vnc: fix unalignment access in tight_pack24
[qemu/ar7.git] / linux-user / signal.c
blobe2c0b3717357e9dfc6e2d05517cae502fc552afa
1 /*
2 * Emulation of Linux signals
4 * Copyright (c) 2003 Fabrice Bellard
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, see <http://www.gnu.org/licenses/>.
19 #include "qemu/osdep.h"
20 #include "qemu/bitops.h"
21 #include <sys/ucontext.h>
22 #include <sys/resource.h>
24 #include "qemu.h"
25 #include "qemu-common.h"
26 #include "trace.h"
27 #include "signal-common.h"
29 struct target_sigaltstack target_sigaltstack_used = {
30 .ss_sp = 0,
31 .ss_size = 0,
32 .ss_flags = TARGET_SS_DISABLE,
35 static struct target_sigaction sigact_table[TARGET_NSIG];
37 static void host_signal_handler(int host_signum, siginfo_t *info,
38 void *puc);
40 static uint8_t host_to_target_signal_table[_NSIG] = {
41 [SIGHUP] = TARGET_SIGHUP,
42 [SIGINT] = TARGET_SIGINT,
43 [SIGQUIT] = TARGET_SIGQUIT,
44 [SIGILL] = TARGET_SIGILL,
45 [SIGTRAP] = TARGET_SIGTRAP,
46 [SIGABRT] = TARGET_SIGABRT,
47 /* [SIGIOT] = TARGET_SIGIOT,*/
48 [SIGBUS] = TARGET_SIGBUS,
49 [SIGFPE] = TARGET_SIGFPE,
50 [SIGKILL] = TARGET_SIGKILL,
51 [SIGUSR1] = TARGET_SIGUSR1,
52 [SIGSEGV] = TARGET_SIGSEGV,
53 [SIGUSR2] = TARGET_SIGUSR2,
54 [SIGPIPE] = TARGET_SIGPIPE,
55 [SIGALRM] = TARGET_SIGALRM,
56 [SIGTERM] = TARGET_SIGTERM,
57 #ifdef SIGSTKFLT
58 [SIGSTKFLT] = TARGET_SIGSTKFLT,
59 #endif
60 [SIGCHLD] = TARGET_SIGCHLD,
61 [SIGCONT] = TARGET_SIGCONT,
62 [SIGSTOP] = TARGET_SIGSTOP,
63 [SIGTSTP] = TARGET_SIGTSTP,
64 [SIGTTIN] = TARGET_SIGTTIN,
65 [SIGTTOU] = TARGET_SIGTTOU,
66 [SIGURG] = TARGET_SIGURG,
67 [SIGXCPU] = TARGET_SIGXCPU,
68 [SIGXFSZ] = TARGET_SIGXFSZ,
69 [SIGVTALRM] = TARGET_SIGVTALRM,
70 [SIGPROF] = TARGET_SIGPROF,
71 [SIGWINCH] = TARGET_SIGWINCH,
72 [SIGIO] = TARGET_SIGIO,
73 [SIGPWR] = TARGET_SIGPWR,
74 [SIGSYS] = TARGET_SIGSYS,
75 /* next signals stay the same */
76 /* Nasty hack: Reverse SIGRTMIN and SIGRTMAX to avoid overlap with
77 host libpthread signals. This assumes no one actually uses SIGRTMAX :-/
78 To fix this properly we need to do manual signal delivery multiplexed
79 over a single host signal. */
80 [__SIGRTMIN] = __SIGRTMAX,
81 [__SIGRTMAX] = __SIGRTMIN,
83 static uint8_t target_to_host_signal_table[_NSIG];
85 int host_to_target_signal(int sig)
87 if (sig < 0 || sig >= _NSIG)
88 return sig;
89 return host_to_target_signal_table[sig];
92 int target_to_host_signal(int sig)
94 if (sig < 0 || sig >= _NSIG)
95 return sig;
96 return target_to_host_signal_table[sig];
99 static inline void target_sigaddset(target_sigset_t *set, int signum)
101 signum--;
102 abi_ulong mask = (abi_ulong)1 << (signum % TARGET_NSIG_BPW);
103 set->sig[signum / TARGET_NSIG_BPW] |= mask;
106 static inline int target_sigismember(const target_sigset_t *set, int signum)
108 signum--;
109 abi_ulong mask = (abi_ulong)1 << (signum % TARGET_NSIG_BPW);
110 return ((set->sig[signum / TARGET_NSIG_BPW] & mask) != 0);
113 void host_to_target_sigset_internal(target_sigset_t *d,
114 const sigset_t *s)
116 int i;
117 target_sigemptyset(d);
118 for (i = 1; i <= TARGET_NSIG; i++) {
119 if (sigismember(s, i)) {
120 target_sigaddset(d, host_to_target_signal(i));
125 void host_to_target_sigset(target_sigset_t *d, const sigset_t *s)
127 target_sigset_t d1;
128 int i;
130 host_to_target_sigset_internal(&d1, s);
131 for(i = 0;i < TARGET_NSIG_WORDS; i++)
132 d->sig[i] = tswapal(d1.sig[i]);
135 void target_to_host_sigset_internal(sigset_t *d,
136 const target_sigset_t *s)
138 int i;
139 sigemptyset(d);
140 for (i = 1; i <= TARGET_NSIG; i++) {
141 if (target_sigismember(s, i)) {
142 sigaddset(d, target_to_host_signal(i));
147 void target_to_host_sigset(sigset_t *d, const target_sigset_t *s)
149 target_sigset_t s1;
150 int i;
152 for(i = 0;i < TARGET_NSIG_WORDS; i++)
153 s1.sig[i] = tswapal(s->sig[i]);
154 target_to_host_sigset_internal(d, &s1);
157 void host_to_target_old_sigset(abi_ulong *old_sigset,
158 const sigset_t *sigset)
160 target_sigset_t d;
161 host_to_target_sigset(&d, sigset);
162 *old_sigset = d.sig[0];
165 void target_to_host_old_sigset(sigset_t *sigset,
166 const abi_ulong *old_sigset)
168 target_sigset_t d;
169 int i;
171 d.sig[0] = *old_sigset;
172 for(i = 1;i < TARGET_NSIG_WORDS; i++)
173 d.sig[i] = 0;
174 target_to_host_sigset(sigset, &d);
177 int block_signals(void)
179 TaskState *ts = (TaskState *)thread_cpu->opaque;
180 sigset_t set;
182 /* It's OK to block everything including SIGSEGV, because we won't
183 * run any further guest code before unblocking signals in
184 * process_pending_signals().
186 sigfillset(&set);
187 sigprocmask(SIG_SETMASK, &set, 0);
189 return atomic_xchg(&ts->signal_pending, 1);
192 /* Wrapper for sigprocmask function
193 * Emulates a sigprocmask in a safe way for the guest. Note that set and oldset
194 * are host signal set, not guest ones. Returns -TARGET_ERESTARTSYS if
195 * a signal was already pending and the syscall must be restarted, or
196 * 0 on success.
197 * If set is NULL, this is guaranteed not to fail.
199 int do_sigprocmask(int how, const sigset_t *set, sigset_t *oldset)
201 TaskState *ts = (TaskState *)thread_cpu->opaque;
203 if (oldset) {
204 *oldset = ts->signal_mask;
207 if (set) {
208 int i;
210 if (block_signals()) {
211 return -TARGET_ERESTARTSYS;
214 switch (how) {
215 case SIG_BLOCK:
216 sigorset(&ts->signal_mask, &ts->signal_mask, set);
217 break;
218 case SIG_UNBLOCK:
219 for (i = 1; i <= NSIG; ++i) {
220 if (sigismember(set, i)) {
221 sigdelset(&ts->signal_mask, i);
224 break;
225 case SIG_SETMASK:
226 ts->signal_mask = *set;
227 break;
228 default:
229 g_assert_not_reached();
232 /* Silently ignore attempts to change blocking status of KILL or STOP */
233 sigdelset(&ts->signal_mask, SIGKILL);
234 sigdelset(&ts->signal_mask, SIGSTOP);
236 return 0;
239 #if !defined(TARGET_NIOS2)
240 /* Just set the guest's signal mask to the specified value; the
241 * caller is assumed to have called block_signals() already.
243 void set_sigmask(const sigset_t *set)
245 TaskState *ts = (TaskState *)thread_cpu->opaque;
247 ts->signal_mask = *set;
249 #endif
251 /* sigaltstack management */
253 int on_sig_stack(unsigned long sp)
255 return (sp - target_sigaltstack_used.ss_sp
256 < target_sigaltstack_used.ss_size);
259 int sas_ss_flags(unsigned long sp)
261 return (target_sigaltstack_used.ss_size == 0 ? SS_DISABLE
262 : on_sig_stack(sp) ? SS_ONSTACK : 0);
265 abi_ulong target_sigsp(abi_ulong sp, struct target_sigaction *ka)
268 * This is the X/Open sanctioned signal stack switching.
270 if ((ka->sa_flags & TARGET_SA_ONSTACK) && !sas_ss_flags(sp)) {
271 return target_sigaltstack_used.ss_sp + target_sigaltstack_used.ss_size;
273 return sp;
276 void target_save_altstack(target_stack_t *uss, CPUArchState *env)
278 __put_user(target_sigaltstack_used.ss_sp, &uss->ss_sp);
279 __put_user(sas_ss_flags(get_sp_from_cpustate(env)), &uss->ss_flags);
280 __put_user(target_sigaltstack_used.ss_size, &uss->ss_size);
283 /* siginfo conversion */
285 static inline void host_to_target_siginfo_noswap(target_siginfo_t *tinfo,
286 const siginfo_t *info)
288 int sig = host_to_target_signal(info->si_signo);
289 int si_code = info->si_code;
290 int si_type;
291 tinfo->si_signo = sig;
292 tinfo->si_errno = 0;
293 tinfo->si_code = info->si_code;
295 /* This memset serves two purposes:
296 * (1) ensure we don't leak random junk to the guest later
297 * (2) placate false positives from gcc about fields
298 * being used uninitialized if it chooses to inline both this
299 * function and tswap_siginfo() into host_to_target_siginfo().
301 memset(tinfo->_sifields._pad, 0, sizeof(tinfo->_sifields._pad));
303 /* This is awkward, because we have to use a combination of
304 * the si_code and si_signo to figure out which of the union's
305 * members are valid. (Within the host kernel it is always possible
306 * to tell, but the kernel carefully avoids giving userspace the
307 * high 16 bits of si_code, so we don't have the information to
308 * do this the easy way...) We therefore make our best guess,
309 * bearing in mind that a guest can spoof most of the si_codes
310 * via rt_sigqueueinfo() if it likes.
312 * Once we have made our guess, we record it in the top 16 bits of
313 * the si_code, so that tswap_siginfo() later can use it.
314 * tswap_siginfo() will strip these top bits out before writing
315 * si_code to the guest (sign-extending the lower bits).
318 switch (si_code) {
319 case SI_USER:
320 case SI_TKILL:
321 case SI_KERNEL:
322 /* Sent via kill(), tkill() or tgkill(), or direct from the kernel.
323 * These are the only unspoofable si_code values.
325 tinfo->_sifields._kill._pid = info->si_pid;
326 tinfo->_sifields._kill._uid = info->si_uid;
327 si_type = QEMU_SI_KILL;
328 break;
329 default:
330 /* Everything else is spoofable. Make best guess based on signal */
331 switch (sig) {
332 case TARGET_SIGCHLD:
333 tinfo->_sifields._sigchld._pid = info->si_pid;
334 tinfo->_sifields._sigchld._uid = info->si_uid;
335 tinfo->_sifields._sigchld._status
336 = host_to_target_waitstatus(info->si_status);
337 tinfo->_sifields._sigchld._utime = info->si_utime;
338 tinfo->_sifields._sigchld._stime = info->si_stime;
339 si_type = QEMU_SI_CHLD;
340 break;
341 case TARGET_SIGIO:
342 tinfo->_sifields._sigpoll._band = info->si_band;
343 tinfo->_sifields._sigpoll._fd = info->si_fd;
344 si_type = QEMU_SI_POLL;
345 break;
346 default:
347 /* Assume a sigqueue()/mq_notify()/rt_sigqueueinfo() source. */
348 tinfo->_sifields._rt._pid = info->si_pid;
349 tinfo->_sifields._rt._uid = info->si_uid;
350 /* XXX: potential problem if 64 bit */
351 tinfo->_sifields._rt._sigval.sival_ptr
352 = (abi_ulong)(unsigned long)info->si_value.sival_ptr;
353 si_type = QEMU_SI_RT;
354 break;
356 break;
359 tinfo->si_code = deposit32(si_code, 16, 16, si_type);
362 void tswap_siginfo(target_siginfo_t *tinfo,
363 const target_siginfo_t *info)
365 int si_type = extract32(info->si_code, 16, 16);
366 int si_code = sextract32(info->si_code, 0, 16);
368 __put_user(info->si_signo, &tinfo->si_signo);
369 __put_user(info->si_errno, &tinfo->si_errno);
370 __put_user(si_code, &tinfo->si_code);
372 /* We can use our internal marker of which fields in the structure
373 * are valid, rather than duplicating the guesswork of
374 * host_to_target_siginfo_noswap() here.
376 switch (si_type) {
377 case QEMU_SI_KILL:
378 __put_user(info->_sifields._kill._pid, &tinfo->_sifields._kill._pid);
379 __put_user(info->_sifields._kill._uid, &tinfo->_sifields._kill._uid);
380 break;
381 case QEMU_SI_TIMER:
382 __put_user(info->_sifields._timer._timer1,
383 &tinfo->_sifields._timer._timer1);
384 __put_user(info->_sifields._timer._timer2,
385 &tinfo->_sifields._timer._timer2);
386 break;
387 case QEMU_SI_POLL:
388 __put_user(info->_sifields._sigpoll._band,
389 &tinfo->_sifields._sigpoll._band);
390 __put_user(info->_sifields._sigpoll._fd,
391 &tinfo->_sifields._sigpoll._fd);
392 break;
393 case QEMU_SI_FAULT:
394 __put_user(info->_sifields._sigfault._addr,
395 &tinfo->_sifields._sigfault._addr);
396 break;
397 case QEMU_SI_CHLD:
398 __put_user(info->_sifields._sigchld._pid,
399 &tinfo->_sifields._sigchld._pid);
400 __put_user(info->_sifields._sigchld._uid,
401 &tinfo->_sifields._sigchld._uid);
402 __put_user(info->_sifields._sigchld._status,
403 &tinfo->_sifields._sigchld._status);
404 __put_user(info->_sifields._sigchld._utime,
405 &tinfo->_sifields._sigchld._utime);
406 __put_user(info->_sifields._sigchld._stime,
407 &tinfo->_sifields._sigchld._stime);
408 break;
409 case QEMU_SI_RT:
410 __put_user(info->_sifields._rt._pid, &tinfo->_sifields._rt._pid);
411 __put_user(info->_sifields._rt._uid, &tinfo->_sifields._rt._uid);
412 __put_user(info->_sifields._rt._sigval.sival_ptr,
413 &tinfo->_sifields._rt._sigval.sival_ptr);
414 break;
415 default:
416 g_assert_not_reached();
420 void host_to_target_siginfo(target_siginfo_t *tinfo, const siginfo_t *info)
422 target_siginfo_t tgt_tmp;
423 host_to_target_siginfo_noswap(&tgt_tmp, info);
424 tswap_siginfo(tinfo, &tgt_tmp);
427 /* XXX: we support only POSIX RT signals are used. */
428 /* XXX: find a solution for 64 bit (additional malloced data is needed) */
429 void target_to_host_siginfo(siginfo_t *info, const target_siginfo_t *tinfo)
431 /* This conversion is used only for the rt_sigqueueinfo syscall,
432 * and so we know that the _rt fields are the valid ones.
434 abi_ulong sival_ptr;
436 __get_user(info->si_signo, &tinfo->si_signo);
437 __get_user(info->si_errno, &tinfo->si_errno);
438 __get_user(info->si_code, &tinfo->si_code);
439 __get_user(info->si_pid, &tinfo->_sifields._rt._pid);
440 __get_user(info->si_uid, &tinfo->_sifields._rt._uid);
441 __get_user(sival_ptr, &tinfo->_sifields._rt._sigval.sival_ptr);
442 info->si_value.sival_ptr = (void *)(long)sival_ptr;
445 static int fatal_signal (int sig)
447 switch (sig) {
448 case TARGET_SIGCHLD:
449 case TARGET_SIGURG:
450 case TARGET_SIGWINCH:
451 /* Ignored by default. */
452 return 0;
453 case TARGET_SIGCONT:
454 case TARGET_SIGSTOP:
455 case TARGET_SIGTSTP:
456 case TARGET_SIGTTIN:
457 case TARGET_SIGTTOU:
458 /* Job control signals. */
459 return 0;
460 default:
461 return 1;
465 /* returns 1 if given signal should dump core if not handled */
466 static int core_dump_signal(int sig)
468 switch (sig) {
469 case TARGET_SIGABRT:
470 case TARGET_SIGFPE:
471 case TARGET_SIGILL:
472 case TARGET_SIGQUIT:
473 case TARGET_SIGSEGV:
474 case TARGET_SIGTRAP:
475 case TARGET_SIGBUS:
476 return (1);
477 default:
478 return (0);
482 void signal_init(void)
484 TaskState *ts = (TaskState *)thread_cpu->opaque;
485 struct sigaction act;
486 struct sigaction oact;
487 int i, j;
488 int host_sig;
490 /* generate signal conversion tables */
491 for(i = 1; i < _NSIG; i++) {
492 if (host_to_target_signal_table[i] == 0)
493 host_to_target_signal_table[i] = i;
495 for(i = 1; i < _NSIG; i++) {
496 j = host_to_target_signal_table[i];
497 target_to_host_signal_table[j] = i;
500 /* Set the signal mask from the host mask. */
501 sigprocmask(0, 0, &ts->signal_mask);
503 /* set all host signal handlers. ALL signals are blocked during
504 the handlers to serialize them. */
505 memset(sigact_table, 0, sizeof(sigact_table));
507 sigfillset(&act.sa_mask);
508 act.sa_flags = SA_SIGINFO;
509 act.sa_sigaction = host_signal_handler;
510 for(i = 1; i <= TARGET_NSIG; i++) {
511 host_sig = target_to_host_signal(i);
512 sigaction(host_sig, NULL, &oact);
513 if (oact.sa_sigaction == (void *)SIG_IGN) {
514 sigact_table[i - 1]._sa_handler = TARGET_SIG_IGN;
515 } else if (oact.sa_sigaction == (void *)SIG_DFL) {
516 sigact_table[i - 1]._sa_handler = TARGET_SIG_DFL;
518 /* If there's already a handler installed then something has
519 gone horribly wrong, so don't even try to handle that case. */
520 /* Install some handlers for our own use. We need at least
521 SIGSEGV and SIGBUS, to detect exceptions. We can not just
522 trap all signals because it affects syscall interrupt
523 behavior. But do trap all default-fatal signals. */
524 if (fatal_signal (i))
525 sigaction(host_sig, &act, NULL);
529 /* Force a synchronously taken signal. The kernel force_sig() function
530 * also forces the signal to "not blocked, not ignored", but for QEMU
531 * that work is done in process_pending_signals().
533 void force_sig(int sig)
535 CPUState *cpu = thread_cpu;
536 CPUArchState *env = cpu->env_ptr;
537 target_siginfo_t info;
539 info.si_signo = sig;
540 info.si_errno = 0;
541 info.si_code = TARGET_SI_KERNEL;
542 info._sifields._kill._pid = 0;
543 info._sifields._kill._uid = 0;
544 queue_signal(env, info.si_signo, QEMU_SI_KILL, &info);
547 /* Force a SIGSEGV if we couldn't write to memory trying to set
548 * up the signal frame. oldsig is the signal we were trying to handle
549 * at the point of failure.
551 #if !defined(TARGET_RISCV)
552 void force_sigsegv(int oldsig)
554 if (oldsig == SIGSEGV) {
555 /* Make sure we don't try to deliver the signal again; this will
556 * end up with handle_pending_signal() calling dump_core_and_abort().
558 sigact_table[oldsig - 1]._sa_handler = TARGET_SIG_DFL;
560 force_sig(TARGET_SIGSEGV);
563 #endif
565 /* abort execution with signal */
566 static void QEMU_NORETURN dump_core_and_abort(int target_sig)
568 CPUState *cpu = thread_cpu;
569 CPUArchState *env = cpu->env_ptr;
570 TaskState *ts = (TaskState *)cpu->opaque;
571 int host_sig, core_dumped = 0;
572 struct sigaction act;
574 host_sig = target_to_host_signal(target_sig);
575 trace_user_force_sig(env, target_sig, host_sig);
576 gdb_signalled(env, target_sig);
578 /* dump core if supported by target binary format */
579 if (core_dump_signal(target_sig) && (ts->bprm->core_dump != NULL)) {
580 stop_all_tasks();
581 core_dumped =
582 ((*ts->bprm->core_dump)(target_sig, env) == 0);
584 if (core_dumped) {
585 /* we already dumped the core of target process, we don't want
586 * a coredump of qemu itself */
587 struct rlimit nodump;
588 getrlimit(RLIMIT_CORE, &nodump);
589 nodump.rlim_cur=0;
590 setrlimit(RLIMIT_CORE, &nodump);
591 (void) fprintf(stderr, "qemu: uncaught target signal %d (%s) - %s\n",
592 target_sig, strsignal(host_sig), "core dumped" );
595 /* The proper exit code for dying from an uncaught signal is
596 * -<signal>. The kernel doesn't allow exit() or _exit() to pass
597 * a negative value. To get the proper exit code we need to
598 * actually die from an uncaught signal. Here the default signal
599 * handler is installed, we send ourself a signal and we wait for
600 * it to arrive. */
601 sigfillset(&act.sa_mask);
602 act.sa_handler = SIG_DFL;
603 act.sa_flags = 0;
604 sigaction(host_sig, &act, NULL);
606 /* For some reason raise(host_sig) doesn't send the signal when
607 * statically linked on x86-64. */
608 kill(getpid(), host_sig);
610 /* Make sure the signal isn't masked (just reuse the mask inside
611 of act) */
612 sigdelset(&act.sa_mask, host_sig);
613 sigsuspend(&act.sa_mask);
615 /* unreachable */
616 abort();
619 /* queue a signal so that it will be send to the virtual CPU as soon
620 as possible */
621 int queue_signal(CPUArchState *env, int sig, int si_type,
622 target_siginfo_t *info)
624 CPUState *cpu = ENV_GET_CPU(env);
625 TaskState *ts = cpu->opaque;
627 trace_user_queue_signal(env, sig);
629 info->si_code = deposit32(info->si_code, 16, 16, si_type);
631 ts->sync_signal.info = *info;
632 ts->sync_signal.pending = sig;
633 /* signal that a new signal is pending */
634 atomic_set(&ts->signal_pending, 1);
635 return 1; /* indicates that the signal was queued */
638 #ifndef HAVE_SAFE_SYSCALL
639 static inline void rewind_if_in_safe_syscall(void *puc)
641 /* Default version: never rewind */
643 #endif
645 static void host_signal_handler(int host_signum, siginfo_t *info,
646 void *puc)
648 CPUArchState *env = thread_cpu->env_ptr;
649 CPUState *cpu = ENV_GET_CPU(env);
650 TaskState *ts = cpu->opaque;
652 int sig;
653 target_siginfo_t tinfo;
654 ucontext_t *uc = puc;
655 struct emulated_sigtable *k;
657 /* the CPU emulator uses some host signals to detect exceptions,
658 we forward to it some signals */
659 if ((host_signum == SIGSEGV || host_signum == SIGBUS)
660 && info->si_code > 0) {
661 if (cpu_signal_handler(host_signum, info, puc))
662 return;
665 /* get target signal number */
666 sig = host_to_target_signal(host_signum);
667 if (sig < 1 || sig > TARGET_NSIG)
668 return;
669 trace_user_host_signal(env, host_signum, sig);
671 rewind_if_in_safe_syscall(puc);
673 host_to_target_siginfo_noswap(&tinfo, info);
674 k = &ts->sigtab[sig - 1];
675 k->info = tinfo;
676 k->pending = sig;
677 ts->signal_pending = 1;
679 /* Block host signals until target signal handler entered. We
680 * can't block SIGSEGV or SIGBUS while we're executing guest
681 * code in case the guest code provokes one in the window between
682 * now and it getting out to the main loop. Signals will be
683 * unblocked again in process_pending_signals().
685 * WARNING: we cannot use sigfillset() here because the uc_sigmask
686 * field is a kernel sigset_t, which is much smaller than the
687 * libc sigset_t which sigfillset() operates on. Using sigfillset()
688 * would write 0xff bytes off the end of the structure and trash
689 * data on the struct.
690 * We can't use sizeof(uc->uc_sigmask) either, because the libc
691 * headers define the struct field with the wrong (too large) type.
693 memset(&uc->uc_sigmask, 0xff, SIGSET_T_SIZE);
694 sigdelset(&uc->uc_sigmask, SIGSEGV);
695 sigdelset(&uc->uc_sigmask, SIGBUS);
697 /* interrupt the virtual CPU as soon as possible */
698 cpu_exit(thread_cpu);
701 /* do_sigaltstack() returns target values and errnos. */
702 /* compare linux/kernel/signal.c:do_sigaltstack() */
703 abi_long do_sigaltstack(abi_ulong uss_addr, abi_ulong uoss_addr, abi_ulong sp)
705 int ret;
706 struct target_sigaltstack oss;
708 /* XXX: test errors */
709 if(uoss_addr)
711 __put_user(target_sigaltstack_used.ss_sp, &oss.ss_sp);
712 __put_user(target_sigaltstack_used.ss_size, &oss.ss_size);
713 __put_user(sas_ss_flags(sp), &oss.ss_flags);
716 if(uss_addr)
718 struct target_sigaltstack *uss;
719 struct target_sigaltstack ss;
720 size_t minstacksize = TARGET_MINSIGSTKSZ;
722 #if defined(TARGET_PPC64)
723 /* ELF V2 for PPC64 has a 4K minimum stack size for signal handlers */
724 struct image_info *image = ((TaskState *)thread_cpu->opaque)->info;
725 if (get_ppc64_abi(image) > 1) {
726 minstacksize = 4096;
728 #endif
730 ret = -TARGET_EFAULT;
731 if (!lock_user_struct(VERIFY_READ, uss, uss_addr, 1)) {
732 goto out;
734 __get_user(ss.ss_sp, &uss->ss_sp);
735 __get_user(ss.ss_size, &uss->ss_size);
736 __get_user(ss.ss_flags, &uss->ss_flags);
737 unlock_user_struct(uss, uss_addr, 0);
739 ret = -TARGET_EPERM;
740 if (on_sig_stack(sp))
741 goto out;
743 ret = -TARGET_EINVAL;
744 if (ss.ss_flags != TARGET_SS_DISABLE
745 && ss.ss_flags != TARGET_SS_ONSTACK
746 && ss.ss_flags != 0)
747 goto out;
749 if (ss.ss_flags == TARGET_SS_DISABLE) {
750 ss.ss_size = 0;
751 ss.ss_sp = 0;
752 } else {
753 ret = -TARGET_ENOMEM;
754 if (ss.ss_size < minstacksize) {
755 goto out;
759 target_sigaltstack_used.ss_sp = ss.ss_sp;
760 target_sigaltstack_used.ss_size = ss.ss_size;
763 if (uoss_addr) {
764 ret = -TARGET_EFAULT;
765 if (copy_to_user(uoss_addr, &oss, sizeof(oss)))
766 goto out;
769 ret = 0;
770 out:
771 return ret;
774 /* do_sigaction() return target values and host errnos */
775 int do_sigaction(int sig, const struct target_sigaction *act,
776 struct target_sigaction *oact)
778 struct target_sigaction *k;
779 struct sigaction act1;
780 int host_sig;
781 int ret = 0;
783 if (sig < 1 || sig > TARGET_NSIG || sig == TARGET_SIGKILL || sig == TARGET_SIGSTOP) {
784 return -TARGET_EINVAL;
787 if (block_signals()) {
788 return -TARGET_ERESTARTSYS;
791 k = &sigact_table[sig - 1];
792 if (oact) {
793 __put_user(k->_sa_handler, &oact->_sa_handler);
794 __put_user(k->sa_flags, &oact->sa_flags);
795 #ifdef TARGET_ARCH_HAS_SA_RESTORER
796 __put_user(k->sa_restorer, &oact->sa_restorer);
797 #endif
798 /* Not swapped. */
799 oact->sa_mask = k->sa_mask;
801 if (act) {
802 /* FIXME: This is not threadsafe. */
803 __get_user(k->_sa_handler, &act->_sa_handler);
804 __get_user(k->sa_flags, &act->sa_flags);
805 #ifdef TARGET_ARCH_HAS_SA_RESTORER
806 __get_user(k->sa_restorer, &act->sa_restorer);
807 #endif
808 /* To be swapped in target_to_host_sigset. */
809 k->sa_mask = act->sa_mask;
811 /* we update the host linux signal state */
812 host_sig = target_to_host_signal(sig);
813 if (host_sig != SIGSEGV && host_sig != SIGBUS) {
814 sigfillset(&act1.sa_mask);
815 act1.sa_flags = SA_SIGINFO;
816 if (k->sa_flags & TARGET_SA_RESTART)
817 act1.sa_flags |= SA_RESTART;
818 /* NOTE: it is important to update the host kernel signal
819 ignore state to avoid getting unexpected interrupted
820 syscalls */
821 if (k->_sa_handler == TARGET_SIG_IGN) {
822 act1.sa_sigaction = (void *)SIG_IGN;
823 } else if (k->_sa_handler == TARGET_SIG_DFL) {
824 if (fatal_signal (sig))
825 act1.sa_sigaction = host_signal_handler;
826 else
827 act1.sa_sigaction = (void *)SIG_DFL;
828 } else {
829 act1.sa_sigaction = host_signal_handler;
831 ret = sigaction(host_sig, &act1, NULL);
834 return ret;
837 static void handle_pending_signal(CPUArchState *cpu_env, int sig,
838 struct emulated_sigtable *k)
840 CPUState *cpu = ENV_GET_CPU(cpu_env);
841 abi_ulong handler;
842 sigset_t set;
843 target_sigset_t target_old_set;
844 struct target_sigaction *sa;
845 TaskState *ts = cpu->opaque;
847 trace_user_handle_signal(cpu_env, sig);
848 /* dequeue signal */
849 k->pending = 0;
851 sig = gdb_handlesig(cpu, sig);
852 if (!sig) {
853 sa = NULL;
854 handler = TARGET_SIG_IGN;
855 } else {
856 sa = &sigact_table[sig - 1];
857 handler = sa->_sa_handler;
860 if (do_strace) {
861 print_taken_signal(sig, &k->info);
864 if (handler == TARGET_SIG_DFL) {
865 /* default handler : ignore some signal. The other are job control or fatal */
866 if (sig == TARGET_SIGTSTP || sig == TARGET_SIGTTIN || sig == TARGET_SIGTTOU) {
867 kill(getpid(),SIGSTOP);
868 } else if (sig != TARGET_SIGCHLD &&
869 sig != TARGET_SIGURG &&
870 sig != TARGET_SIGWINCH &&
871 sig != TARGET_SIGCONT) {
872 dump_core_and_abort(sig);
874 } else if (handler == TARGET_SIG_IGN) {
875 /* ignore sig */
876 } else if (handler == TARGET_SIG_ERR) {
877 dump_core_and_abort(sig);
878 } else {
879 /* compute the blocked signals during the handler execution */
880 sigset_t *blocked_set;
882 target_to_host_sigset(&set, &sa->sa_mask);
883 /* SA_NODEFER indicates that the current signal should not be
884 blocked during the handler */
885 if (!(sa->sa_flags & TARGET_SA_NODEFER))
886 sigaddset(&set, target_to_host_signal(sig));
888 /* save the previous blocked signal state to restore it at the
889 end of the signal execution (see do_sigreturn) */
890 host_to_target_sigset_internal(&target_old_set, &ts->signal_mask);
892 /* block signals in the handler */
893 blocked_set = ts->in_sigsuspend ?
894 &ts->sigsuspend_mask : &ts->signal_mask;
895 sigorset(&ts->signal_mask, blocked_set, &set);
896 ts->in_sigsuspend = 0;
898 /* if the CPU is in VM86 mode, we restore the 32 bit values */
899 #if defined(TARGET_I386) && !defined(TARGET_X86_64)
901 CPUX86State *env = cpu_env;
902 if (env->eflags & VM_MASK)
903 save_v86_state(env);
905 #endif
906 /* prepare the stack frame of the virtual CPU */
907 #if defined(TARGET_ARCH_HAS_SETUP_FRAME)
908 if (sa->sa_flags & TARGET_SA_SIGINFO) {
909 setup_rt_frame(sig, sa, &k->info, &target_old_set, cpu_env);
910 } else {
911 setup_frame(sig, sa, &target_old_set, cpu_env);
913 #else
914 /* These targets do not have traditional signals. */
915 setup_rt_frame(sig, sa, &k->info, &target_old_set, cpu_env);
916 #endif
917 if (sa->sa_flags & TARGET_SA_RESETHAND) {
918 sa->_sa_handler = TARGET_SIG_DFL;
923 void process_pending_signals(CPUArchState *cpu_env)
925 CPUState *cpu = ENV_GET_CPU(cpu_env);
926 int sig;
927 TaskState *ts = cpu->opaque;
928 sigset_t set;
929 sigset_t *blocked_set;
931 while (atomic_read(&ts->signal_pending)) {
932 /* FIXME: This is not threadsafe. */
933 sigfillset(&set);
934 sigprocmask(SIG_SETMASK, &set, 0);
936 restart_scan:
937 sig = ts->sync_signal.pending;
938 if (sig) {
939 /* Synchronous signals are forced,
940 * see force_sig_info() and callers in Linux
941 * Note that not all of our queue_signal() calls in QEMU correspond
942 * to force_sig_info() calls in Linux (some are send_sig_info()).
943 * However it seems like a kernel bug to me to allow the process
944 * to block a synchronous signal since it could then just end up
945 * looping round and round indefinitely.
947 if (sigismember(&ts->signal_mask, target_to_host_signal_table[sig])
948 || sigact_table[sig - 1]._sa_handler == TARGET_SIG_IGN) {
949 sigdelset(&ts->signal_mask, target_to_host_signal_table[sig]);
950 sigact_table[sig - 1]._sa_handler = TARGET_SIG_DFL;
953 handle_pending_signal(cpu_env, sig, &ts->sync_signal);
956 for (sig = 1; sig <= TARGET_NSIG; sig++) {
957 blocked_set = ts->in_sigsuspend ?
958 &ts->sigsuspend_mask : &ts->signal_mask;
960 if (ts->sigtab[sig - 1].pending &&
961 (!sigismember(blocked_set,
962 target_to_host_signal_table[sig]))) {
963 handle_pending_signal(cpu_env, sig, &ts->sigtab[sig - 1]);
964 /* Restart scan from the beginning, as handle_pending_signal
965 * might have resulted in a new synchronous signal (eg SIGSEGV).
967 goto restart_scan;
971 /* if no signal is pending, unblock signals and recheck (the act
972 * of unblocking might cause us to take another host signal which
973 * will set signal_pending again).
975 atomic_set(&ts->signal_pending, 0);
976 ts->in_sigsuspend = 0;
977 set = ts->signal_mask;
978 sigdelset(&set, SIGSEGV);
979 sigdelset(&set, SIGBUS);
980 sigprocmask(SIG_SETMASK, &set, 0);
982 ts->in_sigsuspend = 0;