Merge remote-tracking branch 'remotes/sstabellini/tags/xen-20170228-tag' into staging
[qemu/ar7.git] / hw / intc / arm_gic.c
blob8e5a9d8a3e8823abecdedea3fc714dee920c09a9
1 /*
2 * ARM Generic/Distributed Interrupt Controller
4 * Copyright (c) 2006-2007 CodeSourcery.
5 * Written by Paul Brook
7 * This code is licensed under the GPL.
8 */
10 /* This file contains implementation code for the RealView EB interrupt
11 * controller, MPCore distributed interrupt controller and ARMv7-M
12 * Nested Vectored Interrupt Controller.
13 * It is compiled in two ways:
14 * (1) as a standalone file to produce a sysbus device which is a GIC
15 * that can be used on the realview board and as one of the builtin
16 * private peripherals for the ARM MP CPUs (11MPCore, A9, etc)
17 * (2) by being directly #included into armv7m_nvic.c to produce the
18 * armv7m_nvic device.
21 #include "qemu/osdep.h"
22 #include "hw/sysbus.h"
23 #include "gic_internal.h"
24 #include "qapi/error.h"
25 #include "qom/cpu.h"
26 #include "qemu/log.h"
27 #include "trace.h"
29 //#define DEBUG_GIC
31 #ifdef DEBUG_GIC
32 #define DPRINTF(fmt, ...) \
33 do { fprintf(stderr, "arm_gic: " fmt , ## __VA_ARGS__); } while (0)
34 #else
35 #define DPRINTF(fmt, ...) do {} while(0)
36 #endif
38 static const uint8_t gic_id_11mpcore[] = {
39 0x00, 0x00, 0x00, 0x00, 0x90, 0x13, 0x04, 0x00, 0x0d, 0xf0, 0x05, 0xb1
42 static const uint8_t gic_id_gicv1[] = {
43 0x04, 0x00, 0x00, 0x00, 0x90, 0xb3, 0x1b, 0x00, 0x0d, 0xf0, 0x05, 0xb1
46 static const uint8_t gic_id_gicv2[] = {
47 0x04, 0x00, 0x00, 0x00, 0x90, 0xb4, 0x2b, 0x00, 0x0d, 0xf0, 0x05, 0xb1
50 static inline int gic_get_current_cpu(GICState *s)
52 if (s->num_cpu > 1) {
53 return current_cpu->cpu_index;
55 return 0;
58 /* Return true if this GIC config has interrupt groups, which is
59 * true if we're a GICv2, or a GICv1 with the security extensions.
61 static inline bool gic_has_groups(GICState *s)
63 return s->revision == 2 || s->security_extn;
66 /* TODO: Many places that call this routine could be optimized. */
67 /* Update interrupt status after enabled or pending bits have been changed. */
68 void gic_update(GICState *s)
70 int best_irq;
71 int best_prio;
72 int irq;
73 int irq_level, fiq_level;
74 int cpu;
75 int cm;
77 for (cpu = 0; cpu < s->num_cpu; cpu++) {
78 cm = 1 << cpu;
79 s->current_pending[cpu] = 1023;
80 if (!(s->ctlr & (GICD_CTLR_EN_GRP0 | GICD_CTLR_EN_GRP1))
81 || !(s->cpu_ctlr[cpu] & (GICC_CTLR_EN_GRP0 | GICC_CTLR_EN_GRP1))) {
82 qemu_irq_lower(s->parent_irq[cpu]);
83 qemu_irq_lower(s->parent_fiq[cpu]);
84 continue;
86 best_prio = 0x100;
87 best_irq = 1023;
88 for (irq = 0; irq < s->num_irq; irq++) {
89 if (GIC_TEST_ENABLED(irq, cm) && gic_test_pending(s, irq, cm) &&
90 (irq < GIC_INTERNAL || GIC_TARGET(irq) & cm)) {
91 if (GIC_GET_PRIORITY(irq, cpu) < best_prio) {
92 best_prio = GIC_GET_PRIORITY(irq, cpu);
93 best_irq = irq;
98 if (best_irq != 1023) {
99 trace_gic_update_bestirq(cpu, best_irq, best_prio,
100 s->priority_mask[cpu], s->running_priority[cpu]);
103 irq_level = fiq_level = 0;
105 if (best_prio < s->priority_mask[cpu]) {
106 s->current_pending[cpu] = best_irq;
107 if (best_prio < s->running_priority[cpu]) {
108 int group = GIC_TEST_GROUP(best_irq, cm);
110 if (extract32(s->ctlr, group, 1) &&
111 extract32(s->cpu_ctlr[cpu], group, 1)) {
112 if (group == 0 && s->cpu_ctlr[cpu] & GICC_CTLR_FIQ_EN) {
113 DPRINTF("Raised pending FIQ %d (cpu %d)\n",
114 best_irq, cpu);
115 fiq_level = 1;
116 trace_gic_update_set_irq(cpu, "fiq", fiq_level);
117 } else {
118 DPRINTF("Raised pending IRQ %d (cpu %d)\n",
119 best_irq, cpu);
120 irq_level = 1;
121 trace_gic_update_set_irq(cpu, "irq", irq_level);
127 qemu_set_irq(s->parent_irq[cpu], irq_level);
128 qemu_set_irq(s->parent_fiq[cpu], fiq_level);
132 void gic_set_pending_private(GICState *s, int cpu, int irq)
134 int cm = 1 << cpu;
136 if (gic_test_pending(s, irq, cm)) {
137 return;
140 DPRINTF("Set %d pending cpu %d\n", irq, cpu);
141 GIC_SET_PENDING(irq, cm);
142 gic_update(s);
145 static void gic_set_irq_11mpcore(GICState *s, int irq, int level,
146 int cm, int target)
148 if (level) {
149 GIC_SET_LEVEL(irq, cm);
150 if (GIC_TEST_EDGE_TRIGGER(irq) || GIC_TEST_ENABLED(irq, cm)) {
151 DPRINTF("Set %d pending mask %x\n", irq, target);
152 GIC_SET_PENDING(irq, target);
154 } else {
155 GIC_CLEAR_LEVEL(irq, cm);
159 static void gic_set_irq_generic(GICState *s, int irq, int level,
160 int cm, int target)
162 if (level) {
163 GIC_SET_LEVEL(irq, cm);
164 DPRINTF("Set %d pending mask %x\n", irq, target);
165 if (GIC_TEST_EDGE_TRIGGER(irq)) {
166 GIC_SET_PENDING(irq, target);
168 } else {
169 GIC_CLEAR_LEVEL(irq, cm);
173 /* Process a change in an external IRQ input. */
174 static void gic_set_irq(void *opaque, int irq, int level)
176 /* Meaning of the 'irq' parameter:
177 * [0..N-1] : external interrupts
178 * [N..N+31] : PPI (internal) interrupts for CPU 0
179 * [N+32..N+63] : PPI (internal interrupts for CPU 1
180 * ...
182 GICState *s = (GICState *)opaque;
183 int cm, target;
184 if (irq < (s->num_irq - GIC_INTERNAL)) {
185 /* The first external input line is internal interrupt 32. */
186 cm = ALL_CPU_MASK;
187 irq += GIC_INTERNAL;
188 target = GIC_TARGET(irq);
189 } else {
190 int cpu;
191 irq -= (s->num_irq - GIC_INTERNAL);
192 cpu = irq / GIC_INTERNAL;
193 irq %= GIC_INTERNAL;
194 cm = 1 << cpu;
195 target = cm;
198 assert(irq >= GIC_NR_SGIS);
200 if (level == GIC_TEST_LEVEL(irq, cm)) {
201 return;
204 if (s->revision == REV_11MPCORE) {
205 gic_set_irq_11mpcore(s, irq, level, cm, target);
206 } else {
207 gic_set_irq_generic(s, irq, level, cm, target);
209 trace_gic_set_irq(irq, level, cm, target);
211 gic_update(s);
214 static uint16_t gic_get_current_pending_irq(GICState *s, int cpu,
215 MemTxAttrs attrs)
217 uint16_t pending_irq = s->current_pending[cpu];
219 if (pending_irq < GIC_MAXIRQ && gic_has_groups(s)) {
220 int group = GIC_TEST_GROUP(pending_irq, (1 << cpu));
221 /* On a GIC without the security extensions, reading this register
222 * behaves in the same way as a secure access to a GIC with them.
224 bool secure = !s->security_extn || attrs.secure;
226 if (group == 0 && !secure) {
227 /* Group0 interrupts hidden from Non-secure access */
228 return 1023;
230 if (group == 1 && secure && !(s->cpu_ctlr[cpu] & GICC_CTLR_ACK_CTL)) {
231 /* Group1 interrupts only seen by Secure access if
232 * AckCtl bit set.
234 return 1022;
237 return pending_irq;
240 static int gic_get_group_priority(GICState *s, int cpu, int irq)
242 /* Return the group priority of the specified interrupt
243 * (which is the top bits of its priority, with the number
244 * of bits masked determined by the applicable binary point register).
246 int bpr;
247 uint32_t mask;
249 if (gic_has_groups(s) &&
250 !(s->cpu_ctlr[cpu] & GICC_CTLR_CBPR) &&
251 GIC_TEST_GROUP(irq, (1 << cpu))) {
252 bpr = s->abpr[cpu];
253 } else {
254 bpr = s->bpr[cpu];
257 /* a BPR of 0 means the group priority bits are [7:1];
258 * a BPR of 1 means they are [7:2], and so on down to
259 * a BPR of 7 meaning no group priority bits at all.
261 mask = ~0U << ((bpr & 7) + 1);
263 return GIC_GET_PRIORITY(irq, cpu) & mask;
266 static void gic_activate_irq(GICState *s, int cpu, int irq)
268 /* Set the appropriate Active Priority Register bit for this IRQ,
269 * and update the running priority.
271 int prio = gic_get_group_priority(s, cpu, irq);
272 int preemption_level = prio >> (GIC_MIN_BPR + 1);
273 int regno = preemption_level / 32;
274 int bitno = preemption_level % 32;
276 if (gic_has_groups(s) && GIC_TEST_GROUP(irq, (1 << cpu))) {
277 s->nsapr[regno][cpu] |= (1 << bitno);
278 } else {
279 s->apr[regno][cpu] |= (1 << bitno);
282 s->running_priority[cpu] = prio;
283 GIC_SET_ACTIVE(irq, 1 << cpu);
286 static int gic_get_prio_from_apr_bits(GICState *s, int cpu)
288 /* Recalculate the current running priority for this CPU based
289 * on the set bits in the Active Priority Registers.
291 int i;
292 for (i = 0; i < GIC_NR_APRS; i++) {
293 uint32_t apr = s->apr[i][cpu] | s->nsapr[i][cpu];
294 if (!apr) {
295 continue;
297 return (i * 32 + ctz32(apr)) << (GIC_MIN_BPR + 1);
299 return 0x100;
302 static void gic_drop_prio(GICState *s, int cpu, int group)
304 /* Drop the priority of the currently active interrupt in the
305 * specified group.
307 * Note that we can guarantee (because of the requirement to nest
308 * GICC_IAR reads [which activate an interrupt and raise priority]
309 * with GICC_EOIR writes [which drop the priority for the interrupt])
310 * that the interrupt we're being called for is the highest priority
311 * active interrupt, meaning that it has the lowest set bit in the
312 * APR registers.
314 * If the guest does not honour the ordering constraints then the
315 * behaviour of the GIC is UNPREDICTABLE, which for us means that
316 * the values of the APR registers might become incorrect and the
317 * running priority will be wrong, so interrupts that should preempt
318 * might not do so, and interrupts that should not preempt might do so.
320 int i;
322 for (i = 0; i < GIC_NR_APRS; i++) {
323 uint32_t *papr = group ? &s->nsapr[i][cpu] : &s->apr[i][cpu];
324 if (!*papr) {
325 continue;
327 /* Clear lowest set bit */
328 *papr &= *papr - 1;
329 break;
332 s->running_priority[cpu] = gic_get_prio_from_apr_bits(s, cpu);
335 uint32_t gic_acknowledge_irq(GICState *s, int cpu, MemTxAttrs attrs)
337 int ret, irq, src;
338 int cm = 1 << cpu;
340 /* gic_get_current_pending_irq() will return 1022 or 1023 appropriately
341 * for the case where this GIC supports grouping and the pending interrupt
342 * is in the wrong group.
344 irq = gic_get_current_pending_irq(s, cpu, attrs);
345 trace_gic_acknowledge_irq(cpu, irq);
347 if (irq >= GIC_MAXIRQ) {
348 DPRINTF("ACK, no pending interrupt or it is hidden: %d\n", irq);
349 return irq;
352 if (GIC_GET_PRIORITY(irq, cpu) >= s->running_priority[cpu]) {
353 DPRINTF("ACK, pending interrupt (%d) has insufficient priority\n", irq);
354 return 1023;
357 if (s->revision == REV_11MPCORE) {
358 /* Clear pending flags for both level and edge triggered interrupts.
359 * Level triggered IRQs will be reasserted once they become inactive.
361 GIC_CLEAR_PENDING(irq, GIC_TEST_MODEL(irq) ? ALL_CPU_MASK : cm);
362 ret = irq;
363 } else {
364 if (irq < GIC_NR_SGIS) {
365 /* Lookup the source CPU for the SGI and clear this in the
366 * sgi_pending map. Return the src and clear the overall pending
367 * state on this CPU if the SGI is not pending from any CPUs.
369 assert(s->sgi_pending[irq][cpu] != 0);
370 src = ctz32(s->sgi_pending[irq][cpu]);
371 s->sgi_pending[irq][cpu] &= ~(1 << src);
372 if (s->sgi_pending[irq][cpu] == 0) {
373 GIC_CLEAR_PENDING(irq, GIC_TEST_MODEL(irq) ? ALL_CPU_MASK : cm);
375 ret = irq | ((src & 0x7) << 10);
376 } else {
377 /* Clear pending state for both level and edge triggered
378 * interrupts. (level triggered interrupts with an active line
379 * remain pending, see gic_test_pending)
381 GIC_CLEAR_PENDING(irq, GIC_TEST_MODEL(irq) ? ALL_CPU_MASK : cm);
382 ret = irq;
386 gic_activate_irq(s, cpu, irq);
387 gic_update(s);
388 DPRINTF("ACK %d\n", irq);
389 return ret;
392 void gic_set_priority(GICState *s, int cpu, int irq, uint8_t val,
393 MemTxAttrs attrs)
395 if (s->security_extn && !attrs.secure) {
396 if (!GIC_TEST_GROUP(irq, (1 << cpu))) {
397 return; /* Ignore Non-secure access of Group0 IRQ */
399 val = 0x80 | (val >> 1); /* Non-secure view */
402 if (irq < GIC_INTERNAL) {
403 s->priority1[irq][cpu] = val;
404 } else {
405 s->priority2[(irq) - GIC_INTERNAL] = val;
409 static uint32_t gic_get_priority(GICState *s, int cpu, int irq,
410 MemTxAttrs attrs)
412 uint32_t prio = GIC_GET_PRIORITY(irq, cpu);
414 if (s->security_extn && !attrs.secure) {
415 if (!GIC_TEST_GROUP(irq, (1 << cpu))) {
416 return 0; /* Non-secure access cannot read priority of Group0 IRQ */
418 prio = (prio << 1) & 0xff; /* Non-secure view */
420 return prio;
423 static void gic_set_priority_mask(GICState *s, int cpu, uint8_t pmask,
424 MemTxAttrs attrs)
426 if (s->security_extn && !attrs.secure) {
427 if (s->priority_mask[cpu] & 0x80) {
428 /* Priority Mask in upper half */
429 pmask = 0x80 | (pmask >> 1);
430 } else {
431 /* Non-secure write ignored if priority mask is in lower half */
432 return;
435 s->priority_mask[cpu] = pmask;
438 static uint32_t gic_get_priority_mask(GICState *s, int cpu, MemTxAttrs attrs)
440 uint32_t pmask = s->priority_mask[cpu];
442 if (s->security_extn && !attrs.secure) {
443 if (pmask & 0x80) {
444 /* Priority Mask in upper half, return Non-secure view */
445 pmask = (pmask << 1) & 0xff;
446 } else {
447 /* Priority Mask in lower half, RAZ */
448 pmask = 0;
451 return pmask;
454 static uint32_t gic_get_cpu_control(GICState *s, int cpu, MemTxAttrs attrs)
456 uint32_t ret = s->cpu_ctlr[cpu];
458 if (s->security_extn && !attrs.secure) {
459 /* Construct the NS banked view of GICC_CTLR from the correct
460 * bits of the S banked view. We don't need to move the bypass
461 * control bits because we don't implement that (IMPDEF) part
462 * of the GIC architecture.
464 ret = (ret & (GICC_CTLR_EN_GRP1 | GICC_CTLR_EOIMODE_NS)) >> 1;
466 return ret;
469 static void gic_set_cpu_control(GICState *s, int cpu, uint32_t value,
470 MemTxAttrs attrs)
472 uint32_t mask;
474 if (s->security_extn && !attrs.secure) {
475 /* The NS view can only write certain bits in the register;
476 * the rest are unchanged
478 mask = GICC_CTLR_EN_GRP1;
479 if (s->revision == 2) {
480 mask |= GICC_CTLR_EOIMODE_NS;
482 s->cpu_ctlr[cpu] &= ~mask;
483 s->cpu_ctlr[cpu] |= (value << 1) & mask;
484 } else {
485 if (s->revision == 2) {
486 mask = s->security_extn ? GICC_CTLR_V2_S_MASK : GICC_CTLR_V2_MASK;
487 } else {
488 mask = s->security_extn ? GICC_CTLR_V1_S_MASK : GICC_CTLR_V1_MASK;
490 s->cpu_ctlr[cpu] = value & mask;
492 DPRINTF("CPU Interface %d: Group0 Interrupts %sabled, "
493 "Group1 Interrupts %sabled\n", cpu,
494 (s->cpu_ctlr[cpu] & GICC_CTLR_EN_GRP0) ? "En" : "Dis",
495 (s->cpu_ctlr[cpu] & GICC_CTLR_EN_GRP1) ? "En" : "Dis");
498 static uint8_t gic_get_running_priority(GICState *s, int cpu, MemTxAttrs attrs)
500 if (s->security_extn && !attrs.secure) {
501 if (s->running_priority[cpu] & 0x80) {
502 /* Running priority in upper half of range: return the Non-secure
503 * view of the priority.
505 return s->running_priority[cpu] << 1;
506 } else {
507 /* Running priority in lower half of range: RAZ */
508 return 0;
510 } else {
511 return s->running_priority[cpu];
515 /* Return true if we should split priority drop and interrupt deactivation,
516 * ie whether the relevant EOIMode bit is set.
518 static bool gic_eoi_split(GICState *s, int cpu, MemTxAttrs attrs)
520 if (s->revision != 2) {
521 /* Before GICv2 prio-drop and deactivate are not separable */
522 return false;
524 if (s->security_extn && !attrs.secure) {
525 return s->cpu_ctlr[cpu] & GICC_CTLR_EOIMODE_NS;
527 return s->cpu_ctlr[cpu] & GICC_CTLR_EOIMODE;
530 static void gic_deactivate_irq(GICState *s, int cpu, int irq, MemTxAttrs attrs)
532 int cm = 1 << cpu;
533 int group = gic_has_groups(s) && GIC_TEST_GROUP(irq, cm);
535 if (!gic_eoi_split(s, cpu, attrs)) {
536 /* This is UNPREDICTABLE; we choose to ignore it */
537 qemu_log_mask(LOG_GUEST_ERROR,
538 "gic_deactivate_irq: GICC_DIR write when EOIMode clear");
539 return;
542 if (s->security_extn && !attrs.secure && !group) {
543 DPRINTF("Non-secure DI for Group0 interrupt %d ignored\n", irq);
544 return;
547 GIC_CLEAR_ACTIVE(irq, cm);
550 void gic_complete_irq(GICState *s, int cpu, int irq, MemTxAttrs attrs)
552 int cm = 1 << cpu;
553 int group;
555 DPRINTF("EOI %d\n", irq);
556 if (irq >= s->num_irq) {
557 /* This handles two cases:
558 * 1. If software writes the ID of a spurious interrupt [ie 1023]
559 * to the GICC_EOIR, the GIC ignores that write.
560 * 2. If software writes the number of a non-existent interrupt
561 * this must be a subcase of "value written does not match the last
562 * valid interrupt value read from the Interrupt Acknowledge
563 * register" and so this is UNPREDICTABLE. We choose to ignore it.
565 return;
567 if (s->running_priority[cpu] == 0x100) {
568 return; /* No active IRQ. */
571 if (s->revision == REV_11MPCORE) {
572 /* Mark level triggered interrupts as pending if they are still
573 raised. */
574 if (!GIC_TEST_EDGE_TRIGGER(irq) && GIC_TEST_ENABLED(irq, cm)
575 && GIC_TEST_LEVEL(irq, cm) && (GIC_TARGET(irq) & cm) != 0) {
576 DPRINTF("Set %d pending mask %x\n", irq, cm);
577 GIC_SET_PENDING(irq, cm);
581 group = gic_has_groups(s) && GIC_TEST_GROUP(irq, cm);
583 if (s->security_extn && !attrs.secure && !group) {
584 DPRINTF("Non-secure EOI for Group0 interrupt %d ignored\n", irq);
585 return;
588 /* Secure EOI with GICC_CTLR.AckCtl == 0 when the IRQ is a Group 1
589 * interrupt is UNPREDICTABLE. We choose to handle it as if AckCtl == 1,
590 * i.e. go ahead and complete the irq anyway.
593 gic_drop_prio(s, cpu, group);
595 /* In GICv2 the guest can choose to split priority-drop and deactivate */
596 if (!gic_eoi_split(s, cpu, attrs)) {
597 GIC_CLEAR_ACTIVE(irq, cm);
599 gic_update(s);
602 static uint32_t gic_dist_readb(void *opaque, hwaddr offset, MemTxAttrs attrs)
604 GICState *s = (GICState *)opaque;
605 uint32_t res;
606 int irq;
607 int i;
608 int cpu;
609 int cm;
610 int mask;
612 cpu = gic_get_current_cpu(s);
613 cm = 1 << cpu;
614 if (offset < 0x100) {
615 if (offset == 0) { /* GICD_CTLR */
616 if (s->security_extn && !attrs.secure) {
617 /* The NS bank of this register is just an alias of the
618 * EnableGrp1 bit in the S bank version.
620 return extract32(s->ctlr, 1, 1);
621 } else {
622 return s->ctlr;
625 if (offset == 4)
626 /* Interrupt Controller Type Register */
627 return ((s->num_irq / 32) - 1)
628 | ((s->num_cpu - 1) << 5)
629 | (s->security_extn << 10);
630 if (offset < 0x08)
631 return 0;
632 if (offset >= 0x80) {
633 /* Interrupt Group Registers: these RAZ/WI if this is an NS
634 * access to a GIC with the security extensions, or if the GIC
635 * doesn't have groups at all.
637 res = 0;
638 if (!(s->security_extn && !attrs.secure) && gic_has_groups(s)) {
639 /* Every byte offset holds 8 group status bits */
640 irq = (offset - 0x080) * 8 + GIC_BASE_IRQ;
641 if (irq >= s->num_irq) {
642 goto bad_reg;
644 for (i = 0; i < 8; i++) {
645 if (GIC_TEST_GROUP(irq + i, cm)) {
646 res |= (1 << i);
650 return res;
652 goto bad_reg;
653 } else if (offset < 0x200) {
654 /* Interrupt Set/Clear Enable. */
655 if (offset < 0x180)
656 irq = (offset - 0x100) * 8;
657 else
658 irq = (offset - 0x180) * 8;
659 irq += GIC_BASE_IRQ;
660 if (irq >= s->num_irq)
661 goto bad_reg;
662 res = 0;
663 for (i = 0; i < 8; i++) {
664 if (s->security_extn && !attrs.secure &&
665 !GIC_TEST_GROUP(irq + i, 1 << cpu)) {
666 continue; /* Ignore Non-secure access of Group0 IRQ */
669 if (GIC_TEST_ENABLED(irq + i, cm)) {
670 res |= (1 << i);
673 } else if (offset < 0x300) {
674 /* Interrupt Set/Clear Pending. */
675 if (offset < 0x280)
676 irq = (offset - 0x200) * 8;
677 else
678 irq = (offset - 0x280) * 8;
679 irq += GIC_BASE_IRQ;
680 if (irq >= s->num_irq)
681 goto bad_reg;
682 res = 0;
683 mask = (irq < GIC_INTERNAL) ? cm : ALL_CPU_MASK;
684 for (i = 0; i < 8; i++) {
685 if (s->security_extn && !attrs.secure &&
686 !GIC_TEST_GROUP(irq + i, 1 << cpu)) {
687 continue; /* Ignore Non-secure access of Group0 IRQ */
690 if (gic_test_pending(s, irq + i, mask)) {
691 res |= (1 << i);
694 } else if (offset < 0x400) {
695 /* Interrupt Active. */
696 irq = (offset - 0x300) * 8 + GIC_BASE_IRQ;
697 if (irq >= s->num_irq)
698 goto bad_reg;
699 res = 0;
700 mask = (irq < GIC_INTERNAL) ? cm : ALL_CPU_MASK;
701 for (i = 0; i < 8; i++) {
702 if (s->security_extn && !attrs.secure &&
703 !GIC_TEST_GROUP(irq + i, 1 << cpu)) {
704 continue; /* Ignore Non-secure access of Group0 IRQ */
707 if (GIC_TEST_ACTIVE(irq + i, mask)) {
708 res |= (1 << i);
711 } else if (offset < 0x800) {
712 /* Interrupt Priority. */
713 irq = (offset - 0x400) + GIC_BASE_IRQ;
714 if (irq >= s->num_irq)
715 goto bad_reg;
716 res = gic_get_priority(s, cpu, irq, attrs);
717 } else if (offset < 0xc00) {
718 /* Interrupt CPU Target. */
719 if (s->num_cpu == 1 && s->revision != REV_11MPCORE) {
720 /* For uniprocessor GICs these RAZ/WI */
721 res = 0;
722 } else {
723 irq = (offset - 0x800) + GIC_BASE_IRQ;
724 if (irq >= s->num_irq) {
725 goto bad_reg;
727 if (irq >= 29 && irq <= 31) {
728 res = cm;
729 } else {
730 res = GIC_TARGET(irq);
733 } else if (offset < 0xf00) {
734 /* Interrupt Configuration. */
735 irq = (offset - 0xc00) * 4 + GIC_BASE_IRQ;
736 if (irq >= s->num_irq)
737 goto bad_reg;
738 res = 0;
739 for (i = 0; i < 4; i++) {
740 if (s->security_extn && !attrs.secure &&
741 !GIC_TEST_GROUP(irq + i, 1 << cpu)) {
742 continue; /* Ignore Non-secure access of Group0 IRQ */
745 if (GIC_TEST_MODEL(irq + i))
746 res |= (1 << (i * 2));
747 if (GIC_TEST_EDGE_TRIGGER(irq + i))
748 res |= (2 << (i * 2));
750 } else if (offset < 0xf10) {
751 goto bad_reg;
752 } else if (offset < 0xf30) {
753 if (s->revision == REV_11MPCORE) {
754 goto bad_reg;
757 if (offset < 0xf20) {
758 /* GICD_CPENDSGIRn */
759 irq = (offset - 0xf10);
760 } else {
761 irq = (offset - 0xf20);
762 /* GICD_SPENDSGIRn */
765 if (s->security_extn && !attrs.secure &&
766 !GIC_TEST_GROUP(irq, 1 << cpu)) {
767 res = 0; /* Ignore Non-secure access of Group0 IRQ */
768 } else {
769 res = s->sgi_pending[irq][cpu];
771 } else if (offset < 0xfd0) {
772 goto bad_reg;
773 } else if (offset < 0x1000) {
774 if (offset & 3) {
775 res = 0;
776 } else {
777 switch (s->revision) {
778 case REV_11MPCORE:
779 res = gic_id_11mpcore[(offset - 0xfd0) >> 2];
780 break;
781 case 1:
782 res = gic_id_gicv1[(offset - 0xfd0) >> 2];
783 break;
784 case 2:
785 res = gic_id_gicv2[(offset - 0xfd0) >> 2];
786 break;
787 default:
788 res = 0;
791 } else {
792 g_assert_not_reached();
794 return res;
795 bad_reg:
796 qemu_log_mask(LOG_GUEST_ERROR,
797 "gic_dist_readb: Bad offset %x\n", (int)offset);
798 return 0;
801 static MemTxResult gic_dist_read(void *opaque, hwaddr offset, uint64_t *data,
802 unsigned size, MemTxAttrs attrs)
804 switch (size) {
805 case 1:
806 *data = gic_dist_readb(opaque, offset, attrs);
807 return MEMTX_OK;
808 case 2:
809 *data = gic_dist_readb(opaque, offset, attrs);
810 *data |= gic_dist_readb(opaque, offset + 1, attrs) << 8;
811 return MEMTX_OK;
812 case 4:
813 *data = gic_dist_readb(opaque, offset, attrs);
814 *data |= gic_dist_readb(opaque, offset + 1, attrs) << 8;
815 *data |= gic_dist_readb(opaque, offset + 2, attrs) << 16;
816 *data |= gic_dist_readb(opaque, offset + 3, attrs) << 24;
817 return MEMTX_OK;
818 default:
819 return MEMTX_ERROR;
823 static void gic_dist_writeb(void *opaque, hwaddr offset,
824 uint32_t value, MemTxAttrs attrs)
826 GICState *s = (GICState *)opaque;
827 int irq;
828 int i;
829 int cpu;
831 cpu = gic_get_current_cpu(s);
832 if (offset < 0x100) {
833 if (offset == 0) {
834 if (s->security_extn && !attrs.secure) {
835 /* NS version is just an alias of the S version's bit 1 */
836 s->ctlr = deposit32(s->ctlr, 1, 1, value);
837 } else if (gic_has_groups(s)) {
838 s->ctlr = value & (GICD_CTLR_EN_GRP0 | GICD_CTLR_EN_GRP1);
839 } else {
840 s->ctlr = value & GICD_CTLR_EN_GRP0;
842 DPRINTF("Distributor: Group0 %sabled; Group 1 %sabled\n",
843 s->ctlr & GICD_CTLR_EN_GRP0 ? "En" : "Dis",
844 s->ctlr & GICD_CTLR_EN_GRP1 ? "En" : "Dis");
845 } else if (offset < 4) {
846 /* ignored. */
847 } else if (offset >= 0x80) {
848 /* Interrupt Group Registers: RAZ/WI for NS access to secure
849 * GIC, or for GICs without groups.
851 if (!(s->security_extn && !attrs.secure) && gic_has_groups(s)) {
852 /* Every byte offset holds 8 group status bits */
853 irq = (offset - 0x80) * 8 + GIC_BASE_IRQ;
854 if (irq >= s->num_irq) {
855 goto bad_reg;
857 for (i = 0; i < 8; i++) {
858 /* Group bits are banked for private interrupts */
859 int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK;
860 if (value & (1 << i)) {
861 /* Group1 (Non-secure) */
862 GIC_SET_GROUP(irq + i, cm);
863 } else {
864 /* Group0 (Secure) */
865 GIC_CLEAR_GROUP(irq + i, cm);
869 } else {
870 goto bad_reg;
872 } else if (offset < 0x180) {
873 /* Interrupt Set Enable. */
874 irq = (offset - 0x100) * 8 + GIC_BASE_IRQ;
875 if (irq >= s->num_irq)
876 goto bad_reg;
877 if (irq < GIC_NR_SGIS) {
878 value = 0xff;
881 for (i = 0; i < 8; i++) {
882 if (value & (1 << i)) {
883 int mask =
884 (irq < GIC_INTERNAL) ? (1 << cpu) : GIC_TARGET(irq + i);
885 int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK;
887 if (s->security_extn && !attrs.secure &&
888 !GIC_TEST_GROUP(irq + i, 1 << cpu)) {
889 continue; /* Ignore Non-secure access of Group0 IRQ */
892 if (!GIC_TEST_ENABLED(irq + i, cm)) {
893 DPRINTF("Enabled IRQ %d\n", irq + i);
894 trace_gic_enable_irq(irq + i);
896 GIC_SET_ENABLED(irq + i, cm);
897 /* If a raised level triggered IRQ enabled then mark
898 is as pending. */
899 if (GIC_TEST_LEVEL(irq + i, mask)
900 && !GIC_TEST_EDGE_TRIGGER(irq + i)) {
901 DPRINTF("Set %d pending mask %x\n", irq + i, mask);
902 GIC_SET_PENDING(irq + i, mask);
906 } else if (offset < 0x200) {
907 /* Interrupt Clear Enable. */
908 irq = (offset - 0x180) * 8 + GIC_BASE_IRQ;
909 if (irq >= s->num_irq)
910 goto bad_reg;
911 if (irq < GIC_NR_SGIS) {
912 value = 0;
915 for (i = 0; i < 8; i++) {
916 if (value & (1 << i)) {
917 int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK;
919 if (s->security_extn && !attrs.secure &&
920 !GIC_TEST_GROUP(irq + i, 1 << cpu)) {
921 continue; /* Ignore Non-secure access of Group0 IRQ */
924 if (GIC_TEST_ENABLED(irq + i, cm)) {
925 DPRINTF("Disabled IRQ %d\n", irq + i);
926 trace_gic_disable_irq(irq + i);
928 GIC_CLEAR_ENABLED(irq + i, cm);
931 } else if (offset < 0x280) {
932 /* Interrupt Set Pending. */
933 irq = (offset - 0x200) * 8 + GIC_BASE_IRQ;
934 if (irq >= s->num_irq)
935 goto bad_reg;
936 if (irq < GIC_NR_SGIS) {
937 value = 0;
940 for (i = 0; i < 8; i++) {
941 if (value & (1 << i)) {
942 if (s->security_extn && !attrs.secure &&
943 !GIC_TEST_GROUP(irq + i, 1 << cpu)) {
944 continue; /* Ignore Non-secure access of Group0 IRQ */
947 GIC_SET_PENDING(irq + i, GIC_TARGET(irq + i));
950 } else if (offset < 0x300) {
951 /* Interrupt Clear Pending. */
952 irq = (offset - 0x280) * 8 + GIC_BASE_IRQ;
953 if (irq >= s->num_irq)
954 goto bad_reg;
955 if (irq < GIC_NR_SGIS) {
956 value = 0;
959 for (i = 0; i < 8; i++) {
960 if (s->security_extn && !attrs.secure &&
961 !GIC_TEST_GROUP(irq + i, 1 << cpu)) {
962 continue; /* Ignore Non-secure access of Group0 IRQ */
965 /* ??? This currently clears the pending bit for all CPUs, even
966 for per-CPU interrupts. It's unclear whether this is the
967 corect behavior. */
968 if (value & (1 << i)) {
969 GIC_CLEAR_PENDING(irq + i, ALL_CPU_MASK);
972 } else if (offset < 0x400) {
973 /* Interrupt Active. */
974 goto bad_reg;
975 } else if (offset < 0x800) {
976 /* Interrupt Priority. */
977 irq = (offset - 0x400) + GIC_BASE_IRQ;
978 if (irq >= s->num_irq)
979 goto bad_reg;
980 gic_set_priority(s, cpu, irq, value, attrs);
981 } else if (offset < 0xc00) {
982 /* Interrupt CPU Target. RAZ/WI on uniprocessor GICs, with the
983 * annoying exception of the 11MPCore's GIC.
985 if (s->num_cpu != 1 || s->revision == REV_11MPCORE) {
986 irq = (offset - 0x800) + GIC_BASE_IRQ;
987 if (irq >= s->num_irq) {
988 goto bad_reg;
990 if (irq < 29) {
991 value = 0;
992 } else if (irq < GIC_INTERNAL) {
993 value = ALL_CPU_MASK;
995 s->irq_target[irq] = value & ALL_CPU_MASK;
997 } else if (offset < 0xf00) {
998 /* Interrupt Configuration. */
999 irq = (offset - 0xc00) * 4 + GIC_BASE_IRQ;
1000 if (irq >= s->num_irq)
1001 goto bad_reg;
1002 if (irq < GIC_NR_SGIS)
1003 value |= 0xaa;
1004 for (i = 0; i < 4; i++) {
1005 if (s->security_extn && !attrs.secure &&
1006 !GIC_TEST_GROUP(irq + i, 1 << cpu)) {
1007 continue; /* Ignore Non-secure access of Group0 IRQ */
1010 if (s->revision == REV_11MPCORE) {
1011 if (value & (1 << (i * 2))) {
1012 GIC_SET_MODEL(irq + i);
1013 } else {
1014 GIC_CLEAR_MODEL(irq + i);
1017 if (value & (2 << (i * 2))) {
1018 GIC_SET_EDGE_TRIGGER(irq + i);
1019 } else {
1020 GIC_CLEAR_EDGE_TRIGGER(irq + i);
1023 } else if (offset < 0xf10) {
1024 /* 0xf00 is only handled for 32-bit writes. */
1025 goto bad_reg;
1026 } else if (offset < 0xf20) {
1027 /* GICD_CPENDSGIRn */
1028 if (s->revision == REV_11MPCORE) {
1029 goto bad_reg;
1031 irq = (offset - 0xf10);
1033 if (!s->security_extn || attrs.secure ||
1034 GIC_TEST_GROUP(irq, 1 << cpu)) {
1035 s->sgi_pending[irq][cpu] &= ~value;
1036 if (s->sgi_pending[irq][cpu] == 0) {
1037 GIC_CLEAR_PENDING(irq, 1 << cpu);
1040 } else if (offset < 0xf30) {
1041 /* GICD_SPENDSGIRn */
1042 if (s->revision == REV_11MPCORE) {
1043 goto bad_reg;
1045 irq = (offset - 0xf20);
1047 if (!s->security_extn || attrs.secure ||
1048 GIC_TEST_GROUP(irq, 1 << cpu)) {
1049 GIC_SET_PENDING(irq, 1 << cpu);
1050 s->sgi_pending[irq][cpu] |= value;
1052 } else {
1053 goto bad_reg;
1055 gic_update(s);
1056 return;
1057 bad_reg:
1058 qemu_log_mask(LOG_GUEST_ERROR,
1059 "gic_dist_writeb: Bad offset %x\n", (int)offset);
1062 static void gic_dist_writew(void *opaque, hwaddr offset,
1063 uint32_t value, MemTxAttrs attrs)
1065 gic_dist_writeb(opaque, offset, value & 0xff, attrs);
1066 gic_dist_writeb(opaque, offset + 1, value >> 8, attrs);
1069 static void gic_dist_writel(void *opaque, hwaddr offset,
1070 uint32_t value, MemTxAttrs attrs)
1072 GICState *s = (GICState *)opaque;
1073 if (offset == 0xf00) {
1074 int cpu;
1075 int irq;
1076 int mask;
1077 int target_cpu;
1079 cpu = gic_get_current_cpu(s);
1080 irq = value & 0x3ff;
1081 switch ((value >> 24) & 3) {
1082 case 0:
1083 mask = (value >> 16) & ALL_CPU_MASK;
1084 break;
1085 case 1:
1086 mask = ALL_CPU_MASK ^ (1 << cpu);
1087 break;
1088 case 2:
1089 mask = 1 << cpu;
1090 break;
1091 default:
1092 DPRINTF("Bad Soft Int target filter\n");
1093 mask = ALL_CPU_MASK;
1094 break;
1096 GIC_SET_PENDING(irq, mask);
1097 target_cpu = ctz32(mask);
1098 while (target_cpu < GIC_NCPU) {
1099 s->sgi_pending[irq][target_cpu] |= (1 << cpu);
1100 mask &= ~(1 << target_cpu);
1101 target_cpu = ctz32(mask);
1103 gic_update(s);
1104 return;
1106 gic_dist_writew(opaque, offset, value & 0xffff, attrs);
1107 gic_dist_writew(opaque, offset + 2, value >> 16, attrs);
1110 static MemTxResult gic_dist_write(void *opaque, hwaddr offset, uint64_t data,
1111 unsigned size, MemTxAttrs attrs)
1113 switch (size) {
1114 case 1:
1115 gic_dist_writeb(opaque, offset, data, attrs);
1116 return MEMTX_OK;
1117 case 2:
1118 gic_dist_writew(opaque, offset, data, attrs);
1119 return MEMTX_OK;
1120 case 4:
1121 gic_dist_writel(opaque, offset, data, attrs);
1122 return MEMTX_OK;
1123 default:
1124 return MEMTX_ERROR;
1128 static inline uint32_t gic_apr_ns_view(GICState *s, int cpu, int regno)
1130 /* Return the Nonsecure view of GICC_APR<regno>. This is the
1131 * second half of GICC_NSAPR.
1133 switch (GIC_MIN_BPR) {
1134 case 0:
1135 if (regno < 2) {
1136 return s->nsapr[regno + 2][cpu];
1138 break;
1139 case 1:
1140 if (regno == 0) {
1141 return s->nsapr[regno + 1][cpu];
1143 break;
1144 case 2:
1145 if (regno == 0) {
1146 return extract32(s->nsapr[0][cpu], 16, 16);
1148 break;
1149 case 3:
1150 if (regno == 0) {
1151 return extract32(s->nsapr[0][cpu], 8, 8);
1153 break;
1154 default:
1155 g_assert_not_reached();
1157 return 0;
1160 static inline void gic_apr_write_ns_view(GICState *s, int cpu, int regno,
1161 uint32_t value)
1163 /* Write the Nonsecure view of GICC_APR<regno>. */
1164 switch (GIC_MIN_BPR) {
1165 case 0:
1166 if (regno < 2) {
1167 s->nsapr[regno + 2][cpu] = value;
1169 break;
1170 case 1:
1171 if (regno == 0) {
1172 s->nsapr[regno + 1][cpu] = value;
1174 break;
1175 case 2:
1176 if (regno == 0) {
1177 s->nsapr[0][cpu] = deposit32(s->nsapr[0][cpu], 16, 16, value);
1179 break;
1180 case 3:
1181 if (regno == 0) {
1182 s->nsapr[0][cpu] = deposit32(s->nsapr[0][cpu], 8, 8, value);
1184 break;
1185 default:
1186 g_assert_not_reached();
1190 static MemTxResult gic_cpu_read(GICState *s, int cpu, int offset,
1191 uint64_t *data, MemTxAttrs attrs)
1193 switch (offset) {
1194 case 0x00: /* Control */
1195 *data = gic_get_cpu_control(s, cpu, attrs);
1196 break;
1197 case 0x04: /* Priority mask */
1198 *data = gic_get_priority_mask(s, cpu, attrs);
1199 break;
1200 case 0x08: /* Binary Point */
1201 if (s->security_extn && !attrs.secure) {
1202 /* BPR is banked. Non-secure copy stored in ABPR. */
1203 *data = s->abpr[cpu];
1204 } else {
1205 *data = s->bpr[cpu];
1207 break;
1208 case 0x0c: /* Acknowledge */
1209 *data = gic_acknowledge_irq(s, cpu, attrs);
1210 break;
1211 case 0x14: /* Running Priority */
1212 *data = gic_get_running_priority(s, cpu, attrs);
1213 break;
1214 case 0x18: /* Highest Pending Interrupt */
1215 *data = gic_get_current_pending_irq(s, cpu, attrs);
1216 break;
1217 case 0x1c: /* Aliased Binary Point */
1218 /* GIC v2, no security: ABPR
1219 * GIC v1, no security: not implemented (RAZ/WI)
1220 * With security extensions, secure access: ABPR (alias of NS BPR)
1221 * With security extensions, nonsecure access: RAZ/WI
1223 if (!gic_has_groups(s) || (s->security_extn && !attrs.secure)) {
1224 *data = 0;
1225 } else {
1226 *data = s->abpr[cpu];
1228 break;
1229 case 0xd0: case 0xd4: case 0xd8: case 0xdc:
1231 int regno = (offset - 0xd0) / 4;
1233 if (regno >= GIC_NR_APRS || s->revision != 2) {
1234 *data = 0;
1235 } else if (s->security_extn && !attrs.secure) {
1236 /* NS view of GICC_APR<n> is the top half of GIC_NSAPR<n> */
1237 *data = gic_apr_ns_view(s, regno, cpu);
1238 } else {
1239 *data = s->apr[regno][cpu];
1241 break;
1243 case 0xe0: case 0xe4: case 0xe8: case 0xec:
1245 int regno = (offset - 0xe0) / 4;
1247 if (regno >= GIC_NR_APRS || s->revision != 2 || !gic_has_groups(s) ||
1248 (s->security_extn && !attrs.secure)) {
1249 *data = 0;
1250 } else {
1251 *data = s->nsapr[regno][cpu];
1253 break;
1255 default:
1256 qemu_log_mask(LOG_GUEST_ERROR,
1257 "gic_cpu_read: Bad offset %x\n", (int)offset);
1258 return MEMTX_ERROR;
1260 return MEMTX_OK;
1263 static MemTxResult gic_cpu_write(GICState *s, int cpu, int offset,
1264 uint32_t value, MemTxAttrs attrs)
1266 switch (offset) {
1267 case 0x00: /* Control */
1268 gic_set_cpu_control(s, cpu, value, attrs);
1269 break;
1270 case 0x04: /* Priority mask */
1271 gic_set_priority_mask(s, cpu, value, attrs);
1272 break;
1273 case 0x08: /* Binary Point */
1274 if (s->security_extn && !attrs.secure) {
1275 s->abpr[cpu] = MAX(value & 0x7, GIC_MIN_ABPR);
1276 } else {
1277 s->bpr[cpu] = MAX(value & 0x7, GIC_MIN_BPR);
1279 break;
1280 case 0x10: /* End Of Interrupt */
1281 gic_complete_irq(s, cpu, value & 0x3ff, attrs);
1282 return MEMTX_OK;
1283 case 0x1c: /* Aliased Binary Point */
1284 if (!gic_has_groups(s) || (s->security_extn && !attrs.secure)) {
1285 /* unimplemented, or NS access: RAZ/WI */
1286 return MEMTX_OK;
1287 } else {
1288 s->abpr[cpu] = MAX(value & 0x7, GIC_MIN_ABPR);
1290 break;
1291 case 0xd0: case 0xd4: case 0xd8: case 0xdc:
1293 int regno = (offset - 0xd0) / 4;
1295 if (regno >= GIC_NR_APRS || s->revision != 2) {
1296 return MEMTX_OK;
1298 if (s->security_extn && !attrs.secure) {
1299 /* NS view of GICC_APR<n> is the top half of GIC_NSAPR<n> */
1300 gic_apr_write_ns_view(s, regno, cpu, value);
1301 } else {
1302 s->apr[regno][cpu] = value;
1304 break;
1306 case 0xe0: case 0xe4: case 0xe8: case 0xec:
1308 int regno = (offset - 0xe0) / 4;
1310 if (regno >= GIC_NR_APRS || s->revision != 2) {
1311 return MEMTX_OK;
1313 if (!gic_has_groups(s) || (s->security_extn && !attrs.secure)) {
1314 return MEMTX_OK;
1316 s->nsapr[regno][cpu] = value;
1317 break;
1319 case 0x1000:
1320 /* GICC_DIR */
1321 gic_deactivate_irq(s, cpu, value & 0x3ff, attrs);
1322 break;
1323 default:
1324 qemu_log_mask(LOG_GUEST_ERROR,
1325 "gic_cpu_write: Bad offset %x\n", (int)offset);
1326 return MEMTX_ERROR;
1328 gic_update(s);
1329 return MEMTX_OK;
1332 /* Wrappers to read/write the GIC CPU interface for the current CPU */
1333 static MemTxResult gic_thiscpu_read(void *opaque, hwaddr addr, uint64_t *data,
1334 unsigned size, MemTxAttrs attrs)
1336 GICState *s = (GICState *)opaque;
1337 return gic_cpu_read(s, gic_get_current_cpu(s), addr, data, attrs);
1340 static MemTxResult gic_thiscpu_write(void *opaque, hwaddr addr,
1341 uint64_t value, unsigned size,
1342 MemTxAttrs attrs)
1344 GICState *s = (GICState *)opaque;
1345 return gic_cpu_write(s, gic_get_current_cpu(s), addr, value, attrs);
1348 /* Wrappers to read/write the GIC CPU interface for a specific CPU.
1349 * These just decode the opaque pointer into GICState* + cpu id.
1351 static MemTxResult gic_do_cpu_read(void *opaque, hwaddr addr, uint64_t *data,
1352 unsigned size, MemTxAttrs attrs)
1354 GICState **backref = (GICState **)opaque;
1355 GICState *s = *backref;
1356 int id = (backref - s->backref);
1357 return gic_cpu_read(s, id, addr, data, attrs);
1360 static MemTxResult gic_do_cpu_write(void *opaque, hwaddr addr,
1361 uint64_t value, unsigned size,
1362 MemTxAttrs attrs)
1364 GICState **backref = (GICState **)opaque;
1365 GICState *s = *backref;
1366 int id = (backref - s->backref);
1367 return gic_cpu_write(s, id, addr, value, attrs);
1370 static const MemoryRegionOps gic_ops[2] = {
1372 .read_with_attrs = gic_dist_read,
1373 .write_with_attrs = gic_dist_write,
1374 .endianness = DEVICE_NATIVE_ENDIAN,
1377 .read_with_attrs = gic_thiscpu_read,
1378 .write_with_attrs = gic_thiscpu_write,
1379 .endianness = DEVICE_NATIVE_ENDIAN,
1383 static const MemoryRegionOps gic_cpu_ops = {
1384 .read_with_attrs = gic_do_cpu_read,
1385 .write_with_attrs = gic_do_cpu_write,
1386 .endianness = DEVICE_NATIVE_ENDIAN,
1389 /* This function is used by nvic model */
1390 void gic_init_irqs_and_distributor(GICState *s)
1392 gic_init_irqs_and_mmio(s, gic_set_irq, gic_ops);
1395 static void arm_gic_realize(DeviceState *dev, Error **errp)
1397 /* Device instance realize function for the GIC sysbus device */
1398 int i;
1399 GICState *s = ARM_GIC(dev);
1400 SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
1401 ARMGICClass *agc = ARM_GIC_GET_CLASS(s);
1402 Error *local_err = NULL;
1404 agc->parent_realize(dev, &local_err);
1405 if (local_err) {
1406 error_propagate(errp, local_err);
1407 return;
1410 /* This creates distributor and main CPU interface (s->cpuiomem[0]) */
1411 gic_init_irqs_and_mmio(s, gic_set_irq, gic_ops);
1413 /* Extra core-specific regions for the CPU interfaces. This is
1414 * necessary for "franken-GIC" implementations, for example on
1415 * Exynos 4.
1416 * NB that the memory region size of 0x100 applies for the 11MPCore
1417 * and also cores following the GIC v1 spec (ie A9).
1418 * GIC v2 defines a larger memory region (0x1000) so this will need
1419 * to be extended when we implement A15.
1421 for (i = 0; i < s->num_cpu; i++) {
1422 s->backref[i] = s;
1423 memory_region_init_io(&s->cpuiomem[i+1], OBJECT(s), &gic_cpu_ops,
1424 &s->backref[i], "gic_cpu", 0x100);
1425 sysbus_init_mmio(sbd, &s->cpuiomem[i+1]);
1429 static void arm_gic_class_init(ObjectClass *klass, void *data)
1431 DeviceClass *dc = DEVICE_CLASS(klass);
1432 ARMGICClass *agc = ARM_GIC_CLASS(klass);
1434 agc->parent_realize = dc->realize;
1435 dc->realize = arm_gic_realize;
1438 static const TypeInfo arm_gic_info = {
1439 .name = TYPE_ARM_GIC,
1440 .parent = TYPE_ARM_GIC_COMMON,
1441 .instance_size = sizeof(GICState),
1442 .class_init = arm_gic_class_init,
1443 .class_size = sizeof(ARMGICClass),
1446 static void arm_gic_register_types(void)
1448 type_register_static(&arm_gic_info);
1451 type_init(arm_gic_register_types)