2 * ST M25P80 emulator. Emulate all SPI flash devices based on the m25p80 command
3 * set. Known devices table current as of Jun/2012 and taken from linux.
4 * See drivers/mtd/devices/m25p80.c.
6 * Copyright (C) 2011 Edgar E. Iglesias <edgar.iglesias@gmail.com>
7 * Copyright (C) 2012 Peter A. G. Crosthwaite <peter.crosthwaite@petalogix.com>
8 * Copyright (C) 2012 PetaLogix
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License as
12 * published by the Free Software Foundation; either version 2 or
13 * (at your option) a later version of the License.
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
20 * You should have received a copy of the GNU General Public License along
21 * with this program; if not, see <http://www.gnu.org/licenses/>.
24 #include "qemu/osdep.h"
26 #include "sysemu/block-backend.h"
27 #include "sysemu/blockdev.h"
28 #include "hw/ssi/ssi.h"
29 #include "qemu/bitops.h"
31 #include "qemu/error-report.h"
32 #include "qapi/error.h"
34 #ifndef M25P80_ERR_DEBUG
35 #define M25P80_ERR_DEBUG 0
38 #define DB_PRINT_L(level, ...) do { \
39 if (M25P80_ERR_DEBUG > (level)) { \
40 fprintf(stderr, ": %s: ", __func__); \
41 fprintf(stderr, ## __VA_ARGS__); \
45 /* Fields for FlashPartInfo->flags */
47 /* erase capabilities */
50 /* set to allow the page program command to write 0s back to 1. Useful for
51 * modelling EEPROM with SPI flash command set
55 /* 16 MiB max in 3 byte address mode */
56 #define MAX_3BYTES_SIZE 0x1000000
58 #define SPI_NOR_MAX_ID_LEN 6
60 typedef struct FlashPartInfo
{
61 const char *part_name
;
63 * This array stores the ID bytes.
64 * The first three bytes are the JEDIC ID.
65 * JEDEC ID zero means "no ID" (mostly older chips).
67 uint8_t id
[SPI_NOR_MAX_ID_LEN
];
69 /* there is confusion between manufacturers as to what a sector is. In this
70 * device model, a "sector" is the size that is erased by the ERASE_SECTOR
71 * command (opcode 0xd8).
78 * Big sized spi nor are often stacked devices, thus sometime
79 * replace chip erase with die erase.
80 * This field inform how many die is in the chip.
85 /* adapted from linux */
86 /* Used when the "_ext_id" is two bytes at most */
87 #define INFO(_part_name, _jedec_id, _ext_id, _sector_size, _n_sectors, _flags)\
88 .part_name = _part_name,\
90 ((_jedec_id) >> 16) & 0xff,\
91 ((_jedec_id) >> 8) & 0xff,\
93 ((_ext_id) >> 8) & 0xff,\
96 .id_len = (!(_jedec_id) ? 0 : (3 + ((_ext_id) ? 2 : 0))),\
97 .sector_size = (_sector_size),\
98 .n_sectors = (_n_sectors),\
103 #define INFO6(_part_name, _jedec_id, _ext_id, _sector_size, _n_sectors, _flags)\
104 .part_name = _part_name,\
106 ((_jedec_id) >> 16) & 0xff,\
107 ((_jedec_id) >> 8) & 0xff,\
109 ((_ext_id) >> 16) & 0xff,\
110 ((_ext_id) >> 8) & 0xff,\
114 .sector_size = (_sector_size),\
115 .n_sectors = (_n_sectors),\
120 #define INFO_STACKED(_part_name, _jedec_id, _ext_id, _sector_size, _n_sectors,\
122 .part_name = _part_name,\
124 ((_jedec_id) >> 16) & 0xff,\
125 ((_jedec_id) >> 8) & 0xff,\
127 ((_ext_id) >> 8) & 0xff,\
130 .id_len = (!(_jedec_id) ? 0 : (3 + ((_ext_id) ? 2 : 0))),\
131 .sector_size = (_sector_size),\
132 .n_sectors = (_n_sectors),\
137 #define JEDEC_NUMONYX 0x20
138 #define JEDEC_WINBOND 0xEF
139 #define JEDEC_SPANSION 0x01
141 /* Numonyx (Micron) Configuration register macros */
142 #define VCFG_DUMMY 0x1
143 #define VCFG_WRAP_SEQUENTIAL 0x2
144 #define NVCFG_XIP_MODE_DISABLED (7 << 9)
145 #define NVCFG_XIP_MODE_MASK (7 << 9)
146 #define VCFG_XIP_MODE_ENABLED (1 << 3)
147 #define CFG_DUMMY_CLK_LEN 4
148 #define NVCFG_DUMMY_CLK_POS 12
149 #define VCFG_DUMMY_CLK_POS 4
150 #define EVCFG_OUT_DRIVER_STRENGHT_DEF 7
151 #define EVCFG_VPP_ACCELERATOR (1 << 3)
152 #define EVCFG_RESET_HOLD_ENABLED (1 << 4)
153 #define NVCFG_DUAL_IO_MASK (1 << 2)
154 #define EVCFG_DUAL_IO_ENABLED (1 << 6)
155 #define NVCFG_QUAD_IO_MASK (1 << 3)
156 #define EVCFG_QUAD_IO_ENABLED (1 << 7)
157 #define NVCFG_4BYTE_ADDR_MASK (1 << 0)
158 #define NVCFG_LOWER_SEGMENT_MASK (1 << 1)
160 /* Numonyx (Micron) Flag Status Register macros */
161 #define FSR_4BYTE_ADDR_MODE_ENABLED 0x1
162 #define FSR_FLASH_READY (1 << 7)
164 /* Spansion configuration registers macros. */
165 #define SPANSION_QUAD_CFG_POS 0
166 #define SPANSION_QUAD_CFG_LEN 1
167 #define SPANSION_DUMMY_CLK_POS 0
168 #define SPANSION_DUMMY_CLK_LEN 4
169 #define SPANSION_ADDR_LEN_POS 7
170 #define SPANSION_ADDR_LEN_LEN 1
173 * Spansion read mode command length in bytes,
174 * the mode is currently not supported.
177 #define SPANSION_CONTINUOUS_READ_MODE_CMD_LEN 1
178 #define WINBOND_CONTINUOUS_READ_MODE_CMD_LEN 1
180 static const FlashPartInfo known_devices
[] = {
181 /* Atmel -- some are (confusingly) marketed as "DataFlash" */
182 { INFO("at25fs010", 0x1f6601, 0, 32 << 10, 4, ER_4K
) },
183 { INFO("at25fs040", 0x1f6604, 0, 64 << 10, 8, ER_4K
) },
185 { INFO("at25df041a", 0x1f4401, 0, 64 << 10, 8, ER_4K
) },
186 { INFO("at25df321a", 0x1f4701, 0, 64 << 10, 64, ER_4K
) },
187 { INFO("at25df641", 0x1f4800, 0, 64 << 10, 128, ER_4K
) },
189 { INFO("at26f004", 0x1f0400, 0, 64 << 10, 8, ER_4K
) },
190 { INFO("at26df081a", 0x1f4501, 0, 64 << 10, 16, ER_4K
) },
191 { INFO("at26df161a", 0x1f4601, 0, 64 << 10, 32, ER_4K
) },
192 { INFO("at26df321", 0x1f4700, 0, 64 << 10, 64, ER_4K
) },
194 { INFO("at45db081d", 0x1f2500, 0, 64 << 10, 16, ER_4K
) },
196 /* Atmel EEPROMS - it is assumed, that don't care bit in command
197 * is set to 0. Block protection is not supported.
199 { INFO("at25128a-nonjedec", 0x0, 0, 1, 131072, EEPROM
) },
200 { INFO("at25256a-nonjedec", 0x0, 0, 1, 262144, EEPROM
) },
203 { INFO("en25f32", 0x1c3116, 0, 64 << 10, 64, ER_4K
) },
204 { INFO("en25p32", 0x1c2016, 0, 64 << 10, 64, 0) },
205 { INFO("en25q32b", 0x1c3016, 0, 64 << 10, 64, 0) },
206 { INFO("en25p64", 0x1c2017, 0, 64 << 10, 128, 0) },
207 { INFO("en25q64", 0x1c3017, 0, 64 << 10, 128, ER_4K
) },
210 { INFO("gd25q32", 0xc84016, 0, 64 << 10, 64, ER_4K
) },
211 { INFO("gd25q64", 0xc84017, 0, 64 << 10, 128, ER_4K
) },
213 /* Intel/Numonyx -- xxxs33b */
214 { INFO("160s33b", 0x898911, 0, 64 << 10, 32, 0) },
215 { INFO("320s33b", 0x898912, 0, 64 << 10, 64, 0) },
216 { INFO("640s33b", 0x898913, 0, 64 << 10, 128, 0) },
217 { INFO("n25q064", 0x20ba17, 0, 64 << 10, 128, 0) },
220 { INFO("mx25l2005a", 0xc22012, 0, 64 << 10, 4, ER_4K
) },
221 { INFO("mx25l4005a", 0xc22013, 0, 64 << 10, 8, ER_4K
) },
222 { INFO("mx25l8005", 0xc22014, 0, 64 << 10, 16, 0) },
223 { INFO("mx25l1606e", 0xc22015, 0, 64 << 10, 32, ER_4K
) },
224 { INFO("mx25l3205d", 0xc22016, 0, 64 << 10, 64, 0) },
225 { INFO("mx25l6405d", 0xc22017, 0, 64 << 10, 128, 0) },
226 { INFO("mx25l12805d", 0xc22018, 0, 64 << 10, 256, 0) },
227 { INFO("mx25l12855e", 0xc22618, 0, 64 << 10, 256, 0) },
228 { INFO("mx25l25635e", 0xc22019, 0, 64 << 10, 512, 0) },
229 { INFO("mx25l25655e", 0xc22619, 0, 64 << 10, 512, 0) },
230 { INFO("mx66u51235f", 0xc2253a, 0, 64 << 10, 1024, ER_4K
| ER_32K
) },
231 { INFO("mx66u1g45g", 0xc2253b, 0, 64 << 10, 2048, ER_4K
| ER_32K
) },
232 { INFO("mx66l1g45g", 0xc2201b, 0, 64 << 10, 2048, ER_4K
| ER_32K
) },
235 { INFO("n25q032a11", 0x20bb16, 0, 64 << 10, 64, ER_4K
) },
236 { INFO("n25q032a13", 0x20ba16, 0, 64 << 10, 64, ER_4K
) },
237 { INFO("n25q064a11", 0x20bb17, 0, 64 << 10, 128, ER_4K
) },
238 { INFO("n25q064a13", 0x20ba17, 0, 64 << 10, 128, ER_4K
) },
239 { INFO("n25q128a11", 0x20bb18, 0, 64 << 10, 256, ER_4K
) },
240 { INFO("n25q128a13", 0x20ba18, 0, 64 << 10, 256, ER_4K
) },
241 { INFO("n25q256a11", 0x20bb19, 0, 64 << 10, 512, ER_4K
) },
242 { INFO("n25q256a13", 0x20ba19, 0, 64 << 10, 512, ER_4K
) },
243 { INFO("n25q128", 0x20ba18, 0, 64 << 10, 256, 0) },
244 { INFO("n25q256a", 0x20ba19, 0, 64 << 10, 512, ER_4K
) },
245 { INFO("n25q512a", 0x20ba20, 0, 64 << 10, 1024, ER_4K
) },
246 { INFO_STACKED("n25q00", 0x20ba21, 0x1000, 64 << 10, 2048, ER_4K
, 4) },
247 { INFO_STACKED("n25q00a", 0x20bb21, 0x1000, 64 << 10, 2048, ER_4K
, 4) },
248 { INFO_STACKED("mt25ql01g", 0x20ba21, 0x1040, 64 << 10, 2048, ER_4K
, 2) },
249 { INFO_STACKED("mt25qu01g", 0x20bb21, 0x1040, 64 << 10, 2048, ER_4K
, 2) },
251 /* Spansion -- single (large) sector size only, at least
252 * for the chips listed here (without boot sectors).
254 { INFO("s25sl032p", 0x010215, 0x4d00, 64 << 10, 64, ER_4K
) },
255 { INFO("s25sl064p", 0x010216, 0x4d00, 64 << 10, 128, ER_4K
) },
256 { INFO("s25fl256s0", 0x010219, 0x4d00, 256 << 10, 128, 0) },
257 { INFO("s25fl256s1", 0x010219, 0x4d01, 64 << 10, 512, 0) },
258 { INFO6("s25fl512s", 0x010220, 0x4d0080, 256 << 10, 256, 0) },
259 { INFO6("s70fl01gs", 0x010221, 0x4d0080, 256 << 10, 512, 0) },
260 { INFO("s25sl12800", 0x012018, 0x0300, 256 << 10, 64, 0) },
261 { INFO("s25sl12801", 0x012018, 0x0301, 64 << 10, 256, 0) },
262 { INFO("s25fl129p0", 0x012018, 0x4d00, 256 << 10, 64, 0) },
263 { INFO("s25fl129p1", 0x012018, 0x4d01, 64 << 10, 256, 0) },
264 { INFO("s25sl004a", 0x010212, 0, 64 << 10, 8, 0) },
265 { INFO("s25sl008a", 0x010213, 0, 64 << 10, 16, 0) },
266 { INFO("s25sl016a", 0x010214, 0, 64 << 10, 32, 0) },
267 { INFO("s25sl032a", 0x010215, 0, 64 << 10, 64, 0) },
268 { INFO("s25sl064a", 0x010216, 0, 64 << 10, 128, 0) },
269 { INFO("s25fl016k", 0xef4015, 0, 64 << 10, 32, ER_4K
| ER_32K
) },
270 { INFO("s25fl064k", 0xef4017, 0, 64 << 10, 128, ER_4K
| ER_32K
) },
272 /* Spansion -- boot sectors support */
273 { INFO6("s25fs512s", 0x010220, 0x4d0081, 256 << 10, 256, 0) },
274 { INFO6("s70fs01gs", 0x010221, 0x4d0081, 256 << 10, 512, 0) },
276 /* SST -- large erase sizes are "overlays", "sectors" are 4<< 10 */
277 { INFO("sst25vf040b", 0xbf258d, 0, 64 << 10, 8, ER_4K
) },
278 { INFO("sst25vf080b", 0xbf258e, 0, 64 << 10, 16, ER_4K
) },
279 { INFO("sst25vf016b", 0xbf2541, 0, 64 << 10, 32, ER_4K
) },
280 { INFO("sst25vf032b", 0xbf254a, 0, 64 << 10, 64, ER_4K
) },
281 { INFO("sst25wf512", 0xbf2501, 0, 64 << 10, 1, ER_4K
) },
282 { INFO("sst25wf010", 0xbf2502, 0, 64 << 10, 2, ER_4K
) },
283 { INFO("sst25wf020", 0xbf2503, 0, 64 << 10, 4, ER_4K
) },
284 { INFO("sst25wf040", 0xbf2504, 0, 64 << 10, 8, ER_4K
) },
285 { INFO("sst25wf080", 0xbf2505, 0, 64 << 10, 16, ER_4K
) },
287 /* ST Microelectronics -- newer production may have feature updates */
288 { INFO("m25p05", 0x202010, 0, 32 << 10, 2, 0) },
289 { INFO("m25p10", 0x202011, 0, 32 << 10, 4, 0) },
290 { INFO("m25p20", 0x202012, 0, 64 << 10, 4, 0) },
291 { INFO("m25p40", 0x202013, 0, 64 << 10, 8, 0) },
292 { INFO("m25p80", 0x202014, 0, 64 << 10, 16, 0) },
293 { INFO("m25p16", 0x202015, 0, 64 << 10, 32, 0) },
294 { INFO("m25p32", 0x202016, 0, 64 << 10, 64, 0) },
295 { INFO("m25p64", 0x202017, 0, 64 << 10, 128, 0) },
296 { INFO("m25p128", 0x202018, 0, 256 << 10, 64, 0) },
297 { INFO("n25q032", 0x20ba16, 0, 64 << 10, 64, 0) },
299 { INFO("m45pe10", 0x204011, 0, 64 << 10, 2, 0) },
300 { INFO("m45pe80", 0x204014, 0, 64 << 10, 16, 0) },
301 { INFO("m45pe16", 0x204015, 0, 64 << 10, 32, 0) },
303 { INFO("m25pe20", 0x208012, 0, 64 << 10, 4, 0) },
304 { INFO("m25pe80", 0x208014, 0, 64 << 10, 16, 0) },
305 { INFO("m25pe16", 0x208015, 0, 64 << 10, 32, ER_4K
) },
307 { INFO("m25px32", 0x207116, 0, 64 << 10, 64, ER_4K
) },
308 { INFO("m25px32-s0", 0x207316, 0, 64 << 10, 64, ER_4K
) },
309 { INFO("m25px32-s1", 0x206316, 0, 64 << 10, 64, ER_4K
) },
310 { INFO("m25px64", 0x207117, 0, 64 << 10, 128, 0) },
312 /* Winbond -- w25x "blocks" are 64k, "sectors" are 4KiB */
313 { INFO("w25x10", 0xef3011, 0, 64 << 10, 2, ER_4K
) },
314 { INFO("w25x20", 0xef3012, 0, 64 << 10, 4, ER_4K
) },
315 { INFO("w25x40", 0xef3013, 0, 64 << 10, 8, ER_4K
) },
316 { INFO("w25x80", 0xef3014, 0, 64 << 10, 16, ER_4K
) },
317 { INFO("w25x16", 0xef3015, 0, 64 << 10, 32, ER_4K
) },
318 { INFO("w25x32", 0xef3016, 0, 64 << 10, 64, ER_4K
) },
319 { INFO("w25q32", 0xef4016, 0, 64 << 10, 64, ER_4K
) },
320 { INFO("w25q32dw", 0xef6016, 0, 64 << 10, 64, ER_4K
) },
321 { INFO("w25x64", 0xef3017, 0, 64 << 10, 128, ER_4K
) },
322 { INFO("w25q64", 0xef4017, 0, 64 << 10, 128, ER_4K
) },
323 { INFO("w25q80", 0xef5014, 0, 64 << 10, 16, ER_4K
) },
324 { INFO("w25q80bl", 0xef4014, 0, 64 << 10, 16, ER_4K
) },
325 { INFO("w25q256", 0xef4019, 0, 64 << 10, 512, ER_4K
) },
364 ERASE4_SECTOR
= 0xdc,
366 EN_4BYTE_ADDR
= 0xB7,
367 EX_4BYTE_ADDR
= 0xE9,
369 EXTEND_ADDR_READ
= 0xC8,
370 EXTEND_ADDR_WRITE
= 0xC5,
376 * Micron: 0x35 - enable QPI
377 * Spansion: 0x35 - read control register
398 STATE_COLLECTING_DATA
,
399 STATE_COLLECTING_VAR_LEN_DATA
,
411 #define M25P80_INTERNAL_DATA_BUFFER_SZ 16
413 typedef struct Flash
{
423 uint8_t data
[M25P80_INTERNAL_DATA_BUFFER_SZ
];
426 uint8_t needed_bytes
;
427 uint8_t cmd_in_progress
;
429 uint32_t nonvolatile_cfg
;
430 /* Configuration register for Macronix */
431 uint32_t volatile_cfg
;
432 uint32_t enh_volatile_cfg
;
433 /* Spansion cfg registers. */
434 uint8_t spansion_cr1nv
;
435 uint8_t spansion_cr2nv
;
436 uint8_t spansion_cr3nv
;
437 uint8_t spansion_cr4nv
;
438 uint8_t spansion_cr1v
;
439 uint8_t spansion_cr2v
;
440 uint8_t spansion_cr3v
;
441 uint8_t spansion_cr4v
;
443 bool four_bytes_address_mode
;
450 const FlashPartInfo
*pi
;
454 typedef struct M25P80Class
{
455 SSISlaveClass parent_class
;
459 #define TYPE_M25P80 "m25p80-generic"
460 #define M25P80(obj) \
461 OBJECT_CHECK(Flash, (obj), TYPE_M25P80)
462 #define M25P80_CLASS(klass) \
463 OBJECT_CLASS_CHECK(M25P80Class, (klass), TYPE_M25P80)
464 #define M25P80_GET_CLASS(obj) \
465 OBJECT_GET_CLASS(M25P80Class, (obj), TYPE_M25P80)
467 static inline Manufacturer
get_man(Flash
*s
)
469 switch (s
->pi
->id
[0]) {
483 static void blk_sync_complete(void *opaque
, int ret
)
485 QEMUIOVector
*iov
= opaque
;
487 qemu_iovec_destroy(iov
);
490 /* do nothing. Masters do not directly interact with the backing store,
491 * only the working copy so no mutexing required.
495 static void flash_sync_page(Flash
*s
, int page
)
499 if (!s
->blk
|| blk_is_read_only(s
->blk
)) {
503 iov
= g_new(QEMUIOVector
, 1);
504 qemu_iovec_init(iov
, 1);
505 qemu_iovec_add(iov
, s
->storage
+ page
* s
->pi
->page_size
,
507 blk_aio_pwritev(s
->blk
, page
* s
->pi
->page_size
, iov
, 0,
508 blk_sync_complete
, iov
);
511 static inline void flash_sync_area(Flash
*s
, int64_t off
, int64_t len
)
515 if (!s
->blk
|| blk_is_read_only(s
->blk
)) {
519 assert(!(len
% BDRV_SECTOR_SIZE
));
520 iov
= g_new(QEMUIOVector
, 1);
521 qemu_iovec_init(iov
, 1);
522 qemu_iovec_add(iov
, s
->storage
+ off
, len
);
523 blk_aio_pwritev(s
->blk
, off
, iov
, 0, blk_sync_complete
, iov
);
526 static void flash_erase(Flash
*s
, int offset
, FlashCMD cmd
)
529 uint8_t capa_to_assert
= 0;
535 capa_to_assert
= ER_4K
;
540 capa_to_assert
= ER_32K
;
544 len
= s
->pi
->sector_size
;
550 if (s
->pi
->die_cnt
) {
551 len
= s
->size
/ s
->pi
->die_cnt
;
552 offset
= offset
& (~(len
- 1));
554 qemu_log_mask(LOG_GUEST_ERROR
, "M25P80: die erase is not supported"
563 DB_PRINT_L(0, "offset = %#x, len = %d\n", offset
, len
);
564 if ((s
->pi
->flags
& capa_to_assert
) != capa_to_assert
) {
565 qemu_log_mask(LOG_GUEST_ERROR
, "M25P80: %d erase size not supported by"
569 if (!s
->write_enable
) {
570 qemu_log_mask(LOG_GUEST_ERROR
, "M25P80: erase with write protect!\n");
573 memset(s
->storage
+ offset
, 0xff, len
);
574 flash_sync_area(s
, offset
, len
);
577 static inline void flash_sync_dirty(Flash
*s
, int64_t newpage
)
579 if (s
->dirty_page
>= 0 && s
->dirty_page
!= newpage
) {
580 flash_sync_page(s
, s
->dirty_page
);
581 s
->dirty_page
= newpage
;
586 void flash_write8(Flash
*s
, uint32_t addr
, uint8_t data
)
588 uint32_t page
= addr
/ s
->pi
->page_size
;
589 uint8_t prev
= s
->storage
[s
->cur_addr
];
591 if (!s
->write_enable
) {
592 qemu_log_mask(LOG_GUEST_ERROR
, "M25P80: write with write protect!\n");
595 if ((prev
^ data
) & data
) {
596 DB_PRINT_L(1, "programming zero to one! addr=%" PRIx32
" %" PRIx8
597 " -> %" PRIx8
"\n", addr
, prev
, data
);
600 if (s
->pi
->flags
& EEPROM
) {
601 s
->storage
[s
->cur_addr
] = data
;
603 s
->storage
[s
->cur_addr
] &= data
;
606 flash_sync_dirty(s
, page
);
607 s
->dirty_page
= page
;
610 static inline int get_addr_length(Flash
*s
)
612 /* check if eeprom is in use */
613 if (s
->pi
->flags
== EEPROM
) {
617 switch (s
->cmd_in_progress
) {
632 return s
->four_bytes_address_mode
? 4 : 3;
636 static void complete_collecting_data(Flash
*s
)
640 n
= get_addr_length(s
);
641 s
->cur_addr
= (n
== 3 ? s
->ear
: 0);
642 for (i
= 0; i
< n
; ++i
) {
644 s
->cur_addr
|= s
->data
[i
];
647 s
->cur_addr
&= s
->size
- 1;
649 s
->state
= STATE_IDLE
;
651 switch (s
->cmd_in_progress
) {
658 s
->state
= STATE_PAGE_PROGRAM
;
672 s
->state
= STATE_READ
;
681 flash_erase(s
, s
->cur_addr
, s
->cmd_in_progress
);
684 switch (get_man(s
)) {
686 s
->quad_enable
= !!(s
->data
[1] & 0x02);
689 s
->quad_enable
= extract32(s
->data
[0], 6, 1);
691 s
->four_bytes_address_mode
= extract32(s
->data
[1], 5, 1);
697 if (s
->write_enable
) {
698 s
->write_enable
= false;
701 case EXTEND_ADDR_WRITE
:
705 s
->nonvolatile_cfg
= s
->data
[0] | (s
->data
[1] << 8);
708 s
->volatile_cfg
= s
->data
[0];
711 s
->enh_volatile_cfg
= s
->data
[0];
718 static void reset_memory(Flash
*s
)
720 s
->cmd_in_progress
= NOP
;
723 s
->four_bytes_address_mode
= false;
727 s
->state
= STATE_IDLE
;
728 s
->write_enable
= false;
729 s
->reset_enable
= false;
730 s
->quad_enable
= false;
732 switch (get_man(s
)) {
735 s
->volatile_cfg
|= VCFG_DUMMY
;
736 s
->volatile_cfg
|= VCFG_WRAP_SEQUENTIAL
;
737 if ((s
->nonvolatile_cfg
& NVCFG_XIP_MODE_MASK
)
738 != NVCFG_XIP_MODE_DISABLED
) {
739 s
->volatile_cfg
|= VCFG_XIP_MODE_ENABLED
;
741 s
->volatile_cfg
|= deposit32(s
->volatile_cfg
,
744 extract32(s
->nonvolatile_cfg
,
749 s
->enh_volatile_cfg
= 0;
750 s
->enh_volatile_cfg
|= EVCFG_OUT_DRIVER_STRENGHT_DEF
;
751 s
->enh_volatile_cfg
|= EVCFG_VPP_ACCELERATOR
;
752 s
->enh_volatile_cfg
|= EVCFG_RESET_HOLD_ENABLED
;
753 if (s
->nonvolatile_cfg
& NVCFG_DUAL_IO_MASK
) {
754 s
->enh_volatile_cfg
|= EVCFG_DUAL_IO_ENABLED
;
756 if (s
->nonvolatile_cfg
& NVCFG_QUAD_IO_MASK
) {
757 s
->enh_volatile_cfg
|= EVCFG_QUAD_IO_ENABLED
;
759 if (!(s
->nonvolatile_cfg
& NVCFG_4BYTE_ADDR_MASK
)) {
760 s
->four_bytes_address_mode
= true;
762 if (!(s
->nonvolatile_cfg
& NVCFG_LOWER_SEGMENT_MASK
)) {
763 s
->ear
= s
->size
/ MAX_3BYTES_SIZE
- 1;
767 s
->volatile_cfg
= 0x7;
770 s
->spansion_cr1v
= s
->spansion_cr1nv
;
771 s
->spansion_cr2v
= s
->spansion_cr2nv
;
772 s
->spansion_cr3v
= s
->spansion_cr3nv
;
773 s
->spansion_cr4v
= s
->spansion_cr4nv
;
774 s
->quad_enable
= extract32(s
->spansion_cr1v
,
775 SPANSION_QUAD_CFG_POS
,
776 SPANSION_QUAD_CFG_LEN
778 s
->four_bytes_address_mode
= extract32(s
->spansion_cr2v
,
779 SPANSION_ADDR_LEN_POS
,
780 SPANSION_ADDR_LEN_LEN
787 DB_PRINT_L(0, "Reset done.\n");
790 static void decode_fast_read_cmd(Flash
*s
)
792 s
->needed_bytes
= get_addr_length(s
);
793 switch (get_man(s
)) {
794 /* Dummy cycles - modeled with bytes writes instead of bits */
796 s
->needed_bytes
+= 8;
799 s
->needed_bytes
+= extract32(s
->volatile_cfg
, 4, 4);
802 if (extract32(s
->volatile_cfg
, 6, 2) == 1) {
803 s
->needed_bytes
+= 6;
805 s
->needed_bytes
+= 8;
809 s
->needed_bytes
+= extract32(s
->spansion_cr2v
,
810 SPANSION_DUMMY_CLK_POS
,
811 SPANSION_DUMMY_CLK_LEN
819 s
->state
= STATE_COLLECTING_DATA
;
822 static void decode_dio_read_cmd(Flash
*s
)
824 s
->needed_bytes
= get_addr_length(s
);
825 /* Dummy cycles modeled with bytes writes instead of bits */
826 switch (get_man(s
)) {
828 s
->needed_bytes
+= WINBOND_CONTINUOUS_READ_MODE_CMD_LEN
;
831 s
->needed_bytes
+= SPANSION_CONTINUOUS_READ_MODE_CMD_LEN
;
832 s
->needed_bytes
+= extract32(s
->spansion_cr2v
,
833 SPANSION_DUMMY_CLK_POS
,
834 SPANSION_DUMMY_CLK_LEN
838 s
->needed_bytes
+= extract32(s
->volatile_cfg
, 4, 4);
841 switch (extract32(s
->volatile_cfg
, 6, 2)) {
843 s
->needed_bytes
+= 6;
846 s
->needed_bytes
+= 8;
849 s
->needed_bytes
+= 4;
858 s
->state
= STATE_COLLECTING_DATA
;
861 static void decode_qio_read_cmd(Flash
*s
)
863 s
->needed_bytes
= get_addr_length(s
);
864 /* Dummy cycles modeled with bytes writes instead of bits */
865 switch (get_man(s
)) {
867 s
->needed_bytes
+= WINBOND_CONTINUOUS_READ_MODE_CMD_LEN
;
868 s
->needed_bytes
+= 4;
871 s
->needed_bytes
+= SPANSION_CONTINUOUS_READ_MODE_CMD_LEN
;
872 s
->needed_bytes
+= extract32(s
->spansion_cr2v
,
873 SPANSION_DUMMY_CLK_POS
,
874 SPANSION_DUMMY_CLK_LEN
878 s
->needed_bytes
+= extract32(s
->volatile_cfg
, 4, 4);
881 switch (extract32(s
->volatile_cfg
, 6, 2)) {
883 s
->needed_bytes
+= 4;
886 s
->needed_bytes
+= 8;
889 s
->needed_bytes
+= 6;
898 s
->state
= STATE_COLLECTING_DATA
;
901 static void decode_new_cmd(Flash
*s
, uint32_t value
)
903 s
->cmd_in_progress
= value
;
905 DB_PRINT_L(0, "decoded new command:%x\n", value
);
907 if (value
!= RESET_MEMORY
) {
908 s
->reset_enable
= false;
928 s
->needed_bytes
= get_addr_length(s
);
931 s
->state
= STATE_COLLECTING_DATA
;
940 decode_fast_read_cmd(s
);
945 decode_dio_read_cmd(s
);
950 decode_qio_read_cmd(s
);
954 if (s
->write_enable
) {
955 switch (get_man(s
)) {
958 s
->state
= STATE_COLLECTING_DATA
;
962 s
->state
= STATE_COLLECTING_VAR_LEN_DATA
;
966 s
->state
= STATE_COLLECTING_DATA
;
973 s
->write_enable
= false;
976 s
->write_enable
= true;
980 s
->data
[0] = (!!s
->write_enable
) << 1;
981 if (get_man(s
) == MAN_MACRONIX
) {
982 s
->data
[0] |= (!!s
->quad_enable
) << 6;
986 s
->state
= STATE_READING_DATA
;
990 s
->data
[0] = FSR_FLASH_READY
;
991 if (s
->four_bytes_address_mode
) {
992 s
->data
[0] |= FSR_4BYTE_ADDR_MODE_ENABLED
;
996 s
->state
= STATE_READING_DATA
;
1000 DB_PRINT_L(0, "populated jedec code\n");
1001 for (i
= 0; i
< s
->pi
->id_len
; i
++) {
1002 s
->data
[i
] = s
->pi
->id
[i
];
1005 s
->len
= s
->pi
->id_len
;
1007 s
->state
= STATE_READING_DATA
;
1011 s
->data
[0] = s
->volatile_cfg
& 0xFF;
1012 s
->data
[0] |= (!!s
->four_bytes_address_mode
) << 5;
1015 s
->state
= STATE_READING_DATA
;
1019 if (s
->write_enable
) {
1020 DB_PRINT_L(0, "chip erase\n");
1021 flash_erase(s
, 0, BULK_ERASE
);
1023 qemu_log_mask(LOG_GUEST_ERROR
, "M25P80: chip erase with write "
1030 s
->four_bytes_address_mode
= true;
1033 s
->four_bytes_address_mode
= false;
1035 case EXTEND_ADDR_READ
:
1036 s
->data
[0] = s
->ear
;
1039 s
->state
= STATE_READING_DATA
;
1041 case EXTEND_ADDR_WRITE
:
1042 if (s
->write_enable
) {
1043 s
->needed_bytes
= 1;
1046 s
->state
= STATE_COLLECTING_DATA
;
1050 s
->data
[0] = s
->nonvolatile_cfg
& 0xFF;
1051 s
->data
[1] = (s
->nonvolatile_cfg
>> 8) & 0xFF;
1054 s
->state
= STATE_READING_DATA
;
1057 if (s
->write_enable
&& get_man(s
) == MAN_NUMONYX
) {
1058 s
->needed_bytes
= 2;
1061 s
->state
= STATE_COLLECTING_DATA
;
1065 s
->data
[0] = s
->volatile_cfg
& 0xFF;
1068 s
->state
= STATE_READING_DATA
;
1071 if (s
->write_enable
) {
1072 s
->needed_bytes
= 1;
1075 s
->state
= STATE_COLLECTING_DATA
;
1079 s
->data
[0] = s
->enh_volatile_cfg
& 0xFF;
1082 s
->state
= STATE_READING_DATA
;
1085 if (s
->write_enable
) {
1086 s
->needed_bytes
= 1;
1089 s
->state
= STATE_COLLECTING_DATA
;
1093 s
->reset_enable
= true;
1096 if (s
->reset_enable
) {
1101 switch (get_man(s
)) {
1103 s
->data
[0] = (!!s
->quad_enable
) << 1;
1106 s
->state
= STATE_READING_DATA
;
1109 s
->quad_enable
= true;
1116 s
->quad_enable
= false;
1119 qemu_log_mask(LOG_GUEST_ERROR
, "M25P80: Unknown cmd %x\n", value
);
1124 static int m25p80_cs(SSISlave
*ss
, bool select
)
1126 Flash
*s
= M25P80(ss
);
1129 if (s
->state
== STATE_COLLECTING_VAR_LEN_DATA
) {
1130 complete_collecting_data(s
);
1134 s
->state
= STATE_IDLE
;
1135 flash_sync_dirty(s
, -1);
1138 DB_PRINT_L(0, "%sselect\n", select
? "de" : "");
1143 static uint32_t m25p80_transfer8(SSISlave
*ss
, uint32_t tx
)
1145 Flash
*s
= M25P80(ss
);
1150 case STATE_PAGE_PROGRAM
:
1151 DB_PRINT_L(1, "page program cur_addr=%#" PRIx32
" data=%" PRIx8
"\n",
1152 s
->cur_addr
, (uint8_t)tx
);
1153 flash_write8(s
, s
->cur_addr
, (uint8_t)tx
);
1154 s
->cur_addr
= (s
->cur_addr
+ 1) & (s
->size
- 1);
1158 r
= s
->storage
[s
->cur_addr
];
1159 DB_PRINT_L(1, "READ 0x%" PRIx32
"=%" PRIx8
"\n", s
->cur_addr
,
1161 s
->cur_addr
= (s
->cur_addr
+ 1) & (s
->size
- 1);
1164 case STATE_COLLECTING_DATA
:
1165 case STATE_COLLECTING_VAR_LEN_DATA
:
1167 if (s
->len
>= M25P80_INTERNAL_DATA_BUFFER_SZ
) {
1168 qemu_log_mask(LOG_GUEST_ERROR
,
1169 "M25P80: Write overrun internal data buffer. "
1170 "SPI controller (QEMU emulator or guest driver) "
1171 "is misbehaving\n");
1172 s
->len
= s
->pos
= 0;
1173 s
->state
= STATE_IDLE
;
1177 s
->data
[s
->len
] = (uint8_t)tx
;
1180 if (s
->len
== s
->needed_bytes
) {
1181 complete_collecting_data(s
);
1185 case STATE_READING_DATA
:
1187 if (s
->pos
>= M25P80_INTERNAL_DATA_BUFFER_SZ
) {
1188 qemu_log_mask(LOG_GUEST_ERROR
,
1189 "M25P80: Read overrun internal data buffer. "
1190 "SPI controller (QEMU emulator or guest driver) "
1191 "is misbehaving\n");
1192 s
->len
= s
->pos
= 0;
1193 s
->state
= STATE_IDLE
;
1197 r
= s
->data
[s
->pos
];
1199 if (s
->pos
== s
->len
) {
1201 s
->state
= STATE_IDLE
;
1207 decode_new_cmd(s
, (uint8_t)tx
);
1214 static void m25p80_realize(SSISlave
*ss
, Error
**errp
)
1216 Flash
*s
= M25P80(ss
);
1217 M25P80Class
*mc
= M25P80_GET_CLASS(s
);
1221 s
->size
= s
->pi
->sector_size
* s
->pi
->n_sectors
;
1225 DB_PRINT_L(0, "Binding to IF_MTD drive\n");
1226 s
->storage
= blk_blockalign(s
->blk
, s
->size
);
1228 if (blk_pread(s
->blk
, 0, s
->storage
, s
->size
) != s
->size
) {
1229 error_setg(errp
, "failed to read the initial flash content");
1233 DB_PRINT_L(0, "No BDRV - binding to RAM\n");
1234 s
->storage
= blk_blockalign(NULL
, s
->size
);
1235 memset(s
->storage
, 0xFF, s
->size
);
1239 static void m25p80_reset(DeviceState
*d
)
1241 Flash
*s
= M25P80(d
);
1246 static void m25p80_pre_save(void *opaque
)
1248 flash_sync_dirty((Flash
*)opaque
, -1);
1251 static Property m25p80_properties
[] = {
1252 /* This is default value for Micron flash */
1253 DEFINE_PROP_UINT32("nonvolatile-cfg", Flash
, nonvolatile_cfg
, 0x8FFF),
1254 DEFINE_PROP_UINT8("spansion-cr1nv", Flash
, spansion_cr1nv
, 0x0),
1255 DEFINE_PROP_UINT8("spansion-cr2nv", Flash
, spansion_cr2nv
, 0x8),
1256 DEFINE_PROP_UINT8("spansion-cr3nv", Flash
, spansion_cr3nv
, 0x2),
1257 DEFINE_PROP_UINT8("spansion-cr4nv", Flash
, spansion_cr4nv
, 0x10),
1258 DEFINE_PROP_DRIVE("drive", Flash
, blk
),
1259 DEFINE_PROP_END_OF_LIST(),
1262 static const VMStateDescription vmstate_m25p80
= {
1265 .minimum_version_id
= 0,
1266 .pre_save
= m25p80_pre_save
,
1267 .fields
= (VMStateField
[]) {
1268 VMSTATE_UINT8(state
, Flash
),
1269 VMSTATE_UINT8_ARRAY(data
, Flash
, M25P80_INTERNAL_DATA_BUFFER_SZ
),
1270 VMSTATE_UINT32(len
, Flash
),
1271 VMSTATE_UINT32(pos
, Flash
),
1272 VMSTATE_UINT8(needed_bytes
, Flash
),
1273 VMSTATE_UINT8(cmd_in_progress
, Flash
),
1274 VMSTATE_UINT32(cur_addr
, Flash
),
1275 VMSTATE_BOOL(write_enable
, Flash
),
1276 VMSTATE_BOOL(reset_enable
, Flash
),
1277 VMSTATE_UINT8(ear
, Flash
),
1278 VMSTATE_BOOL(four_bytes_address_mode
, Flash
),
1279 VMSTATE_UINT32(nonvolatile_cfg
, Flash
),
1280 VMSTATE_UINT32(volatile_cfg
, Flash
),
1281 VMSTATE_UINT32(enh_volatile_cfg
, Flash
),
1282 VMSTATE_BOOL(quad_enable
, Flash
),
1283 VMSTATE_UINT8(spansion_cr1nv
, Flash
),
1284 VMSTATE_UINT8(spansion_cr2nv
, Flash
),
1285 VMSTATE_UINT8(spansion_cr3nv
, Flash
),
1286 VMSTATE_UINT8(spansion_cr4nv
, Flash
),
1287 VMSTATE_END_OF_LIST()
1291 static void m25p80_class_init(ObjectClass
*klass
, void *data
)
1293 DeviceClass
*dc
= DEVICE_CLASS(klass
);
1294 SSISlaveClass
*k
= SSI_SLAVE_CLASS(klass
);
1295 M25P80Class
*mc
= M25P80_CLASS(klass
);
1297 k
->realize
= m25p80_realize
;
1298 k
->transfer
= m25p80_transfer8
;
1299 k
->set_cs
= m25p80_cs
;
1300 k
->cs_polarity
= SSI_CS_LOW
;
1301 dc
->vmsd
= &vmstate_m25p80
;
1302 dc
->props
= m25p80_properties
;
1303 dc
->reset
= m25p80_reset
;
1307 static const TypeInfo m25p80_info
= {
1308 .name
= TYPE_M25P80
,
1309 .parent
= TYPE_SSI_SLAVE
,
1310 .instance_size
= sizeof(Flash
),
1311 .class_size
= sizeof(M25P80Class
),
1315 static void m25p80_register_types(void)
1319 type_register_static(&m25p80_info
);
1320 for (i
= 0; i
< ARRAY_SIZE(known_devices
); ++i
) {
1322 .name
= known_devices
[i
].part_name
,
1323 .parent
= TYPE_M25P80
,
1324 .class_init
= m25p80_class_init
,
1325 .class_data
= (void *)&known_devices
[i
],
1331 type_init(m25p80_register_types
)