2 * ARM mach-virt emulation
4 * Copyright (c) 2013 Linaro Limited
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2 or later, as published by the Free Software Foundation.
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 * You should have received a copy of the GNU General Public License along with
16 * this program. If not, see <http://www.gnu.org/licenses/>.
18 * Emulate a virtual board which works by passing Linux all the information
19 * it needs about what devices are present via the device tree.
20 * There are some restrictions about what we can do here:
21 * + we can only present devices whose Linux drivers will work based
22 * purely on the device tree with no platform data at all
23 * + we want to present a very stripped-down minimalist platform,
24 * both because this reduces the security attack surface from the guest
25 * and also because it reduces our exposure to being broken when
26 * the kernel updates its device tree bindings and requires further
27 * information in a device binding that we aren't providing.
28 * This is essentially the same approach kvmtool uses.
31 #include "hw/sysbus.h"
32 #include "hw/arm/arm.h"
33 #include "hw/arm/primecell.h"
34 #include "hw/arm/virt.h"
35 #include "hw/devices.h"
37 #include "sysemu/block-backend.h"
38 #include "sysemu/device_tree.h"
39 #include "sysemu/sysemu.h"
40 #include "sysemu/kvm.h"
41 #include "hw/boards.h"
42 #include "hw/loader.h"
43 #include "exec/address-spaces.h"
44 #include "qemu/bitops.h"
45 #include "qemu/error-report.h"
46 #include "hw/pci-host/gpex.h"
47 #include "hw/arm/virt-acpi-build.h"
48 #include "hw/arm/sysbus-fdt.h"
49 #include "hw/platform-bus.h"
50 #include "hw/arm/fdt.h"
51 #include "hw/intc/arm_gic_common.h"
53 #include "hw/smbios/smbios.h"
55 /* Number of external interrupt lines to configure the GIC with */
58 #define PLATFORM_BUS_NUM_IRQS 64
60 static ARMPlatformBusSystemParams platform_bus_params
;
62 typedef struct VirtBoardInfo
{
63 struct arm_boot_info bootinfo
;
64 const char *cpu_model
;
65 const MemMapEntry
*memmap
;
70 uint32_t clock_phandle
;
77 VirtBoardInfo
*daughterboard
;
86 #define TYPE_VIRT_MACHINE "virt"
87 #define VIRT_MACHINE(obj) \
88 OBJECT_CHECK(VirtMachineState, (obj), TYPE_VIRT_MACHINE)
89 #define VIRT_MACHINE_GET_CLASS(obj) \
90 OBJECT_GET_CLASS(VirtMachineClass, obj, TYPE_VIRT_MACHINE)
91 #define VIRT_MACHINE_CLASS(klass) \
92 OBJECT_CLASS_CHECK(VirtMachineClass, klass, TYPE_VIRT_MACHINE)
94 /* Addresses and sizes of our components.
95 * 0..128MB is space for a flash device so we can run bootrom code such as UEFI.
96 * 128MB..256MB is used for miscellaneous device I/O.
97 * 256MB..1GB is reserved for possible future PCI support (ie where the
98 * PCI memory window will go if we add a PCI host controller).
99 * 1GB and up is RAM (which may happily spill over into the
100 * high memory region beyond 4GB).
101 * This represents a compromise between how much RAM can be given to
102 * a 32 bit VM and leaving space for expansion and in particular for PCI.
103 * Note that devices should generally be placed at multiples of 0x10000,
104 * to accommodate guests using 64K pages.
106 static const MemMapEntry a15memmap
[] = {
107 /* Space up to 0x8000000 is reserved for a boot ROM */
108 [VIRT_FLASH
] = { 0, 0x08000000 },
109 [VIRT_CPUPERIPHS
] = { 0x08000000, 0x00020000 },
110 /* GIC distributor and CPU interfaces sit inside the CPU peripheral space */
111 [VIRT_GIC_DIST
] = { 0x08000000, 0x00010000 },
112 [VIRT_GIC_CPU
] = { 0x08010000, 0x00010000 },
113 [VIRT_GIC_V2M
] = { 0x08020000, 0x00001000 },
114 [VIRT_UART
] = { 0x09000000, 0x00001000 },
115 [VIRT_RTC
] = { 0x09010000, 0x00001000 },
116 [VIRT_FW_CFG
] = { 0x09020000, 0x0000000a },
117 [VIRT_MMIO
] = { 0x0a000000, 0x00000200 },
118 /* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */
119 [VIRT_PLATFORM_BUS
] = { 0x0c000000, 0x02000000 },
120 [VIRT_PCIE_MMIO
] = { 0x10000000, 0x2eff0000 },
121 [VIRT_PCIE_PIO
] = { 0x3eff0000, 0x00010000 },
122 [VIRT_PCIE_ECAM
] = { 0x3f000000, 0x01000000 },
123 [VIRT_MEM
] = { 0x40000000, 30ULL * 1024 * 1024 * 1024 },
124 /* Second PCIe window, 512GB wide at the 512GB boundary */
125 [VIRT_PCIE_MMIO_HIGH
] = { 0x8000000000ULL
, 0x8000000000ULL
},
128 static const int a15irqmap
[] = {
131 [VIRT_PCIE
] = 3, /* ... to 6 */
132 [VIRT_MMIO
] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */
133 [VIRT_GIC_V2M
] = 48, /* ...to 48 + NUM_GICV2M_SPIS - 1 */
134 [VIRT_PLATFORM_BUS
] = 112, /* ...to 112 + PLATFORM_BUS_NUM_IRQS -1 */
137 static VirtBoardInfo machines
[] = {
139 .cpu_model
= "cortex-a15",
144 .cpu_model
= "cortex-a53",
149 .cpu_model
= "cortex-a57",
160 static VirtBoardInfo
*find_machine_info(const char *cpu
)
164 for (i
= 0; i
< ARRAY_SIZE(machines
); i
++) {
165 if (strcmp(cpu
, machines
[i
].cpu_model
) == 0) {
172 static void create_fdt(VirtBoardInfo
*vbi
)
174 void *fdt
= create_device_tree(&vbi
->fdt_size
);
177 error_report("create_device_tree() failed");
184 qemu_fdt_setprop_string(fdt
, "/", "compatible", "linux,dummy-virt");
185 qemu_fdt_setprop_cell(fdt
, "/", "#address-cells", 0x2);
186 qemu_fdt_setprop_cell(fdt
, "/", "#size-cells", 0x2);
189 * /chosen and /memory nodes must exist for load_dtb
190 * to fill in necessary properties later
192 qemu_fdt_add_subnode(fdt
, "/chosen");
193 qemu_fdt_add_subnode(fdt
, "/memory");
194 qemu_fdt_setprop_string(fdt
, "/memory", "device_type", "memory");
196 /* Clock node, for the benefit of the UART. The kernel device tree
197 * binding documentation claims the PL011 node clock properties are
198 * optional but in practice if you omit them the kernel refuses to
199 * probe for the device.
201 vbi
->clock_phandle
= qemu_fdt_alloc_phandle(fdt
);
202 qemu_fdt_add_subnode(fdt
, "/apb-pclk");
203 qemu_fdt_setprop_string(fdt
, "/apb-pclk", "compatible", "fixed-clock");
204 qemu_fdt_setprop_cell(fdt
, "/apb-pclk", "#clock-cells", 0x0);
205 qemu_fdt_setprop_cell(fdt
, "/apb-pclk", "clock-frequency", 24000000);
206 qemu_fdt_setprop_string(fdt
, "/apb-pclk", "clock-output-names",
208 qemu_fdt_setprop_cell(fdt
, "/apb-pclk", "phandle", vbi
->clock_phandle
);
212 static void fdt_add_psci_node(const VirtBoardInfo
*vbi
)
214 uint32_t cpu_suspend_fn
;
218 void *fdt
= vbi
->fdt
;
219 ARMCPU
*armcpu
= ARM_CPU(qemu_get_cpu(0));
221 qemu_fdt_add_subnode(fdt
, "/psci");
222 if (armcpu
->psci_version
== 2) {
223 const char comp
[] = "arm,psci-0.2\0arm,psci";
224 qemu_fdt_setprop(fdt
, "/psci", "compatible", comp
, sizeof(comp
));
226 cpu_off_fn
= QEMU_PSCI_0_2_FN_CPU_OFF
;
227 if (arm_feature(&armcpu
->env
, ARM_FEATURE_AARCH64
)) {
228 cpu_suspend_fn
= QEMU_PSCI_0_2_FN64_CPU_SUSPEND
;
229 cpu_on_fn
= QEMU_PSCI_0_2_FN64_CPU_ON
;
230 migrate_fn
= QEMU_PSCI_0_2_FN64_MIGRATE
;
232 cpu_suspend_fn
= QEMU_PSCI_0_2_FN_CPU_SUSPEND
;
233 cpu_on_fn
= QEMU_PSCI_0_2_FN_CPU_ON
;
234 migrate_fn
= QEMU_PSCI_0_2_FN_MIGRATE
;
237 qemu_fdt_setprop_string(fdt
, "/psci", "compatible", "arm,psci");
239 cpu_suspend_fn
= QEMU_PSCI_0_1_FN_CPU_SUSPEND
;
240 cpu_off_fn
= QEMU_PSCI_0_1_FN_CPU_OFF
;
241 cpu_on_fn
= QEMU_PSCI_0_1_FN_CPU_ON
;
242 migrate_fn
= QEMU_PSCI_0_1_FN_MIGRATE
;
245 /* We adopt the PSCI spec's nomenclature, and use 'conduit' to refer
246 * to the instruction that should be used to invoke PSCI functions.
247 * However, the device tree binding uses 'method' instead, so that is
248 * what we should use here.
250 qemu_fdt_setprop_string(fdt
, "/psci", "method", "hvc");
252 qemu_fdt_setprop_cell(fdt
, "/psci", "cpu_suspend", cpu_suspend_fn
);
253 qemu_fdt_setprop_cell(fdt
, "/psci", "cpu_off", cpu_off_fn
);
254 qemu_fdt_setprop_cell(fdt
, "/psci", "cpu_on", cpu_on_fn
);
255 qemu_fdt_setprop_cell(fdt
, "/psci", "migrate", migrate_fn
);
258 static void fdt_add_timer_nodes(const VirtBoardInfo
*vbi
)
260 /* Note that on A15 h/w these interrupts are level-triggered,
261 * but for the GIC implementation provided by both QEMU and KVM
262 * they are edge-triggered.
265 uint32_t irqflags
= GIC_FDT_IRQ_FLAGS_EDGE_LO_HI
;
267 irqflags
= deposit32(irqflags
, GIC_FDT_IRQ_PPI_CPU_START
,
268 GIC_FDT_IRQ_PPI_CPU_WIDTH
, (1 << vbi
->smp_cpus
) - 1);
270 qemu_fdt_add_subnode(vbi
->fdt
, "/timer");
272 armcpu
= ARM_CPU(qemu_get_cpu(0));
273 if (arm_feature(&armcpu
->env
, ARM_FEATURE_V8
)) {
274 const char compat
[] = "arm,armv8-timer\0arm,armv7-timer";
275 qemu_fdt_setprop(vbi
->fdt
, "/timer", "compatible",
276 compat
, sizeof(compat
));
278 qemu_fdt_setprop_string(vbi
->fdt
, "/timer", "compatible",
281 qemu_fdt_setprop_cells(vbi
->fdt
, "/timer", "interrupts",
282 GIC_FDT_IRQ_TYPE_PPI
, ARCH_TIMER_S_EL1_IRQ
, irqflags
,
283 GIC_FDT_IRQ_TYPE_PPI
, ARCH_TIMER_NS_EL1_IRQ
, irqflags
,
284 GIC_FDT_IRQ_TYPE_PPI
, ARCH_TIMER_VIRT_IRQ
, irqflags
,
285 GIC_FDT_IRQ_TYPE_PPI
, ARCH_TIMER_NS_EL2_IRQ
, irqflags
);
288 static void fdt_add_cpu_nodes(const VirtBoardInfo
*vbi
)
294 * From Documentation/devicetree/bindings/arm/cpus.txt
295 * On ARM v8 64-bit systems value should be set to 2,
296 * that corresponds to the MPIDR_EL1 register size.
297 * If MPIDR_EL1[63:32] value is equal to 0 on all CPUs
298 * in the system, #address-cells can be set to 1, since
299 * MPIDR_EL1[63:32] bits are not used for CPUs
302 * Here we actually don't know whether our system is 32- or 64-bit one.
303 * The simplest way to go is to examine affinity IDs of all our CPUs. If
304 * at least one of them has Aff3 populated, we set #address-cells to 2.
306 for (cpu
= 0; cpu
< vbi
->smp_cpus
; cpu
++) {
307 ARMCPU
*armcpu
= ARM_CPU(qemu_get_cpu(cpu
));
309 if (armcpu
->mp_affinity
& ARM_AFF3_MASK
) {
315 qemu_fdt_add_subnode(vbi
->fdt
, "/cpus");
316 qemu_fdt_setprop_cell(vbi
->fdt
, "/cpus", "#address-cells", addr_cells
);
317 qemu_fdt_setprop_cell(vbi
->fdt
, "/cpus", "#size-cells", 0x0);
319 for (cpu
= vbi
->smp_cpus
- 1; cpu
>= 0; cpu
--) {
320 char *nodename
= g_strdup_printf("/cpus/cpu@%d", cpu
);
321 ARMCPU
*armcpu
= ARM_CPU(qemu_get_cpu(cpu
));
323 qemu_fdt_add_subnode(vbi
->fdt
, nodename
);
324 qemu_fdt_setprop_string(vbi
->fdt
, nodename
, "device_type", "cpu");
325 qemu_fdt_setprop_string(vbi
->fdt
, nodename
, "compatible",
326 armcpu
->dtb_compatible
);
328 if (vbi
->smp_cpus
> 1) {
329 qemu_fdt_setprop_string(vbi
->fdt
, nodename
,
330 "enable-method", "psci");
333 if (addr_cells
== 2) {
334 qemu_fdt_setprop_u64(vbi
->fdt
, nodename
, "reg",
335 armcpu
->mp_affinity
);
337 qemu_fdt_setprop_cell(vbi
->fdt
, nodename
, "reg",
338 armcpu
->mp_affinity
);
345 static void fdt_add_v2m_gic_node(VirtBoardInfo
*vbi
)
347 vbi
->v2m_phandle
= qemu_fdt_alloc_phandle(vbi
->fdt
);
348 qemu_fdt_add_subnode(vbi
->fdt
, "/intc/v2m");
349 qemu_fdt_setprop_string(vbi
->fdt
, "/intc/v2m", "compatible",
350 "arm,gic-v2m-frame");
351 qemu_fdt_setprop(vbi
->fdt
, "/intc/v2m", "msi-controller", NULL
, 0);
352 qemu_fdt_setprop_sized_cells(vbi
->fdt
, "/intc/v2m", "reg",
353 2, vbi
->memmap
[VIRT_GIC_V2M
].base
,
354 2, vbi
->memmap
[VIRT_GIC_V2M
].size
);
355 qemu_fdt_setprop_cell(vbi
->fdt
, "/intc/v2m", "phandle", vbi
->v2m_phandle
);
358 static void fdt_add_gic_node(VirtBoardInfo
*vbi
)
360 vbi
->gic_phandle
= qemu_fdt_alloc_phandle(vbi
->fdt
);
361 qemu_fdt_setprop_cell(vbi
->fdt
, "/", "interrupt-parent", vbi
->gic_phandle
);
363 qemu_fdt_add_subnode(vbi
->fdt
, "/intc");
364 /* 'cortex-a15-gic' means 'GIC v2' */
365 qemu_fdt_setprop_string(vbi
->fdt
, "/intc", "compatible",
366 "arm,cortex-a15-gic");
367 qemu_fdt_setprop_cell(vbi
->fdt
, "/intc", "#interrupt-cells", 3);
368 qemu_fdt_setprop(vbi
->fdt
, "/intc", "interrupt-controller", NULL
, 0);
369 qemu_fdt_setprop_sized_cells(vbi
->fdt
, "/intc", "reg",
370 2, vbi
->memmap
[VIRT_GIC_DIST
].base
,
371 2, vbi
->memmap
[VIRT_GIC_DIST
].size
,
372 2, vbi
->memmap
[VIRT_GIC_CPU
].base
,
373 2, vbi
->memmap
[VIRT_GIC_CPU
].size
);
374 qemu_fdt_setprop_cell(vbi
->fdt
, "/intc", "#address-cells", 0x2);
375 qemu_fdt_setprop_cell(vbi
->fdt
, "/intc", "#size-cells", 0x2);
376 qemu_fdt_setprop(vbi
->fdt
, "/intc", "ranges", NULL
, 0);
377 qemu_fdt_setprop_cell(vbi
->fdt
, "/intc", "phandle", vbi
->gic_phandle
);
380 static void create_v2m(VirtBoardInfo
*vbi
, qemu_irq
*pic
)
383 int irq
= vbi
->irqmap
[VIRT_GIC_V2M
];
386 dev
= qdev_create(NULL
, "arm-gicv2m");
387 sysbus_mmio_map(SYS_BUS_DEVICE(dev
), 0, vbi
->memmap
[VIRT_GIC_V2M
].base
);
388 qdev_prop_set_uint32(dev
, "base-spi", irq
);
389 qdev_prop_set_uint32(dev
, "num-spi", NUM_GICV2M_SPIS
);
390 qdev_init_nofail(dev
);
392 for (i
= 0; i
< NUM_GICV2M_SPIS
; i
++) {
393 sysbus_connect_irq(SYS_BUS_DEVICE(dev
), i
, pic
[irq
+ i
]);
396 fdt_add_v2m_gic_node(vbi
);
399 static void create_gic(VirtBoardInfo
*vbi
, qemu_irq
*pic
, bool secure
)
401 /* We create a standalone GIC v2 */
403 SysBusDevice
*gicbusdev
;
407 gictype
= gic_class_name();
409 gicdev
= qdev_create(NULL
, gictype
);
410 qdev_prop_set_uint32(gicdev
, "revision", 2);
411 qdev_prop_set_uint32(gicdev
, "num-cpu", smp_cpus
);
412 /* Note that the num-irq property counts both internal and external
413 * interrupts; there are always 32 of the former (mandated by GIC spec).
415 qdev_prop_set_uint32(gicdev
, "num-irq", NUM_IRQS
+ 32);
416 if (!kvm_irqchip_in_kernel()) {
417 qdev_prop_set_bit(gicdev
, "has-security-extensions", secure
);
419 qdev_init_nofail(gicdev
);
420 gicbusdev
= SYS_BUS_DEVICE(gicdev
);
421 sysbus_mmio_map(gicbusdev
, 0, vbi
->memmap
[VIRT_GIC_DIST
].base
);
422 sysbus_mmio_map(gicbusdev
, 1, vbi
->memmap
[VIRT_GIC_CPU
].base
);
424 /* Wire the outputs from each CPU's generic timer to the
425 * appropriate GIC PPI inputs, and the GIC's IRQ output to
426 * the CPU's IRQ input.
428 for (i
= 0; i
< smp_cpus
; i
++) {
429 DeviceState
*cpudev
= DEVICE(qemu_get_cpu(i
));
430 int ppibase
= NUM_IRQS
+ i
* GIC_INTERNAL
+ GIC_NR_SGIS
;
432 /* Mapping from the output timer irq lines from the CPU to the
433 * GIC PPI inputs we use for the virt board.
435 const int timer_irq
[] = {
436 [GTIMER_PHYS
] = ARCH_TIMER_NS_EL1_IRQ
,
437 [GTIMER_VIRT
] = ARCH_TIMER_VIRT_IRQ
,
438 [GTIMER_HYP
] = ARCH_TIMER_NS_EL2_IRQ
,
439 [GTIMER_SEC
] = ARCH_TIMER_S_EL1_IRQ
,
442 for (irq
= 0; irq
< ARRAY_SIZE(timer_irq
); irq
++) {
443 qdev_connect_gpio_out(cpudev
, irq
,
444 qdev_get_gpio_in(gicdev
,
445 ppibase
+ timer_irq
[irq
]));
448 sysbus_connect_irq(gicbusdev
, i
, qdev_get_gpio_in(cpudev
, ARM_CPU_IRQ
));
449 sysbus_connect_irq(gicbusdev
, i
+ smp_cpus
,
450 qdev_get_gpio_in(cpudev
, ARM_CPU_FIQ
));
453 for (i
= 0; i
< NUM_IRQS
; i
++) {
454 pic
[i
] = qdev_get_gpio_in(gicdev
, i
);
457 fdt_add_gic_node(vbi
);
459 create_v2m(vbi
, pic
);
462 static void create_uart(const VirtBoardInfo
*vbi
, qemu_irq
*pic
)
465 hwaddr base
= vbi
->memmap
[VIRT_UART
].base
;
466 hwaddr size
= vbi
->memmap
[VIRT_UART
].size
;
467 int irq
= vbi
->irqmap
[VIRT_UART
];
468 const char compat
[] = "arm,pl011\0arm,primecell";
469 const char clocknames
[] = "uartclk\0apb_pclk";
471 sysbus_create_simple("pl011", base
, pic
[irq
]);
473 nodename
= g_strdup_printf("/pl011@%" PRIx64
, base
);
474 qemu_fdt_add_subnode(vbi
->fdt
, nodename
);
475 /* Note that we can't use setprop_string because of the embedded NUL */
476 qemu_fdt_setprop(vbi
->fdt
, nodename
, "compatible",
477 compat
, sizeof(compat
));
478 qemu_fdt_setprop_sized_cells(vbi
->fdt
, nodename
, "reg",
480 qemu_fdt_setprop_cells(vbi
->fdt
, nodename
, "interrupts",
481 GIC_FDT_IRQ_TYPE_SPI
, irq
,
482 GIC_FDT_IRQ_FLAGS_LEVEL_HI
);
483 qemu_fdt_setprop_cells(vbi
->fdt
, nodename
, "clocks",
484 vbi
->clock_phandle
, vbi
->clock_phandle
);
485 qemu_fdt_setprop(vbi
->fdt
, nodename
, "clock-names",
486 clocknames
, sizeof(clocknames
));
488 qemu_fdt_setprop_string(vbi
->fdt
, "/chosen", "stdout-path", nodename
);
492 static void create_rtc(const VirtBoardInfo
*vbi
, qemu_irq
*pic
)
495 hwaddr base
= vbi
->memmap
[VIRT_RTC
].base
;
496 hwaddr size
= vbi
->memmap
[VIRT_RTC
].size
;
497 int irq
= vbi
->irqmap
[VIRT_RTC
];
498 const char compat
[] = "arm,pl031\0arm,primecell";
500 sysbus_create_simple("pl031", base
, pic
[irq
]);
502 nodename
= g_strdup_printf("/pl031@%" PRIx64
, base
);
503 qemu_fdt_add_subnode(vbi
->fdt
, nodename
);
504 qemu_fdt_setprop(vbi
->fdt
, nodename
, "compatible", compat
, sizeof(compat
));
505 qemu_fdt_setprop_sized_cells(vbi
->fdt
, nodename
, "reg",
507 qemu_fdt_setprop_cells(vbi
->fdt
, nodename
, "interrupts",
508 GIC_FDT_IRQ_TYPE_SPI
, irq
,
509 GIC_FDT_IRQ_FLAGS_LEVEL_HI
);
510 qemu_fdt_setprop_cell(vbi
->fdt
, nodename
, "clocks", vbi
->clock_phandle
);
511 qemu_fdt_setprop_string(vbi
->fdt
, nodename
, "clock-names", "apb_pclk");
515 static void create_virtio_devices(const VirtBoardInfo
*vbi
, qemu_irq
*pic
)
518 hwaddr size
= vbi
->memmap
[VIRT_MMIO
].size
;
520 /* We create the transports in forwards order. Since qbus_realize()
521 * prepends (not appends) new child buses, the incrementing loop below will
522 * create a list of virtio-mmio buses with decreasing base addresses.
524 * When a -device option is processed from the command line,
525 * qbus_find_recursive() picks the next free virtio-mmio bus in forwards
526 * order. The upshot is that -device options in increasing command line
527 * order are mapped to virtio-mmio buses with decreasing base addresses.
529 * When this code was originally written, that arrangement ensured that the
530 * guest Linux kernel would give the lowest "name" (/dev/vda, eth0, etc) to
531 * the first -device on the command line. (The end-to-end order is a
532 * function of this loop, qbus_realize(), qbus_find_recursive(), and the
533 * guest kernel's name-to-address assignment strategy.)
535 * Meanwhile, the kernel's traversal seems to have been reversed; see eg.
536 * the message, if not necessarily the code, of commit 70161ff336.
537 * Therefore the loop now establishes the inverse of the original intent.
539 * Unfortunately, we can't counteract the kernel change by reversing the
540 * loop; it would break existing command lines.
542 * In any case, the kernel makes no guarantee about the stability of
543 * enumeration order of virtio devices (as demonstrated by it changing
544 * between kernel versions). For reliable and stable identification
545 * of disks users must use UUIDs or similar mechanisms.
547 for (i
= 0; i
< NUM_VIRTIO_TRANSPORTS
; i
++) {
548 int irq
= vbi
->irqmap
[VIRT_MMIO
] + i
;
549 hwaddr base
= vbi
->memmap
[VIRT_MMIO
].base
+ i
* size
;
551 sysbus_create_simple("virtio-mmio", base
, pic
[irq
]);
554 /* We add dtb nodes in reverse order so that they appear in the finished
555 * device tree lowest address first.
557 * Note that this mapping is independent of the loop above. The previous
558 * loop influences virtio device to virtio transport assignment, whereas
559 * this loop controls how virtio transports are laid out in the dtb.
561 for (i
= NUM_VIRTIO_TRANSPORTS
- 1; i
>= 0; i
--) {
563 int irq
= vbi
->irqmap
[VIRT_MMIO
] + i
;
564 hwaddr base
= vbi
->memmap
[VIRT_MMIO
].base
+ i
* size
;
566 nodename
= g_strdup_printf("/virtio_mmio@%" PRIx64
, base
);
567 qemu_fdt_add_subnode(vbi
->fdt
, nodename
);
568 qemu_fdt_setprop_string(vbi
->fdt
, nodename
,
569 "compatible", "virtio,mmio");
570 qemu_fdt_setprop_sized_cells(vbi
->fdt
, nodename
, "reg",
572 qemu_fdt_setprop_cells(vbi
->fdt
, nodename
, "interrupts",
573 GIC_FDT_IRQ_TYPE_SPI
, irq
,
574 GIC_FDT_IRQ_FLAGS_EDGE_LO_HI
);
579 static void create_one_flash(const char *name
, hwaddr flashbase
,
582 /* Create and map a single flash device. We use the same
583 * parameters as the flash devices on the Versatile Express board.
585 DriveInfo
*dinfo
= drive_get_next(IF_PFLASH
);
586 DeviceState
*dev
= qdev_create(NULL
, "cfi.pflash01");
587 const uint64_t sectorlength
= 256 * 1024;
590 qdev_prop_set_drive(dev
, "drive", blk_by_legacy_dinfo(dinfo
),
594 qdev_prop_set_uint32(dev
, "num-blocks", flashsize
/ sectorlength
);
595 qdev_prop_set_uint64(dev
, "sector-length", sectorlength
);
596 qdev_prop_set_uint8(dev
, "width", 4);
597 qdev_prop_set_uint8(dev
, "device-width", 2);
598 qdev_prop_set_bit(dev
, "big-endian", false);
599 qdev_prop_set_uint16(dev
, "id0", 0x89);
600 qdev_prop_set_uint16(dev
, "id1", 0x18);
601 qdev_prop_set_uint16(dev
, "id2", 0x00);
602 qdev_prop_set_uint16(dev
, "id3", 0x00);
603 qdev_prop_set_string(dev
, "name", name
);
604 qdev_init_nofail(dev
);
606 sysbus_mmio_map(SYS_BUS_DEVICE(dev
), 0, flashbase
);
609 static void create_flash(const VirtBoardInfo
*vbi
)
611 /* Create two flash devices to fill the VIRT_FLASH space in the memmap.
612 * Any file passed via -bios goes in the first of these.
614 hwaddr flashsize
= vbi
->memmap
[VIRT_FLASH
].size
/ 2;
615 hwaddr flashbase
= vbi
->memmap
[VIRT_FLASH
].base
;
622 if (drive_get(IF_PFLASH
, 0, 0)) {
623 error_report("The contents of the first flash device may be "
624 "specified with -bios or with -drive if=pflash... "
625 "but you cannot use both options at once");
628 fn
= qemu_find_file(QEMU_FILE_TYPE_BIOS
, bios_name
);
630 error_report("Could not find ROM image '%s'", bios_name
);
633 image_size
= load_image_targphys(fn
, flashbase
, flashsize
);
635 if (image_size
< 0) {
636 error_report("Could not load ROM image '%s'", bios_name
);
641 create_one_flash("virt.flash0", flashbase
, flashsize
);
642 create_one_flash("virt.flash1", flashbase
+ flashsize
, flashsize
);
644 nodename
= g_strdup_printf("/flash@%" PRIx64
, flashbase
);
645 qemu_fdt_add_subnode(vbi
->fdt
, nodename
);
646 qemu_fdt_setprop_string(vbi
->fdt
, nodename
, "compatible", "cfi-flash");
647 qemu_fdt_setprop_sized_cells(vbi
->fdt
, nodename
, "reg",
648 2, flashbase
, 2, flashsize
,
649 2, flashbase
+ flashsize
, 2, flashsize
);
650 qemu_fdt_setprop_cell(vbi
->fdt
, nodename
, "bank-width", 4);
654 static void create_fw_cfg(const VirtBoardInfo
*vbi
)
656 hwaddr base
= vbi
->memmap
[VIRT_FW_CFG
].base
;
657 hwaddr size
= vbi
->memmap
[VIRT_FW_CFG
].size
;
660 fw_cfg_init_mem_wide(base
+ 8, base
, 8);
662 nodename
= g_strdup_printf("/fw-cfg@%" PRIx64
, base
);
663 qemu_fdt_add_subnode(vbi
->fdt
, nodename
);
664 qemu_fdt_setprop_string(vbi
->fdt
, nodename
,
665 "compatible", "qemu,fw-cfg-mmio");
666 qemu_fdt_setprop_sized_cells(vbi
->fdt
, nodename
, "reg",
671 static void create_pcie_irq_map(const VirtBoardInfo
*vbi
, uint32_t gic_phandle
,
672 int first_irq
, const char *nodename
)
675 uint32_t full_irq_map
[4 * 4 * 10] = { 0 };
676 uint32_t *irq_map
= full_irq_map
;
678 for (devfn
= 0; devfn
<= 0x18; devfn
+= 0x8) {
679 for (pin
= 0; pin
< 4; pin
++) {
680 int irq_type
= GIC_FDT_IRQ_TYPE_SPI
;
681 int irq_nr
= first_irq
+ ((pin
+ PCI_SLOT(devfn
)) % PCI_NUM_PINS
);
682 int irq_level
= GIC_FDT_IRQ_FLAGS_LEVEL_HI
;
686 devfn
<< 8, 0, 0, /* devfn */
687 pin
+ 1, /* PCI pin */
688 gic_phandle
, 0, 0, irq_type
, irq_nr
, irq_level
}; /* GIC irq */
690 /* Convert map to big endian */
691 for (i
= 0; i
< 10; i
++) {
692 irq_map
[i
] = cpu_to_be32(map
[i
]);
698 qemu_fdt_setprop(vbi
->fdt
, nodename
, "interrupt-map",
699 full_irq_map
, sizeof(full_irq_map
));
701 qemu_fdt_setprop_cells(vbi
->fdt
, nodename
, "interrupt-map-mask",
702 0x1800, 0, 0, /* devfn (PCI_SLOT(3)) */
706 static void create_pcie(const VirtBoardInfo
*vbi
, qemu_irq
*pic
,
709 hwaddr base_mmio
= vbi
->memmap
[VIRT_PCIE_MMIO
].base
;
710 hwaddr size_mmio
= vbi
->memmap
[VIRT_PCIE_MMIO
].size
;
711 hwaddr base_mmio_high
= vbi
->memmap
[VIRT_PCIE_MMIO_HIGH
].base
;
712 hwaddr size_mmio_high
= vbi
->memmap
[VIRT_PCIE_MMIO_HIGH
].size
;
713 hwaddr base_pio
= vbi
->memmap
[VIRT_PCIE_PIO
].base
;
714 hwaddr size_pio
= vbi
->memmap
[VIRT_PCIE_PIO
].size
;
715 hwaddr base_ecam
= vbi
->memmap
[VIRT_PCIE_ECAM
].base
;
716 hwaddr size_ecam
= vbi
->memmap
[VIRT_PCIE_ECAM
].size
;
717 hwaddr base
= base_mmio
;
718 int nr_pcie_buses
= size_ecam
/ PCIE_MMCFG_SIZE_MIN
;
719 int irq
= vbi
->irqmap
[VIRT_PCIE
];
720 MemoryRegion
*mmio_alias
;
721 MemoryRegion
*mmio_reg
;
722 MemoryRegion
*ecam_alias
;
723 MemoryRegion
*ecam_reg
;
728 dev
= qdev_create(NULL
, TYPE_GPEX_HOST
);
729 qdev_init_nofail(dev
);
731 /* Map only the first size_ecam bytes of ECAM space */
732 ecam_alias
= g_new0(MemoryRegion
, 1);
733 ecam_reg
= sysbus_mmio_get_region(SYS_BUS_DEVICE(dev
), 0);
734 memory_region_init_alias(ecam_alias
, OBJECT(dev
), "pcie-ecam",
735 ecam_reg
, 0, size_ecam
);
736 memory_region_add_subregion(get_system_memory(), base_ecam
, ecam_alias
);
738 /* Map the MMIO window into system address space so as to expose
739 * the section of PCI MMIO space which starts at the same base address
740 * (ie 1:1 mapping for that part of PCI MMIO space visible through
743 mmio_alias
= g_new0(MemoryRegion
, 1);
744 mmio_reg
= sysbus_mmio_get_region(SYS_BUS_DEVICE(dev
), 1);
745 memory_region_init_alias(mmio_alias
, OBJECT(dev
), "pcie-mmio",
746 mmio_reg
, base_mmio
, size_mmio
);
747 memory_region_add_subregion(get_system_memory(), base_mmio
, mmio_alias
);
750 /* Map high MMIO space */
751 MemoryRegion
*high_mmio_alias
= g_new0(MemoryRegion
, 1);
753 memory_region_init_alias(high_mmio_alias
, OBJECT(dev
), "pcie-mmio-high",
754 mmio_reg
, base_mmio_high
, size_mmio_high
);
755 memory_region_add_subregion(get_system_memory(), base_mmio_high
,
759 /* Map IO port space */
760 sysbus_mmio_map(SYS_BUS_DEVICE(dev
), 2, base_pio
);
762 for (i
= 0; i
< GPEX_NUM_IRQS
; i
++) {
763 sysbus_connect_irq(SYS_BUS_DEVICE(dev
), i
, pic
[irq
+ i
]);
766 nodename
= g_strdup_printf("/pcie@%" PRIx64
, base
);
767 qemu_fdt_add_subnode(vbi
->fdt
, nodename
);
768 qemu_fdt_setprop_string(vbi
->fdt
, nodename
,
769 "compatible", "pci-host-ecam-generic");
770 qemu_fdt_setprop_string(vbi
->fdt
, nodename
, "device_type", "pci");
771 qemu_fdt_setprop_cell(vbi
->fdt
, nodename
, "#address-cells", 3);
772 qemu_fdt_setprop_cell(vbi
->fdt
, nodename
, "#size-cells", 2);
773 qemu_fdt_setprop_cells(vbi
->fdt
, nodename
, "bus-range", 0,
776 qemu_fdt_setprop_cells(vbi
->fdt
, nodename
, "msi-parent", vbi
->v2m_phandle
);
778 qemu_fdt_setprop_sized_cells(vbi
->fdt
, nodename
, "reg",
779 2, base_ecam
, 2, size_ecam
);
782 qemu_fdt_setprop_sized_cells(vbi
->fdt
, nodename
, "ranges",
783 1, FDT_PCI_RANGE_IOPORT
, 2, 0,
784 2, base_pio
, 2, size_pio
,
785 1, FDT_PCI_RANGE_MMIO
, 2, base_mmio
,
786 2, base_mmio
, 2, size_mmio
,
787 1, FDT_PCI_RANGE_MMIO_64BIT
,
789 2, base_mmio_high
, 2, size_mmio_high
);
791 qemu_fdt_setprop_sized_cells(vbi
->fdt
, nodename
, "ranges",
792 1, FDT_PCI_RANGE_IOPORT
, 2, 0,
793 2, base_pio
, 2, size_pio
,
794 1, FDT_PCI_RANGE_MMIO
, 2, base_mmio
,
795 2, base_mmio
, 2, size_mmio
);
798 qemu_fdt_setprop_cell(vbi
->fdt
, nodename
, "#interrupt-cells", 1);
799 create_pcie_irq_map(vbi
, vbi
->gic_phandle
, irq
, nodename
);
804 static void create_platform_bus(VirtBoardInfo
*vbi
, qemu_irq
*pic
)
809 ARMPlatformBusFDTParams
*fdt_params
= g_new(ARMPlatformBusFDTParams
, 1);
810 MemoryRegion
*sysmem
= get_system_memory();
812 platform_bus_params
.platform_bus_base
= vbi
->memmap
[VIRT_PLATFORM_BUS
].base
;
813 platform_bus_params
.platform_bus_size
= vbi
->memmap
[VIRT_PLATFORM_BUS
].size
;
814 platform_bus_params
.platform_bus_first_irq
= vbi
->irqmap
[VIRT_PLATFORM_BUS
];
815 platform_bus_params
.platform_bus_num_irqs
= PLATFORM_BUS_NUM_IRQS
;
817 fdt_params
->system_params
= &platform_bus_params
;
818 fdt_params
->binfo
= &vbi
->bootinfo
;
819 fdt_params
->intc
= "/intc";
821 * register a machine init done notifier that creates the device tree
822 * nodes of the platform bus and its children dynamic sysbus devices
824 arm_register_platform_bus_fdt_creator(fdt_params
);
826 dev
= qdev_create(NULL
, TYPE_PLATFORM_BUS_DEVICE
);
827 dev
->id
= TYPE_PLATFORM_BUS_DEVICE
;
828 qdev_prop_set_uint32(dev
, "num_irqs",
829 platform_bus_params
.platform_bus_num_irqs
);
830 qdev_prop_set_uint32(dev
, "mmio_size",
831 platform_bus_params
.platform_bus_size
);
832 qdev_init_nofail(dev
);
833 s
= SYS_BUS_DEVICE(dev
);
835 for (i
= 0; i
< platform_bus_params
.platform_bus_num_irqs
; i
++) {
836 int irqn
= platform_bus_params
.platform_bus_first_irq
+ i
;
837 sysbus_connect_irq(s
, i
, pic
[irqn
]);
840 memory_region_add_subregion(sysmem
,
841 platform_bus_params
.platform_bus_base
,
842 sysbus_mmio_get_region(s
, 0));
845 static void *machvirt_dtb(const struct arm_boot_info
*binfo
, int *fdt_size
)
847 const VirtBoardInfo
*board
= (const VirtBoardInfo
*)binfo
;
849 *fdt_size
= board
->fdt_size
;
853 static void virt_build_smbios(VirtGuestInfo
*guest_info
)
855 FWCfgState
*fw_cfg
= guest_info
->fw_cfg
;
856 uint8_t *smbios_tables
, *smbios_anchor
;
857 size_t smbios_tables_len
, smbios_anchor_len
;
863 smbios_set_defaults("QEMU", "QEMU Virtual Machine",
864 "1.0", false, true, SMBIOS_ENTRY_POINT_30
);
866 smbios_get_tables(NULL
, 0, &smbios_tables
, &smbios_tables_len
,
867 &smbios_anchor
, &smbios_anchor_len
);
870 fw_cfg_add_file(fw_cfg
, "etc/smbios/smbios-tables",
871 smbios_tables
, smbios_tables_len
);
872 fw_cfg_add_file(fw_cfg
, "etc/smbios/smbios-anchor",
873 smbios_anchor
, smbios_anchor_len
);
878 void virt_guest_info_machine_done(Notifier
*notifier
, void *data
)
880 VirtGuestInfoState
*guest_info_state
= container_of(notifier
,
881 VirtGuestInfoState
, machine_done
);
882 virt_acpi_setup(&guest_info_state
->info
);
883 virt_build_smbios(&guest_info_state
->info
);
886 static void machvirt_init(MachineState
*machine
)
888 VirtMachineState
*vms
= VIRT_MACHINE(machine
);
889 qemu_irq pic
[NUM_IRQS
];
890 MemoryRegion
*sysmem
= get_system_memory();
892 MemoryRegion
*ram
= g_new(MemoryRegion
, 1);
893 const char *cpu_model
= machine
->cpu_model
;
895 VirtGuestInfoState
*guest_info_state
= g_malloc0(sizeof *guest_info_state
);
896 VirtGuestInfo
*guest_info
= &guest_info_state
->info
;
900 cpu_model
= "cortex-a15";
903 /* Separate the actual CPU model name from any appended features */
904 cpustr
= g_strsplit(cpu_model
, ",", 2);
906 vbi
= find_machine_info(cpustr
[0]);
909 error_report("mach-virt: CPU %s not supported", cpustr
[0]);
913 vbi
->smp_cpus
= smp_cpus
;
915 if (machine
->ram_size
> vbi
->memmap
[VIRT_MEM
].size
) {
916 error_report("mach-virt: cannot model more than 30GB RAM");
922 for (n
= 0; n
< smp_cpus
; n
++) {
923 ObjectClass
*oc
= cpu_class_by_name(TYPE_ARM_CPU
, cpustr
[0]);
924 CPUClass
*cc
= CPU_CLASS(oc
);
927 char *cpuopts
= g_strdup(cpustr
[1]);
930 fprintf(stderr
, "Unable to find CPU definition\n");
933 cpuobj
= object_new(object_class_get_name(oc
));
935 /* Handle any CPU options specified by the user */
936 cc
->parse_features(CPU(cpuobj
), cpuopts
, &err
);
939 error_report_err(err
);
944 object_property_set_bool(cpuobj
, false, "has_el3", NULL
);
947 object_property_set_int(cpuobj
, QEMU_PSCI_CONDUIT_HVC
, "psci-conduit",
950 /* Secondary CPUs start in PSCI powered-down state */
952 object_property_set_bool(cpuobj
, true, "start-powered-off", NULL
);
955 if (object_property_find(cpuobj
, "reset-cbar", NULL
)) {
956 object_property_set_int(cpuobj
, vbi
->memmap
[VIRT_CPUPERIPHS
].base
,
957 "reset-cbar", &error_abort
);
960 object_property_set_bool(cpuobj
, true, "realized", NULL
);
963 fdt_add_timer_nodes(vbi
);
964 fdt_add_cpu_nodes(vbi
);
965 fdt_add_psci_node(vbi
);
967 memory_region_allocate_system_memory(ram
, NULL
, "mach-virt.ram",
969 memory_region_add_subregion(sysmem
, vbi
->memmap
[VIRT_MEM
].base
, ram
);
973 create_gic(vbi
, pic
, vms
->secure
);
975 create_uart(vbi
, pic
);
977 create_rtc(vbi
, pic
);
979 create_pcie(vbi
, pic
, vms
->highmem
);
981 /* Create mmio transports, so the user can create virtio backends
982 * (which will be automatically plugged in to the transports). If
983 * no backend is created the transport will just sit harmlessly idle.
985 create_virtio_devices(vbi
, pic
);
988 rom_set_fw(fw_cfg_find());
990 guest_info
->smp_cpus
= smp_cpus
;
991 guest_info
->fw_cfg
= fw_cfg_find();
992 guest_info
->memmap
= vbi
->memmap
;
993 guest_info
->irqmap
= vbi
->irqmap
;
994 guest_info
->use_highmem
= vms
->highmem
;
995 guest_info_state
->machine_done
.notify
= virt_guest_info_machine_done
;
996 qemu_add_machine_init_done_notifier(&guest_info_state
->machine_done
);
998 vbi
->bootinfo
.ram_size
= machine
->ram_size
;
999 vbi
->bootinfo
.kernel_filename
= machine
->kernel_filename
;
1000 vbi
->bootinfo
.kernel_cmdline
= machine
->kernel_cmdline
;
1001 vbi
->bootinfo
.initrd_filename
= machine
->initrd_filename
;
1002 vbi
->bootinfo
.nb_cpus
= smp_cpus
;
1003 vbi
->bootinfo
.board_id
= -1;
1004 vbi
->bootinfo
.loader_start
= vbi
->memmap
[VIRT_MEM
].base
;
1005 vbi
->bootinfo
.get_dtb
= machvirt_dtb
;
1006 vbi
->bootinfo
.firmware_loaded
= bios_name
|| drive_get(IF_PFLASH
, 0, 0);
1007 arm_load_kernel(ARM_CPU(first_cpu
), &vbi
->bootinfo
);
1010 * arm_load_kernel machine init done notifier registration must
1011 * happen before the platform_bus_create call. In this latter,
1012 * another notifier is registered which adds platform bus nodes.
1013 * Notifiers are executed in registration reverse order.
1015 create_platform_bus(vbi
, pic
);
1018 static bool virt_get_secure(Object
*obj
, Error
**errp
)
1020 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
1025 static void virt_set_secure(Object
*obj
, bool value
, Error
**errp
)
1027 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
1029 vms
->secure
= value
;
1032 static bool virt_get_highmem(Object
*obj
, Error
**errp
)
1034 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
1036 return vms
->highmem
;
1039 static void virt_set_highmem(Object
*obj
, bool value
, Error
**errp
)
1041 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
1043 vms
->highmem
= value
;
1046 static void virt_instance_init(Object
*obj
)
1048 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
1050 /* EL3 is disabled by default on virt: this makes us consistent
1051 * between KVM and TCG for this board, and it also allows us to
1052 * boot UEFI blobs which assume no TrustZone support.
1054 vms
->secure
= false;
1055 object_property_add_bool(obj
, "secure", virt_get_secure
,
1056 virt_set_secure
, NULL
);
1057 object_property_set_description(obj
, "secure",
1058 "Set on/off to enable/disable the ARM "
1059 "Security Extensions (TrustZone)",
1062 /* High memory is enabled by default */
1063 vms
->highmem
= true;
1064 object_property_add_bool(obj
, "highmem", virt_get_highmem
,
1065 virt_set_highmem
, NULL
);
1066 object_property_set_description(obj
, "highmem",
1067 "Set on/off to enable/disable using "
1068 "physical address space above 32 bits",
1072 static void virt_class_init(ObjectClass
*oc
, void *data
)
1074 MachineClass
*mc
= MACHINE_CLASS(oc
);
1076 mc
->name
= TYPE_VIRT_MACHINE
;
1077 mc
->desc
= "ARM Virtual Machine",
1078 mc
->init
= machvirt_init
;
1080 mc
->has_dynamic_sysbus
= true;
1081 mc
->block_default_type
= IF_VIRTIO
;
1085 static const TypeInfo machvirt_info
= {
1086 .name
= TYPE_VIRT_MACHINE
,
1087 .parent
= TYPE_MACHINE
,
1088 .instance_size
= sizeof(VirtMachineState
),
1089 .instance_init
= virt_instance_init
,
1090 .class_size
= sizeof(VirtMachineClass
),
1091 .class_init
= virt_class_init
,
1094 static void machvirt_machine_init(void)
1096 type_register_static(&machvirt_info
);
1099 machine_init(machvirt_machine_init
);