Include hw/boards.h a bit less
[qemu/ar7.git] / hw / arm / virt.c
blob226e810d06bdca1b84398e07517b1e3532788528
1 /*
2 * ARM mach-virt emulation
4 * Copyright (c) 2013 Linaro Limited
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2 or later, as published by the Free Software Foundation.
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
15 * You should have received a copy of the GNU General Public License along with
16 * this program. If not, see <http://www.gnu.org/licenses/>.
18 * Emulate a virtual board which works by passing Linux all the information
19 * it needs about what devices are present via the device tree.
20 * There are some restrictions about what we can do here:
21 * + we can only present devices whose Linux drivers will work based
22 * purely on the device tree with no platform data at all
23 * + we want to present a very stripped-down minimalist platform,
24 * both because this reduces the security attack surface from the guest
25 * and also because it reduces our exposure to being broken when
26 * the kernel updates its device tree bindings and requires further
27 * information in a device binding that we aren't providing.
28 * This is essentially the same approach kvmtool uses.
31 #include "qemu/osdep.h"
32 #include "qemu-common.h"
33 #include "qemu/units.h"
34 #include "qemu/option.h"
35 #include "qapi/error.h"
36 #include "hw/sysbus.h"
37 #include "hw/boards.h"
38 #include "hw/arm/boot.h"
39 #include "hw/arm/primecell.h"
40 #include "hw/arm/virt.h"
41 #include "hw/block/flash.h"
42 #include "hw/vfio/vfio-calxeda-xgmac.h"
43 #include "hw/vfio/vfio-amd-xgbe.h"
44 #include "hw/display/ramfb.h"
45 #include "net/net.h"
46 #include "sysemu/device_tree.h"
47 #include "sysemu/numa.h"
48 #include "sysemu/sysemu.h"
49 #include "sysemu/kvm.h"
50 #include "hw/loader.h"
51 #include "exec/address-spaces.h"
52 #include "qemu/bitops.h"
53 #include "qemu/error-report.h"
54 #include "qemu/module.h"
55 #include "hw/pci-host/gpex.h"
56 #include "hw/arm/sysbus-fdt.h"
57 #include "hw/platform-bus.h"
58 #include "hw/qdev-properties.h"
59 #include "hw/arm/fdt.h"
60 #include "hw/intc/arm_gic.h"
61 #include "hw/intc/arm_gicv3_common.h"
62 #include "hw/irq.h"
63 #include "kvm_arm.h"
64 #include "hw/firmware/smbios.h"
65 #include "qapi/visitor.h"
66 #include "standard-headers/linux/input.h"
67 #include "hw/arm/smmuv3.h"
68 #include "hw/acpi/acpi.h"
69 #include "target/arm/internals.h"
71 #define DEFINE_VIRT_MACHINE_LATEST(major, minor, latest) \
72 static void virt_##major##_##minor##_class_init(ObjectClass *oc, \
73 void *data) \
74 { \
75 MachineClass *mc = MACHINE_CLASS(oc); \
76 virt_machine_##major##_##minor##_options(mc); \
77 mc->desc = "QEMU " # major "." # minor " ARM Virtual Machine"; \
78 if (latest) { \
79 mc->alias = "virt"; \
80 } \
81 } \
82 static const TypeInfo machvirt_##major##_##minor##_info = { \
83 .name = MACHINE_TYPE_NAME("virt-" # major "." # minor), \
84 .parent = TYPE_VIRT_MACHINE, \
85 .class_init = virt_##major##_##minor##_class_init, \
86 }; \
87 static void machvirt_machine_##major##_##minor##_init(void) \
88 { \
89 type_register_static(&machvirt_##major##_##minor##_info); \
90 } \
91 type_init(machvirt_machine_##major##_##minor##_init);
93 #define DEFINE_VIRT_MACHINE_AS_LATEST(major, minor) \
94 DEFINE_VIRT_MACHINE_LATEST(major, minor, true)
95 #define DEFINE_VIRT_MACHINE(major, minor) \
96 DEFINE_VIRT_MACHINE_LATEST(major, minor, false)
99 /* Number of external interrupt lines to configure the GIC with */
100 #define NUM_IRQS 256
102 #define PLATFORM_BUS_NUM_IRQS 64
104 /* Legacy RAM limit in GB (< version 4.0) */
105 #define LEGACY_RAMLIMIT_GB 255
106 #define LEGACY_RAMLIMIT_BYTES (LEGACY_RAMLIMIT_GB * GiB)
108 /* Addresses and sizes of our components.
109 * 0..128MB is space for a flash device so we can run bootrom code such as UEFI.
110 * 128MB..256MB is used for miscellaneous device I/O.
111 * 256MB..1GB is reserved for possible future PCI support (ie where the
112 * PCI memory window will go if we add a PCI host controller).
113 * 1GB and up is RAM (which may happily spill over into the
114 * high memory region beyond 4GB).
115 * This represents a compromise between how much RAM can be given to
116 * a 32 bit VM and leaving space for expansion and in particular for PCI.
117 * Note that devices should generally be placed at multiples of 0x10000,
118 * to accommodate guests using 64K pages.
120 static const MemMapEntry base_memmap[] = {
121 /* Space up to 0x8000000 is reserved for a boot ROM */
122 [VIRT_FLASH] = { 0, 0x08000000 },
123 [VIRT_CPUPERIPHS] = { 0x08000000, 0x00020000 },
124 /* GIC distributor and CPU interfaces sit inside the CPU peripheral space */
125 [VIRT_GIC_DIST] = { 0x08000000, 0x00010000 },
126 [VIRT_GIC_CPU] = { 0x08010000, 0x00010000 },
127 [VIRT_GIC_V2M] = { 0x08020000, 0x00001000 },
128 [VIRT_GIC_HYP] = { 0x08030000, 0x00010000 },
129 [VIRT_GIC_VCPU] = { 0x08040000, 0x00010000 },
130 /* The space in between here is reserved for GICv3 CPU/vCPU/HYP */
131 [VIRT_GIC_ITS] = { 0x08080000, 0x00020000 },
132 /* This redistributor space allows up to 2*64kB*123 CPUs */
133 [VIRT_GIC_REDIST] = { 0x080A0000, 0x00F60000 },
134 [VIRT_UART] = { 0x09000000, 0x00001000 },
135 [VIRT_RTC] = { 0x09010000, 0x00001000 },
136 [VIRT_FW_CFG] = { 0x09020000, 0x00000018 },
137 [VIRT_GPIO] = { 0x09030000, 0x00001000 },
138 [VIRT_SECURE_UART] = { 0x09040000, 0x00001000 },
139 [VIRT_SMMU] = { 0x09050000, 0x00020000 },
140 [VIRT_MMIO] = { 0x0a000000, 0x00000200 },
141 /* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */
142 [VIRT_PLATFORM_BUS] = { 0x0c000000, 0x02000000 },
143 [VIRT_SECURE_MEM] = { 0x0e000000, 0x01000000 },
144 [VIRT_PCIE_MMIO] = { 0x10000000, 0x2eff0000 },
145 [VIRT_PCIE_PIO] = { 0x3eff0000, 0x00010000 },
146 [VIRT_PCIE_ECAM] = { 0x3f000000, 0x01000000 },
147 /* Actual RAM size depends on initial RAM and device memory settings */
148 [VIRT_MEM] = { GiB, LEGACY_RAMLIMIT_BYTES },
152 * Highmem IO Regions: This memory map is floating, located after the RAM.
153 * Each MemMapEntry base (GPA) will be dynamically computed, depending on the
154 * top of the RAM, so that its base get the same alignment as the size,
155 * ie. a 512GiB entry will be aligned on a 512GiB boundary. If there is
156 * less than 256GiB of RAM, the floating area starts at the 256GiB mark.
157 * Note the extended_memmap is sized so that it eventually also includes the
158 * base_memmap entries (VIRT_HIGH_GIC_REDIST2 index is greater than the last
159 * index of base_memmap).
161 static MemMapEntry extended_memmap[] = {
162 /* Additional 64 MB redist region (can contain up to 512 redistributors) */
163 [VIRT_HIGH_GIC_REDIST2] = { 0x0, 64 * MiB },
164 [VIRT_HIGH_PCIE_ECAM] = { 0x0, 256 * MiB },
165 /* Second PCIe window */
166 [VIRT_HIGH_PCIE_MMIO] = { 0x0, 512 * GiB },
169 static const int a15irqmap[] = {
170 [VIRT_UART] = 1,
171 [VIRT_RTC] = 2,
172 [VIRT_PCIE] = 3, /* ... to 6 */
173 [VIRT_GPIO] = 7,
174 [VIRT_SECURE_UART] = 8,
175 [VIRT_MMIO] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */
176 [VIRT_GIC_V2M] = 48, /* ...to 48 + NUM_GICV2M_SPIS - 1 */
177 [VIRT_SMMU] = 74, /* ...to 74 + NUM_SMMU_IRQS - 1 */
178 [VIRT_PLATFORM_BUS] = 112, /* ...to 112 + PLATFORM_BUS_NUM_IRQS -1 */
181 static const char *valid_cpus[] = {
182 ARM_CPU_TYPE_NAME("cortex-a7"),
183 ARM_CPU_TYPE_NAME("cortex-a15"),
184 ARM_CPU_TYPE_NAME("cortex-a53"),
185 ARM_CPU_TYPE_NAME("cortex-a57"),
186 ARM_CPU_TYPE_NAME("cortex-a72"),
187 ARM_CPU_TYPE_NAME("host"),
188 ARM_CPU_TYPE_NAME("max"),
191 static bool cpu_type_valid(const char *cpu)
193 int i;
195 for (i = 0; i < ARRAY_SIZE(valid_cpus); i++) {
196 if (strcmp(cpu, valid_cpus[i]) == 0) {
197 return true;
200 return false;
203 static void create_fdt(VirtMachineState *vms)
205 void *fdt = create_device_tree(&vms->fdt_size);
207 if (!fdt) {
208 error_report("create_device_tree() failed");
209 exit(1);
212 vms->fdt = fdt;
214 /* Header */
215 qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,dummy-virt");
216 qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2);
217 qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2);
219 /* /chosen must exist for load_dtb to fill in necessary properties later */
220 qemu_fdt_add_subnode(fdt, "/chosen");
222 /* Clock node, for the benefit of the UART. The kernel device tree
223 * binding documentation claims the PL011 node clock properties are
224 * optional but in practice if you omit them the kernel refuses to
225 * probe for the device.
227 vms->clock_phandle = qemu_fdt_alloc_phandle(fdt);
228 qemu_fdt_add_subnode(fdt, "/apb-pclk");
229 qemu_fdt_setprop_string(fdt, "/apb-pclk", "compatible", "fixed-clock");
230 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "#clock-cells", 0x0);
231 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "clock-frequency", 24000000);
232 qemu_fdt_setprop_string(fdt, "/apb-pclk", "clock-output-names",
233 "clk24mhz");
234 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "phandle", vms->clock_phandle);
236 if (have_numa_distance) {
237 int size = nb_numa_nodes * nb_numa_nodes * 3 * sizeof(uint32_t);
238 uint32_t *matrix = g_malloc0(size);
239 int idx, i, j;
241 for (i = 0; i < nb_numa_nodes; i++) {
242 for (j = 0; j < nb_numa_nodes; j++) {
243 idx = (i * nb_numa_nodes + j) * 3;
244 matrix[idx + 0] = cpu_to_be32(i);
245 matrix[idx + 1] = cpu_to_be32(j);
246 matrix[idx + 2] = cpu_to_be32(numa_info[i].distance[j]);
250 qemu_fdt_add_subnode(fdt, "/distance-map");
251 qemu_fdt_setprop_string(fdt, "/distance-map", "compatible",
252 "numa-distance-map-v1");
253 qemu_fdt_setprop(fdt, "/distance-map", "distance-matrix",
254 matrix, size);
255 g_free(matrix);
259 static void fdt_add_timer_nodes(const VirtMachineState *vms)
261 /* On real hardware these interrupts are level-triggered.
262 * On KVM they were edge-triggered before host kernel version 4.4,
263 * and level-triggered afterwards.
264 * On emulated QEMU they are level-triggered.
266 * Getting the DTB info about them wrong is awkward for some
267 * guest kernels:
268 * pre-4.8 ignore the DT and leave the interrupt configured
269 * with whatever the GIC reset value (or the bootloader) left it at
270 * 4.8 before rc6 honour the incorrect data by programming it back
271 * into the GIC, causing problems
272 * 4.8rc6 and later ignore the DT and always write "level triggered"
273 * into the GIC
275 * For backwards-compatibility, virt-2.8 and earlier will continue
276 * to say these are edge-triggered, but later machines will report
277 * the correct information.
279 ARMCPU *armcpu;
280 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
281 uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
283 if (vmc->claim_edge_triggered_timers) {
284 irqflags = GIC_FDT_IRQ_FLAGS_EDGE_LO_HI;
287 if (vms->gic_version == 2) {
288 irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
289 GIC_FDT_IRQ_PPI_CPU_WIDTH,
290 (1 << vms->smp_cpus) - 1);
293 qemu_fdt_add_subnode(vms->fdt, "/timer");
295 armcpu = ARM_CPU(qemu_get_cpu(0));
296 if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
297 const char compat[] = "arm,armv8-timer\0arm,armv7-timer";
298 qemu_fdt_setprop(vms->fdt, "/timer", "compatible",
299 compat, sizeof(compat));
300 } else {
301 qemu_fdt_setprop_string(vms->fdt, "/timer", "compatible",
302 "arm,armv7-timer");
304 qemu_fdt_setprop(vms->fdt, "/timer", "always-on", NULL, 0);
305 qemu_fdt_setprop_cells(vms->fdt, "/timer", "interrupts",
306 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_S_EL1_IRQ, irqflags,
307 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL1_IRQ, irqflags,
308 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_VIRT_IRQ, irqflags,
309 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL2_IRQ, irqflags);
312 static void fdt_add_cpu_nodes(const VirtMachineState *vms)
314 int cpu;
315 int addr_cells = 1;
316 const MachineState *ms = MACHINE(vms);
319 * From Documentation/devicetree/bindings/arm/cpus.txt
320 * On ARM v8 64-bit systems value should be set to 2,
321 * that corresponds to the MPIDR_EL1 register size.
322 * If MPIDR_EL1[63:32] value is equal to 0 on all CPUs
323 * in the system, #address-cells can be set to 1, since
324 * MPIDR_EL1[63:32] bits are not used for CPUs
325 * identification.
327 * Here we actually don't know whether our system is 32- or 64-bit one.
328 * The simplest way to go is to examine affinity IDs of all our CPUs. If
329 * at least one of them has Aff3 populated, we set #address-cells to 2.
331 for (cpu = 0; cpu < vms->smp_cpus; cpu++) {
332 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
334 if (armcpu->mp_affinity & ARM_AFF3_MASK) {
335 addr_cells = 2;
336 break;
340 qemu_fdt_add_subnode(vms->fdt, "/cpus");
341 qemu_fdt_setprop_cell(vms->fdt, "/cpus", "#address-cells", addr_cells);
342 qemu_fdt_setprop_cell(vms->fdt, "/cpus", "#size-cells", 0x0);
344 for (cpu = vms->smp_cpus - 1; cpu >= 0; cpu--) {
345 char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu);
346 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
347 CPUState *cs = CPU(armcpu);
349 qemu_fdt_add_subnode(vms->fdt, nodename);
350 qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "cpu");
351 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible",
352 armcpu->dtb_compatible);
354 if (vms->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED
355 && vms->smp_cpus > 1) {
356 qemu_fdt_setprop_string(vms->fdt, nodename,
357 "enable-method", "psci");
360 if (addr_cells == 2) {
361 qemu_fdt_setprop_u64(vms->fdt, nodename, "reg",
362 armcpu->mp_affinity);
363 } else {
364 qemu_fdt_setprop_cell(vms->fdt, nodename, "reg",
365 armcpu->mp_affinity);
368 if (ms->possible_cpus->cpus[cs->cpu_index].props.has_node_id) {
369 qemu_fdt_setprop_cell(vms->fdt, nodename, "numa-node-id",
370 ms->possible_cpus->cpus[cs->cpu_index].props.node_id);
373 g_free(nodename);
377 static void fdt_add_its_gic_node(VirtMachineState *vms)
379 char *nodename;
381 vms->msi_phandle = qemu_fdt_alloc_phandle(vms->fdt);
382 nodename = g_strdup_printf("/intc/its@%" PRIx64,
383 vms->memmap[VIRT_GIC_ITS].base);
384 qemu_fdt_add_subnode(vms->fdt, nodename);
385 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible",
386 "arm,gic-v3-its");
387 qemu_fdt_setprop(vms->fdt, nodename, "msi-controller", NULL, 0);
388 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
389 2, vms->memmap[VIRT_GIC_ITS].base,
390 2, vms->memmap[VIRT_GIC_ITS].size);
391 qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", vms->msi_phandle);
392 g_free(nodename);
395 static void fdt_add_v2m_gic_node(VirtMachineState *vms)
397 char *nodename;
399 nodename = g_strdup_printf("/intc/v2m@%" PRIx64,
400 vms->memmap[VIRT_GIC_V2M].base);
401 vms->msi_phandle = qemu_fdt_alloc_phandle(vms->fdt);
402 qemu_fdt_add_subnode(vms->fdt, nodename);
403 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible",
404 "arm,gic-v2m-frame");
405 qemu_fdt_setprop(vms->fdt, nodename, "msi-controller", NULL, 0);
406 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
407 2, vms->memmap[VIRT_GIC_V2M].base,
408 2, vms->memmap[VIRT_GIC_V2M].size);
409 qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", vms->msi_phandle);
410 g_free(nodename);
413 static void fdt_add_gic_node(VirtMachineState *vms)
415 char *nodename;
417 vms->gic_phandle = qemu_fdt_alloc_phandle(vms->fdt);
418 qemu_fdt_setprop_cell(vms->fdt, "/", "interrupt-parent", vms->gic_phandle);
420 nodename = g_strdup_printf("/intc@%" PRIx64,
421 vms->memmap[VIRT_GIC_DIST].base);
422 qemu_fdt_add_subnode(vms->fdt, nodename);
423 qemu_fdt_setprop_cell(vms->fdt, nodename, "#interrupt-cells", 3);
424 qemu_fdt_setprop(vms->fdt, nodename, "interrupt-controller", NULL, 0);
425 qemu_fdt_setprop_cell(vms->fdt, nodename, "#address-cells", 0x2);
426 qemu_fdt_setprop_cell(vms->fdt, nodename, "#size-cells", 0x2);
427 qemu_fdt_setprop(vms->fdt, nodename, "ranges", NULL, 0);
428 if (vms->gic_version == 3) {
429 int nb_redist_regions = virt_gicv3_redist_region_count(vms);
431 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible",
432 "arm,gic-v3");
434 qemu_fdt_setprop_cell(vms->fdt, nodename,
435 "#redistributor-regions", nb_redist_regions);
437 if (nb_redist_regions == 1) {
438 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
439 2, vms->memmap[VIRT_GIC_DIST].base,
440 2, vms->memmap[VIRT_GIC_DIST].size,
441 2, vms->memmap[VIRT_GIC_REDIST].base,
442 2, vms->memmap[VIRT_GIC_REDIST].size);
443 } else {
444 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
445 2, vms->memmap[VIRT_GIC_DIST].base,
446 2, vms->memmap[VIRT_GIC_DIST].size,
447 2, vms->memmap[VIRT_GIC_REDIST].base,
448 2, vms->memmap[VIRT_GIC_REDIST].size,
449 2, vms->memmap[VIRT_HIGH_GIC_REDIST2].base,
450 2, vms->memmap[VIRT_HIGH_GIC_REDIST2].size);
453 if (vms->virt) {
454 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
455 GIC_FDT_IRQ_TYPE_PPI, ARCH_GIC_MAINT_IRQ,
456 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
458 } else {
459 /* 'cortex-a15-gic' means 'GIC v2' */
460 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible",
461 "arm,cortex-a15-gic");
462 if (!vms->virt) {
463 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
464 2, vms->memmap[VIRT_GIC_DIST].base,
465 2, vms->memmap[VIRT_GIC_DIST].size,
466 2, vms->memmap[VIRT_GIC_CPU].base,
467 2, vms->memmap[VIRT_GIC_CPU].size);
468 } else {
469 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
470 2, vms->memmap[VIRT_GIC_DIST].base,
471 2, vms->memmap[VIRT_GIC_DIST].size,
472 2, vms->memmap[VIRT_GIC_CPU].base,
473 2, vms->memmap[VIRT_GIC_CPU].size,
474 2, vms->memmap[VIRT_GIC_HYP].base,
475 2, vms->memmap[VIRT_GIC_HYP].size,
476 2, vms->memmap[VIRT_GIC_VCPU].base,
477 2, vms->memmap[VIRT_GIC_VCPU].size);
478 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
479 GIC_FDT_IRQ_TYPE_PPI, ARCH_GIC_MAINT_IRQ,
480 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
484 qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", vms->gic_phandle);
485 g_free(nodename);
488 static void fdt_add_pmu_nodes(const VirtMachineState *vms)
490 CPUState *cpu;
491 ARMCPU *armcpu;
492 uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
494 CPU_FOREACH(cpu) {
495 armcpu = ARM_CPU(cpu);
496 if (!arm_feature(&armcpu->env, ARM_FEATURE_PMU)) {
497 return;
499 if (kvm_enabled()) {
500 if (kvm_irqchip_in_kernel()) {
501 kvm_arm_pmu_set_irq(cpu, PPI(VIRTUAL_PMU_IRQ));
503 kvm_arm_pmu_init(cpu);
507 if (vms->gic_version == 2) {
508 irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
509 GIC_FDT_IRQ_PPI_CPU_WIDTH,
510 (1 << vms->smp_cpus) - 1);
513 armcpu = ARM_CPU(qemu_get_cpu(0));
514 qemu_fdt_add_subnode(vms->fdt, "/pmu");
515 if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
516 const char compat[] = "arm,armv8-pmuv3";
517 qemu_fdt_setprop(vms->fdt, "/pmu", "compatible",
518 compat, sizeof(compat));
519 qemu_fdt_setprop_cells(vms->fdt, "/pmu", "interrupts",
520 GIC_FDT_IRQ_TYPE_PPI, VIRTUAL_PMU_IRQ, irqflags);
524 static void create_its(VirtMachineState *vms, DeviceState *gicdev)
526 const char *itsclass = its_class_name();
527 DeviceState *dev;
529 if (!itsclass) {
530 /* Do nothing if not supported */
531 return;
534 dev = qdev_create(NULL, itsclass);
536 object_property_set_link(OBJECT(dev), OBJECT(gicdev), "parent-gicv3",
537 &error_abort);
538 qdev_init_nofail(dev);
539 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_ITS].base);
541 fdt_add_its_gic_node(vms);
544 static void create_v2m(VirtMachineState *vms, qemu_irq *pic)
546 int i;
547 int irq = vms->irqmap[VIRT_GIC_V2M];
548 DeviceState *dev;
550 dev = qdev_create(NULL, "arm-gicv2m");
551 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_V2M].base);
552 qdev_prop_set_uint32(dev, "base-spi", irq);
553 qdev_prop_set_uint32(dev, "num-spi", NUM_GICV2M_SPIS);
554 qdev_init_nofail(dev);
556 for (i = 0; i < NUM_GICV2M_SPIS; i++) {
557 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]);
560 fdt_add_v2m_gic_node(vms);
563 static void create_gic(VirtMachineState *vms, qemu_irq *pic)
565 MachineState *ms = MACHINE(vms);
566 /* We create a standalone GIC */
567 DeviceState *gicdev;
568 SysBusDevice *gicbusdev;
569 const char *gictype;
570 int type = vms->gic_version, i;
571 unsigned int smp_cpus = ms->smp.cpus;
572 uint32_t nb_redist_regions = 0;
574 gictype = (type == 3) ? gicv3_class_name() : gic_class_name();
576 gicdev = qdev_create(NULL, gictype);
577 qdev_prop_set_uint32(gicdev, "revision", type);
578 qdev_prop_set_uint32(gicdev, "num-cpu", smp_cpus);
579 /* Note that the num-irq property counts both internal and external
580 * interrupts; there are always 32 of the former (mandated by GIC spec).
582 qdev_prop_set_uint32(gicdev, "num-irq", NUM_IRQS + 32);
583 if (!kvm_irqchip_in_kernel()) {
584 qdev_prop_set_bit(gicdev, "has-security-extensions", vms->secure);
587 if (type == 3) {
588 uint32_t redist0_capacity =
589 vms->memmap[VIRT_GIC_REDIST].size / GICV3_REDIST_SIZE;
590 uint32_t redist0_count = MIN(smp_cpus, redist0_capacity);
592 nb_redist_regions = virt_gicv3_redist_region_count(vms);
594 qdev_prop_set_uint32(gicdev, "len-redist-region-count",
595 nb_redist_regions);
596 qdev_prop_set_uint32(gicdev, "redist-region-count[0]", redist0_count);
598 if (nb_redist_regions == 2) {
599 uint32_t redist1_capacity =
600 vms->memmap[VIRT_HIGH_GIC_REDIST2].size / GICV3_REDIST_SIZE;
602 qdev_prop_set_uint32(gicdev, "redist-region-count[1]",
603 MIN(smp_cpus - redist0_count, redist1_capacity));
605 } else {
606 if (!kvm_irqchip_in_kernel()) {
607 qdev_prop_set_bit(gicdev, "has-virtualization-extensions",
608 vms->virt);
611 qdev_init_nofail(gicdev);
612 gicbusdev = SYS_BUS_DEVICE(gicdev);
613 sysbus_mmio_map(gicbusdev, 0, vms->memmap[VIRT_GIC_DIST].base);
614 if (type == 3) {
615 sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_REDIST].base);
616 if (nb_redist_regions == 2) {
617 sysbus_mmio_map(gicbusdev, 2,
618 vms->memmap[VIRT_HIGH_GIC_REDIST2].base);
620 } else {
621 sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_CPU].base);
622 if (vms->virt) {
623 sysbus_mmio_map(gicbusdev, 2, vms->memmap[VIRT_GIC_HYP].base);
624 sysbus_mmio_map(gicbusdev, 3, vms->memmap[VIRT_GIC_VCPU].base);
628 /* Wire the outputs from each CPU's generic timer and the GICv3
629 * maintenance interrupt signal to the appropriate GIC PPI inputs,
630 * and the GIC's IRQ/FIQ/VIRQ/VFIQ interrupt outputs to the CPU's inputs.
632 for (i = 0; i < smp_cpus; i++) {
633 DeviceState *cpudev = DEVICE(qemu_get_cpu(i));
634 int ppibase = NUM_IRQS + i * GIC_INTERNAL + GIC_NR_SGIS;
635 int irq;
636 /* Mapping from the output timer irq lines from the CPU to the
637 * GIC PPI inputs we use for the virt board.
639 const int timer_irq[] = {
640 [GTIMER_PHYS] = ARCH_TIMER_NS_EL1_IRQ,
641 [GTIMER_VIRT] = ARCH_TIMER_VIRT_IRQ,
642 [GTIMER_HYP] = ARCH_TIMER_NS_EL2_IRQ,
643 [GTIMER_SEC] = ARCH_TIMER_S_EL1_IRQ,
646 for (irq = 0; irq < ARRAY_SIZE(timer_irq); irq++) {
647 qdev_connect_gpio_out(cpudev, irq,
648 qdev_get_gpio_in(gicdev,
649 ppibase + timer_irq[irq]));
652 if (type == 3) {
653 qemu_irq irq = qdev_get_gpio_in(gicdev,
654 ppibase + ARCH_GIC_MAINT_IRQ);
655 qdev_connect_gpio_out_named(cpudev, "gicv3-maintenance-interrupt",
656 0, irq);
657 } else if (vms->virt) {
658 qemu_irq irq = qdev_get_gpio_in(gicdev,
659 ppibase + ARCH_GIC_MAINT_IRQ);
660 sysbus_connect_irq(gicbusdev, i + 4 * smp_cpus, irq);
663 qdev_connect_gpio_out_named(cpudev, "pmu-interrupt", 0,
664 qdev_get_gpio_in(gicdev, ppibase
665 + VIRTUAL_PMU_IRQ));
667 sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ));
668 sysbus_connect_irq(gicbusdev, i + smp_cpus,
669 qdev_get_gpio_in(cpudev, ARM_CPU_FIQ));
670 sysbus_connect_irq(gicbusdev, i + 2 * smp_cpus,
671 qdev_get_gpio_in(cpudev, ARM_CPU_VIRQ));
672 sysbus_connect_irq(gicbusdev, i + 3 * smp_cpus,
673 qdev_get_gpio_in(cpudev, ARM_CPU_VFIQ));
676 for (i = 0; i < NUM_IRQS; i++) {
677 pic[i] = qdev_get_gpio_in(gicdev, i);
680 fdt_add_gic_node(vms);
682 if (type == 3 && vms->its) {
683 create_its(vms, gicdev);
684 } else if (type == 2) {
685 create_v2m(vms, pic);
689 static void create_uart(const VirtMachineState *vms, qemu_irq *pic, int uart,
690 MemoryRegion *mem, Chardev *chr)
692 char *nodename;
693 hwaddr base = vms->memmap[uart].base;
694 hwaddr size = vms->memmap[uart].size;
695 int irq = vms->irqmap[uart];
696 const char compat[] = "arm,pl011\0arm,primecell";
697 const char clocknames[] = "uartclk\0apb_pclk";
698 DeviceState *dev = qdev_create(NULL, "pl011");
699 SysBusDevice *s = SYS_BUS_DEVICE(dev);
701 qdev_prop_set_chr(dev, "chardev", chr);
702 qdev_init_nofail(dev);
703 memory_region_add_subregion(mem, base,
704 sysbus_mmio_get_region(s, 0));
705 sysbus_connect_irq(s, 0, pic[irq]);
707 nodename = g_strdup_printf("/pl011@%" PRIx64, base);
708 qemu_fdt_add_subnode(vms->fdt, nodename);
709 /* Note that we can't use setprop_string because of the embedded NUL */
710 qemu_fdt_setprop(vms->fdt, nodename, "compatible",
711 compat, sizeof(compat));
712 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
713 2, base, 2, size);
714 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
715 GIC_FDT_IRQ_TYPE_SPI, irq,
716 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
717 qemu_fdt_setprop_cells(vms->fdt, nodename, "clocks",
718 vms->clock_phandle, vms->clock_phandle);
719 qemu_fdt_setprop(vms->fdt, nodename, "clock-names",
720 clocknames, sizeof(clocknames));
722 if (uart == VIRT_UART) {
723 qemu_fdt_setprop_string(vms->fdt, "/chosen", "stdout-path", nodename);
724 } else {
725 /* Mark as not usable by the normal world */
726 qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled");
727 qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay");
729 qemu_fdt_add_subnode(vms->fdt, "/secure-chosen");
730 qemu_fdt_setprop_string(vms->fdt, "/secure-chosen", "stdout-path",
731 nodename);
734 g_free(nodename);
737 static void create_rtc(const VirtMachineState *vms, qemu_irq *pic)
739 char *nodename;
740 hwaddr base = vms->memmap[VIRT_RTC].base;
741 hwaddr size = vms->memmap[VIRT_RTC].size;
742 int irq = vms->irqmap[VIRT_RTC];
743 const char compat[] = "arm,pl031\0arm,primecell";
745 sysbus_create_simple("pl031", base, pic[irq]);
747 nodename = g_strdup_printf("/pl031@%" PRIx64, base);
748 qemu_fdt_add_subnode(vms->fdt, nodename);
749 qemu_fdt_setprop(vms->fdt, nodename, "compatible", compat, sizeof(compat));
750 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
751 2, base, 2, size);
752 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
753 GIC_FDT_IRQ_TYPE_SPI, irq,
754 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
755 qemu_fdt_setprop_cell(vms->fdt, nodename, "clocks", vms->clock_phandle);
756 qemu_fdt_setprop_string(vms->fdt, nodename, "clock-names", "apb_pclk");
757 g_free(nodename);
760 static DeviceState *gpio_key_dev;
761 static void virt_powerdown_req(Notifier *n, void *opaque)
763 /* use gpio Pin 3 for power button event */
764 qemu_set_irq(qdev_get_gpio_in(gpio_key_dev, 0), 1);
767 static Notifier virt_system_powerdown_notifier = {
768 .notify = virt_powerdown_req
771 static void create_gpio(const VirtMachineState *vms, qemu_irq *pic)
773 char *nodename;
774 DeviceState *pl061_dev;
775 hwaddr base = vms->memmap[VIRT_GPIO].base;
776 hwaddr size = vms->memmap[VIRT_GPIO].size;
777 int irq = vms->irqmap[VIRT_GPIO];
778 const char compat[] = "arm,pl061\0arm,primecell";
780 pl061_dev = sysbus_create_simple("pl061", base, pic[irq]);
782 uint32_t phandle = qemu_fdt_alloc_phandle(vms->fdt);
783 nodename = g_strdup_printf("/pl061@%" PRIx64, base);
784 qemu_fdt_add_subnode(vms->fdt, nodename);
785 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
786 2, base, 2, size);
787 qemu_fdt_setprop(vms->fdt, nodename, "compatible", compat, sizeof(compat));
788 qemu_fdt_setprop_cell(vms->fdt, nodename, "#gpio-cells", 2);
789 qemu_fdt_setprop(vms->fdt, nodename, "gpio-controller", NULL, 0);
790 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
791 GIC_FDT_IRQ_TYPE_SPI, irq,
792 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
793 qemu_fdt_setprop_cell(vms->fdt, nodename, "clocks", vms->clock_phandle);
794 qemu_fdt_setprop_string(vms->fdt, nodename, "clock-names", "apb_pclk");
795 qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", phandle);
797 gpio_key_dev = sysbus_create_simple("gpio-key", -1,
798 qdev_get_gpio_in(pl061_dev, 3));
799 qemu_fdt_add_subnode(vms->fdt, "/gpio-keys");
800 qemu_fdt_setprop_string(vms->fdt, "/gpio-keys", "compatible", "gpio-keys");
801 qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys", "#size-cells", 0);
802 qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys", "#address-cells", 1);
804 qemu_fdt_add_subnode(vms->fdt, "/gpio-keys/poweroff");
805 qemu_fdt_setprop_string(vms->fdt, "/gpio-keys/poweroff",
806 "label", "GPIO Key Poweroff");
807 qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys/poweroff", "linux,code",
808 KEY_POWER);
809 qemu_fdt_setprop_cells(vms->fdt, "/gpio-keys/poweroff",
810 "gpios", phandle, 3, 0);
812 /* connect powerdown request */
813 qemu_register_powerdown_notifier(&virt_system_powerdown_notifier);
815 g_free(nodename);
818 static void create_virtio_devices(const VirtMachineState *vms, qemu_irq *pic)
820 int i;
821 hwaddr size = vms->memmap[VIRT_MMIO].size;
823 /* We create the transports in forwards order. Since qbus_realize()
824 * prepends (not appends) new child buses, the incrementing loop below will
825 * create a list of virtio-mmio buses with decreasing base addresses.
827 * When a -device option is processed from the command line,
828 * qbus_find_recursive() picks the next free virtio-mmio bus in forwards
829 * order. The upshot is that -device options in increasing command line
830 * order are mapped to virtio-mmio buses with decreasing base addresses.
832 * When this code was originally written, that arrangement ensured that the
833 * guest Linux kernel would give the lowest "name" (/dev/vda, eth0, etc) to
834 * the first -device on the command line. (The end-to-end order is a
835 * function of this loop, qbus_realize(), qbus_find_recursive(), and the
836 * guest kernel's name-to-address assignment strategy.)
838 * Meanwhile, the kernel's traversal seems to have been reversed; see eg.
839 * the message, if not necessarily the code, of commit 70161ff336.
840 * Therefore the loop now establishes the inverse of the original intent.
842 * Unfortunately, we can't counteract the kernel change by reversing the
843 * loop; it would break existing command lines.
845 * In any case, the kernel makes no guarantee about the stability of
846 * enumeration order of virtio devices (as demonstrated by it changing
847 * between kernel versions). For reliable and stable identification
848 * of disks users must use UUIDs or similar mechanisms.
850 for (i = 0; i < NUM_VIRTIO_TRANSPORTS; i++) {
851 int irq = vms->irqmap[VIRT_MMIO] + i;
852 hwaddr base = vms->memmap[VIRT_MMIO].base + i * size;
854 sysbus_create_simple("virtio-mmio", base, pic[irq]);
857 /* We add dtb nodes in reverse order so that they appear in the finished
858 * device tree lowest address first.
860 * Note that this mapping is independent of the loop above. The previous
861 * loop influences virtio device to virtio transport assignment, whereas
862 * this loop controls how virtio transports are laid out in the dtb.
864 for (i = NUM_VIRTIO_TRANSPORTS - 1; i >= 0; i--) {
865 char *nodename;
866 int irq = vms->irqmap[VIRT_MMIO] + i;
867 hwaddr base = vms->memmap[VIRT_MMIO].base + i * size;
869 nodename = g_strdup_printf("/virtio_mmio@%" PRIx64, base);
870 qemu_fdt_add_subnode(vms->fdt, nodename);
871 qemu_fdt_setprop_string(vms->fdt, nodename,
872 "compatible", "virtio,mmio");
873 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
874 2, base, 2, size);
875 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
876 GIC_FDT_IRQ_TYPE_SPI, irq,
877 GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
878 qemu_fdt_setprop(vms->fdt, nodename, "dma-coherent", NULL, 0);
879 g_free(nodename);
883 #define VIRT_FLASH_SECTOR_SIZE (256 * KiB)
885 static PFlashCFI01 *virt_flash_create1(VirtMachineState *vms,
886 const char *name,
887 const char *alias_prop_name)
890 * Create a single flash device. We use the same parameters as
891 * the flash devices on the Versatile Express board.
893 DeviceState *dev = qdev_create(NULL, TYPE_PFLASH_CFI01);
895 qdev_prop_set_uint64(dev, "sector-length", VIRT_FLASH_SECTOR_SIZE);
896 qdev_prop_set_uint8(dev, "width", 4);
897 qdev_prop_set_uint8(dev, "device-width", 2);
898 qdev_prop_set_bit(dev, "big-endian", false);
899 qdev_prop_set_uint16(dev, "id0", 0x89);
900 qdev_prop_set_uint16(dev, "id1", 0x18);
901 qdev_prop_set_uint16(dev, "id2", 0x00);
902 qdev_prop_set_uint16(dev, "id3", 0x00);
903 qdev_prop_set_string(dev, "name", name);
904 object_property_add_child(OBJECT(vms), name, OBJECT(dev),
905 &error_abort);
906 object_property_add_alias(OBJECT(vms), alias_prop_name,
907 OBJECT(dev), "drive", &error_abort);
908 return PFLASH_CFI01(dev);
911 static void virt_flash_create(VirtMachineState *vms)
913 vms->flash[0] = virt_flash_create1(vms, "virt.flash0", "pflash0");
914 vms->flash[1] = virt_flash_create1(vms, "virt.flash1", "pflash1");
917 static void virt_flash_map1(PFlashCFI01 *flash,
918 hwaddr base, hwaddr size,
919 MemoryRegion *sysmem)
921 DeviceState *dev = DEVICE(flash);
923 assert(size % VIRT_FLASH_SECTOR_SIZE == 0);
924 assert(size / VIRT_FLASH_SECTOR_SIZE <= UINT32_MAX);
925 qdev_prop_set_uint32(dev, "num-blocks", size / VIRT_FLASH_SECTOR_SIZE);
926 qdev_init_nofail(dev);
928 memory_region_add_subregion(sysmem, base,
929 sysbus_mmio_get_region(SYS_BUS_DEVICE(dev),
930 0));
933 static void virt_flash_map(VirtMachineState *vms,
934 MemoryRegion *sysmem,
935 MemoryRegion *secure_sysmem)
938 * Map two flash devices to fill the VIRT_FLASH space in the memmap.
939 * sysmem is the system memory space. secure_sysmem is the secure view
940 * of the system, and the first flash device should be made visible only
941 * there. The second flash device is visible to both secure and nonsecure.
942 * If sysmem == secure_sysmem this means there is no separate Secure
943 * address space and both flash devices are generally visible.
945 hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2;
946 hwaddr flashbase = vms->memmap[VIRT_FLASH].base;
948 virt_flash_map1(vms->flash[0], flashbase, flashsize,
949 secure_sysmem);
950 virt_flash_map1(vms->flash[1], flashbase + flashsize, flashsize,
951 sysmem);
954 static void virt_flash_fdt(VirtMachineState *vms,
955 MemoryRegion *sysmem,
956 MemoryRegion *secure_sysmem)
958 hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2;
959 hwaddr flashbase = vms->memmap[VIRT_FLASH].base;
960 char *nodename;
962 if (sysmem == secure_sysmem) {
963 /* Report both flash devices as a single node in the DT */
964 nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
965 qemu_fdt_add_subnode(vms->fdt, nodename);
966 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash");
967 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
968 2, flashbase, 2, flashsize,
969 2, flashbase + flashsize, 2, flashsize);
970 qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4);
971 g_free(nodename);
972 } else {
974 * Report the devices as separate nodes so we can mark one as
975 * only visible to the secure world.
977 nodename = g_strdup_printf("/secflash@%" PRIx64, flashbase);
978 qemu_fdt_add_subnode(vms->fdt, nodename);
979 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash");
980 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
981 2, flashbase, 2, flashsize);
982 qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4);
983 qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled");
984 qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay");
985 g_free(nodename);
987 nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
988 qemu_fdt_add_subnode(vms->fdt, nodename);
989 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash");
990 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
991 2, flashbase + flashsize, 2, flashsize);
992 qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4);
993 g_free(nodename);
997 static bool virt_firmware_init(VirtMachineState *vms,
998 MemoryRegion *sysmem,
999 MemoryRegion *secure_sysmem)
1001 int i;
1002 BlockBackend *pflash_blk0;
1004 /* Map legacy -drive if=pflash to machine properties */
1005 for (i = 0; i < ARRAY_SIZE(vms->flash); i++) {
1006 pflash_cfi01_legacy_drive(vms->flash[i],
1007 drive_get(IF_PFLASH, 0, i));
1010 virt_flash_map(vms, sysmem, secure_sysmem);
1012 pflash_blk0 = pflash_cfi01_get_blk(vms->flash[0]);
1014 if (bios_name) {
1015 char *fname;
1016 MemoryRegion *mr;
1017 int image_size;
1019 if (pflash_blk0) {
1020 error_report("The contents of the first flash device may be "
1021 "specified with -bios or with -drive if=pflash... "
1022 "but you cannot use both options at once");
1023 exit(1);
1026 /* Fall back to -bios */
1028 fname = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
1029 if (!fname) {
1030 error_report("Could not find ROM image '%s'", bios_name);
1031 exit(1);
1033 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(vms->flash[0]), 0);
1034 image_size = load_image_mr(fname, mr);
1035 g_free(fname);
1036 if (image_size < 0) {
1037 error_report("Could not load ROM image '%s'", bios_name);
1038 exit(1);
1042 return pflash_blk0 || bios_name;
1045 static FWCfgState *create_fw_cfg(const VirtMachineState *vms, AddressSpace *as)
1047 MachineState *ms = MACHINE(vms);
1048 hwaddr base = vms->memmap[VIRT_FW_CFG].base;
1049 hwaddr size = vms->memmap[VIRT_FW_CFG].size;
1050 FWCfgState *fw_cfg;
1051 char *nodename;
1053 fw_cfg = fw_cfg_init_mem_wide(base + 8, base, 8, base + 16, as);
1054 fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, (uint16_t)ms->smp.cpus);
1056 nodename = g_strdup_printf("/fw-cfg@%" PRIx64, base);
1057 qemu_fdt_add_subnode(vms->fdt, nodename);
1058 qemu_fdt_setprop_string(vms->fdt, nodename,
1059 "compatible", "qemu,fw-cfg-mmio");
1060 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
1061 2, base, 2, size);
1062 qemu_fdt_setprop(vms->fdt, nodename, "dma-coherent", NULL, 0);
1063 g_free(nodename);
1064 return fw_cfg;
1067 static void create_pcie_irq_map(const VirtMachineState *vms,
1068 uint32_t gic_phandle,
1069 int first_irq, const char *nodename)
1071 int devfn, pin;
1072 uint32_t full_irq_map[4 * 4 * 10] = { 0 };
1073 uint32_t *irq_map = full_irq_map;
1075 for (devfn = 0; devfn <= 0x18; devfn += 0x8) {
1076 for (pin = 0; pin < 4; pin++) {
1077 int irq_type = GIC_FDT_IRQ_TYPE_SPI;
1078 int irq_nr = first_irq + ((pin + PCI_SLOT(devfn)) % PCI_NUM_PINS);
1079 int irq_level = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
1080 int i;
1082 uint32_t map[] = {
1083 devfn << 8, 0, 0, /* devfn */
1084 pin + 1, /* PCI pin */
1085 gic_phandle, 0, 0, irq_type, irq_nr, irq_level }; /* GIC irq */
1087 /* Convert map to big endian */
1088 for (i = 0; i < 10; i++) {
1089 irq_map[i] = cpu_to_be32(map[i]);
1091 irq_map += 10;
1095 qemu_fdt_setprop(vms->fdt, nodename, "interrupt-map",
1096 full_irq_map, sizeof(full_irq_map));
1098 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupt-map-mask",
1099 0x1800, 0, 0, /* devfn (PCI_SLOT(3)) */
1100 0x7 /* PCI irq */);
1103 static void create_smmu(const VirtMachineState *vms, qemu_irq *pic,
1104 PCIBus *bus)
1106 char *node;
1107 const char compat[] = "arm,smmu-v3";
1108 int irq = vms->irqmap[VIRT_SMMU];
1109 int i;
1110 hwaddr base = vms->memmap[VIRT_SMMU].base;
1111 hwaddr size = vms->memmap[VIRT_SMMU].size;
1112 const char irq_names[] = "eventq\0priq\0cmdq-sync\0gerror";
1113 DeviceState *dev;
1115 if (vms->iommu != VIRT_IOMMU_SMMUV3 || !vms->iommu_phandle) {
1116 return;
1119 dev = qdev_create(NULL, "arm-smmuv3");
1121 object_property_set_link(OBJECT(dev), OBJECT(bus), "primary-bus",
1122 &error_abort);
1123 qdev_init_nofail(dev);
1124 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base);
1125 for (i = 0; i < NUM_SMMU_IRQS; i++) {
1126 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]);
1129 node = g_strdup_printf("/smmuv3@%" PRIx64, base);
1130 qemu_fdt_add_subnode(vms->fdt, node);
1131 qemu_fdt_setprop(vms->fdt, node, "compatible", compat, sizeof(compat));
1132 qemu_fdt_setprop_sized_cells(vms->fdt, node, "reg", 2, base, 2, size);
1134 qemu_fdt_setprop_cells(vms->fdt, node, "interrupts",
1135 GIC_FDT_IRQ_TYPE_SPI, irq , GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
1136 GIC_FDT_IRQ_TYPE_SPI, irq + 1, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
1137 GIC_FDT_IRQ_TYPE_SPI, irq + 2, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
1138 GIC_FDT_IRQ_TYPE_SPI, irq + 3, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
1140 qemu_fdt_setprop(vms->fdt, node, "interrupt-names", irq_names,
1141 sizeof(irq_names));
1143 qemu_fdt_setprop_cell(vms->fdt, node, "clocks", vms->clock_phandle);
1144 qemu_fdt_setprop_string(vms->fdt, node, "clock-names", "apb_pclk");
1145 qemu_fdt_setprop(vms->fdt, node, "dma-coherent", NULL, 0);
1147 qemu_fdt_setprop_cell(vms->fdt, node, "#iommu-cells", 1);
1149 qemu_fdt_setprop_cell(vms->fdt, node, "phandle", vms->iommu_phandle);
1150 g_free(node);
1153 static void create_pcie(VirtMachineState *vms, qemu_irq *pic)
1155 hwaddr base_mmio = vms->memmap[VIRT_PCIE_MMIO].base;
1156 hwaddr size_mmio = vms->memmap[VIRT_PCIE_MMIO].size;
1157 hwaddr base_mmio_high = vms->memmap[VIRT_HIGH_PCIE_MMIO].base;
1158 hwaddr size_mmio_high = vms->memmap[VIRT_HIGH_PCIE_MMIO].size;
1159 hwaddr base_pio = vms->memmap[VIRT_PCIE_PIO].base;
1160 hwaddr size_pio = vms->memmap[VIRT_PCIE_PIO].size;
1161 hwaddr base_ecam, size_ecam;
1162 hwaddr base = base_mmio;
1163 int nr_pcie_buses;
1164 int irq = vms->irqmap[VIRT_PCIE];
1165 MemoryRegion *mmio_alias;
1166 MemoryRegion *mmio_reg;
1167 MemoryRegion *ecam_alias;
1168 MemoryRegion *ecam_reg;
1169 DeviceState *dev;
1170 char *nodename;
1171 int i, ecam_id;
1172 PCIHostState *pci;
1174 dev = qdev_create(NULL, TYPE_GPEX_HOST);
1175 qdev_init_nofail(dev);
1177 ecam_id = VIRT_ECAM_ID(vms->highmem_ecam);
1178 base_ecam = vms->memmap[ecam_id].base;
1179 size_ecam = vms->memmap[ecam_id].size;
1180 nr_pcie_buses = size_ecam / PCIE_MMCFG_SIZE_MIN;
1181 /* Map only the first size_ecam bytes of ECAM space */
1182 ecam_alias = g_new0(MemoryRegion, 1);
1183 ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0);
1184 memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam",
1185 ecam_reg, 0, size_ecam);
1186 memory_region_add_subregion(get_system_memory(), base_ecam, ecam_alias);
1188 /* Map the MMIO window into system address space so as to expose
1189 * the section of PCI MMIO space which starts at the same base address
1190 * (ie 1:1 mapping for that part of PCI MMIO space visible through
1191 * the window).
1193 mmio_alias = g_new0(MemoryRegion, 1);
1194 mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1);
1195 memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio",
1196 mmio_reg, base_mmio, size_mmio);
1197 memory_region_add_subregion(get_system_memory(), base_mmio, mmio_alias);
1199 if (vms->highmem) {
1200 /* Map high MMIO space */
1201 MemoryRegion *high_mmio_alias = g_new0(MemoryRegion, 1);
1203 memory_region_init_alias(high_mmio_alias, OBJECT(dev), "pcie-mmio-high",
1204 mmio_reg, base_mmio_high, size_mmio_high);
1205 memory_region_add_subregion(get_system_memory(), base_mmio_high,
1206 high_mmio_alias);
1209 /* Map IO port space */
1210 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, base_pio);
1212 for (i = 0; i < GPEX_NUM_IRQS; i++) {
1213 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]);
1214 gpex_set_irq_num(GPEX_HOST(dev), i, irq + i);
1217 pci = PCI_HOST_BRIDGE(dev);
1218 if (pci->bus) {
1219 for (i = 0; i < nb_nics; i++) {
1220 NICInfo *nd = &nd_table[i];
1222 if (!nd->model) {
1223 nd->model = g_strdup("virtio");
1226 pci_nic_init_nofail(nd, pci->bus, nd->model, NULL);
1230 nodename = g_strdup_printf("/pcie@%" PRIx64, base);
1231 qemu_fdt_add_subnode(vms->fdt, nodename);
1232 qemu_fdt_setprop_string(vms->fdt, nodename,
1233 "compatible", "pci-host-ecam-generic");
1234 qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "pci");
1235 qemu_fdt_setprop_cell(vms->fdt, nodename, "#address-cells", 3);
1236 qemu_fdt_setprop_cell(vms->fdt, nodename, "#size-cells", 2);
1237 qemu_fdt_setprop_cell(vms->fdt, nodename, "linux,pci-domain", 0);
1238 qemu_fdt_setprop_cells(vms->fdt, nodename, "bus-range", 0,
1239 nr_pcie_buses - 1);
1240 qemu_fdt_setprop(vms->fdt, nodename, "dma-coherent", NULL, 0);
1242 if (vms->msi_phandle) {
1243 qemu_fdt_setprop_cells(vms->fdt, nodename, "msi-parent",
1244 vms->msi_phandle);
1247 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
1248 2, base_ecam, 2, size_ecam);
1250 if (vms->highmem) {
1251 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "ranges",
1252 1, FDT_PCI_RANGE_IOPORT, 2, 0,
1253 2, base_pio, 2, size_pio,
1254 1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
1255 2, base_mmio, 2, size_mmio,
1256 1, FDT_PCI_RANGE_MMIO_64BIT,
1257 2, base_mmio_high,
1258 2, base_mmio_high, 2, size_mmio_high);
1259 } else {
1260 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "ranges",
1261 1, FDT_PCI_RANGE_IOPORT, 2, 0,
1262 2, base_pio, 2, size_pio,
1263 1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
1264 2, base_mmio, 2, size_mmio);
1267 qemu_fdt_setprop_cell(vms->fdt, nodename, "#interrupt-cells", 1);
1268 create_pcie_irq_map(vms, vms->gic_phandle, irq, nodename);
1270 if (vms->iommu) {
1271 vms->iommu_phandle = qemu_fdt_alloc_phandle(vms->fdt);
1273 create_smmu(vms, pic, pci->bus);
1275 qemu_fdt_setprop_cells(vms->fdt, nodename, "iommu-map",
1276 0x0, vms->iommu_phandle, 0x0, 0x10000);
1279 g_free(nodename);
1282 static void create_platform_bus(VirtMachineState *vms, qemu_irq *pic)
1284 DeviceState *dev;
1285 SysBusDevice *s;
1286 int i;
1287 MemoryRegion *sysmem = get_system_memory();
1289 dev = qdev_create(NULL, TYPE_PLATFORM_BUS_DEVICE);
1290 dev->id = TYPE_PLATFORM_BUS_DEVICE;
1291 qdev_prop_set_uint32(dev, "num_irqs", PLATFORM_BUS_NUM_IRQS);
1292 qdev_prop_set_uint32(dev, "mmio_size", vms->memmap[VIRT_PLATFORM_BUS].size);
1293 qdev_init_nofail(dev);
1294 vms->platform_bus_dev = dev;
1296 s = SYS_BUS_DEVICE(dev);
1297 for (i = 0; i < PLATFORM_BUS_NUM_IRQS; i++) {
1298 int irqn = vms->irqmap[VIRT_PLATFORM_BUS] + i;
1299 sysbus_connect_irq(s, i, pic[irqn]);
1302 memory_region_add_subregion(sysmem,
1303 vms->memmap[VIRT_PLATFORM_BUS].base,
1304 sysbus_mmio_get_region(s, 0));
1307 static void create_secure_ram(VirtMachineState *vms,
1308 MemoryRegion *secure_sysmem)
1310 MemoryRegion *secram = g_new(MemoryRegion, 1);
1311 char *nodename;
1312 hwaddr base = vms->memmap[VIRT_SECURE_MEM].base;
1313 hwaddr size = vms->memmap[VIRT_SECURE_MEM].size;
1315 memory_region_init_ram(secram, NULL, "virt.secure-ram", size,
1316 &error_fatal);
1317 memory_region_add_subregion(secure_sysmem, base, secram);
1319 nodename = g_strdup_printf("/secram@%" PRIx64, base);
1320 qemu_fdt_add_subnode(vms->fdt, nodename);
1321 qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "memory");
1322 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 2, base, 2, size);
1323 qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled");
1324 qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay");
1326 g_free(nodename);
1329 static void *machvirt_dtb(const struct arm_boot_info *binfo, int *fdt_size)
1331 const VirtMachineState *board = container_of(binfo, VirtMachineState,
1332 bootinfo);
1334 *fdt_size = board->fdt_size;
1335 return board->fdt;
1338 static void virt_build_smbios(VirtMachineState *vms)
1340 MachineClass *mc = MACHINE_GET_CLASS(vms);
1341 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
1342 uint8_t *smbios_tables, *smbios_anchor;
1343 size_t smbios_tables_len, smbios_anchor_len;
1344 const char *product = "QEMU Virtual Machine";
1346 if (kvm_enabled()) {
1347 product = "KVM Virtual Machine";
1350 smbios_set_defaults("QEMU", product,
1351 vmc->smbios_old_sys_ver ? "1.0" : mc->name, false,
1352 true, SMBIOS_ENTRY_POINT_30);
1354 smbios_get_tables(MACHINE(vms), NULL, 0, &smbios_tables, &smbios_tables_len,
1355 &smbios_anchor, &smbios_anchor_len);
1357 if (smbios_anchor) {
1358 fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-tables",
1359 smbios_tables, smbios_tables_len);
1360 fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-anchor",
1361 smbios_anchor, smbios_anchor_len);
1365 static
1366 void virt_machine_done(Notifier *notifier, void *data)
1368 VirtMachineState *vms = container_of(notifier, VirtMachineState,
1369 machine_done);
1370 ARMCPU *cpu = ARM_CPU(first_cpu);
1371 struct arm_boot_info *info = &vms->bootinfo;
1372 AddressSpace *as = arm_boot_address_space(cpu, info);
1375 * If the user provided a dtb, we assume the dynamic sysbus nodes
1376 * already are integrated there. This corresponds to a use case where
1377 * the dynamic sysbus nodes are complex and their generation is not yet
1378 * supported. In that case the user can take charge of the guest dt
1379 * while qemu takes charge of the qom stuff.
1381 if (info->dtb_filename == NULL) {
1382 platform_bus_add_all_fdt_nodes(vms->fdt, "/intc",
1383 vms->memmap[VIRT_PLATFORM_BUS].base,
1384 vms->memmap[VIRT_PLATFORM_BUS].size,
1385 vms->irqmap[VIRT_PLATFORM_BUS]);
1387 if (arm_load_dtb(info->dtb_start, info, info->dtb_limit, as) < 0) {
1388 exit(1);
1391 virt_acpi_setup(vms);
1392 virt_build_smbios(vms);
1395 static uint64_t virt_cpu_mp_affinity(VirtMachineState *vms, int idx)
1397 uint8_t clustersz = ARM_DEFAULT_CPUS_PER_CLUSTER;
1398 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
1400 if (!vmc->disallow_affinity_adjustment) {
1401 /* Adjust MPIDR like 64-bit KVM hosts, which incorporate the
1402 * GIC's target-list limitations. 32-bit KVM hosts currently
1403 * always create clusters of 4 CPUs, but that is expected to
1404 * change when they gain support for gicv3. When KVM is enabled
1405 * it will override the changes we make here, therefore our
1406 * purposes are to make TCG consistent (with 64-bit KVM hosts)
1407 * and to improve SGI efficiency.
1409 if (vms->gic_version == 3) {
1410 clustersz = GICV3_TARGETLIST_BITS;
1411 } else {
1412 clustersz = GIC_TARGETLIST_BITS;
1415 return arm_cpu_mp_affinity(idx, clustersz);
1418 static void virt_set_memmap(VirtMachineState *vms)
1420 MachineState *ms = MACHINE(vms);
1421 hwaddr base, device_memory_base, device_memory_size;
1422 int i;
1424 vms->memmap = extended_memmap;
1426 for (i = 0; i < ARRAY_SIZE(base_memmap); i++) {
1427 vms->memmap[i] = base_memmap[i];
1430 if (ms->ram_slots > ACPI_MAX_RAM_SLOTS) {
1431 error_report("unsupported number of memory slots: %"PRIu64,
1432 ms->ram_slots);
1433 exit(EXIT_FAILURE);
1437 * We compute the base of the high IO region depending on the
1438 * amount of initial and device memory. The device memory start/size
1439 * is aligned on 1GiB. We never put the high IO region below 256GiB
1440 * so that if maxram_size is < 255GiB we keep the legacy memory map.
1441 * The device region size assumes 1GiB page max alignment per slot.
1443 device_memory_base =
1444 ROUND_UP(vms->memmap[VIRT_MEM].base + ms->ram_size, GiB);
1445 device_memory_size = ms->maxram_size - ms->ram_size + ms->ram_slots * GiB;
1447 /* Base address of the high IO region */
1448 base = device_memory_base + ROUND_UP(device_memory_size, GiB);
1449 if (base < device_memory_base) {
1450 error_report("maxmem/slots too huge");
1451 exit(EXIT_FAILURE);
1453 if (base < vms->memmap[VIRT_MEM].base + LEGACY_RAMLIMIT_BYTES) {
1454 base = vms->memmap[VIRT_MEM].base + LEGACY_RAMLIMIT_BYTES;
1457 for (i = VIRT_LOWMEMMAP_LAST; i < ARRAY_SIZE(extended_memmap); i++) {
1458 hwaddr size = extended_memmap[i].size;
1460 base = ROUND_UP(base, size);
1461 vms->memmap[i].base = base;
1462 vms->memmap[i].size = size;
1463 base += size;
1465 vms->highest_gpa = base - 1;
1466 if (device_memory_size > 0) {
1467 ms->device_memory = g_malloc0(sizeof(*ms->device_memory));
1468 ms->device_memory->base = device_memory_base;
1469 memory_region_init(&ms->device_memory->mr, OBJECT(vms),
1470 "device-memory", device_memory_size);
1474 static void machvirt_init(MachineState *machine)
1476 VirtMachineState *vms = VIRT_MACHINE(machine);
1477 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(machine);
1478 MachineClass *mc = MACHINE_GET_CLASS(machine);
1479 const CPUArchIdList *possible_cpus;
1480 qemu_irq pic[NUM_IRQS];
1481 MemoryRegion *sysmem = get_system_memory();
1482 MemoryRegion *secure_sysmem = NULL;
1483 int n, virt_max_cpus;
1484 MemoryRegion *ram = g_new(MemoryRegion, 1);
1485 bool firmware_loaded;
1486 bool aarch64 = true;
1487 unsigned int smp_cpus = machine->smp.cpus;
1488 unsigned int max_cpus = machine->smp.max_cpus;
1491 * In accelerated mode, the memory map is computed earlier in kvm_type()
1492 * to create a VM with the right number of IPA bits.
1494 if (!vms->memmap) {
1495 virt_set_memmap(vms);
1498 /* We can probe only here because during property set
1499 * KVM is not available yet
1501 if (vms->gic_version <= 0) {
1502 /* "host" or "max" */
1503 if (!kvm_enabled()) {
1504 if (vms->gic_version == 0) {
1505 error_report("gic-version=host requires KVM");
1506 exit(1);
1507 } else {
1508 /* "max": currently means 3 for TCG */
1509 vms->gic_version = 3;
1511 } else {
1512 vms->gic_version = kvm_arm_vgic_probe();
1513 if (!vms->gic_version) {
1514 error_report(
1515 "Unable to determine GIC version supported by host");
1516 exit(1);
1521 if (!cpu_type_valid(machine->cpu_type)) {
1522 error_report("mach-virt: CPU type %s not supported", machine->cpu_type);
1523 exit(1);
1526 if (vms->secure) {
1527 if (kvm_enabled()) {
1528 error_report("mach-virt: KVM does not support Security extensions");
1529 exit(1);
1533 * The Secure view of the world is the same as the NonSecure,
1534 * but with a few extra devices. Create it as a container region
1535 * containing the system memory at low priority; any secure-only
1536 * devices go in at higher priority and take precedence.
1538 secure_sysmem = g_new(MemoryRegion, 1);
1539 memory_region_init(secure_sysmem, OBJECT(machine), "secure-memory",
1540 UINT64_MAX);
1541 memory_region_add_subregion_overlap(secure_sysmem, 0, sysmem, -1);
1544 firmware_loaded = virt_firmware_init(vms, sysmem,
1545 secure_sysmem ?: sysmem);
1547 /* If we have an EL3 boot ROM then the assumption is that it will
1548 * implement PSCI itself, so disable QEMU's internal implementation
1549 * so it doesn't get in the way. Instead of starting secondary
1550 * CPUs in PSCI powerdown state we will start them all running and
1551 * let the boot ROM sort them out.
1552 * The usual case is that we do use QEMU's PSCI implementation;
1553 * if the guest has EL2 then we will use SMC as the conduit,
1554 * and otherwise we will use HVC (for backwards compatibility and
1555 * because if we're using KVM then we must use HVC).
1557 if (vms->secure && firmware_loaded) {
1558 vms->psci_conduit = QEMU_PSCI_CONDUIT_DISABLED;
1559 } else if (vms->virt) {
1560 vms->psci_conduit = QEMU_PSCI_CONDUIT_SMC;
1561 } else {
1562 vms->psci_conduit = QEMU_PSCI_CONDUIT_HVC;
1565 /* The maximum number of CPUs depends on the GIC version, or on how
1566 * many redistributors we can fit into the memory map.
1568 if (vms->gic_version == 3) {
1569 virt_max_cpus =
1570 vms->memmap[VIRT_GIC_REDIST].size / GICV3_REDIST_SIZE;
1571 virt_max_cpus +=
1572 vms->memmap[VIRT_HIGH_GIC_REDIST2].size / GICV3_REDIST_SIZE;
1573 } else {
1574 virt_max_cpus = GIC_NCPU;
1577 if (max_cpus > virt_max_cpus) {
1578 error_report("Number of SMP CPUs requested (%d) exceeds max CPUs "
1579 "supported by machine 'mach-virt' (%d)",
1580 max_cpus, virt_max_cpus);
1581 exit(1);
1584 vms->smp_cpus = smp_cpus;
1586 if (vms->virt && kvm_enabled()) {
1587 error_report("mach-virt: KVM does not support providing "
1588 "Virtualization extensions to the guest CPU");
1589 exit(1);
1592 create_fdt(vms);
1594 possible_cpus = mc->possible_cpu_arch_ids(machine);
1595 for (n = 0; n < possible_cpus->len; n++) {
1596 Object *cpuobj;
1597 CPUState *cs;
1599 if (n >= smp_cpus) {
1600 break;
1603 cpuobj = object_new(possible_cpus->cpus[n].type);
1604 object_property_set_int(cpuobj, possible_cpus->cpus[n].arch_id,
1605 "mp-affinity", NULL);
1607 cs = CPU(cpuobj);
1608 cs->cpu_index = n;
1610 numa_cpu_pre_plug(&possible_cpus->cpus[cs->cpu_index], DEVICE(cpuobj),
1611 &error_fatal);
1613 aarch64 &= object_property_get_bool(cpuobj, "aarch64", NULL);
1615 if (!vms->secure) {
1616 object_property_set_bool(cpuobj, false, "has_el3", NULL);
1619 if (!vms->virt && object_property_find(cpuobj, "has_el2", NULL)) {
1620 object_property_set_bool(cpuobj, false, "has_el2", NULL);
1623 if (vms->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED) {
1624 object_property_set_int(cpuobj, vms->psci_conduit,
1625 "psci-conduit", NULL);
1627 /* Secondary CPUs start in PSCI powered-down state */
1628 if (n > 0) {
1629 object_property_set_bool(cpuobj, true,
1630 "start-powered-off", NULL);
1634 if (vmc->no_pmu && object_property_find(cpuobj, "pmu", NULL)) {
1635 object_property_set_bool(cpuobj, false, "pmu", NULL);
1638 if (object_property_find(cpuobj, "reset-cbar", NULL)) {
1639 object_property_set_int(cpuobj, vms->memmap[VIRT_CPUPERIPHS].base,
1640 "reset-cbar", &error_abort);
1643 object_property_set_link(cpuobj, OBJECT(sysmem), "memory",
1644 &error_abort);
1645 if (vms->secure) {
1646 object_property_set_link(cpuobj, OBJECT(secure_sysmem),
1647 "secure-memory", &error_abort);
1650 object_property_set_bool(cpuobj, true, "realized", &error_fatal);
1651 object_unref(cpuobj);
1653 fdt_add_timer_nodes(vms);
1654 fdt_add_cpu_nodes(vms);
1656 if (!kvm_enabled()) {
1657 ARMCPU *cpu = ARM_CPU(first_cpu);
1658 bool aarch64 = object_property_get_bool(OBJECT(cpu), "aarch64", NULL);
1660 if (aarch64 && vms->highmem) {
1661 int requested_pa_size, pamax = arm_pamax(cpu);
1663 requested_pa_size = 64 - clz64(vms->highest_gpa);
1664 if (pamax < requested_pa_size) {
1665 error_report("VCPU supports less PA bits (%d) than requested "
1666 "by the memory map (%d)", pamax, requested_pa_size);
1667 exit(1);
1672 memory_region_allocate_system_memory(ram, NULL, "mach-virt.ram",
1673 machine->ram_size);
1674 memory_region_add_subregion(sysmem, vms->memmap[VIRT_MEM].base, ram);
1675 if (machine->device_memory) {
1676 memory_region_add_subregion(sysmem, machine->device_memory->base,
1677 &machine->device_memory->mr);
1680 virt_flash_fdt(vms, sysmem, secure_sysmem ?: sysmem);
1682 create_gic(vms, pic);
1684 fdt_add_pmu_nodes(vms);
1686 create_uart(vms, pic, VIRT_UART, sysmem, serial_hd(0));
1688 if (vms->secure) {
1689 create_secure_ram(vms, secure_sysmem);
1690 create_uart(vms, pic, VIRT_SECURE_UART, secure_sysmem, serial_hd(1));
1693 vms->highmem_ecam &= vms->highmem && (!firmware_loaded || aarch64);
1695 create_rtc(vms, pic);
1697 create_pcie(vms, pic);
1699 create_gpio(vms, pic);
1701 /* Create mmio transports, so the user can create virtio backends
1702 * (which will be automatically plugged in to the transports). If
1703 * no backend is created the transport will just sit harmlessly idle.
1705 create_virtio_devices(vms, pic);
1707 vms->fw_cfg = create_fw_cfg(vms, &address_space_memory);
1708 rom_set_fw(vms->fw_cfg);
1710 create_platform_bus(vms, pic);
1712 vms->bootinfo.ram_size = machine->ram_size;
1713 vms->bootinfo.kernel_filename = machine->kernel_filename;
1714 vms->bootinfo.kernel_cmdline = machine->kernel_cmdline;
1715 vms->bootinfo.initrd_filename = machine->initrd_filename;
1716 vms->bootinfo.nb_cpus = smp_cpus;
1717 vms->bootinfo.board_id = -1;
1718 vms->bootinfo.loader_start = vms->memmap[VIRT_MEM].base;
1719 vms->bootinfo.get_dtb = machvirt_dtb;
1720 vms->bootinfo.skip_dtb_autoload = true;
1721 vms->bootinfo.firmware_loaded = firmware_loaded;
1722 arm_load_kernel(ARM_CPU(first_cpu), &vms->bootinfo);
1724 vms->machine_done.notify = virt_machine_done;
1725 qemu_add_machine_init_done_notifier(&vms->machine_done);
1728 static bool virt_get_secure(Object *obj, Error **errp)
1730 VirtMachineState *vms = VIRT_MACHINE(obj);
1732 return vms->secure;
1735 static void virt_set_secure(Object *obj, bool value, Error **errp)
1737 VirtMachineState *vms = VIRT_MACHINE(obj);
1739 vms->secure = value;
1742 static bool virt_get_virt(Object *obj, Error **errp)
1744 VirtMachineState *vms = VIRT_MACHINE(obj);
1746 return vms->virt;
1749 static void virt_set_virt(Object *obj, bool value, Error **errp)
1751 VirtMachineState *vms = VIRT_MACHINE(obj);
1753 vms->virt = value;
1756 static bool virt_get_highmem(Object *obj, Error **errp)
1758 VirtMachineState *vms = VIRT_MACHINE(obj);
1760 return vms->highmem;
1763 static void virt_set_highmem(Object *obj, bool value, Error **errp)
1765 VirtMachineState *vms = VIRT_MACHINE(obj);
1767 vms->highmem = value;
1770 static bool virt_get_its(Object *obj, Error **errp)
1772 VirtMachineState *vms = VIRT_MACHINE(obj);
1774 return vms->its;
1777 static void virt_set_its(Object *obj, bool value, Error **errp)
1779 VirtMachineState *vms = VIRT_MACHINE(obj);
1781 vms->its = value;
1784 static char *virt_get_gic_version(Object *obj, Error **errp)
1786 VirtMachineState *vms = VIRT_MACHINE(obj);
1787 const char *val = vms->gic_version == 3 ? "3" : "2";
1789 return g_strdup(val);
1792 static void virt_set_gic_version(Object *obj, const char *value, Error **errp)
1794 VirtMachineState *vms = VIRT_MACHINE(obj);
1796 if (!strcmp(value, "3")) {
1797 vms->gic_version = 3;
1798 } else if (!strcmp(value, "2")) {
1799 vms->gic_version = 2;
1800 } else if (!strcmp(value, "host")) {
1801 vms->gic_version = 0; /* Will probe later */
1802 } else if (!strcmp(value, "max")) {
1803 vms->gic_version = -1; /* Will probe later */
1804 } else {
1805 error_setg(errp, "Invalid gic-version value");
1806 error_append_hint(errp, "Valid values are 3, 2, host, max.\n");
1810 static char *virt_get_iommu(Object *obj, Error **errp)
1812 VirtMachineState *vms = VIRT_MACHINE(obj);
1814 switch (vms->iommu) {
1815 case VIRT_IOMMU_NONE:
1816 return g_strdup("none");
1817 case VIRT_IOMMU_SMMUV3:
1818 return g_strdup("smmuv3");
1819 default:
1820 g_assert_not_reached();
1824 static void virt_set_iommu(Object *obj, const char *value, Error **errp)
1826 VirtMachineState *vms = VIRT_MACHINE(obj);
1828 if (!strcmp(value, "smmuv3")) {
1829 vms->iommu = VIRT_IOMMU_SMMUV3;
1830 } else if (!strcmp(value, "none")) {
1831 vms->iommu = VIRT_IOMMU_NONE;
1832 } else {
1833 error_setg(errp, "Invalid iommu value");
1834 error_append_hint(errp, "Valid values are none, smmuv3.\n");
1838 static CpuInstanceProperties
1839 virt_cpu_index_to_props(MachineState *ms, unsigned cpu_index)
1841 MachineClass *mc = MACHINE_GET_CLASS(ms);
1842 const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms);
1844 assert(cpu_index < possible_cpus->len);
1845 return possible_cpus->cpus[cpu_index].props;
1848 static int64_t virt_get_default_cpu_node_id(const MachineState *ms, int idx)
1850 return idx % nb_numa_nodes;
1853 static const CPUArchIdList *virt_possible_cpu_arch_ids(MachineState *ms)
1855 int n;
1856 unsigned int max_cpus = ms->smp.max_cpus;
1857 VirtMachineState *vms = VIRT_MACHINE(ms);
1859 if (ms->possible_cpus) {
1860 assert(ms->possible_cpus->len == max_cpus);
1861 return ms->possible_cpus;
1864 ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
1865 sizeof(CPUArchId) * max_cpus);
1866 ms->possible_cpus->len = max_cpus;
1867 for (n = 0; n < ms->possible_cpus->len; n++) {
1868 ms->possible_cpus->cpus[n].type = ms->cpu_type;
1869 ms->possible_cpus->cpus[n].arch_id =
1870 virt_cpu_mp_affinity(vms, n);
1871 ms->possible_cpus->cpus[n].props.has_thread_id = true;
1872 ms->possible_cpus->cpus[n].props.thread_id = n;
1874 return ms->possible_cpus;
1877 static void virt_machine_device_plug_cb(HotplugHandler *hotplug_dev,
1878 DeviceState *dev, Error **errp)
1880 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
1882 if (vms->platform_bus_dev) {
1883 if (object_dynamic_cast(OBJECT(dev), TYPE_SYS_BUS_DEVICE)) {
1884 platform_bus_link_device(PLATFORM_BUS_DEVICE(vms->platform_bus_dev),
1885 SYS_BUS_DEVICE(dev));
1890 static HotplugHandler *virt_machine_get_hotplug_handler(MachineState *machine,
1891 DeviceState *dev)
1893 if (object_dynamic_cast(OBJECT(dev), TYPE_SYS_BUS_DEVICE)) {
1894 return HOTPLUG_HANDLER(machine);
1897 return NULL;
1901 * for arm64 kvm_type [7-0] encodes the requested number of bits
1902 * in the IPA address space
1904 static int virt_kvm_type(MachineState *ms, const char *type_str)
1906 VirtMachineState *vms = VIRT_MACHINE(ms);
1907 int max_vm_pa_size = kvm_arm_get_max_vm_ipa_size(ms);
1908 int requested_pa_size;
1910 /* we freeze the memory map to compute the highest gpa */
1911 virt_set_memmap(vms);
1913 requested_pa_size = 64 - clz64(vms->highest_gpa);
1915 if (requested_pa_size > max_vm_pa_size) {
1916 error_report("-m and ,maxmem option values "
1917 "require an IPA range (%d bits) larger than "
1918 "the one supported by the host (%d bits)",
1919 requested_pa_size, max_vm_pa_size);
1920 exit(1);
1923 * By default we return 0 which corresponds to an implicit legacy
1924 * 40b IPA setting. Otherwise we return the actual requested PA
1925 * logsize
1927 return requested_pa_size > 40 ? requested_pa_size : 0;
1930 static void virt_machine_class_init(ObjectClass *oc, void *data)
1932 MachineClass *mc = MACHINE_CLASS(oc);
1933 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
1935 mc->init = machvirt_init;
1936 /* Start with max_cpus set to 512, which is the maximum supported by KVM.
1937 * The value may be reduced later when we have more information about the
1938 * configuration of the particular instance.
1940 mc->max_cpus = 512;
1941 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_CALXEDA_XGMAC);
1942 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_AMD_XGBE);
1943 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_RAMFB_DEVICE);
1944 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_PLATFORM);
1945 mc->block_default_type = IF_VIRTIO;
1946 mc->no_cdrom = 1;
1947 mc->pci_allow_0_address = true;
1948 /* We know we will never create a pre-ARMv7 CPU which needs 1K pages */
1949 mc->minimum_page_bits = 12;
1950 mc->possible_cpu_arch_ids = virt_possible_cpu_arch_ids;
1951 mc->cpu_index_to_instance_props = virt_cpu_index_to_props;
1952 mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-a15");
1953 mc->get_default_cpu_node_id = virt_get_default_cpu_node_id;
1954 mc->kvm_type = virt_kvm_type;
1955 assert(!mc->get_hotplug_handler);
1956 mc->get_hotplug_handler = virt_machine_get_hotplug_handler;
1957 hc->plug = virt_machine_device_plug_cb;
1958 mc->numa_mem_supported = true;
1961 static void virt_instance_init(Object *obj)
1963 VirtMachineState *vms = VIRT_MACHINE(obj);
1964 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
1966 /* EL3 is disabled by default on virt: this makes us consistent
1967 * between KVM and TCG for this board, and it also allows us to
1968 * boot UEFI blobs which assume no TrustZone support.
1970 vms->secure = false;
1971 object_property_add_bool(obj, "secure", virt_get_secure,
1972 virt_set_secure, NULL);
1973 object_property_set_description(obj, "secure",
1974 "Set on/off to enable/disable the ARM "
1975 "Security Extensions (TrustZone)",
1976 NULL);
1978 /* EL2 is also disabled by default, for similar reasons */
1979 vms->virt = false;
1980 object_property_add_bool(obj, "virtualization", virt_get_virt,
1981 virt_set_virt, NULL);
1982 object_property_set_description(obj, "virtualization",
1983 "Set on/off to enable/disable emulating a "
1984 "guest CPU which implements the ARM "
1985 "Virtualization Extensions",
1986 NULL);
1988 /* High memory is enabled by default */
1989 vms->highmem = true;
1990 object_property_add_bool(obj, "highmem", virt_get_highmem,
1991 virt_set_highmem, NULL);
1992 object_property_set_description(obj, "highmem",
1993 "Set on/off to enable/disable using "
1994 "physical address space above 32 bits",
1995 NULL);
1996 /* Default GIC type is v2 */
1997 vms->gic_version = 2;
1998 object_property_add_str(obj, "gic-version", virt_get_gic_version,
1999 virt_set_gic_version, NULL);
2000 object_property_set_description(obj, "gic-version",
2001 "Set GIC version. "
2002 "Valid values are 2, 3 and host", NULL);
2004 vms->highmem_ecam = !vmc->no_highmem_ecam;
2006 if (vmc->no_its) {
2007 vms->its = false;
2008 } else {
2009 /* Default allows ITS instantiation */
2010 vms->its = true;
2011 object_property_add_bool(obj, "its", virt_get_its,
2012 virt_set_its, NULL);
2013 object_property_set_description(obj, "its",
2014 "Set on/off to enable/disable "
2015 "ITS instantiation",
2016 NULL);
2019 /* Default disallows iommu instantiation */
2020 vms->iommu = VIRT_IOMMU_NONE;
2021 object_property_add_str(obj, "iommu", virt_get_iommu, virt_set_iommu, NULL);
2022 object_property_set_description(obj, "iommu",
2023 "Set the IOMMU type. "
2024 "Valid values are none and smmuv3",
2025 NULL);
2027 vms->irqmap = a15irqmap;
2029 virt_flash_create(vms);
2032 static const TypeInfo virt_machine_info = {
2033 .name = TYPE_VIRT_MACHINE,
2034 .parent = TYPE_MACHINE,
2035 .abstract = true,
2036 .instance_size = sizeof(VirtMachineState),
2037 .class_size = sizeof(VirtMachineClass),
2038 .class_init = virt_machine_class_init,
2039 .instance_init = virt_instance_init,
2040 .interfaces = (InterfaceInfo[]) {
2041 { TYPE_HOTPLUG_HANDLER },
2046 static void machvirt_machine_init(void)
2048 type_register_static(&virt_machine_info);
2050 type_init(machvirt_machine_init);
2052 static void virt_machine_4_1_options(MachineClass *mc)
2055 DEFINE_VIRT_MACHINE_AS_LATEST(4, 1)
2057 static void virt_machine_4_0_options(MachineClass *mc)
2059 virt_machine_4_1_options(mc);
2060 compat_props_add(mc->compat_props, hw_compat_4_0, hw_compat_4_0_len);
2062 DEFINE_VIRT_MACHINE(4, 0)
2064 static void virt_machine_3_1_options(MachineClass *mc)
2066 virt_machine_4_0_options(mc);
2067 compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len);
2069 DEFINE_VIRT_MACHINE(3, 1)
2071 static void virt_machine_3_0_options(MachineClass *mc)
2073 virt_machine_3_1_options(mc);
2074 compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len);
2076 DEFINE_VIRT_MACHINE(3, 0)
2078 static void virt_machine_2_12_options(MachineClass *mc)
2080 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2082 virt_machine_3_0_options(mc);
2083 compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len);
2084 vmc->no_highmem_ecam = true;
2085 mc->max_cpus = 255;
2087 DEFINE_VIRT_MACHINE(2, 12)
2089 static void virt_machine_2_11_options(MachineClass *mc)
2091 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2093 virt_machine_2_12_options(mc);
2094 compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len);
2095 vmc->smbios_old_sys_ver = true;
2097 DEFINE_VIRT_MACHINE(2, 11)
2099 static void virt_machine_2_10_options(MachineClass *mc)
2101 virt_machine_2_11_options(mc);
2102 compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len);
2103 /* before 2.11 we never faulted accesses to bad addresses */
2104 mc->ignore_memory_transaction_failures = true;
2106 DEFINE_VIRT_MACHINE(2, 10)
2108 static void virt_machine_2_9_options(MachineClass *mc)
2110 virt_machine_2_10_options(mc);
2111 compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len);
2113 DEFINE_VIRT_MACHINE(2, 9)
2115 static void virt_machine_2_8_options(MachineClass *mc)
2117 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2119 virt_machine_2_9_options(mc);
2120 compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len);
2121 /* For 2.8 and earlier we falsely claimed in the DT that
2122 * our timers were edge-triggered, not level-triggered.
2124 vmc->claim_edge_triggered_timers = true;
2126 DEFINE_VIRT_MACHINE(2, 8)
2128 static void virt_machine_2_7_options(MachineClass *mc)
2130 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2132 virt_machine_2_8_options(mc);
2133 compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len);
2134 /* ITS was introduced with 2.8 */
2135 vmc->no_its = true;
2136 /* Stick with 1K pages for migration compatibility */
2137 mc->minimum_page_bits = 0;
2139 DEFINE_VIRT_MACHINE(2, 7)
2141 static void virt_machine_2_6_options(MachineClass *mc)
2143 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2145 virt_machine_2_7_options(mc);
2146 compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len);
2147 vmc->disallow_affinity_adjustment = true;
2148 /* Disable PMU for 2.6 as PMU support was first introduced in 2.7 */
2149 vmc->no_pmu = true;
2151 DEFINE_VIRT_MACHINE(2, 6)