1] = virt_flash_create1(vms
, "virt.flash1", "pflash1");
918 static void virt_flash_map1(PFlashCFI01
*flash
,
919 hwaddr base
, hwaddr size
,
920 MemoryRegion
*sysmem
)
922 DeviceState
*dev
= DEVICE(flash
);
924 assert(size
% VIRT_FLASH_SECTOR_SIZE
== 0);
925 assert(size
/ VIRT_FLASH_SECTOR_SIZE
<= UINT32_MAX
);
926 qdev_prop_set_uint32(dev
, "num-blocks", size
/ VIRT_FLASH_SECTOR_SIZE
);
927 qdev_init_nofail(dev
);
929 memory_region_add_subregion(sysmem
, base
,
930 sysbus_mmio_get_region(SYS_BUS_DEVICE(dev
),
934 static void virt_flash_map(VirtMachineState
*vms
,
935 MemoryRegion
*sysmem
,
936 MemoryRegion
*secure_sysmem
)
939 * Map two flash devices to fill the VIRT_FLASH space in the memmap.
940 * sysmem is the system memory space. secure_sysmem is the secure view
941 * of the system, and the first flash device should be made visible only
942 * there. The second flash device is visible to both secure and nonsecure.
943 * If sysmem == secure_sysmem this means there is no separate Secure
944 * address space and both flash devices are generally visible.
946 hwaddr flashsize
= vms
->memmap
[VIRT_FLASH
].size
/ 2;
947 hwaddr flashbase
= vms
->memmap
[VIRT_FLASH
].base
;
949 virt_flash_map1(vms
->flash
[0], flashbase
, flashsize
,
951 virt_flash_map1(vms
->flash
[1], flashbase
+ flashsize
, flashsize
,
955 static void virt_flash_fdt(VirtMachineState
*vms
,
956 MemoryRegion
*sysmem
,
957 MemoryRegion
*secure_sysmem
)
959 hwaddr flashsize
= vms
->memmap
[VIRT_FLASH
].size
/ 2;
960 hwaddr flashbase
= vms
->memmap
[VIRT_FLASH
].base
;
963 if (sysmem
== secure_sysmem
) {
964 /* Report both flash devices as a single node in the DT */
965 nodename
= g_strdup_printf("/flash@%" PRIx64
, flashbase
);
966 qemu_fdt_add_subnode(vms
->fdt
, nodename
);
967 qemu_fdt_setprop_string(vms
->fdt
, nodename
, "compatible", "cfi-flash");
968 qemu_fdt_setprop_sized_cells(vms
->fdt
, nodename
, "reg",
969 2, flashbase
, 2, flashsize
,
970 2, flashbase
+ flashsize
, 2, flashsize
);
971 qemu_fdt_setprop_cell(vms
->fdt
, nodename
, "bank-width", 4);
975 * Report the devices as separate nodes so we can mark one as
976 * only visible to the secure world.
978 nodename
= g_strdup_printf("/secflash@%" PRIx64
, flashbase
);
979 qemu_fdt_add_subnode(vms
->fdt
, nodename
);
980 qemu_fdt_setprop_string(vms
->fdt
, nodename
, "compatible", "cfi-flash");
981 qemu_fdt_setprop_sized_cells(vms
->fdt
, nodename
, "reg",
982 2, flashbase
, 2, flashsize
);
983 qemu_fdt_setprop_cell(vms
->fdt
, nodename
, "bank-width", 4);
984 qemu_fdt_setprop_string(vms
->fdt
, nodename
, "status", "disabled");
985 qemu_fdt_setprop_string(vms
->fdt
, nodename
, "secure-status", "okay");
988 nodename
= g_strdup_printf("/flash@%" PRIx64
, flashbase
);
989 qemu_fdt_add_subnode(vms
->fdt
, nodename
);
990 qemu_fdt_setprop_string(vms
->fdt
, nodename
, "compatible", "cfi-flash");
991 qemu_fdt_setprop_sized_cells(vms
->fdt
, nodename
, "reg",
992 2, flashbase
+ flashsize
, 2, flashsize
);
993 qemu_fdt_setprop_cell(vms
->fdt
, nodename
, "bank-width", 4);
998 static bool virt_firmware_init(VirtMachineState
*vms
,
999 MemoryRegion
*sysmem
,
1000 MemoryRegion
*secure_sysmem
)
1003 BlockBackend
*pflash_blk0
;
1005 /* Map legacy -drive if=pflash to machine properties */
1006 for (i
= 0; i
< ARRAY_SIZE(vms
->flash
); i
++) {
1007 pflash_cfi01_legacy_drive(vms
->flash
[i
],
1008 drive_get(IF_PFLASH
, 0, i
));
1011 virt_flash_map(vms
, sysmem
, secure_sysmem
);
1013 pflash_blk0
= pflash_cfi01_get_blk(vms
->flash
[0]);
1021 error_report("The contents of the first flash device may be "
1022 "specified with -bios or with -drive if=pflash... "
1023 "but you cannot use both options at once");
1027 /* Fall back to -bios */
1029 fname
= qemu_find_file(QEMU_FILE_TYPE_BIOS
, bios_name
);
1031 error_report("Could not find ROM image '%s'", bios_name
);
1034 mr
= sysbus_mmio_get_region(SYS_BUS_DEVICE(vms
->flash
[0]), 0);
1035 image_size
= load_image_mr(fname
, mr
);
1037 if (image_size
< 0) {
1038 error_report("Could not load ROM image '%s'", bios_name
);
1043 return pflash_blk0
|| bios_name
;
1046 static FWCfgState
*create_fw_cfg(const VirtMachineState
*vms
, AddressSpace
*as
)
1048 MachineState
*ms
= MACHINE(vms
);
1049 hwaddr base
= vms
->memmap
[VIRT_FW_CFG
].base
;
1050 hwaddr size
= vms
->memmap
[VIRT_FW_CFG
].size
;
1054 fw_cfg
= fw_cfg_init_mem_wide(base
+ 8, base
, 8, base
+ 16, as
);
1055 fw_cfg_add_i16(fw_cfg
, FW_CFG_NB_CPUS
, (uint16_t)ms
->smp
.cpus
);
1057 nodename
= g_strdup_printf("/fw-cfg@%" PRIx64
, base
);
1058 qemu_fdt_add_subnode(vms
->fdt
, nodename
);
1059 qemu_fdt_setprop_string(vms
->fdt
, nodename
,
1060 "compatible", "qemu,fw-cfg-mmio");
1061 qemu_fdt_setprop_sized_cells(vms
->fdt
, nodename
, "reg",
1063 qemu_fdt_setprop(vms
->fdt
, nodename
, "dma-coherent", NULL
, 0);
1068 static void create_pcie_irq_map(const VirtMachineState
*vms
,
1069 uint32_t gic_phandle
,
1070 int first_irq
, const char *nodename
)
1073 uint32_t full_irq_map
[4 * 4 * 10] = { 0 };
1074 uint32_t *irq_map
= full_irq_map
;
1076 for (devfn
= 0; devfn
<= 0x18; devfn
+= 0x8) {
1077 for (pin
= 0; pin
< 4; pin
++) {
1078 int irq_type
= GIC_FDT_IRQ_TYPE_SPI
;
1079 int irq_nr
= first_irq
+ ((pin
+ PCI_SLOT(devfn
)) % PCI_NUM_PINS
);
1080 int irq_level
= GIC_FDT_IRQ_FLAGS_LEVEL_HI
;
1084 devfn
<< 8, 0, 0, /* devfn */
1085 pin
+ 1, /* PCI pin */
1086 gic_phandle
, 0, 0, irq_type
, irq_nr
, irq_level
}; /* GIC irq */
1088 /* Convert map to big endian */
1089 for (i
= 0; i
< 10; i
++) {
1090 irq_map
[i
] = cpu_to_be32(map
[i
]);
1096 qemu_fdt_setprop(vms
->fdt
, nodename
, "interrupt-map",
1097 full_irq_map
, sizeof(full_irq_map
));
1099 qemu_fdt_setprop_cells(vms
->fdt
, nodename
, "interrupt-map-mask",
1100 0x1800, 0, 0, /* devfn (PCI_SLOT(3)) */
1104 static void create_smmu(const VirtMachineState
*vms
, qemu_irq
*pic
,
1108 const char compat
[] = "arm,smmu-v3";
1109 int irq
= vms
->irqmap
[VIRT_SMMU
];
1111 hwaddr base
= vms
->memmap
[VIRT_SMMU
].base
;
1112 hwaddr size
= vms
->memmap
[VIRT_SMMU
].size
;
1113 const char irq_names
[] = "eventq\0priq\0cmdq-sync\0gerror";
1116 if (vms
->iommu
!= VIRT_IOMMU_SMMUV3
|| !vms
->iommu_phandle
) {
1120 dev
= qdev_create(NULL
, "arm-smmuv3");
1122 object_property_set_link(OBJECT(dev
), OBJECT(bus
), "primary-bus",
1124 qdev_init_nofail(dev
);
1125 sysbus_mmio_map(SYS_BUS_DEVICE(dev
), 0, base
);
1126 for (i
= 0; i
< NUM_SMMU_IRQS
; i
++) {
1127 sysbus_connect_irq(SYS_BUS_DEVICE(dev
), i
, pic
[irq
+ i
]);
1130 node
= g_strdup_printf("/smmuv3@%" PRIx64
, base
);
1131 qemu_fdt_add_subnode(vms
->fdt
, node
);
1132 qemu_fdt_setprop(vms
->fdt
, node
, "compatible", compat
, sizeof(compat
));
1133 qemu_fdt_setprop_sized_cells(vms
->fdt
, node
, "reg", 2, base
, 2, size
);
1135 qemu_fdt_setprop_cells(vms
->fdt
, node
, "interrupts",
1136 GIC_FDT_IRQ_TYPE_SPI
, irq
, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI
,
1137 GIC_FDT_IRQ_TYPE_SPI
, irq
+ 1, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI
,
1138 GIC_FDT_IRQ_TYPE_SPI
, irq
+ 2, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI
,
1139 GIC_FDT_IRQ_TYPE_SPI
, irq
+ 3, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI
);
1141 qemu_fdt_setprop(vms
->fdt
, node
, "interrupt-names", irq_names
,
1144 qemu_fdt_setprop_cell(vms
->fdt
, node
, "clocks", vms
->clock_phandle
);
1145 qemu_fdt_setprop_string(vms
->fdt
, node
, "clock-names", "apb_pclk");
1146 qemu_fdt_setprop(vms
->fdt
, node
, "dma-coherent", NULL
, 0);
1148 qemu_fdt_setprop_cell(vms
->fdt
, node
, "#iommu-cells", 1);
1150 qemu_fdt_setprop_cell(vms
->fdt
, node
, "phandle", vms
->iommu_phandle
);
1154 static void create_pcie(VirtMachineState
*vms
, qemu_irq
*pic
)
1156 hwaddr base_mmio
= vms
->memmap
[VIRT_PCIE_MMIO
].base
;
1157 hwaddr size_mmio
= vms
->memmap
[VIRT_PCIE_MMIO
].size
;
1158 hwaddr base_mmio_high
= vms
->memmap
[VIRT_HIGH_PCIE_MMIO
].base
;
1159 hwaddr size_mmio_high
= vms
->memmap
[VIRT_HIGH_PCIE_MMIO
].size
;
1160 hwaddr base_pio
= vms
->memmap
[VIRT_PCIE_PIO
].base
;
1161 hwaddr size_pio
= vms
->memmap
[VIRT_PCIE_PIO
].size
;
1162 hwaddr base_ecam
, size_ecam
;
1163 hwaddr base
= base_mmio
;
1165 int irq
= vms
->irqmap
[VIRT_PCIE
];
1166 MemoryRegion
*mmio_alias
;
1167 MemoryRegion
*mmio_reg
;
1168 MemoryRegion
*ecam_alias
;
1169 MemoryRegion
*ecam_reg
;
1175 dev
= qdev_create(NULL
, TYPE_GPEX_HOST
);
1176 qdev_init_nofail(dev
);
1178 ecam_id
= VIRT_ECAM_ID(vms
->highmem_ecam
);
1179 base_ecam
= vms
->memmap
[ecam_id
].base
;
1180 size_ecam
= vms
->memmap
[ecam_id
].size
;
1181 nr_pcie_buses
= size_ecam
/ PCIE_MMCFG_SIZE_MIN
;
1182 /* Map only the first size_ecam bytes of ECAM space */
1183 ecam_alias
= g_new0(MemoryRegion
, 1);
1184 ecam_reg
= sysbus_mmio_get_region(SYS_BUS_DEVICE(dev
), 0);
1185 memory_region_init_alias(ecam_alias
, OBJECT(dev
), "pcie-ecam",
1186 ecam_reg
, 0, size_ecam
);
1187 memory_region_add_subregion(get_system_memory(), base_ecam
, ecam_alias
);
1189 /* Map the MMIO window into system address space so as to expose
1190 * the section of PCI MMIO space which starts at the same base address
1191 * (ie 1:1 mapping for that part of PCI MMIO space visible through
1194 mmio_alias
= g_new0(MemoryRegion
, 1);
1195 mmio_reg
= sysbus_mmio_get_region(SYS_BUS_DEVICE(dev
), 1);
1196 memory_region_init_alias(mmio_alias
, OBJECT(dev
), "pcie-mmio",
1197 mmio_reg
, base_mmio
, size_mmio
);
1198 memory_region_add_subregion(get_system_memory(), base_mmio
, mmio_alias
);
1201 /* Map high MMIO space */
1202 MemoryRegion
*high_mmio_alias
= g_new0(MemoryRegion
, 1);
1204 memory_region_init_alias(high_mmio_alias
, OBJECT(dev
), "pcie-mmio-high",
1205 mmio_reg
, base_mmio_high
, size_mmio_high
);
1206 memory_region_add_subregion(get_system_memory(), base_mmio_high
,
1210 /* Map IO port space */
1211 sysbus_mmio_map(SYS_BUS_DEVICE(dev
), 2, base_pio
);
1213 for (i
= 0; i
< GPEX_NUM_IRQS
; i
++) {
1214 sysbus_connect_irq(SYS_BUS_DEVICE(dev
), i
, pic
[irq
+ i
]);
1215 gpex_set_irq_num(GPEX_HOST(dev
), i
, irq
+ i
);
1218 pci
= PCI_HOST_BRIDGE(dev
);
1220 for (i
= 0; i
< nb_nics
; i
++) {
1221 NICInfo
*nd
= &nd_table
[i
];
1224 nd
->model
= g_strdup("virtio");
1227 pci_nic_init_nofail(nd
, pci
->bus
, nd
->model
, NULL
);
1231 nodename
= g_strdup_printf("/pcie@%" PRIx64
, base
);
1232 qemu_fdt_add_subnode(vms
->fdt
, nodename
);
1233 qemu_fdt_setprop_string(vms
->fdt
, nodename
,
1234 "compatible", "pci-host-ecam-generic");
1235 qemu_fdt_setprop_string(vms
->fdt
, nodename
, "device_type", "pci");
1236 qemu_fdt_setprop_cell(vms
->fdt
, nodename
, "#address-cells", 3);
1237 qemu_fdt_setprop_cell(vms
->fdt
, nodename
, "#size-cells", 2);
1238 qemu_fdt_setprop_cell(vms
->fdt
, nodename
, "linux,pci-domain", 0);
1239 qemu_fdt_setprop_cells(vms
->fdt
, nodename
, "bus-range", 0,
1241 qemu_fdt_setprop(vms
->fdt
, nodename
, "dma-coherent", NULL
, 0);
1243 if (vms
->msi_phandle
) {
1244 qemu_fdt_setprop_cells(vms
->fdt
, nodename
, "msi-parent",
1248 qemu_fdt_setprop_sized_cells(vms
->fdt
, nodename
, "reg",
1249 2, base_ecam
, 2, size_ecam
);
1252 qemu_fdt_setprop_sized_cells(vms
->fdt
, nodename
, "ranges",
1253 1, FDT_PCI_RANGE_IOPORT
, 2, 0,
1254 2, base_pio
, 2, size_pio
,
1255 1, FDT_PCI_RANGE_MMIO
, 2, base_mmio
,
1256 2, base_mmio
, 2, size_mmio
,
1257 1, FDT_PCI_RANGE_MMIO_64BIT
,
1259 2, base_mmio_high
, 2, size_mmio_high
);
1261 qemu_fdt_setprop_sized_cells(vms
->fdt
, nodename
, "ranges",
1262 1, FDT_PCI_RANGE_IOPORT
, 2, 0,
1263 2, base_pio
, 2, size_pio
,
1264 1, FDT_PCI_RANGE_MMIO
, 2, base_mmio
,
1265 2, base_mmio
, 2, size_mmio
);
1268 qemu_fdt_setprop_cell(vms
->fdt
, nodename
, "#interrupt-cells", 1);
1269 create_pcie_irq_map(vms
, vms
->gic_phandle
, irq
, nodename
);
1272 vms
->iommu_phandle
= qemu_fdt_alloc_phandle(vms
->fdt
);
1274 create_smmu(vms
, pic
, pci
->bus
);
1276 qemu_fdt_setprop_cells(vms
->fdt
, nodename
, "iommu-map",
1277 0x0, vms
->iommu_phandle
, 0x0, 0x10000);
1283 static void create_platform_bus(VirtMachineState
*vms
, qemu_irq
*pic
)
1288 MemoryRegion
*sysmem
= get_system_memory();
1290 dev
= qdev_create(NULL
, TYPE_PLATFORM_BUS_DEVICE
);
1291 dev
->id
= TYPE_PLATFORM_BUS_DEVICE
;
1292 qdev_prop_set_uint32(dev
, "num_irqs", PLATFORM_BUS_NUM_IRQS
);
1293 qdev_prop_set_uint32(dev
, "mmio_size", vms
->memmap
[VIRT_PLATFORM_BUS
].size
);
1294 qdev_init_nofail(dev
);
1295 vms
->platform_bus_dev
= dev
;
1297 s
= SYS_BUS_DEVICE(dev
);
1298 for (i
= 0; i
< PLATFORM_BUS_NUM_IRQS
; i
++) {
1299 int irqn
= vms
->irqmap
[VIRT_PLATFORM_BUS
] + i
;
1300 sysbus_connect_irq(s
, i
, pic
[irqn
]);
1303 memory_region_add_subregion(sysmem
,
1304 vms
->memmap
[VIRT_PLATFORM_BUS
].base
,
1305 sysbus_mmio_get_region(s
, 0));
1308 static void create_secure_ram(VirtMachineState
*vms
,
1309 MemoryRegion
*secure_sysmem
)
1311 MemoryRegion
*secram
= g_new(MemoryRegion
, 1);
1313 hwaddr base
= vms
->memmap
[VIRT_SECURE_MEM
].base
;
1314 hwaddr size
= vms
->memmap
[VIRT_SECURE_MEM
].size
;
1316 memory_region_init_ram(secram
, NULL
, "virt.secure-ram", size
,
1318 memory_region_add_subregion(secure_sysmem
, base
, secram
);
1320 nodename
= g_strdup_printf("/secram@%" PRIx64
, base
);
1321 qemu_fdt_add_subnode(vms
->fdt
, nodename
);
1322 qemu_fdt_setprop_string(vms
->fdt
, nodename
, "device_type", "memory");
1323 qemu_fdt_setprop_sized_cells(vms
->fdt
, nodename
, "reg", 2, base
, 2, size
);
1324 qemu_fdt_setprop_string(vms
->fdt
, nodename
, "status", "disabled");
1325 qemu_fdt_setprop_string(vms
->fdt
, nodename
, "secure-status", "okay");
1330 static void *machvirt_dtb(const struct arm_boot_info
*binfo
, int *fdt_size
)
1332 const VirtMachineState
*board
= container_of(binfo
, VirtMachineState
,
1335 *fdt_size
= board
->fdt_size
;
1339 static void virt_build_smbios(VirtMachineState
*vms
)
1341 MachineClass
*mc
= MACHINE_GET_CLASS(vms
);
1342 VirtMachineClass
*vmc
= VIRT_MACHINE_GET_CLASS(vms
);
1343 uint8_t *smbios_tables
, *smbios_anchor
;
1344 size_t smbios_tables_len
, smbios_anchor_len
;
1345 const char *product
= "QEMU Virtual Machine";
1347 if (kvm_enabled()) {
1348 product
= "KVM Virtual Machine";
1351 smbios_set_defaults("QEMU", product
,
1352 vmc
->smbios_old_sys_ver
? "1.0" : mc
->name
, false,
1353 true, SMBIOS_ENTRY_POINT_30
);
1355 smbios_get_tables(MACHINE(vms
), NULL
, 0, &smbios_tables
, &smbios_tables_len
,
1356 &smbios_anchor
, &smbios_anchor_len
);
1358 if (smbios_anchor
) {
1359 fw_cfg_add_file(vms
->fw_cfg
, "etc/smbios/smbios-tables",
1360 smbios_tables
, smbios_tables_len
);
1361 fw_cfg_add_file(vms
->fw_cfg
, "etc/smbios/smbios-anchor",
1362 smbios_anchor
, smbios_anchor_len
);
1367 void virt_machine_done(Notifier
*notifier
, void *data
)
1369 VirtMachineState
*vms
= container_of(notifier
, VirtMachineState
,
1371 ARMCPU
*cpu
= ARM_CPU(first_cpu
);
1372 struct arm_boot_info
*info
= &vms
->bootinfo
;
1373 AddressSpace
*as
= arm_boot_address_space(cpu
, info
);
1376 * If the user provided a dtb, we assume the dynamic sysbus nodes
1377 * already are integrated there. This corresponds to a use case where
1378 * the dynamic sysbus nodes are complex and their generation is not yet
1379 * supported. In that case the user can take charge of the guest dt
1380 * while qemu takes charge of the qom stuff.
1382 if (info
->dtb_filename
== NULL
) {
1383 platform_bus_add_all_fdt_nodes(vms
->fdt
, "/intc",
1384 vms
->memmap
[VIRT_PLATFORM_BUS
].base
,
1385 vms
->memmap
[VIRT_PLATFORM_BUS
].size
,
1386 vms
->irqmap
[VIRT_PLATFORM_BUS
]);
1388 if (arm_load_dtb(info
->dtb_start
, info
, info
->dtb_limit
, as
) < 0) {
1392 virt_acpi_setup(vms
);
1393 virt_build_smbios(vms
);
1396 static uint64_t virt_cpu_mp_affinity(VirtMachineState
*vms
, int idx
)
1398 uint8_t clustersz
= ARM_DEFAULT_CPUS_PER_CLUSTER
;
1399 VirtMachineClass
*vmc
= VIRT_MACHINE_GET_CLASS(vms
);
1401 if (!vmc
->disallow_affinity_adjustment
) {
1402 /* Adjust MPIDR like 64-bit KVM hosts, which incorporate the
1403 * GIC's target-list limitations. 32-bit KVM hosts currently
1404 * always create clusters of 4 CPUs, but that is expected to
1405 * change when they gain support for gicv3. When KVM is enabled
1406 * it will override the changes we make here, therefore our
1407 * purposes are to make TCG consistent (with 64-bit KVM hosts)
1408 * and to improve SGI efficiency.
1410 if (vms
->gic_version
== 3) {
1411 clustersz
= GICV3_TARGETLIST_BITS
;
1413 clustersz
= GIC_TARGETLIST_BITS
;
1416 return arm_cpu_mp_affinity(idx
, clustersz
);
1419 static void virt_set_memmap(VirtMachineState
*vms
)
1421 MachineState
*ms
= MACHINE(vms
);
1422 hwaddr base
, device_memory_base
, device_memory_size
;
1425 vms
->memmap
= extended_memmap
;
1427 for (i
= 0; i
< ARRAY_SIZE(base_memmap
); i
++) {
1428 vms
->memmap
[i
] = base_memmap
[i
];
1431 if (ms
->ram_slots
> ACPI_MAX_RAM_SLOTS
) {
1432 error_report("unsupported number of memory slots: %"PRIu64
,
1438 * We compute the base of the high IO region depending on the
1439 * amount of initial and device memory. The device memory start/size
1440 * is aligned on 1GiB. We never put the high IO region below 256GiB
1441 * so that if maxram_size is < 255GiB we keep the legacy memory map.
1442 * The device region size assumes 1GiB page max alignment per slot.
1444 device_memory_base
=
1445 ROUND_UP(vms
->memmap
[VIRT_MEM
].base
+ ms
->ram_size
, GiB
);
1446 device_memory_size
= ms
->maxram_size
- ms
->ram_size
+ ms
->ram_slots
* GiB
;
1448 /* Base address of the high IO region */
1449 base
= device_memory_base
+ ROUND_UP(device_memory_size
, GiB
);
1450 if (base
< device_memory_base
) {
1451 error_report("maxmem/slots too huge");
1454 if (base
< vms
->memmap
[VIRT_MEM
].base
+ LEGACY_RAMLIMIT_BYTES
) {
1455 base
= vms
->memmap
[VIRT_MEM
].base
+ LEGACY_RAMLIMIT_BYTES
;
1458 for (i
= VIRT_LOWMEMMAP_LAST
; i
< ARRAY_SIZE(extended_memmap
); i
++) {
1459 hwaddr size
= extended_memmap
[i
].size
;
1461 base
= ROUND_UP(base
, size
);
1462 vms
->memmap
[i
].base
= base
;
1463 vms
->memmap
[i
].size
= size
;
1466 vms
->highest_gpa
= base
- 1;
1467 if (device_memory_size
> 0) {
1468 ms
->device_memory
= g_malloc0(sizeof(*ms
->device_memory
));
1469 ms
->device_memory
->base
= device_memory_base
;
1470 memory_region_init(&ms
->device_memory
->mr
, OBJECT(vms
),
1471 "device-memory", device_memory_size
);
1475 static void machvirt_init(MachineState
*machine
)
1477 VirtMachineState
*vms
= VIRT_MACHINE(machine
);
1478 VirtMachineClass
*vmc
= VIRT_MACHINE_GET_CLASS(machine
);
1479 MachineClass
*mc
= MACHINE_GET_CLASS(machine
);
1480 const CPUArchIdList
*possible_cpus
;
1481 qemu_irq pic
[NUM_IRQS
];
1482 MemoryRegion
*sysmem
= get_system_memory();
1483 MemoryRegion
*secure_sysmem
= NULL
;
1484 int n
, virt_max_cpus
;
1485 MemoryRegion
*ram
= g_new(MemoryRegion
, 1);
1486 bool firmware_loaded
;
1487 bool aarch64
= true;
1488 unsigned int smp_cpus
= machine
->smp
.cpus
;
1489 unsigned int max_cpus
= machine
->smp
.max_cpus
;
1492 * In accelerated mode, the memory map is computed earlier in kvm_type()
1493 * to create a VM with the right number of IPA bits.
1496 virt_set_memmap(vms
);
1499 /* We can probe only here because during property set
1500 * KVM is not available yet
1502 if (vms
->gic_version
<= 0) {
1503 /* "host" or "max" */
1504 if (!kvm_enabled()) {
1505 if (vms
->gic_version
== 0) {
1506 error_report("gic-version=host requires KVM");
1509 /* "max": currently means 3 for TCG */
1510 vms
->gic_version
= 3;
1513 vms
->gic_version
= kvm_arm_vgic_probe();
1514 if (!vms
->gic_version
) {
1516 "Unable to determine GIC version supported by host");
1522 if (!cpu_type_valid(machine
->cpu_type
)) {
1523 error_report("mach-virt: CPU type %s not supported", machine
->cpu_type
);
1528 if (kvm_enabled()) {
1529 error_report("mach-virt: KVM does not support Security extensions");
1534 * The Secure view of the world is the same as the NonSecure,
1535 * but with a few extra devices. Create it as a container region
1536 * containing the system memory at low priority; any secure-only
1537 * devices go in at higher priority and take precedence.
1539 secure_sysmem
= g_new(MemoryRegion
, 1);
1540 memory_region_init(secure_sysmem
, OBJECT(machine
), "secure-memory",
1542 memory_region_add_subregion_overlap(secure_sysmem
, 0, sysmem
, -1);
1545 firmware_loaded
= virt_firmware_init(vms
, sysmem
,
1546 secure_sysmem
?: sysmem
);
1548 /* If we have an EL3 boot ROM then the assumption is that it will
1549 * implement PSCI itself, so disable QEMU's internal implementation
1550 * so it doesn't get in the way. Instead of starting secondary
1551 * CPUs in PSCI powerdown state we will start them all running and
1552 * let the boot ROM sort them out.
1553 * The usual case is that we do use QEMU's PSCI implementation;
1554 * if the guest has EL2 then we will use SMC as the conduit,
1555 * and otherwise we will use HVC (for backwards compatibility and
1556 * because if we're using KVM then we must use HVC).
1558 if (vms
->secure
&& firmware_loaded
) {
1559 vms
->psci_conduit
= QEMU_PSCI_CONDUIT_DISABLED
;
1560 } else if (vms
->virt
) {
1561 vms
->psci_conduit
= QEMU_PSCI_CONDUIT_SMC
;
1563 vms
->psci_conduit
= QEMU_PSCI_CONDUIT_HVC
;
1566 /* The maximum number of CPUs depends on the GIC version, or on how
1567 * many redistributors we can fit into the memory map.
1569 if (vms
->gic_version
== 3) {
1571 vms
->memmap
[VIRT_GIC_REDIST
].size
/ GICV3_REDIST_SIZE
;
1573 vms
->memmap
[VIRT_HIGH_GIC_REDIST2
].size
/ GICV3_REDIST_SIZE
;
1575 virt_max_cpus
= GIC_NCPU
;
1578 if (max_cpus
> virt_max_cpus
) {
1579 error_report("Number of SMP CPUs requested (%d) exceeds max CPUs "
1580 "supported by machine 'mach-virt' (%d)",
1581 max_cpus
, virt_max_cpus
);
1585 vms
->smp_cpus
= smp_cpus
;
1587 if (vms
->virt
&& kvm_enabled()) {
1588 error_report("mach-virt: KVM does not support providing "
1589 "Virtualization extensions to the guest CPU");
1595 possible_cpus
= mc
->possible_cpu_arch_ids(machine
);
1596 for (n
= 0; n
< possible_cpus
->len
; n
++) {
1600 if (n
>= smp_cpus
) {
1604 cpuobj
= object_new(possible_cpus
->cpus
[n
].type
);
1605 object_property_set_int(cpuobj
, possible_cpus
->cpus
[n
].arch_id
,
1606 "mp-affinity", NULL
);
1611 numa_cpu_pre_plug(&possible_cpus
->cpus
[cs
->cpu_index
], DEVICE(cpuobj
),
1614 aarch64
&= object_property_get_bool(cpuobj
, "aarch64", NULL
);
1617 object_property_set_bool(cpuobj
, false, "has_el3", NULL
);
1620 if (!vms
->virt
&& object_property_find(cpuobj
, "has_el2", NULL
)) {
1621 object_property_set_bool(cpuobj
, false, "has_el2", NULL
);
1624 if (vms
->psci_conduit
!= QEMU_PSCI_CONDUIT_DISABLED
) {
1625 object_property_set_int(cpuobj
, vms
->psci_conduit
,
1626 "psci-conduit", NULL
);
1628 /* Secondary CPUs start in PSCI powered-down state */
1630 object_property_set_bool(cpuobj
, true,
1631 "start-powered-off", NULL
);
1635 if (vmc
->no_pmu
&& object_property_find(cpuobj
, "pmu", NULL
)) {
1636 object_property_set_bool(cpuobj
, false, "pmu", NULL
);
1639 if (object_property_find(cpuobj
, "reset-cbar", NULL
)) {
1640 object_property_set_int(cpuobj
, vms
->memmap
[VIRT_CPUPERIPHS
].base
,
1641 "reset-cbar", &error_abort
);
1644 object_property_set_link(cpuobj
, OBJECT(sysmem
), "memory",
1647 object_property_set_link(cpuobj
, OBJECT(secure_sysmem
),
1648 "secure-memory", &error_abort
);
1651 object_property_set_bool(cpuobj
, true, "realized", &error_fatal
);
1652 object_unref(cpuobj
);
1654 fdt_add_timer_nodes(vms
);
1655 fdt_add_cpu_nodes(vms
);
1657 if (!kvm_enabled()) {
1658 ARMCPU
*cpu
= ARM_CPU(first_cpu
);
1659 bool aarch64
= object_property_get_bool(OBJECT(cpu
), "aarch64", NULL
);
1661 if (aarch64
&& vms
->highmem
) {
1662 int requested_pa_size
, pamax
= arm_pamax(cpu
);
1664 requested_pa_size
= 64 - clz64(vms
->highest_gpa
);
1665 if (pamax
< requested_pa_size
) {
1666 error_report("VCPU supports less PA bits (%d) than requested "
1667 "by the memory map (%d)", pamax
, requested_pa_size
);
1673 memory_region_allocate_system_memory(ram
, NULL
, "mach-virt.ram",
1675 memory_region_add_subregion(sysmem
, vms
->memmap
[VIRT_MEM
].base
, ram
);
1676 if (machine
->device_memory
) {
1677 memory_region_add_subregion(sysmem
, machine
->device_memory
->base
,
1678 &machine
->device_memory
->mr
);
1681 virt_flash_fdt(vms
, sysmem
, secure_sysmem
?: sysmem
);
1683 create_gic(vms
, pic
);
1685 fdt_add_pmu_nodes(vms
);
1687 create_uart(vms
, pic
, VIRT_UART
, sysmem
, serial_hd(0));
1690 create_secure_ram(vms
, secure_sysmem
);
1691 create_uart(vms
, pic
, VIRT_SECURE_UART
, secure_sysmem
, serial_hd(1));
1694 vms
->highmem_ecam
&= vms
->highmem
&& (!firmware_loaded
|| aarch64
);
1696 create_rtc(vms
, pic
);
1698 create_pcie(vms
, pic
);
1700 create_gpio(vms
, pic
);
1702 /* Create mmio transports, so the user can create virtio backends
1703 * (which will be automatically plugged in to the transports). If
1704 * no backend is created the transport will just sit harmlessly idle.
1706 create_virtio_devices(vms
, pic
);
1708 vms
->fw_cfg
= create_fw_cfg(vms
, &address_space_memory
);
1709 rom_set_fw(vms
->fw_cfg
);
1711 create_platform_bus(vms
, pic
);
1713 vms
->bootinfo
.ram_size
= machine
->ram_size
;
1714 vms
->bootinfo
.kernel_filename
= machine
->kernel_filename
;
1715 vms
->bootinfo
.kernel_cmdline
= machine
->kernel_cmdline
;
1716 vms
->bootinfo
.initrd_filename
= machine
->initrd_filename
;
1717 vms
->bootinfo
.nb_cpus
= smp_cpus
;
1718 vms
->bootinfo
.board_id
= -1;
1719 vms
->bootinfo
.loader_start
= vms
->memmap
[VIRT_MEM
].base
;
1720 vms
->bootinfo
.get_dtb
= machvirt_dtb
;
1721 vms
->bootinfo
.skip_dtb_autoload
= true;
1722 vms
->bootinfo
.firmware_loaded
= firmware_loaded
;
1723 arm_load_kernel(ARM_CPU(first_cpu
), &vms
->bootinfo
);
1725 vms
->machine_done
.notify
= virt_machine_done
;
1726 qemu_add_machine_init_done_notifier(&vms
->machine_done
);
1729 static bool virt_get_secure(Object
*obj
, Error
**errp
)
1731 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
1736 static void virt_set_secure(Object
*obj
, bool value
, Error
**errp
)
1738 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
1740 vms
->secure
= value
;
1743 static bool virt_get_virt(Object
*obj
, Error
**errp
)
1745 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
1750 static void virt_set_virt(Object
*obj
, bool value
, Error
**errp
)
1752 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
1757 static bool virt_get_highmem(Object
*obj
, Error
**errp
)
1759 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
1761 return vms
->highmem
;
1764 static void virt_set_highmem(Object
*obj
, bool value
, Error
**errp
)
1766 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
1768 vms
->highmem
= value
;
1771 static bool virt_get_its(Object
*obj
, Error
**errp
)
1773 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
1778 static void virt_set_its(Object
*obj
, bool value
, Error
**errp
)
1780 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
1785 static char *virt_get_gic_version(Object
*obj
, Error
**errp
)
1787 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
1788 const char *val
= vms
->gic_version
== 3 ? "3" : "2";
1790 return g_strdup(val
);
1793 static void virt_set_gic_version(Object
*obj
, const char *value
, Error
**errp
)
1795 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
1797 if (!strcmp(value
, "3")) {
1798 vms
->gic_version
= 3;
1799 } else if (!strcmp(value
, "2")) {
1800 vms
->gic_version
= 2;
1801 } else if (!strcmp(value
, "host")) {
1802 vms
->gic_version
= 0; /* Will probe later */
1803 } else if (!strcmp(value
, "max")) {
1804 vms
->gic_version
= -1; /* Will probe later */
1806 error_setg(errp
, "Invalid gic-version value");
1807 error_append_hint(errp
, "Valid values are 3, 2, host, max.\n");
1811 static char *virt_get_iommu(Object
*obj
, Error
**errp
)
1813 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
1815 switch (vms
->iommu
) {
1816 case VIRT_IOMMU_NONE
:
1817 return g_strdup("none");
1818 case VIRT_IOMMU_SMMUV3
:
1819 return g_strdup("smmuv3");
1821 g_assert_not_reached();
1825 static void virt_set_iommu(Object
*obj
, const char *value
, Error
**errp
)
1827 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
1829 if (!strcmp(value
, "smmuv3")) {
1830 vms
->iommu
= VIRT_IOMMU_SMMUV3
;
1831 } else if (!strcmp(value
, "none")) {
1832 vms
->iommu
= VIRT_IOMMU_NONE
;
1834 error_setg(errp
, "Invalid iommu value");
1835 error_append_hint(errp
, "Valid values are none, smmuv3.\n");
1839 static CpuInstanceProperties
1840 virt_cpu_index_to_props(MachineState
*ms
, unsigned cpu_index
)
1842 MachineClass
*mc
= MACHINE_GET_CLASS(ms
);
1843 const CPUArchIdList
*possible_cpus
= mc
->possible_cpu_arch_ids(ms
);
1845 assert(cpu_index
< possible_cpus
->len
);
1846 return possible_cpus
->cpus
[cpu_index
].props
;
1849 static int64_t virt_get_default_cpu_node_id(const MachineState
*ms
, int idx
)
1851 return idx
% nb_numa_nodes
;
1854 static const CPUArchIdList
*virt_possible_cpu_arch_ids(MachineState
*ms
)
1857 unsigned int max_cpus
= ms
->smp
.max_cpus
;
1858 VirtMachineState
*vms
= VIRT_MACHINE(ms
);
1860 if (ms
->possible_cpus
) {
1861 assert(ms
->possible_cpus
->len
== max_cpus
);
1862 return ms
->possible_cpus
;
1865 ms
->possible_cpus
= g_malloc0(sizeof(CPUArchIdList
) +
1866 sizeof(CPUArchId
) * max_cpus
);
1867 ms
->possible_cpus
->len
= max_cpus
;
1868 for (n
= 0; n
< ms
->possible_cpus
->len
; n
++) {
1869 ms
->possible_cpus
->cpus
[n
].type
= ms
->cpu_type
;
1870 ms
->possible_cpus
->cpus
[n
].arch_id
=
1871 virt_cpu_mp_affinity(vms
, n
);
1872 ms
->possible_cpus
->cpus
[n
].props
.has_thread_id
= true;
1873 ms
->possible_cpus
->cpus
[n
].props
.thread_id
= n
;
1875 return ms
->possible_cpus
;
1878 static void virt_machine_device_plug_cb(HotplugHandler
*hotplug_dev
,
1879 DeviceState
*dev
, Error
**errp
)
1881 VirtMachineState
*vms
= VIRT_MACHINE(hotplug_dev
);
1883 if (vms
->platform_bus_dev
) {
1884 if (object_dynamic_cast(OBJECT(dev
), TYPE_SYS_BUS_DEVICE
)) {
1885 platform_bus_link_device(PLATFORM_BUS_DEVICE(vms
->platform_bus_dev
),
1886 SYS_BUS_DEVICE(dev
));
1891 static HotplugHandler
*virt_machine_get_hotplug_handler(MachineState
*machine
,
1894 if (object_dynamic_cast(OBJECT(dev
), TYPE_SYS_BUS_DEVICE
)) {
1895 return HOTPLUG_HANDLER(machine
);
1902 * for arm64 kvm_type [7-0] encodes the requested number of bits
1903 * in the IPA address space
1905 static int virt_kvm_type(MachineState
*ms
, const char *type_str
)
1907 VirtMachineState
*vms
= VIRT_MACHINE(ms
);
1908 int max_vm_pa_size
= kvm_arm_get_max_vm_ipa_size(ms
);
1909 int requested_pa_size
;
1911 /* we freeze the memory map to compute the highest gpa */
1912 virt_set_memmap(vms
);
1914 requested_pa_size
= 64 - clz64(vms
->highest_gpa
);
1916 if (requested_pa_size
> max_vm_pa_size
) {
1917 error_report("-m and ,maxmem option values "
1918 "require an IPA range (%d bits) larger than "
1919 "the one supported by the host (%d bits)",
1920 requested_pa_size
, max_vm_pa_size
);
1924 * By default we return 0 which corresponds to an implicit legacy
1925 * 40b IPA setting. Otherwise we return the actual requested PA
1928 return requested_pa_size
> 40 ? requested_pa_size
: 0;
1931 static void virt_machine_class_init(ObjectClass
*oc
, void *data
)
1933 MachineClass
*mc
= MACHINE_CLASS(oc
);
1934 HotplugHandlerClass
*hc
= HOTPLUG_HANDLER_CLASS(oc
);
1936 mc
->init
= machvirt_init
;
1937 /* Start with max_cpus set to 512, which is the maximum supported by KVM.
1938 * The value may be reduced later when we have more information about the
1939 * configuration of the particular instance.
1942 machine_class_allow_dynamic_sysbus_dev(mc
, TYPE_VFIO_CALXEDA_XGMAC
);
1943 machine_class_allow_dynamic_sysbus_dev(mc
, TYPE_VFIO_AMD_XGBE
);
1944 machine_class_allow_dynamic_sysbus_dev(mc
, TYPE_RAMFB_DEVICE
);
1945 machine_class_allow_dynamic_sysbus_dev(mc
, TYPE_VFIO_PLATFORM
);
1946 mc
->block_default_type
= IF_VIRTIO
;
1948 mc
->pci_allow_0_address
= true;
1949 /* We know we will never create a pre-ARMv7 CPU which needs 1K pages */
1950 mc
->minimum_page_bits
= 12;
1951 mc
->possible_cpu_arch_ids
= virt_possible_cpu_arch_ids
;
1952 mc
->cpu_index_to_instance_props
= virt_cpu_index_to_props
;
1953 mc
->default_cpu_type
= ARM_CPU_TYPE_NAME("cortex-a15");
1954 mc
->get_default_cpu_node_id
= virt_get_default_cpu_node_id
;
1955 mc
->kvm_type
= virt_kvm_type
;
1956 assert(!mc
->get_hotplug_handler
);
1957 mc
->get_hotplug_handler
= virt_machine_get_hotplug_handler
;
1958 hc
->plug
= virt_machine_device_plug_cb
;
1959 mc
->numa_mem_supported
= true;
1962 static void virt_instance_init(Object
*obj
)
1964 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
1965 VirtMachineClass
*vmc
= VIRT_MACHINE_GET_CLASS(vms
);
1967 /* EL3 is disabled by default on virt: this makes us consistent
1968 * between KVM and TCG for this board, and it also allows us to
1969 * boot UEFI blobs which assume no TrustZone support.
1971 vms
->secure
= false;
1972 object_property_add_bool(obj
, "secure", virt_get_secure
,
1973 virt_set_secure
, NULL
);
1974 object_property_set_description(obj
, "secure",
1975 "Set on/off to enable/disable the ARM "
1976 "Security Extensions (TrustZone)",
1979 /* EL2 is also disabled by default, for similar reasons */
1981 object_property_add_bool(obj
, "virtualization", virt_get_virt
,
1982 virt_set_virt
, NULL
);
1983 object_property_set_description(obj
, "virtualization",
1984 "Set on/off to enable/disable emulating a "
1985 "guest CPU which implements the ARM "
1986 "Virtualization Extensions",
1989 /* High memory is enabled by default */
1990 vms
->highmem
= true;
1991 object_property_add_bool(obj
, "highmem", virt_get_highmem
,
1992 virt_set_highmem
, NULL
);
1993 object_property_set_description(obj
, "highmem",
1994 "Set on/off to enable/disable using "
1995 "physical address space above 32 bits",
1997 /* Default GIC type is v2 */
1998 vms
->gic_version
= 2;
1999 object_property_add_str(obj
, "gic-version", virt_get_gic_version
,
2000 virt_set_gic_version
, NULL
);
2001 object_property_set_description(obj
, "gic-version",
2003 "Valid values are 2, 3 and host", NULL
);
2005 vms
->highmem_ecam
= !vmc
->no_highmem_ecam
;
2010 /* Default allows ITS instantiation */
2012 object_property_add_bool(obj
, "its", virt_get_its
,
2013 virt_set_its
, NULL
);
2014 object_property_set_description(obj
, "its",
2015 "Set on/off to enable/disable "
2016 "ITS instantiation",
2020 /* Default disallows iommu instantiation */
2021 vms
->iommu
= VIRT_IOMMU_NONE
;
2022 object_property_add_str(obj
, "iommu", virt_get_iommu
, virt_set_iommu
, NULL
);
2023 object_property_set_description(obj
, "iommu",
2024 "Set the IOMMU type. "
2025 "Valid values are none and smmuv3",
2028 vms
->irqmap
= a15irqmap
;
2030 virt_flash_create(vms
);
2033 static const TypeInfo virt_machine_info
= {
2034 .name
= TYPE_VIRT_MACHINE
,
2035 .parent
= TYPE_MACHINE
,
2037 .instance_size
= sizeof(VirtMachineState
),
2038 .class_size
= sizeof(VirtMachineClass
),
2039 .class_init
= virt_machine_class_init
,
2040 .instance_init
= virt_instance_init
,
2041 .interfaces
= (InterfaceInfo
[]) {
2042 { TYPE_HOTPLUG_HANDLER
},
2047 static void machvirt_machine_init(void)
2049 type_register_static(&virt_machine_info
);
2051 type_init(machvirt_machine_init
);
2053 static void virt_machine_4_1_options(MachineClass
*mc
)
2056 DEFINE_VIRT_MACHINE_AS_LATEST(4, 1)
2058 static void virt_machine_4_0_options(MachineClass
*mc
)
2060 virt_machine_4_1_options(mc
);
2061 compat_props_add(mc
->compat_props
, hw_compat_4_0
, hw_compat_4_0_len
);
2063 DEFINE_VIRT_MACHINE(4, 0)
2065 static void virt_machine_3_1_options(MachineClass
*mc
)
2067 virt_machine_4_0_options(mc
);
2068 compat_props_add(mc
->compat_props
, hw_compat_3_1
, hw_compat_3_1_len
);
2070 DEFINE_VIRT_MACHINE(3, 1)
2072 static void virt_machine_3_0_options(MachineClass
*mc
)
2074 virt_machine_3_1_options(mc
);
2075 compat_props_add(mc
->compat_props
, hw_compat_3_0
, hw_compat_3_0_len
);
2077 DEFINE_VIRT_MACHINE(3, 0)
2079 static void virt_machine_2_12_options(MachineClass
*mc
)
2081 VirtMachineClass
*vmc
= VIRT_MACHINE_CLASS(OBJECT_CLASS(mc
));
2083 virt_machine_3_0_options(mc
);
2084 compat_props_add(mc
->compat_props
, hw_compat_2_12
, hw_compat_2_12_len
);
2085 vmc
->no_highmem_ecam
= true;
2088 DEFINE_VIRT_MACHINE(2, 12)
2090 static void virt_machine_2_11_options(MachineClass
*mc
)
2092 VirtMachineClass
*vmc
= VIRT_MACHINE_CLASS(OBJECT_CLASS(mc
));
2094 virt_machine_2_12_options(mc
);
2095 compat_props_add(mc
->compat_props
, hw_compat_2_11
, hw_compat_2_11_len
);
2096 vmc
->smbios_old_sys_ver
= true;
2098 DEFINE_VIRT_MACHINE(2, 11)
2100 static void virt_machine_2_10_options(MachineClass
*mc
)
2102 virt_machine_2_11_options(mc
);
2103 compat_props_add(mc
->compat_props
, hw_compat_2_10
, hw_compat_2_10_len
);
2104 /* before 2.11 we never faulted accesses to bad addresses */
2105 mc
->ignore_memory_transaction_failures
= true;
2107 DEFINE_VIRT_MACHINE(2, 10)
2109 static void virt_machine_2_9_options(MachineClass
*mc
)
2111 virt_machine_2_10_options(mc
);
2112 compat_props_add(mc
->compat_props
, hw_compat_2_9
, hw_compat_2_9_len
);
2114 DEFINE_VIRT_MACHINE(2, 9)
2116 static void virt_machine_2_8_options(MachineClass
*mc
)
2118 VirtMachineClass
*vmc
= VIRT_MACHINE_CLASS(OBJECT_CLASS(mc
));
2120 virt_machine_2_9_options(mc
);
2121 compat_props_add(mc
->compat_props
, hw_compat_2_8
, hw_compat_2_8_len
);
2122 /* For 2.8 and earlier we falsely claimed in the DT that
2123 * our timers were edge-triggered, not level-triggered.
2125 vmc
->claim_edge_triggered_timers
= true;
2127 DEFINE_VIRT_MACHINE(2, 8)
2129 static void virt_machine_2_7_options(MachineClass
*mc
)
2131 VirtMachineClass
*vmc
= VIRT_MACHINE_CLASS(OBJECT_CLASS(mc
));
2133 virt_machine_2_8_options(mc
);
2134 compat_props_add(mc
->compat_props
, hw_compat_2_7
, hw_compat_2_7_len
);
2135 /* ITS was introduced with 2.8 */
2137 /* Stick with 1K pages for migration compatibility */
2138 mc
->minimum_page_bits
= 0;
2140 DEFINE_VIRT_MACHINE(2, 7)
2142 static void virt_machine_2_6_options(MachineClass
*mc
)
2144 VirtMachineClass
*vmc
= VIRT_MACHINE_CLASS(OBJECT_CLASS(mc
));
2146 virt_machine_2_7_options(mc
);
2147 compat_props_add(mc
->compat_props
, hw_compat_2_6
, hw_compat_2_6_len
);
2148 vmc
->disallow_affinity_adjustment
= true;
2149 /* Disable PMU for 2.6 as PMU support was first introduced in 2.7 */
2152 DEFINE_VIRT_MACHINE(2, 6)