target-alpha: make cpu-qom.h not target specific
[qemu/ar7.git] / hw / intc / arm_gic.c
blob5ee79b83e6864c58cec603eda1e10b0f1cb71faf
1 /*
2 * ARM Generic/Distributed Interrupt Controller
4 * Copyright (c) 2006-2007 CodeSourcery.
5 * Written by Paul Brook
7 * This code is licensed under the GPL.
8 */
10 /* This file contains implementation code for the RealView EB interrupt
11 * controller, MPCore distributed interrupt controller and ARMv7-M
12 * Nested Vectored Interrupt Controller.
13 * It is compiled in two ways:
14 * (1) as a standalone file to produce a sysbus device which is a GIC
15 * that can be used on the realview board and as one of the builtin
16 * private peripherals for the ARM MP CPUs (11MPCore, A9, etc)
17 * (2) by being directly #included into armv7m_nvic.c to produce the
18 * armv7m_nvic device.
21 #include "qemu/osdep.h"
22 #include "hw/sysbus.h"
23 #include "gic_internal.h"
24 #include "qapi/error.h"
25 #include "qom/cpu.h"
26 #include "trace.h"
28 //#define DEBUG_GIC
30 #ifdef DEBUG_GIC
31 #define DPRINTF(fmt, ...) \
32 do { fprintf(stderr, "arm_gic: " fmt , ## __VA_ARGS__); } while (0)
33 #else
34 #define DPRINTF(fmt, ...) do {} while(0)
35 #endif
37 static const uint8_t gic_id_11mpcore[] = {
38 0x00, 0x00, 0x00, 0x00, 0x90, 0x13, 0x04, 0x00, 0x0d, 0xf0, 0x05, 0xb1
41 static const uint8_t gic_id_gicv1[] = {
42 0x04, 0x00, 0x00, 0x00, 0x90, 0xb3, 0x1b, 0x00, 0x0d, 0xf0, 0x05, 0xb1
45 static const uint8_t gic_id_gicv2[] = {
46 0x04, 0x00, 0x00, 0x00, 0x90, 0xb4, 0x2b, 0x00, 0x0d, 0xf0, 0x05, 0xb1
49 static inline int gic_get_current_cpu(GICState *s)
51 if (s->num_cpu > 1) {
52 return current_cpu->cpu_index;
54 return 0;
57 /* Return true if this GIC config has interrupt groups, which is
58 * true if we're a GICv2, or a GICv1 with the security extensions.
60 static inline bool gic_has_groups(GICState *s)
62 return s->revision == 2 || s->security_extn;
65 /* TODO: Many places that call this routine could be optimized. */
66 /* Update interrupt status after enabled or pending bits have been changed. */
67 void gic_update(GICState *s)
69 int best_irq;
70 int best_prio;
71 int irq;
72 int irq_level, fiq_level;
73 int cpu;
74 int cm;
76 for (cpu = 0; cpu < s->num_cpu; cpu++) {
77 cm = 1 << cpu;
78 s->current_pending[cpu] = 1023;
79 if (!(s->ctlr & (GICD_CTLR_EN_GRP0 | GICD_CTLR_EN_GRP1))
80 || !(s->cpu_ctlr[cpu] & (GICC_CTLR_EN_GRP0 | GICC_CTLR_EN_GRP1))) {
81 qemu_irq_lower(s->parent_irq[cpu]);
82 qemu_irq_lower(s->parent_fiq[cpu]);
83 continue;
85 best_prio = 0x100;
86 best_irq = 1023;
87 for (irq = 0; irq < s->num_irq; irq++) {
88 if (GIC_TEST_ENABLED(irq, cm) && gic_test_pending(s, irq, cm) &&
89 (irq < GIC_INTERNAL || GIC_TARGET(irq) & cm)) {
90 if (GIC_GET_PRIORITY(irq, cpu) < best_prio) {
91 best_prio = GIC_GET_PRIORITY(irq, cpu);
92 best_irq = irq;
97 if (best_irq != 1023) {
98 trace_gic_update_bestirq(cpu, best_irq, best_prio,
99 s->priority_mask[cpu], s->running_priority[cpu]);
102 irq_level = fiq_level = 0;
104 if (best_prio < s->priority_mask[cpu]) {
105 s->current_pending[cpu] = best_irq;
106 if (best_prio < s->running_priority[cpu]) {
107 int group = GIC_TEST_GROUP(best_irq, cm);
109 if (extract32(s->ctlr, group, 1) &&
110 extract32(s->cpu_ctlr[cpu], group, 1)) {
111 if (group == 0 && s->cpu_ctlr[cpu] & GICC_CTLR_FIQ_EN) {
112 DPRINTF("Raised pending FIQ %d (cpu %d)\n",
113 best_irq, cpu);
114 fiq_level = 1;
115 trace_gic_update_set_irq(cpu, "fiq", fiq_level);
116 } else {
117 DPRINTF("Raised pending IRQ %d (cpu %d)\n",
118 best_irq, cpu);
119 irq_level = 1;
120 trace_gic_update_set_irq(cpu, "irq", irq_level);
126 qemu_set_irq(s->parent_irq[cpu], irq_level);
127 qemu_set_irq(s->parent_fiq[cpu], fiq_level);
131 void gic_set_pending_private(GICState *s, int cpu, int irq)
133 int cm = 1 << cpu;
135 if (gic_test_pending(s, irq, cm)) {
136 return;
139 DPRINTF("Set %d pending cpu %d\n", irq, cpu);
140 GIC_SET_PENDING(irq, cm);
141 gic_update(s);
144 static void gic_set_irq_11mpcore(GICState *s, int irq, int level,
145 int cm, int target)
147 if (level) {
148 GIC_SET_LEVEL(irq, cm);
149 if (GIC_TEST_EDGE_TRIGGER(irq) || GIC_TEST_ENABLED(irq, cm)) {
150 DPRINTF("Set %d pending mask %x\n", irq, target);
151 GIC_SET_PENDING(irq, target);
153 } else {
154 GIC_CLEAR_LEVEL(irq, cm);
158 static void gic_set_irq_generic(GICState *s, int irq, int level,
159 int cm, int target)
161 if (level) {
162 GIC_SET_LEVEL(irq, cm);
163 DPRINTF("Set %d pending mask %x\n", irq, target);
164 if (GIC_TEST_EDGE_TRIGGER(irq)) {
165 GIC_SET_PENDING(irq, target);
167 } else {
168 GIC_CLEAR_LEVEL(irq, cm);
172 /* Process a change in an external IRQ input. */
173 static void gic_set_irq(void *opaque, int irq, int level)
175 /* Meaning of the 'irq' parameter:
176 * [0..N-1] : external interrupts
177 * [N..N+31] : PPI (internal) interrupts for CPU 0
178 * [N+32..N+63] : PPI (internal interrupts for CPU 1
179 * ...
181 GICState *s = (GICState *)opaque;
182 int cm, target;
183 if (irq < (s->num_irq - GIC_INTERNAL)) {
184 /* The first external input line is internal interrupt 32. */
185 cm = ALL_CPU_MASK;
186 irq += GIC_INTERNAL;
187 target = GIC_TARGET(irq);
188 } else {
189 int cpu;
190 irq -= (s->num_irq - GIC_INTERNAL);
191 cpu = irq / GIC_INTERNAL;
192 irq %= GIC_INTERNAL;
193 cm = 1 << cpu;
194 target = cm;
197 assert(irq >= GIC_NR_SGIS);
199 if (level == GIC_TEST_LEVEL(irq, cm)) {
200 return;
203 if (s->revision == REV_11MPCORE || s->revision == REV_NVIC) {
204 gic_set_irq_11mpcore(s, irq, level, cm, target);
205 } else {
206 gic_set_irq_generic(s, irq, level, cm, target);
208 trace_gic_set_irq(irq, level, cm, target);
210 gic_update(s);
213 static uint16_t gic_get_current_pending_irq(GICState *s, int cpu,
214 MemTxAttrs attrs)
216 uint16_t pending_irq = s->current_pending[cpu];
218 if (pending_irq < GIC_MAXIRQ && gic_has_groups(s)) {
219 int group = GIC_TEST_GROUP(pending_irq, (1 << cpu));
220 /* On a GIC without the security extensions, reading this register
221 * behaves in the same way as a secure access to a GIC with them.
223 bool secure = !s->security_extn || attrs.secure;
225 if (group == 0 && !secure) {
226 /* Group0 interrupts hidden from Non-secure access */
227 return 1023;
229 if (group == 1 && secure && !(s->cpu_ctlr[cpu] & GICC_CTLR_ACK_CTL)) {
230 /* Group1 interrupts only seen by Secure access if
231 * AckCtl bit set.
233 return 1022;
236 return pending_irq;
239 static int gic_get_group_priority(GICState *s, int cpu, int irq)
241 /* Return the group priority of the specified interrupt
242 * (which is the top bits of its priority, with the number
243 * of bits masked determined by the applicable binary point register).
245 int bpr;
246 uint32_t mask;
248 if (gic_has_groups(s) &&
249 !(s->cpu_ctlr[cpu] & GICC_CTLR_CBPR) &&
250 GIC_TEST_GROUP(irq, (1 << cpu))) {
251 bpr = s->abpr[cpu];
252 } else {
253 bpr = s->bpr[cpu];
256 /* a BPR of 0 means the group priority bits are [7:1];
257 * a BPR of 1 means they are [7:2], and so on down to
258 * a BPR of 7 meaning no group priority bits at all.
260 mask = ~0U << ((bpr & 7) + 1);
262 return GIC_GET_PRIORITY(irq, cpu) & mask;
265 static void gic_activate_irq(GICState *s, int cpu, int irq)
267 /* Set the appropriate Active Priority Register bit for this IRQ,
268 * and update the running priority.
270 int prio = gic_get_group_priority(s, cpu, irq);
271 int preemption_level = prio >> (GIC_MIN_BPR + 1);
272 int regno = preemption_level / 32;
273 int bitno = preemption_level % 32;
275 if (gic_has_groups(s) && GIC_TEST_GROUP(irq, (1 << cpu))) {
276 s->nsapr[regno][cpu] |= (1 << bitno);
277 } else {
278 s->apr[regno][cpu] |= (1 << bitno);
281 s->running_priority[cpu] = prio;
282 GIC_SET_ACTIVE(irq, 1 << cpu);
285 static int gic_get_prio_from_apr_bits(GICState *s, int cpu)
287 /* Recalculate the current running priority for this CPU based
288 * on the set bits in the Active Priority Registers.
290 int i;
291 for (i = 0; i < GIC_NR_APRS; i++) {
292 uint32_t apr = s->apr[i][cpu] | s->nsapr[i][cpu];
293 if (!apr) {
294 continue;
296 return (i * 32 + ctz32(apr)) << (GIC_MIN_BPR + 1);
298 return 0x100;
301 static void gic_drop_prio(GICState *s, int cpu, int group)
303 /* Drop the priority of the currently active interrupt in the
304 * specified group.
306 * Note that we can guarantee (because of the requirement to nest
307 * GICC_IAR reads [which activate an interrupt and raise priority]
308 * with GICC_EOIR writes [which drop the priority for the interrupt])
309 * that the interrupt we're being called for is the highest priority
310 * active interrupt, meaning that it has the lowest set bit in the
311 * APR registers.
313 * If the guest does not honour the ordering constraints then the
314 * behaviour of the GIC is UNPREDICTABLE, which for us means that
315 * the values of the APR registers might become incorrect and the
316 * running priority will be wrong, so interrupts that should preempt
317 * might not do so, and interrupts that should not preempt might do so.
319 int i;
321 for (i = 0; i < GIC_NR_APRS; i++) {
322 uint32_t *papr = group ? &s->nsapr[i][cpu] : &s->apr[i][cpu];
323 if (!*papr) {
324 continue;
326 /* Clear lowest set bit */
327 *papr &= *papr - 1;
328 break;
331 s->running_priority[cpu] = gic_get_prio_from_apr_bits(s, cpu);
334 uint32_t gic_acknowledge_irq(GICState *s, int cpu, MemTxAttrs attrs)
336 int ret, irq, src;
337 int cm = 1 << cpu;
339 /* gic_get_current_pending_irq() will return 1022 or 1023 appropriately
340 * for the case where this GIC supports grouping and the pending interrupt
341 * is in the wrong group.
343 irq = gic_get_current_pending_irq(s, cpu, attrs);
344 trace_gic_acknowledge_irq(cpu, irq);
346 if (irq >= GIC_MAXIRQ) {
347 DPRINTF("ACK, no pending interrupt or it is hidden: %d\n", irq);
348 return irq;
351 if (GIC_GET_PRIORITY(irq, cpu) >= s->running_priority[cpu]) {
352 DPRINTF("ACK, pending interrupt (%d) has insufficient priority\n", irq);
353 return 1023;
356 if (s->revision == REV_11MPCORE || s->revision == REV_NVIC) {
357 /* Clear pending flags for both level and edge triggered interrupts.
358 * Level triggered IRQs will be reasserted once they become inactive.
360 GIC_CLEAR_PENDING(irq, GIC_TEST_MODEL(irq) ? ALL_CPU_MASK : cm);
361 ret = irq;
362 } else {
363 if (irq < GIC_NR_SGIS) {
364 /* Lookup the source CPU for the SGI and clear this in the
365 * sgi_pending map. Return the src and clear the overall pending
366 * state on this CPU if the SGI is not pending from any CPUs.
368 assert(s->sgi_pending[irq][cpu] != 0);
369 src = ctz32(s->sgi_pending[irq][cpu]);
370 s->sgi_pending[irq][cpu] &= ~(1 << src);
371 if (s->sgi_pending[irq][cpu] == 0) {
372 GIC_CLEAR_PENDING(irq, GIC_TEST_MODEL(irq) ? ALL_CPU_MASK : cm);
374 ret = irq | ((src & 0x7) << 10);
375 } else {
376 /* Clear pending state for both level and edge triggered
377 * interrupts. (level triggered interrupts with an active line
378 * remain pending, see gic_test_pending)
380 GIC_CLEAR_PENDING(irq, GIC_TEST_MODEL(irq) ? ALL_CPU_MASK : cm);
381 ret = irq;
385 gic_activate_irq(s, cpu, irq);
386 gic_update(s);
387 DPRINTF("ACK %d\n", irq);
388 return ret;
391 void gic_set_priority(GICState *s, int cpu, int irq, uint8_t val,
392 MemTxAttrs attrs)
394 if (s->security_extn && !attrs.secure) {
395 if (!GIC_TEST_GROUP(irq, (1 << cpu))) {
396 return; /* Ignore Non-secure access of Group0 IRQ */
398 val = 0x80 | (val >> 1); /* Non-secure view */
401 if (irq < GIC_INTERNAL) {
402 s->priority1[irq][cpu] = val;
403 } else {
404 s->priority2[(irq) - GIC_INTERNAL] = val;
408 static uint32_t gic_get_priority(GICState *s, int cpu, int irq,
409 MemTxAttrs attrs)
411 uint32_t prio = GIC_GET_PRIORITY(irq, cpu);
413 if (s->security_extn && !attrs.secure) {
414 if (!GIC_TEST_GROUP(irq, (1 << cpu))) {
415 return 0; /* Non-secure access cannot read priority of Group0 IRQ */
417 prio = (prio << 1) & 0xff; /* Non-secure view */
419 return prio;
422 static void gic_set_priority_mask(GICState *s, int cpu, uint8_t pmask,
423 MemTxAttrs attrs)
425 if (s->security_extn && !attrs.secure) {
426 if (s->priority_mask[cpu] & 0x80) {
427 /* Priority Mask in upper half */
428 pmask = 0x80 | (pmask >> 1);
429 } else {
430 /* Non-secure write ignored if priority mask is in lower half */
431 return;
434 s->priority_mask[cpu] = pmask;
437 static uint32_t gic_get_priority_mask(GICState *s, int cpu, MemTxAttrs attrs)
439 uint32_t pmask = s->priority_mask[cpu];
441 if (s->security_extn && !attrs.secure) {
442 if (pmask & 0x80) {
443 /* Priority Mask in upper half, return Non-secure view */
444 pmask = (pmask << 1) & 0xff;
445 } else {
446 /* Priority Mask in lower half, RAZ */
447 pmask = 0;
450 return pmask;
453 static uint32_t gic_get_cpu_control(GICState *s, int cpu, MemTxAttrs attrs)
455 uint32_t ret = s->cpu_ctlr[cpu];
457 if (s->security_extn && !attrs.secure) {
458 /* Construct the NS banked view of GICC_CTLR from the correct
459 * bits of the S banked view. We don't need to move the bypass
460 * control bits because we don't implement that (IMPDEF) part
461 * of the GIC architecture.
463 ret = (ret & (GICC_CTLR_EN_GRP1 | GICC_CTLR_EOIMODE_NS)) >> 1;
465 return ret;
468 static void gic_set_cpu_control(GICState *s, int cpu, uint32_t value,
469 MemTxAttrs attrs)
471 uint32_t mask;
473 if (s->security_extn && !attrs.secure) {
474 /* The NS view can only write certain bits in the register;
475 * the rest are unchanged
477 mask = GICC_CTLR_EN_GRP1;
478 if (s->revision == 2) {
479 mask |= GICC_CTLR_EOIMODE_NS;
481 s->cpu_ctlr[cpu] &= ~mask;
482 s->cpu_ctlr[cpu] |= (value << 1) & mask;
483 } else {
484 if (s->revision == 2) {
485 mask = s->security_extn ? GICC_CTLR_V2_S_MASK : GICC_CTLR_V2_MASK;
486 } else {
487 mask = s->security_extn ? GICC_CTLR_V1_S_MASK : GICC_CTLR_V1_MASK;
489 s->cpu_ctlr[cpu] = value & mask;
491 DPRINTF("CPU Interface %d: Group0 Interrupts %sabled, "
492 "Group1 Interrupts %sabled\n", cpu,
493 (s->cpu_ctlr[cpu] & GICC_CTLR_EN_GRP0) ? "En" : "Dis",
494 (s->cpu_ctlr[cpu] & GICC_CTLR_EN_GRP1) ? "En" : "Dis");
497 static uint8_t gic_get_running_priority(GICState *s, int cpu, MemTxAttrs attrs)
499 if (s->security_extn && !attrs.secure) {
500 if (s->running_priority[cpu] & 0x80) {
501 /* Running priority in upper half of range: return the Non-secure
502 * view of the priority.
504 return s->running_priority[cpu] << 1;
505 } else {
506 /* Running priority in lower half of range: RAZ */
507 return 0;
509 } else {
510 return s->running_priority[cpu];
514 /* Return true if we should split priority drop and interrupt deactivation,
515 * ie whether the relevant EOIMode bit is set.
517 static bool gic_eoi_split(GICState *s, int cpu, MemTxAttrs attrs)
519 if (s->revision != 2) {
520 /* Before GICv2 prio-drop and deactivate are not separable */
521 return false;
523 if (s->security_extn && !attrs.secure) {
524 return s->cpu_ctlr[cpu] & GICC_CTLR_EOIMODE_NS;
526 return s->cpu_ctlr[cpu] & GICC_CTLR_EOIMODE;
529 static void gic_deactivate_irq(GICState *s, int cpu, int irq, MemTxAttrs attrs)
531 int cm = 1 << cpu;
532 int group = gic_has_groups(s) && GIC_TEST_GROUP(irq, cm);
534 if (!gic_eoi_split(s, cpu, attrs)) {
535 /* This is UNPREDICTABLE; we choose to ignore it */
536 qemu_log_mask(LOG_GUEST_ERROR,
537 "gic_deactivate_irq: GICC_DIR write when EOIMode clear");
538 return;
541 if (s->security_extn && !attrs.secure && !group) {
542 DPRINTF("Non-secure DI for Group0 interrupt %d ignored\n", irq);
543 return;
546 GIC_CLEAR_ACTIVE(irq, cm);
549 void gic_complete_irq(GICState *s, int cpu, int irq, MemTxAttrs attrs)
551 int cm = 1 << cpu;
552 int group;
554 DPRINTF("EOI %d\n", irq);
555 if (irq >= s->num_irq) {
556 /* This handles two cases:
557 * 1. If software writes the ID of a spurious interrupt [ie 1023]
558 * to the GICC_EOIR, the GIC ignores that write.
559 * 2. If software writes the number of a non-existent interrupt
560 * this must be a subcase of "value written does not match the last
561 * valid interrupt value read from the Interrupt Acknowledge
562 * register" and so this is UNPREDICTABLE. We choose to ignore it.
564 return;
566 if (s->running_priority[cpu] == 0x100) {
567 return; /* No active IRQ. */
570 if (s->revision == REV_11MPCORE || s->revision == REV_NVIC) {
571 /* Mark level triggered interrupts as pending if they are still
572 raised. */
573 if (!GIC_TEST_EDGE_TRIGGER(irq) && GIC_TEST_ENABLED(irq, cm)
574 && GIC_TEST_LEVEL(irq, cm) && (GIC_TARGET(irq) & cm) != 0) {
575 DPRINTF("Set %d pending mask %x\n", irq, cm);
576 GIC_SET_PENDING(irq, cm);
580 group = gic_has_groups(s) && GIC_TEST_GROUP(irq, cm);
582 if (s->security_extn && !attrs.secure && !group) {
583 DPRINTF("Non-secure EOI for Group0 interrupt %d ignored\n", irq);
584 return;
587 /* Secure EOI with GICC_CTLR.AckCtl == 0 when the IRQ is a Group 1
588 * interrupt is UNPREDICTABLE. We choose to handle it as if AckCtl == 1,
589 * i.e. go ahead and complete the irq anyway.
592 gic_drop_prio(s, cpu, group);
594 /* In GICv2 the guest can choose to split priority-drop and deactivate */
595 if (!gic_eoi_split(s, cpu, attrs)) {
596 GIC_CLEAR_ACTIVE(irq, cm);
598 gic_update(s);
601 static uint32_t gic_dist_readb(void *opaque, hwaddr offset, MemTxAttrs attrs)
603 GICState *s = (GICState *)opaque;
604 uint32_t res;
605 int irq;
606 int i;
607 int cpu;
608 int cm;
609 int mask;
611 cpu = gic_get_current_cpu(s);
612 cm = 1 << cpu;
613 if (offset < 0x100) {
614 if (offset == 0) { /* GICD_CTLR */
615 if (s->security_extn && !attrs.secure) {
616 /* The NS bank of this register is just an alias of the
617 * EnableGrp1 bit in the S bank version.
619 return extract32(s->ctlr, 1, 1);
620 } else {
621 return s->ctlr;
624 if (offset == 4)
625 /* Interrupt Controller Type Register */
626 return ((s->num_irq / 32) - 1)
627 | ((s->num_cpu - 1) << 5)
628 | (s->security_extn << 10);
629 if (offset < 0x08)
630 return 0;
631 if (offset >= 0x80) {
632 /* Interrupt Group Registers: these RAZ/WI if this is an NS
633 * access to a GIC with the security extensions, or if the GIC
634 * doesn't have groups at all.
636 res = 0;
637 if (!(s->security_extn && !attrs.secure) && gic_has_groups(s)) {
638 /* Every byte offset holds 8 group status bits */
639 irq = (offset - 0x080) * 8 + GIC_BASE_IRQ;
640 if (irq >= s->num_irq) {
641 goto bad_reg;
643 for (i = 0; i < 8; i++) {
644 if (GIC_TEST_GROUP(irq + i, cm)) {
645 res |= (1 << i);
649 return res;
651 goto bad_reg;
652 } else if (offset < 0x200) {
653 /* Interrupt Set/Clear Enable. */
654 if (offset < 0x180)
655 irq = (offset - 0x100) * 8;
656 else
657 irq = (offset - 0x180) * 8;
658 irq += GIC_BASE_IRQ;
659 if (irq >= s->num_irq)
660 goto bad_reg;
661 res = 0;
662 for (i = 0; i < 8; i++) {
663 if (GIC_TEST_ENABLED(irq + i, cm)) {
664 res |= (1 << i);
667 } else if (offset < 0x300) {
668 /* Interrupt Set/Clear Pending. */
669 if (offset < 0x280)
670 irq = (offset - 0x200) * 8;
671 else
672 irq = (offset - 0x280) * 8;
673 irq += GIC_BASE_IRQ;
674 if (irq >= s->num_irq)
675 goto bad_reg;
676 res = 0;
677 mask = (irq < GIC_INTERNAL) ? cm : ALL_CPU_MASK;
678 for (i = 0; i < 8; i++) {
679 if (gic_test_pending(s, irq + i, mask)) {
680 res |= (1 << i);
683 } else if (offset < 0x400) {
684 /* Interrupt Active. */
685 irq = (offset - 0x300) * 8 + GIC_BASE_IRQ;
686 if (irq >= s->num_irq)
687 goto bad_reg;
688 res = 0;
689 mask = (irq < GIC_INTERNAL) ? cm : ALL_CPU_MASK;
690 for (i = 0; i < 8; i++) {
691 if (GIC_TEST_ACTIVE(irq + i, mask)) {
692 res |= (1 << i);
695 } else if (offset < 0x800) {
696 /* Interrupt Priority. */
697 irq = (offset - 0x400) + GIC_BASE_IRQ;
698 if (irq >= s->num_irq)
699 goto bad_reg;
700 res = gic_get_priority(s, cpu, irq, attrs);
701 } else if (offset < 0xc00) {
702 /* Interrupt CPU Target. */
703 if (s->num_cpu == 1 && s->revision != REV_11MPCORE) {
704 /* For uniprocessor GICs these RAZ/WI */
705 res = 0;
706 } else {
707 irq = (offset - 0x800) + GIC_BASE_IRQ;
708 if (irq >= s->num_irq) {
709 goto bad_reg;
711 if (irq >= 29 && irq <= 31) {
712 res = cm;
713 } else {
714 res = GIC_TARGET(irq);
717 } else if (offset < 0xf00) {
718 /* Interrupt Configuration. */
719 irq = (offset - 0xc00) * 4 + GIC_BASE_IRQ;
720 if (irq >= s->num_irq)
721 goto bad_reg;
722 res = 0;
723 for (i = 0; i < 4; i++) {
724 if (GIC_TEST_MODEL(irq + i))
725 res |= (1 << (i * 2));
726 if (GIC_TEST_EDGE_TRIGGER(irq + i))
727 res |= (2 << (i * 2));
729 } else if (offset < 0xf10) {
730 goto bad_reg;
731 } else if (offset < 0xf30) {
732 if (s->revision == REV_11MPCORE || s->revision == REV_NVIC) {
733 goto bad_reg;
736 if (offset < 0xf20) {
737 /* GICD_CPENDSGIRn */
738 irq = (offset - 0xf10);
739 } else {
740 irq = (offset - 0xf20);
741 /* GICD_SPENDSGIRn */
744 res = s->sgi_pending[irq][cpu];
745 } else if (offset < 0xfd0) {
746 goto bad_reg;
747 } else if (offset < 0x1000) {
748 if (offset & 3) {
749 res = 0;
750 } else {
751 switch (s->revision) {
752 case REV_11MPCORE:
753 res = gic_id_11mpcore[(offset - 0xfd0) >> 2];
754 break;
755 case 1:
756 res = gic_id_gicv1[(offset - 0xfd0) >> 2];
757 break;
758 case 2:
759 res = gic_id_gicv2[(offset - 0xfd0) >> 2];
760 break;
761 case REV_NVIC:
762 /* Shouldn't be able to get here */
763 abort();
764 default:
765 res = 0;
768 } else {
769 g_assert_not_reached();
771 return res;
772 bad_reg:
773 qemu_log_mask(LOG_GUEST_ERROR,
774 "gic_dist_readb: Bad offset %x\n", (int)offset);
775 return 0;
778 static MemTxResult gic_dist_read(void *opaque, hwaddr offset, uint64_t *data,
779 unsigned size, MemTxAttrs attrs)
781 switch (size) {
782 case 1:
783 *data = gic_dist_readb(opaque, offset, attrs);
784 return MEMTX_OK;
785 case 2:
786 *data = gic_dist_readb(opaque, offset, attrs);
787 *data |= gic_dist_readb(opaque, offset + 1, attrs) << 8;
788 return MEMTX_OK;
789 case 4:
790 *data = gic_dist_readb(opaque, offset, attrs);
791 *data |= gic_dist_readb(opaque, offset + 1, attrs) << 8;
792 *data |= gic_dist_readb(opaque, offset + 2, attrs) << 16;
793 *data |= gic_dist_readb(opaque, offset + 3, attrs) << 24;
794 return MEMTX_OK;
795 default:
796 return MEMTX_ERROR;
800 static void gic_dist_writeb(void *opaque, hwaddr offset,
801 uint32_t value, MemTxAttrs attrs)
803 GICState *s = (GICState *)opaque;
804 int irq;
805 int i;
806 int cpu;
808 cpu = gic_get_current_cpu(s);
809 if (offset < 0x100) {
810 if (offset == 0) {
811 if (s->security_extn && !attrs.secure) {
812 /* NS version is just an alias of the S version's bit 1 */
813 s->ctlr = deposit32(s->ctlr, 1, 1, value);
814 } else if (gic_has_groups(s)) {
815 s->ctlr = value & (GICD_CTLR_EN_GRP0 | GICD_CTLR_EN_GRP1);
816 } else {
817 s->ctlr = value & GICD_CTLR_EN_GRP0;
819 DPRINTF("Distributor: Group0 %sabled; Group 1 %sabled\n",
820 s->ctlr & GICD_CTLR_EN_GRP0 ? "En" : "Dis",
821 s->ctlr & GICD_CTLR_EN_GRP1 ? "En" : "Dis");
822 } else if (offset < 4) {
823 /* ignored. */
824 } else if (offset >= 0x80) {
825 /* Interrupt Group Registers: RAZ/WI for NS access to secure
826 * GIC, or for GICs without groups.
828 if (!(s->security_extn && !attrs.secure) && gic_has_groups(s)) {
829 /* Every byte offset holds 8 group status bits */
830 irq = (offset - 0x80) * 8 + GIC_BASE_IRQ;
831 if (irq >= s->num_irq) {
832 goto bad_reg;
834 for (i = 0; i < 8; i++) {
835 /* Group bits are banked for private interrupts */
836 int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK;
837 if (value & (1 << i)) {
838 /* Group1 (Non-secure) */
839 GIC_SET_GROUP(irq + i, cm);
840 } else {
841 /* Group0 (Secure) */
842 GIC_CLEAR_GROUP(irq + i, cm);
846 } else {
847 goto bad_reg;
849 } else if (offset < 0x180) {
850 /* Interrupt Set Enable. */
851 irq = (offset - 0x100) * 8 + GIC_BASE_IRQ;
852 if (irq >= s->num_irq)
853 goto bad_reg;
854 if (irq < GIC_NR_SGIS) {
855 value = 0xff;
858 for (i = 0; i < 8; i++) {
859 if (value & (1 << i)) {
860 int mask =
861 (irq < GIC_INTERNAL) ? (1 << cpu) : GIC_TARGET(irq + i);
862 int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK;
864 if (!GIC_TEST_ENABLED(irq + i, cm)) {
865 DPRINTF("Enabled IRQ %d\n", irq + i);
866 trace_gic_enable_irq(irq + i);
868 GIC_SET_ENABLED(irq + i, cm);
869 /* If a raised level triggered IRQ enabled then mark
870 is as pending. */
871 if (GIC_TEST_LEVEL(irq + i, mask)
872 && !GIC_TEST_EDGE_TRIGGER(irq + i)) {
873 DPRINTF("Set %d pending mask %x\n", irq + i, mask);
874 GIC_SET_PENDING(irq + i, mask);
878 } else if (offset < 0x200) {
879 /* Interrupt Clear Enable. */
880 irq = (offset - 0x180) * 8 + GIC_BASE_IRQ;
881 if (irq >= s->num_irq)
882 goto bad_reg;
883 if (irq < GIC_NR_SGIS) {
884 value = 0;
887 for (i = 0; i < 8; i++) {
888 if (value & (1 << i)) {
889 int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK;
891 if (GIC_TEST_ENABLED(irq + i, cm)) {
892 DPRINTF("Disabled IRQ %d\n", irq + i);
893 trace_gic_disable_irq(irq + i);
895 GIC_CLEAR_ENABLED(irq + i, cm);
898 } else if (offset < 0x280) {
899 /* Interrupt Set Pending. */
900 irq = (offset - 0x200) * 8 + GIC_BASE_IRQ;
901 if (irq >= s->num_irq)
902 goto bad_reg;
903 if (irq < GIC_NR_SGIS) {
904 value = 0;
907 for (i = 0; i < 8; i++) {
908 if (value & (1 << i)) {
909 GIC_SET_PENDING(irq + i, GIC_TARGET(irq + i));
912 } else if (offset < 0x300) {
913 /* Interrupt Clear Pending. */
914 irq = (offset - 0x280) * 8 + GIC_BASE_IRQ;
915 if (irq >= s->num_irq)
916 goto bad_reg;
917 if (irq < GIC_NR_SGIS) {
918 value = 0;
921 for (i = 0; i < 8; i++) {
922 /* ??? This currently clears the pending bit for all CPUs, even
923 for per-CPU interrupts. It's unclear whether this is the
924 corect behavior. */
925 if (value & (1 << i)) {
926 GIC_CLEAR_PENDING(irq + i, ALL_CPU_MASK);
929 } else if (offset < 0x400) {
930 /* Interrupt Active. */
931 goto bad_reg;
932 } else if (offset < 0x800) {
933 /* Interrupt Priority. */
934 irq = (offset - 0x400) + GIC_BASE_IRQ;
935 if (irq >= s->num_irq)
936 goto bad_reg;
937 gic_set_priority(s, cpu, irq, value, attrs);
938 } else if (offset < 0xc00) {
939 /* Interrupt CPU Target. RAZ/WI on uniprocessor GICs, with the
940 * annoying exception of the 11MPCore's GIC.
942 if (s->num_cpu != 1 || s->revision == REV_11MPCORE) {
943 irq = (offset - 0x800) + GIC_BASE_IRQ;
944 if (irq >= s->num_irq) {
945 goto bad_reg;
947 if (irq < 29) {
948 value = 0;
949 } else if (irq < GIC_INTERNAL) {
950 value = ALL_CPU_MASK;
952 s->irq_target[irq] = value & ALL_CPU_MASK;
954 } else if (offset < 0xf00) {
955 /* Interrupt Configuration. */
956 irq = (offset - 0xc00) * 4 + GIC_BASE_IRQ;
957 if (irq >= s->num_irq)
958 goto bad_reg;
959 if (irq < GIC_NR_SGIS)
960 value |= 0xaa;
961 for (i = 0; i < 4; i++) {
962 if (s->revision == REV_11MPCORE || s->revision == REV_NVIC) {
963 if (value & (1 << (i * 2))) {
964 GIC_SET_MODEL(irq + i);
965 } else {
966 GIC_CLEAR_MODEL(irq + i);
969 if (value & (2 << (i * 2))) {
970 GIC_SET_EDGE_TRIGGER(irq + i);
971 } else {
972 GIC_CLEAR_EDGE_TRIGGER(irq + i);
975 } else if (offset < 0xf10) {
976 /* 0xf00 is only handled for 32-bit writes. */
977 goto bad_reg;
978 } else if (offset < 0xf20) {
979 /* GICD_CPENDSGIRn */
980 if (s->revision == REV_11MPCORE || s->revision == REV_NVIC) {
981 goto bad_reg;
983 irq = (offset - 0xf10);
985 s->sgi_pending[irq][cpu] &= ~value;
986 if (s->sgi_pending[irq][cpu] == 0) {
987 GIC_CLEAR_PENDING(irq, 1 << cpu);
989 } else if (offset < 0xf30) {
990 /* GICD_SPENDSGIRn */
991 if (s->revision == REV_11MPCORE || s->revision == REV_NVIC) {
992 goto bad_reg;
994 irq = (offset - 0xf20);
996 GIC_SET_PENDING(irq, 1 << cpu);
997 s->sgi_pending[irq][cpu] |= value;
998 } else {
999 goto bad_reg;
1001 gic_update(s);
1002 return;
1003 bad_reg:
1004 qemu_log_mask(LOG_GUEST_ERROR,
1005 "gic_dist_writeb: Bad offset %x\n", (int)offset);
1008 static void gic_dist_writew(void *opaque, hwaddr offset,
1009 uint32_t value, MemTxAttrs attrs)
1011 gic_dist_writeb(opaque, offset, value & 0xff, attrs);
1012 gic_dist_writeb(opaque, offset + 1, value >> 8, attrs);
1015 static void gic_dist_writel(void *opaque, hwaddr offset,
1016 uint32_t value, MemTxAttrs attrs)
1018 GICState *s = (GICState *)opaque;
1019 if (offset == 0xf00) {
1020 int cpu;
1021 int irq;
1022 int mask;
1023 int target_cpu;
1025 cpu = gic_get_current_cpu(s);
1026 irq = value & 0x3ff;
1027 switch ((value >> 24) & 3) {
1028 case 0:
1029 mask = (value >> 16) & ALL_CPU_MASK;
1030 break;
1031 case 1:
1032 mask = ALL_CPU_MASK ^ (1 << cpu);
1033 break;
1034 case 2:
1035 mask = 1 << cpu;
1036 break;
1037 default:
1038 DPRINTF("Bad Soft Int target filter\n");
1039 mask = ALL_CPU_MASK;
1040 break;
1042 GIC_SET_PENDING(irq, mask);
1043 target_cpu = ctz32(mask);
1044 while (target_cpu < GIC_NCPU) {
1045 s->sgi_pending[irq][target_cpu] |= (1 << cpu);
1046 mask &= ~(1 << target_cpu);
1047 target_cpu = ctz32(mask);
1049 gic_update(s);
1050 return;
1052 gic_dist_writew(opaque, offset, value & 0xffff, attrs);
1053 gic_dist_writew(opaque, offset + 2, value >> 16, attrs);
1056 static MemTxResult gic_dist_write(void *opaque, hwaddr offset, uint64_t data,
1057 unsigned size, MemTxAttrs attrs)
1059 switch (size) {
1060 case 1:
1061 gic_dist_writeb(opaque, offset, data, attrs);
1062 return MEMTX_OK;
1063 case 2:
1064 gic_dist_writew(opaque, offset, data, attrs);
1065 return MEMTX_OK;
1066 case 4:
1067 gic_dist_writel(opaque, offset, data, attrs);
1068 return MEMTX_OK;
1069 default:
1070 return MEMTX_ERROR;
1074 static inline uint32_t gic_apr_ns_view(GICState *s, int cpu, int regno)
1076 /* Return the Nonsecure view of GICC_APR<regno>. This is the
1077 * second half of GICC_NSAPR.
1079 switch (GIC_MIN_BPR) {
1080 case 0:
1081 if (regno < 2) {
1082 return s->nsapr[regno + 2][cpu];
1084 break;
1085 case 1:
1086 if (regno == 0) {
1087 return s->nsapr[regno + 1][cpu];
1089 break;
1090 case 2:
1091 if (regno == 0) {
1092 return extract32(s->nsapr[0][cpu], 16, 16);
1094 break;
1095 case 3:
1096 if (regno == 0) {
1097 return extract32(s->nsapr[0][cpu], 8, 8);
1099 break;
1100 default:
1101 g_assert_not_reached();
1103 return 0;
1106 static inline void gic_apr_write_ns_view(GICState *s, int cpu, int regno,
1107 uint32_t value)
1109 /* Write the Nonsecure view of GICC_APR<regno>. */
1110 switch (GIC_MIN_BPR) {
1111 case 0:
1112 if (regno < 2) {
1113 s->nsapr[regno + 2][cpu] = value;
1115 break;
1116 case 1:
1117 if (regno == 0) {
1118 s->nsapr[regno + 1][cpu] = value;
1120 break;
1121 case 2:
1122 if (regno == 0) {
1123 s->nsapr[0][cpu] = deposit32(s->nsapr[0][cpu], 16, 16, value);
1125 break;
1126 case 3:
1127 if (regno == 0) {
1128 s->nsapr[0][cpu] = deposit32(s->nsapr[0][cpu], 8, 8, value);
1130 break;
1131 default:
1132 g_assert_not_reached();
1136 static MemTxResult gic_cpu_read(GICState *s, int cpu, int offset,
1137 uint64_t *data, MemTxAttrs attrs)
1139 switch (offset) {
1140 case 0x00: /* Control */
1141 *data = gic_get_cpu_control(s, cpu, attrs);
1142 break;
1143 case 0x04: /* Priority mask */
1144 *data = gic_get_priority_mask(s, cpu, attrs);
1145 break;
1146 case 0x08: /* Binary Point */
1147 if (s->security_extn && !attrs.secure) {
1148 /* BPR is banked. Non-secure copy stored in ABPR. */
1149 *data = s->abpr[cpu];
1150 } else {
1151 *data = s->bpr[cpu];
1153 break;
1154 case 0x0c: /* Acknowledge */
1155 *data = gic_acknowledge_irq(s, cpu, attrs);
1156 break;
1157 case 0x14: /* Running Priority */
1158 *data = gic_get_running_priority(s, cpu, attrs);
1159 break;
1160 case 0x18: /* Highest Pending Interrupt */
1161 *data = gic_get_current_pending_irq(s, cpu, attrs);
1162 break;
1163 case 0x1c: /* Aliased Binary Point */
1164 /* GIC v2, no security: ABPR
1165 * GIC v1, no security: not implemented (RAZ/WI)
1166 * With security extensions, secure access: ABPR (alias of NS BPR)
1167 * With security extensions, nonsecure access: RAZ/WI
1169 if (!gic_has_groups(s) || (s->security_extn && !attrs.secure)) {
1170 *data = 0;
1171 } else {
1172 *data = s->abpr[cpu];
1174 break;
1175 case 0xd0: case 0xd4: case 0xd8: case 0xdc:
1177 int regno = (offset - 0xd0) / 4;
1179 if (regno >= GIC_NR_APRS || s->revision != 2) {
1180 *data = 0;
1181 } else if (s->security_extn && !attrs.secure) {
1182 /* NS view of GICC_APR<n> is the top half of GIC_NSAPR<n> */
1183 *data = gic_apr_ns_view(s, regno, cpu);
1184 } else {
1185 *data = s->apr[regno][cpu];
1187 break;
1189 case 0xe0: case 0xe4: case 0xe8: case 0xec:
1191 int regno = (offset - 0xe0) / 4;
1193 if (regno >= GIC_NR_APRS || s->revision != 2 || !gic_has_groups(s) ||
1194 (s->security_extn && !attrs.secure)) {
1195 *data = 0;
1196 } else {
1197 *data = s->nsapr[regno][cpu];
1199 break;
1201 default:
1202 qemu_log_mask(LOG_GUEST_ERROR,
1203 "gic_cpu_read: Bad offset %x\n", (int)offset);
1204 return MEMTX_ERROR;
1206 return MEMTX_OK;
1209 static MemTxResult gic_cpu_write(GICState *s, int cpu, int offset,
1210 uint32_t value, MemTxAttrs attrs)
1212 switch (offset) {
1213 case 0x00: /* Control */
1214 gic_set_cpu_control(s, cpu, value, attrs);
1215 break;
1216 case 0x04: /* Priority mask */
1217 gic_set_priority_mask(s, cpu, value, attrs);
1218 break;
1219 case 0x08: /* Binary Point */
1220 if (s->security_extn && !attrs.secure) {
1221 s->abpr[cpu] = MAX(value & 0x7, GIC_MIN_ABPR);
1222 } else {
1223 s->bpr[cpu] = MAX(value & 0x7, GIC_MIN_BPR);
1225 break;
1226 case 0x10: /* End Of Interrupt */
1227 gic_complete_irq(s, cpu, value & 0x3ff, attrs);
1228 return MEMTX_OK;
1229 case 0x1c: /* Aliased Binary Point */
1230 if (!gic_has_groups(s) || (s->security_extn && !attrs.secure)) {
1231 /* unimplemented, or NS access: RAZ/WI */
1232 return MEMTX_OK;
1233 } else {
1234 s->abpr[cpu] = MAX(value & 0x7, GIC_MIN_ABPR);
1236 break;
1237 case 0xd0: case 0xd4: case 0xd8: case 0xdc:
1239 int regno = (offset - 0xd0) / 4;
1241 if (regno >= GIC_NR_APRS || s->revision != 2) {
1242 return MEMTX_OK;
1244 if (s->security_extn && !attrs.secure) {
1245 /* NS view of GICC_APR<n> is the top half of GIC_NSAPR<n> */
1246 gic_apr_write_ns_view(s, regno, cpu, value);
1247 } else {
1248 s->apr[regno][cpu] = value;
1250 break;
1252 case 0xe0: case 0xe4: case 0xe8: case 0xec:
1254 int regno = (offset - 0xe0) / 4;
1256 if (regno >= GIC_NR_APRS || s->revision != 2) {
1257 return MEMTX_OK;
1259 if (!gic_has_groups(s) || (s->security_extn && !attrs.secure)) {
1260 return MEMTX_OK;
1262 s->nsapr[regno][cpu] = value;
1263 break;
1265 case 0x1000:
1266 /* GICC_DIR */
1267 gic_deactivate_irq(s, cpu, value & 0x3ff, attrs);
1268 break;
1269 default:
1270 qemu_log_mask(LOG_GUEST_ERROR,
1271 "gic_cpu_write: Bad offset %x\n", (int)offset);
1272 return MEMTX_ERROR;
1274 gic_update(s);
1275 return MEMTX_OK;
1278 /* Wrappers to read/write the GIC CPU interface for the current CPU */
1279 static MemTxResult gic_thiscpu_read(void *opaque, hwaddr addr, uint64_t *data,
1280 unsigned size, MemTxAttrs attrs)
1282 GICState *s = (GICState *)opaque;
1283 return gic_cpu_read(s, gic_get_current_cpu(s), addr, data, attrs);
1286 static MemTxResult gic_thiscpu_write(void *opaque, hwaddr addr,
1287 uint64_t value, unsigned size,
1288 MemTxAttrs attrs)
1290 GICState *s = (GICState *)opaque;
1291 return gic_cpu_write(s, gic_get_current_cpu(s), addr, value, attrs);
1294 /* Wrappers to read/write the GIC CPU interface for a specific CPU.
1295 * These just decode the opaque pointer into GICState* + cpu id.
1297 static MemTxResult gic_do_cpu_read(void *opaque, hwaddr addr, uint64_t *data,
1298 unsigned size, MemTxAttrs attrs)
1300 GICState **backref = (GICState **)opaque;
1301 GICState *s = *backref;
1302 int id = (backref - s->backref);
1303 return gic_cpu_read(s, id, addr, data, attrs);
1306 static MemTxResult gic_do_cpu_write(void *opaque, hwaddr addr,
1307 uint64_t value, unsigned size,
1308 MemTxAttrs attrs)
1310 GICState **backref = (GICState **)opaque;
1311 GICState *s = *backref;
1312 int id = (backref - s->backref);
1313 return gic_cpu_write(s, id, addr, value, attrs);
1316 static const MemoryRegionOps gic_ops[2] = {
1318 .read_with_attrs = gic_dist_read,
1319 .write_with_attrs = gic_dist_write,
1320 .endianness = DEVICE_NATIVE_ENDIAN,
1323 .read_with_attrs = gic_thiscpu_read,
1324 .write_with_attrs = gic_thiscpu_write,
1325 .endianness = DEVICE_NATIVE_ENDIAN,
1329 static const MemoryRegionOps gic_cpu_ops = {
1330 .read_with_attrs = gic_do_cpu_read,
1331 .write_with_attrs = gic_do_cpu_write,
1332 .endianness = DEVICE_NATIVE_ENDIAN,
1335 /* This function is used by nvic model */
1336 void gic_init_irqs_and_distributor(GICState *s)
1338 gic_init_irqs_and_mmio(s, gic_set_irq, gic_ops);
1341 static void arm_gic_realize(DeviceState *dev, Error **errp)
1343 /* Device instance realize function for the GIC sysbus device */
1344 int i;
1345 GICState *s = ARM_GIC(dev);
1346 SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
1347 ARMGICClass *agc = ARM_GIC_GET_CLASS(s);
1348 Error *local_err = NULL;
1350 agc->parent_realize(dev, &local_err);
1351 if (local_err) {
1352 error_propagate(errp, local_err);
1353 return;
1356 /* This creates distributor and main CPU interface (s->cpuiomem[0]) */
1357 gic_init_irqs_and_mmio(s, gic_set_irq, gic_ops);
1359 /* Extra core-specific regions for the CPU interfaces. This is
1360 * necessary for "franken-GIC" implementations, for example on
1361 * Exynos 4.
1362 * NB that the memory region size of 0x100 applies for the 11MPCore
1363 * and also cores following the GIC v1 spec (ie A9).
1364 * GIC v2 defines a larger memory region (0x1000) so this will need
1365 * to be extended when we implement A15.
1367 for (i = 0; i < s->num_cpu; i++) {
1368 s->backref[i] = s;
1369 memory_region_init_io(&s->cpuiomem[i+1], OBJECT(s), &gic_cpu_ops,
1370 &s->backref[i], "gic_cpu", 0x100);
1371 sysbus_init_mmio(sbd, &s->cpuiomem[i+1]);
1375 static void arm_gic_class_init(ObjectClass *klass, void *data)
1377 DeviceClass *dc = DEVICE_CLASS(klass);
1378 ARMGICClass *agc = ARM_GIC_CLASS(klass);
1380 agc->parent_realize = dc->realize;
1381 dc->realize = arm_gic_realize;
1384 static const TypeInfo arm_gic_info = {
1385 .name = TYPE_ARM_GIC,
1386 .parent = TYPE_ARM_GIC_COMMON,
1387 .instance_size = sizeof(GICState),
1388 .class_init = arm_gic_class_init,
1389 .class_size = sizeof(ARMGICClass),
1392 static void arm_gic_register_types(void)
1394 type_register_static(&arm_gic_info);
1397 type_init(arm_gic_register_types)