hw/block/pflash: Remove dynamic field width from trace events
[qemu/ar7.git] / block / io.c
blobf75777f5ea744aac5c9b5872f203ec7ace02d2f7
1 /*
2 * Block layer I/O functions
4 * Copyright (c) 2003 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
25 #include "qemu/osdep.h"
26 #include "trace.h"
27 #include "sysemu/block-backend.h"
28 #include "block/aio-wait.h"
29 #include "block/blockjob.h"
30 #include "block/blockjob_int.h"
31 #include "block/block_int.h"
32 #include "qemu/cutils.h"
33 #include "qapi/error.h"
34 #include "qemu/error-report.h"
35 #include "qemu/main-loop.h"
36 #include "sysemu/replay.h"
38 #define NOT_DONE 0x7fffffff /* used while emulated sync operation in progress */
40 /* Maximum bounce buffer for copy-on-read and write zeroes, in bytes */
41 #define MAX_BOUNCE_BUFFER (32768 << BDRV_SECTOR_BITS)
43 static void bdrv_parent_cb_resize(BlockDriverState *bs);
44 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs,
45 int64_t offset, int bytes, BdrvRequestFlags flags);
47 static void bdrv_parent_drained_begin(BlockDriverState *bs, BdrvChild *ignore,
48 bool ignore_bds_parents)
50 BdrvChild *c, *next;
52 QLIST_FOREACH_SAFE(c, &bs->parents, next_parent, next) {
53 if (c == ignore || (ignore_bds_parents && c->role->parent_is_bds)) {
54 continue;
56 bdrv_parent_drained_begin_single(c, false);
60 static void bdrv_parent_drained_end_single_no_poll(BdrvChild *c,
61 int *drained_end_counter)
63 assert(c->parent_quiesce_counter > 0);
64 c->parent_quiesce_counter--;
65 if (c->role->drained_end) {
66 c->role->drained_end(c, drained_end_counter);
70 void bdrv_parent_drained_end_single(BdrvChild *c)
72 int drained_end_counter = 0;
73 bdrv_parent_drained_end_single_no_poll(c, &drained_end_counter);
74 BDRV_POLL_WHILE(c->bs, atomic_read(&drained_end_counter) > 0);
77 static void bdrv_parent_drained_end(BlockDriverState *bs, BdrvChild *ignore,
78 bool ignore_bds_parents,
79 int *drained_end_counter)
81 BdrvChild *c;
83 QLIST_FOREACH(c, &bs->parents, next_parent) {
84 if (c == ignore || (ignore_bds_parents && c->role->parent_is_bds)) {
85 continue;
87 bdrv_parent_drained_end_single_no_poll(c, drained_end_counter);
91 static bool bdrv_parent_drained_poll_single(BdrvChild *c)
93 if (c->role->drained_poll) {
94 return c->role->drained_poll(c);
96 return false;
99 static bool bdrv_parent_drained_poll(BlockDriverState *bs, BdrvChild *ignore,
100 bool ignore_bds_parents)
102 BdrvChild *c, *next;
103 bool busy = false;
105 QLIST_FOREACH_SAFE(c, &bs->parents, next_parent, next) {
106 if (c == ignore || (ignore_bds_parents && c->role->parent_is_bds)) {
107 continue;
109 busy |= bdrv_parent_drained_poll_single(c);
112 return busy;
115 void bdrv_parent_drained_begin_single(BdrvChild *c, bool poll)
117 c->parent_quiesce_counter++;
118 if (c->role->drained_begin) {
119 c->role->drained_begin(c);
121 if (poll) {
122 BDRV_POLL_WHILE(c->bs, bdrv_parent_drained_poll_single(c));
126 static void bdrv_merge_limits(BlockLimits *dst, const BlockLimits *src)
128 dst->opt_transfer = MAX(dst->opt_transfer, src->opt_transfer);
129 dst->max_transfer = MIN_NON_ZERO(dst->max_transfer, src->max_transfer);
130 dst->opt_mem_alignment = MAX(dst->opt_mem_alignment,
131 src->opt_mem_alignment);
132 dst->min_mem_alignment = MAX(dst->min_mem_alignment,
133 src->min_mem_alignment);
134 dst->max_iov = MIN_NON_ZERO(dst->max_iov, src->max_iov);
137 void bdrv_refresh_limits(BlockDriverState *bs, Error **errp)
139 BlockDriver *drv = bs->drv;
140 Error *local_err = NULL;
142 memset(&bs->bl, 0, sizeof(bs->bl));
144 if (!drv) {
145 return;
148 /* Default alignment based on whether driver has byte interface */
149 bs->bl.request_alignment = (drv->bdrv_co_preadv ||
150 drv->bdrv_aio_preadv ||
151 drv->bdrv_co_preadv_part) ? 1 : 512;
153 /* Take some limits from the children as a default */
154 if (bs->file) {
155 bdrv_refresh_limits(bs->file->bs, &local_err);
156 if (local_err) {
157 error_propagate(errp, local_err);
158 return;
160 bdrv_merge_limits(&bs->bl, &bs->file->bs->bl);
161 } else {
162 bs->bl.min_mem_alignment = 512;
163 bs->bl.opt_mem_alignment = qemu_real_host_page_size;
165 /* Safe default since most protocols use readv()/writev()/etc */
166 bs->bl.max_iov = IOV_MAX;
169 if (bs->backing) {
170 bdrv_refresh_limits(bs->backing->bs, &local_err);
171 if (local_err) {
172 error_propagate(errp, local_err);
173 return;
175 bdrv_merge_limits(&bs->bl, &bs->backing->bs->bl);
178 /* Then let the driver override it */
179 if (drv->bdrv_refresh_limits) {
180 drv->bdrv_refresh_limits(bs, errp);
185 * The copy-on-read flag is actually a reference count so multiple users may
186 * use the feature without worrying about clobbering its previous state.
187 * Copy-on-read stays enabled until all users have called to disable it.
189 void bdrv_enable_copy_on_read(BlockDriverState *bs)
191 atomic_inc(&bs->copy_on_read);
194 void bdrv_disable_copy_on_read(BlockDriverState *bs)
196 int old = atomic_fetch_dec(&bs->copy_on_read);
197 assert(old >= 1);
200 typedef struct {
201 Coroutine *co;
202 BlockDriverState *bs;
203 bool done;
204 bool begin;
205 bool recursive;
206 bool poll;
207 BdrvChild *parent;
208 bool ignore_bds_parents;
209 int *drained_end_counter;
210 } BdrvCoDrainData;
212 static void coroutine_fn bdrv_drain_invoke_entry(void *opaque)
214 BdrvCoDrainData *data = opaque;
215 BlockDriverState *bs = data->bs;
217 if (data->begin) {
218 bs->drv->bdrv_co_drain_begin(bs);
219 } else {
220 bs->drv->bdrv_co_drain_end(bs);
223 /* Set data->done and decrement drained_end_counter before bdrv_wakeup() */
224 atomic_mb_set(&data->done, true);
225 if (!data->begin) {
226 atomic_dec(data->drained_end_counter);
228 bdrv_dec_in_flight(bs);
230 g_free(data);
233 /* Recursively call BlockDriver.bdrv_co_drain_begin/end callbacks */
234 static void bdrv_drain_invoke(BlockDriverState *bs, bool begin,
235 int *drained_end_counter)
237 BdrvCoDrainData *data;
239 if (!bs->drv || (begin && !bs->drv->bdrv_co_drain_begin) ||
240 (!begin && !bs->drv->bdrv_co_drain_end)) {
241 return;
244 data = g_new(BdrvCoDrainData, 1);
245 *data = (BdrvCoDrainData) {
246 .bs = bs,
247 .done = false,
248 .begin = begin,
249 .drained_end_counter = drained_end_counter,
252 if (!begin) {
253 atomic_inc(drained_end_counter);
256 /* Make sure the driver callback completes during the polling phase for
257 * drain_begin. */
258 bdrv_inc_in_flight(bs);
259 data->co = qemu_coroutine_create(bdrv_drain_invoke_entry, data);
260 aio_co_schedule(bdrv_get_aio_context(bs), data->co);
263 /* Returns true if BDRV_POLL_WHILE() should go into a blocking aio_poll() */
264 bool bdrv_drain_poll(BlockDriverState *bs, bool recursive,
265 BdrvChild *ignore_parent, bool ignore_bds_parents)
267 BdrvChild *child, *next;
269 if (bdrv_parent_drained_poll(bs, ignore_parent, ignore_bds_parents)) {
270 return true;
273 if (atomic_read(&bs->in_flight)) {
274 return true;
277 if (recursive) {
278 assert(!ignore_bds_parents);
279 QLIST_FOREACH_SAFE(child, &bs->children, next, next) {
280 if (bdrv_drain_poll(child->bs, recursive, child, false)) {
281 return true;
286 return false;
289 static bool bdrv_drain_poll_top_level(BlockDriverState *bs, bool recursive,
290 BdrvChild *ignore_parent)
292 return bdrv_drain_poll(bs, recursive, ignore_parent, false);
295 static void bdrv_do_drained_begin(BlockDriverState *bs, bool recursive,
296 BdrvChild *parent, bool ignore_bds_parents,
297 bool poll);
298 static void bdrv_do_drained_end(BlockDriverState *bs, bool recursive,
299 BdrvChild *parent, bool ignore_bds_parents,
300 int *drained_end_counter);
302 static void bdrv_co_drain_bh_cb(void *opaque)
304 BdrvCoDrainData *data = opaque;
305 Coroutine *co = data->co;
306 BlockDriverState *bs = data->bs;
308 if (bs) {
309 AioContext *ctx = bdrv_get_aio_context(bs);
310 AioContext *co_ctx = qemu_coroutine_get_aio_context(co);
313 * When the coroutine yielded, the lock for its home context was
314 * released, so we need to re-acquire it here. If it explicitly
315 * acquired a different context, the lock is still held and we don't
316 * want to lock it a second time (or AIO_WAIT_WHILE() would hang).
318 if (ctx == co_ctx) {
319 aio_context_acquire(ctx);
321 bdrv_dec_in_flight(bs);
322 if (data->begin) {
323 assert(!data->drained_end_counter);
324 bdrv_do_drained_begin(bs, data->recursive, data->parent,
325 data->ignore_bds_parents, data->poll);
326 } else {
327 assert(!data->poll);
328 bdrv_do_drained_end(bs, data->recursive, data->parent,
329 data->ignore_bds_parents,
330 data->drained_end_counter);
332 if (ctx == co_ctx) {
333 aio_context_release(ctx);
335 } else {
336 assert(data->begin);
337 bdrv_drain_all_begin();
340 data->done = true;
341 aio_co_wake(co);
344 static void coroutine_fn bdrv_co_yield_to_drain(BlockDriverState *bs,
345 bool begin, bool recursive,
346 BdrvChild *parent,
347 bool ignore_bds_parents,
348 bool poll,
349 int *drained_end_counter)
351 BdrvCoDrainData data;
353 /* Calling bdrv_drain() from a BH ensures the current coroutine yields and
354 * other coroutines run if they were queued by aio_co_enter(). */
356 assert(qemu_in_coroutine());
357 data = (BdrvCoDrainData) {
358 .co = qemu_coroutine_self(),
359 .bs = bs,
360 .done = false,
361 .begin = begin,
362 .recursive = recursive,
363 .parent = parent,
364 .ignore_bds_parents = ignore_bds_parents,
365 .poll = poll,
366 .drained_end_counter = drained_end_counter,
369 if (bs) {
370 bdrv_inc_in_flight(bs);
372 replay_bh_schedule_oneshot_event(bdrv_get_aio_context(bs),
373 bdrv_co_drain_bh_cb, &data);
375 qemu_coroutine_yield();
376 /* If we are resumed from some other event (such as an aio completion or a
377 * timer callback), it is a bug in the caller that should be fixed. */
378 assert(data.done);
381 void bdrv_do_drained_begin_quiesce(BlockDriverState *bs,
382 BdrvChild *parent, bool ignore_bds_parents)
384 assert(!qemu_in_coroutine());
386 /* Stop things in parent-to-child order */
387 if (atomic_fetch_inc(&bs->quiesce_counter) == 0) {
388 aio_disable_external(bdrv_get_aio_context(bs));
391 bdrv_parent_drained_begin(bs, parent, ignore_bds_parents);
392 bdrv_drain_invoke(bs, true, NULL);
395 static void bdrv_do_drained_begin(BlockDriverState *bs, bool recursive,
396 BdrvChild *parent, bool ignore_bds_parents,
397 bool poll)
399 BdrvChild *child, *next;
401 if (qemu_in_coroutine()) {
402 bdrv_co_yield_to_drain(bs, true, recursive, parent, ignore_bds_parents,
403 poll, NULL);
404 return;
407 bdrv_do_drained_begin_quiesce(bs, parent, ignore_bds_parents);
409 if (recursive) {
410 assert(!ignore_bds_parents);
411 bs->recursive_quiesce_counter++;
412 QLIST_FOREACH_SAFE(child, &bs->children, next, next) {
413 bdrv_do_drained_begin(child->bs, true, child, ignore_bds_parents,
414 false);
419 * Wait for drained requests to finish.
421 * Calling BDRV_POLL_WHILE() only once for the top-level node is okay: The
422 * call is needed so things in this AioContext can make progress even
423 * though we don't return to the main AioContext loop - this automatically
424 * includes other nodes in the same AioContext and therefore all child
425 * nodes.
427 if (poll) {
428 assert(!ignore_bds_parents);
429 BDRV_POLL_WHILE(bs, bdrv_drain_poll_top_level(bs, recursive, parent));
433 void bdrv_drained_begin(BlockDriverState *bs)
435 bdrv_do_drained_begin(bs, false, NULL, false, true);
438 void bdrv_subtree_drained_begin(BlockDriverState *bs)
440 bdrv_do_drained_begin(bs, true, NULL, false, true);
444 * This function does not poll, nor must any of its recursively called
445 * functions. The *drained_end_counter pointee will be incremented
446 * once for every background operation scheduled, and decremented once
447 * the operation settles. Therefore, the pointer must remain valid
448 * until the pointee reaches 0. That implies that whoever sets up the
449 * pointee has to poll until it is 0.
451 * We use atomic operations to access *drained_end_counter, because
452 * (1) when called from bdrv_set_aio_context_ignore(), the subgraph of
453 * @bs may contain nodes in different AioContexts,
454 * (2) bdrv_drain_all_end() uses the same counter for all nodes,
455 * regardless of which AioContext they are in.
457 static void bdrv_do_drained_end(BlockDriverState *bs, bool recursive,
458 BdrvChild *parent, bool ignore_bds_parents,
459 int *drained_end_counter)
461 BdrvChild *child;
462 int old_quiesce_counter;
464 assert(drained_end_counter != NULL);
466 if (qemu_in_coroutine()) {
467 bdrv_co_yield_to_drain(bs, false, recursive, parent, ignore_bds_parents,
468 false, drained_end_counter);
469 return;
471 assert(bs->quiesce_counter > 0);
473 /* Re-enable things in child-to-parent order */
474 bdrv_drain_invoke(bs, false, drained_end_counter);
475 bdrv_parent_drained_end(bs, parent, ignore_bds_parents,
476 drained_end_counter);
478 old_quiesce_counter = atomic_fetch_dec(&bs->quiesce_counter);
479 if (old_quiesce_counter == 1) {
480 aio_enable_external(bdrv_get_aio_context(bs));
483 if (recursive) {
484 assert(!ignore_bds_parents);
485 bs->recursive_quiesce_counter--;
486 QLIST_FOREACH(child, &bs->children, next) {
487 bdrv_do_drained_end(child->bs, true, child, ignore_bds_parents,
488 drained_end_counter);
493 void bdrv_drained_end(BlockDriverState *bs)
495 int drained_end_counter = 0;
496 bdrv_do_drained_end(bs, false, NULL, false, &drained_end_counter);
497 BDRV_POLL_WHILE(bs, atomic_read(&drained_end_counter) > 0);
500 void bdrv_drained_end_no_poll(BlockDriverState *bs, int *drained_end_counter)
502 bdrv_do_drained_end(bs, false, NULL, false, drained_end_counter);
505 void bdrv_subtree_drained_end(BlockDriverState *bs)
507 int drained_end_counter = 0;
508 bdrv_do_drained_end(bs, true, NULL, false, &drained_end_counter);
509 BDRV_POLL_WHILE(bs, atomic_read(&drained_end_counter) > 0);
512 void bdrv_apply_subtree_drain(BdrvChild *child, BlockDriverState *new_parent)
514 int i;
516 for (i = 0; i < new_parent->recursive_quiesce_counter; i++) {
517 bdrv_do_drained_begin(child->bs, true, child, false, true);
521 void bdrv_unapply_subtree_drain(BdrvChild *child, BlockDriverState *old_parent)
523 int drained_end_counter = 0;
524 int i;
526 for (i = 0; i < old_parent->recursive_quiesce_counter; i++) {
527 bdrv_do_drained_end(child->bs, true, child, false,
528 &drained_end_counter);
531 BDRV_POLL_WHILE(child->bs, atomic_read(&drained_end_counter) > 0);
535 * Wait for pending requests to complete on a single BlockDriverState subtree,
536 * and suspend block driver's internal I/O until next request arrives.
538 * Note that unlike bdrv_drain_all(), the caller must hold the BlockDriverState
539 * AioContext.
541 void coroutine_fn bdrv_co_drain(BlockDriverState *bs)
543 assert(qemu_in_coroutine());
544 bdrv_drained_begin(bs);
545 bdrv_drained_end(bs);
548 void bdrv_drain(BlockDriverState *bs)
550 bdrv_drained_begin(bs);
551 bdrv_drained_end(bs);
554 static void bdrv_drain_assert_idle(BlockDriverState *bs)
556 BdrvChild *child, *next;
558 assert(atomic_read(&bs->in_flight) == 0);
559 QLIST_FOREACH_SAFE(child, &bs->children, next, next) {
560 bdrv_drain_assert_idle(child->bs);
564 unsigned int bdrv_drain_all_count = 0;
566 static bool bdrv_drain_all_poll(void)
568 BlockDriverState *bs = NULL;
569 bool result = false;
571 /* bdrv_drain_poll() can't make changes to the graph and we are holding the
572 * main AioContext lock, so iterating bdrv_next_all_states() is safe. */
573 while ((bs = bdrv_next_all_states(bs))) {
574 AioContext *aio_context = bdrv_get_aio_context(bs);
575 aio_context_acquire(aio_context);
576 result |= bdrv_drain_poll(bs, false, NULL, true);
577 aio_context_release(aio_context);
580 return result;
584 * Wait for pending requests to complete across all BlockDriverStates
586 * This function does not flush data to disk, use bdrv_flush_all() for that
587 * after calling this function.
589 * This pauses all block jobs and disables external clients. It must
590 * be paired with bdrv_drain_all_end().
592 * NOTE: no new block jobs or BlockDriverStates can be created between
593 * the bdrv_drain_all_begin() and bdrv_drain_all_end() calls.
595 void bdrv_drain_all_begin(void)
597 BlockDriverState *bs = NULL;
599 if (qemu_in_coroutine()) {
600 bdrv_co_yield_to_drain(NULL, true, false, NULL, true, true, NULL);
601 return;
605 * bdrv queue is managed by record/replay,
606 * waiting for finishing the I/O requests may
607 * be infinite
609 if (replay_events_enabled()) {
610 return;
613 /* AIO_WAIT_WHILE() with a NULL context can only be called from the main
614 * loop AioContext, so make sure we're in the main context. */
615 assert(qemu_get_current_aio_context() == qemu_get_aio_context());
616 assert(bdrv_drain_all_count < INT_MAX);
617 bdrv_drain_all_count++;
619 /* Quiesce all nodes, without polling in-flight requests yet. The graph
620 * cannot change during this loop. */
621 while ((bs = bdrv_next_all_states(bs))) {
622 AioContext *aio_context = bdrv_get_aio_context(bs);
624 aio_context_acquire(aio_context);
625 bdrv_do_drained_begin(bs, false, NULL, true, false);
626 aio_context_release(aio_context);
629 /* Now poll the in-flight requests */
630 AIO_WAIT_WHILE(NULL, bdrv_drain_all_poll());
632 while ((bs = bdrv_next_all_states(bs))) {
633 bdrv_drain_assert_idle(bs);
637 void bdrv_drain_all_end(void)
639 BlockDriverState *bs = NULL;
640 int drained_end_counter = 0;
643 * bdrv queue is managed by record/replay,
644 * waiting for finishing the I/O requests may
645 * be endless
647 if (replay_events_enabled()) {
648 return;
651 while ((bs = bdrv_next_all_states(bs))) {
652 AioContext *aio_context = bdrv_get_aio_context(bs);
654 aio_context_acquire(aio_context);
655 bdrv_do_drained_end(bs, false, NULL, true, &drained_end_counter);
656 aio_context_release(aio_context);
659 assert(qemu_get_current_aio_context() == qemu_get_aio_context());
660 AIO_WAIT_WHILE(NULL, atomic_read(&drained_end_counter) > 0);
662 assert(bdrv_drain_all_count > 0);
663 bdrv_drain_all_count--;
666 void bdrv_drain_all(void)
668 bdrv_drain_all_begin();
669 bdrv_drain_all_end();
673 * Remove an active request from the tracked requests list
675 * This function should be called when a tracked request is completing.
677 static void tracked_request_end(BdrvTrackedRequest *req)
679 if (req->serialising) {
680 atomic_dec(&req->bs->serialising_in_flight);
683 qemu_co_mutex_lock(&req->bs->reqs_lock);
684 QLIST_REMOVE(req, list);
685 qemu_co_queue_restart_all(&req->wait_queue);
686 qemu_co_mutex_unlock(&req->bs->reqs_lock);
690 * Add an active request to the tracked requests list
692 static void tracked_request_begin(BdrvTrackedRequest *req,
693 BlockDriverState *bs,
694 int64_t offset,
695 uint64_t bytes,
696 enum BdrvTrackedRequestType type)
698 assert(bytes <= INT64_MAX && offset <= INT64_MAX - bytes);
700 *req = (BdrvTrackedRequest){
701 .bs = bs,
702 .offset = offset,
703 .bytes = bytes,
704 .type = type,
705 .co = qemu_coroutine_self(),
706 .serialising = false,
707 .overlap_offset = offset,
708 .overlap_bytes = bytes,
711 qemu_co_queue_init(&req->wait_queue);
713 qemu_co_mutex_lock(&bs->reqs_lock);
714 QLIST_INSERT_HEAD(&bs->tracked_requests, req, list);
715 qemu_co_mutex_unlock(&bs->reqs_lock);
718 void bdrv_mark_request_serialising(BdrvTrackedRequest *req, uint64_t align)
720 int64_t overlap_offset = req->offset & ~(align - 1);
721 uint64_t overlap_bytes = ROUND_UP(req->offset + req->bytes, align)
722 - overlap_offset;
724 if (!req->serialising) {
725 atomic_inc(&req->bs->serialising_in_flight);
726 req->serialising = true;
729 req->overlap_offset = MIN(req->overlap_offset, overlap_offset);
730 req->overlap_bytes = MAX(req->overlap_bytes, overlap_bytes);
733 static bool is_request_serialising_and_aligned(BdrvTrackedRequest *req)
736 * If the request is serialising, overlap_offset and overlap_bytes are set,
737 * so we can check if the request is aligned. Otherwise, don't care and
738 * return false.
741 return req->serialising && (req->offset == req->overlap_offset) &&
742 (req->bytes == req->overlap_bytes);
746 * Return the tracked request on @bs for the current coroutine, or
747 * NULL if there is none.
749 BdrvTrackedRequest *coroutine_fn bdrv_co_get_self_request(BlockDriverState *bs)
751 BdrvTrackedRequest *req;
752 Coroutine *self = qemu_coroutine_self();
754 QLIST_FOREACH(req, &bs->tracked_requests, list) {
755 if (req->co == self) {
756 return req;
760 return NULL;
764 * Round a region to cluster boundaries
766 void bdrv_round_to_clusters(BlockDriverState *bs,
767 int64_t offset, int64_t bytes,
768 int64_t *cluster_offset,
769 int64_t *cluster_bytes)
771 BlockDriverInfo bdi;
773 if (bdrv_get_info(bs, &bdi) < 0 || bdi.cluster_size == 0) {
774 *cluster_offset = offset;
775 *cluster_bytes = bytes;
776 } else {
777 int64_t c = bdi.cluster_size;
778 *cluster_offset = QEMU_ALIGN_DOWN(offset, c);
779 *cluster_bytes = QEMU_ALIGN_UP(offset - *cluster_offset + bytes, c);
783 static int bdrv_get_cluster_size(BlockDriverState *bs)
785 BlockDriverInfo bdi;
786 int ret;
788 ret = bdrv_get_info(bs, &bdi);
789 if (ret < 0 || bdi.cluster_size == 0) {
790 return bs->bl.request_alignment;
791 } else {
792 return bdi.cluster_size;
796 static bool tracked_request_overlaps(BdrvTrackedRequest *req,
797 int64_t offset, uint64_t bytes)
799 /* aaaa bbbb */
800 if (offset >= req->overlap_offset + req->overlap_bytes) {
801 return false;
803 /* bbbb aaaa */
804 if (req->overlap_offset >= offset + bytes) {
805 return false;
807 return true;
810 void bdrv_inc_in_flight(BlockDriverState *bs)
812 atomic_inc(&bs->in_flight);
815 void bdrv_wakeup(BlockDriverState *bs)
817 aio_wait_kick();
820 void bdrv_dec_in_flight(BlockDriverState *bs)
822 atomic_dec(&bs->in_flight);
823 bdrv_wakeup(bs);
826 bool coroutine_fn bdrv_wait_serialising_requests(BdrvTrackedRequest *self)
828 BlockDriverState *bs = self->bs;
829 BdrvTrackedRequest *req;
830 bool retry;
831 bool waited = false;
833 if (!atomic_read(&bs->serialising_in_flight)) {
834 return false;
837 do {
838 retry = false;
839 qemu_co_mutex_lock(&bs->reqs_lock);
840 QLIST_FOREACH(req, &bs->tracked_requests, list) {
841 if (req == self || (!req->serialising && !self->serialising)) {
842 continue;
844 if (tracked_request_overlaps(req, self->overlap_offset,
845 self->overlap_bytes))
847 /* Hitting this means there was a reentrant request, for
848 * example, a block driver issuing nested requests. This must
849 * never happen since it means deadlock.
851 assert(qemu_coroutine_self() != req->co);
853 /* If the request is already (indirectly) waiting for us, or
854 * will wait for us as soon as it wakes up, then just go on
855 * (instead of producing a deadlock in the former case). */
856 if (!req->waiting_for) {
857 self->waiting_for = req;
858 qemu_co_queue_wait(&req->wait_queue, &bs->reqs_lock);
859 self->waiting_for = NULL;
860 retry = true;
861 waited = true;
862 break;
866 qemu_co_mutex_unlock(&bs->reqs_lock);
867 } while (retry);
869 return waited;
872 static int bdrv_check_byte_request(BlockDriverState *bs, int64_t offset,
873 size_t size)
875 if (size > BDRV_REQUEST_MAX_BYTES) {
876 return -EIO;
879 if (!bdrv_is_inserted(bs)) {
880 return -ENOMEDIUM;
883 if (offset < 0) {
884 return -EIO;
887 return 0;
890 typedef struct RwCo {
891 BdrvChild *child;
892 int64_t offset;
893 QEMUIOVector *qiov;
894 bool is_write;
895 int ret;
896 BdrvRequestFlags flags;
897 } RwCo;
899 static void coroutine_fn bdrv_rw_co_entry(void *opaque)
901 RwCo *rwco = opaque;
903 if (!rwco->is_write) {
904 rwco->ret = bdrv_co_preadv(rwco->child, rwco->offset,
905 rwco->qiov->size, rwco->qiov,
906 rwco->flags);
907 } else {
908 rwco->ret = bdrv_co_pwritev(rwco->child, rwco->offset,
909 rwco->qiov->size, rwco->qiov,
910 rwco->flags);
912 aio_wait_kick();
916 * Process a vectored synchronous request using coroutines
918 static int bdrv_prwv_co(BdrvChild *child, int64_t offset,
919 QEMUIOVector *qiov, bool is_write,
920 BdrvRequestFlags flags)
922 Coroutine *co;
923 RwCo rwco = {
924 .child = child,
925 .offset = offset,
926 .qiov = qiov,
927 .is_write = is_write,
928 .ret = NOT_DONE,
929 .flags = flags,
932 if (qemu_in_coroutine()) {
933 /* Fast-path if already in coroutine context */
934 bdrv_rw_co_entry(&rwco);
935 } else {
936 co = qemu_coroutine_create(bdrv_rw_co_entry, &rwco);
937 bdrv_coroutine_enter(child->bs, co);
938 BDRV_POLL_WHILE(child->bs, rwco.ret == NOT_DONE);
940 return rwco.ret;
943 int bdrv_pwrite_zeroes(BdrvChild *child, int64_t offset,
944 int bytes, BdrvRequestFlags flags)
946 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, NULL, bytes);
948 return bdrv_prwv_co(child, offset, &qiov, true,
949 BDRV_REQ_ZERO_WRITE | flags);
953 * Completely zero out a block device with the help of bdrv_pwrite_zeroes.
954 * The operation is sped up by checking the block status and only writing
955 * zeroes to the device if they currently do not return zeroes. Optional
956 * flags are passed through to bdrv_pwrite_zeroes (e.g. BDRV_REQ_MAY_UNMAP,
957 * BDRV_REQ_FUA).
959 * Returns < 0 on error, 0 on success. For error codes see bdrv_write().
961 int bdrv_make_zero(BdrvChild *child, BdrvRequestFlags flags)
963 int ret;
964 int64_t target_size, bytes, offset = 0;
965 BlockDriverState *bs = child->bs;
967 target_size = bdrv_getlength(bs);
968 if (target_size < 0) {
969 return target_size;
972 for (;;) {
973 bytes = MIN(target_size - offset, BDRV_REQUEST_MAX_BYTES);
974 if (bytes <= 0) {
975 return 0;
977 ret = bdrv_block_status(bs, offset, bytes, &bytes, NULL, NULL);
978 if (ret < 0) {
979 return ret;
981 if (ret & BDRV_BLOCK_ZERO) {
982 offset += bytes;
983 continue;
985 ret = bdrv_pwrite_zeroes(child, offset, bytes, flags);
986 if (ret < 0) {
987 return ret;
989 offset += bytes;
993 int bdrv_preadv(BdrvChild *child, int64_t offset, QEMUIOVector *qiov)
995 int ret;
997 ret = bdrv_prwv_co(child, offset, qiov, false, 0);
998 if (ret < 0) {
999 return ret;
1002 return qiov->size;
1005 /* See bdrv_pwrite() for the return codes */
1006 int bdrv_pread(BdrvChild *child, int64_t offset, void *buf, int bytes)
1008 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, bytes);
1010 if (bytes < 0) {
1011 return -EINVAL;
1014 return bdrv_preadv(child, offset, &qiov);
1017 int bdrv_pwritev(BdrvChild *child, int64_t offset, QEMUIOVector *qiov)
1019 int ret;
1021 ret = bdrv_prwv_co(child, offset, qiov, true, 0);
1022 if (ret < 0) {
1023 return ret;
1026 return qiov->size;
1029 /* Return no. of bytes on success or < 0 on error. Important errors are:
1030 -EIO generic I/O error (may happen for all errors)
1031 -ENOMEDIUM No media inserted.
1032 -EINVAL Invalid offset or number of bytes
1033 -EACCES Trying to write a read-only device
1035 int bdrv_pwrite(BdrvChild *child, int64_t offset, const void *buf, int bytes)
1037 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, bytes);
1039 if (bytes < 0) {
1040 return -EINVAL;
1043 return bdrv_pwritev(child, offset, &qiov);
1047 * Writes to the file and ensures that no writes are reordered across this
1048 * request (acts as a barrier)
1050 * Returns 0 on success, -errno in error cases.
1052 int bdrv_pwrite_sync(BdrvChild *child, int64_t offset,
1053 const void *buf, int count)
1055 int ret;
1057 ret = bdrv_pwrite(child, offset, buf, count);
1058 if (ret < 0) {
1059 return ret;
1062 ret = bdrv_flush(child->bs);
1063 if (ret < 0) {
1064 return ret;
1067 return 0;
1070 typedef struct CoroutineIOCompletion {
1071 Coroutine *coroutine;
1072 int ret;
1073 } CoroutineIOCompletion;
1075 static void bdrv_co_io_em_complete(void *opaque, int ret)
1077 CoroutineIOCompletion *co = opaque;
1079 co->ret = ret;
1080 aio_co_wake(co->coroutine);
1083 static int coroutine_fn bdrv_driver_preadv(BlockDriverState *bs,
1084 uint64_t offset, uint64_t bytes,
1085 QEMUIOVector *qiov,
1086 size_t qiov_offset, int flags)
1088 BlockDriver *drv = bs->drv;
1089 int64_t sector_num;
1090 unsigned int nb_sectors;
1091 QEMUIOVector local_qiov;
1092 int ret;
1094 assert(!(flags & ~BDRV_REQ_MASK));
1095 assert(!(flags & BDRV_REQ_NO_FALLBACK));
1097 if (!drv) {
1098 return -ENOMEDIUM;
1101 if (drv->bdrv_co_preadv_part) {
1102 return drv->bdrv_co_preadv_part(bs, offset, bytes, qiov, qiov_offset,
1103 flags);
1106 if (qiov_offset > 0 || bytes != qiov->size) {
1107 qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes);
1108 qiov = &local_qiov;
1111 if (drv->bdrv_co_preadv) {
1112 ret = drv->bdrv_co_preadv(bs, offset, bytes, qiov, flags);
1113 goto out;
1116 if (drv->bdrv_aio_preadv) {
1117 BlockAIOCB *acb;
1118 CoroutineIOCompletion co = {
1119 .coroutine = qemu_coroutine_self(),
1122 acb = drv->bdrv_aio_preadv(bs, offset, bytes, qiov, flags,
1123 bdrv_co_io_em_complete, &co);
1124 if (acb == NULL) {
1125 ret = -EIO;
1126 goto out;
1127 } else {
1128 qemu_coroutine_yield();
1129 ret = co.ret;
1130 goto out;
1134 sector_num = offset >> BDRV_SECTOR_BITS;
1135 nb_sectors = bytes >> BDRV_SECTOR_BITS;
1137 assert(QEMU_IS_ALIGNED(offset, BDRV_SECTOR_SIZE));
1138 assert(QEMU_IS_ALIGNED(bytes, BDRV_SECTOR_SIZE));
1139 assert(bytes <= BDRV_REQUEST_MAX_BYTES);
1140 assert(drv->bdrv_co_readv);
1142 ret = drv->bdrv_co_readv(bs, sector_num, nb_sectors, qiov);
1144 out:
1145 if (qiov == &local_qiov) {
1146 qemu_iovec_destroy(&local_qiov);
1149 return ret;
1152 static int coroutine_fn bdrv_driver_pwritev(BlockDriverState *bs,
1153 uint64_t offset, uint64_t bytes,
1154 QEMUIOVector *qiov,
1155 size_t qiov_offset, int flags)
1157 BlockDriver *drv = bs->drv;
1158 int64_t sector_num;
1159 unsigned int nb_sectors;
1160 QEMUIOVector local_qiov;
1161 int ret;
1163 assert(!(flags & ~BDRV_REQ_MASK));
1164 assert(!(flags & BDRV_REQ_NO_FALLBACK));
1166 if (!drv) {
1167 return -ENOMEDIUM;
1170 if (drv->bdrv_co_pwritev_part) {
1171 ret = drv->bdrv_co_pwritev_part(bs, offset, bytes, qiov, qiov_offset,
1172 flags & bs->supported_write_flags);
1173 flags &= ~bs->supported_write_flags;
1174 goto emulate_flags;
1177 if (qiov_offset > 0 || bytes != qiov->size) {
1178 qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes);
1179 qiov = &local_qiov;
1182 if (drv->bdrv_co_pwritev) {
1183 ret = drv->bdrv_co_pwritev(bs, offset, bytes, qiov,
1184 flags & bs->supported_write_flags);
1185 flags &= ~bs->supported_write_flags;
1186 goto emulate_flags;
1189 if (drv->bdrv_aio_pwritev) {
1190 BlockAIOCB *acb;
1191 CoroutineIOCompletion co = {
1192 .coroutine = qemu_coroutine_self(),
1195 acb = drv->bdrv_aio_pwritev(bs, offset, bytes, qiov,
1196 flags & bs->supported_write_flags,
1197 bdrv_co_io_em_complete, &co);
1198 flags &= ~bs->supported_write_flags;
1199 if (acb == NULL) {
1200 ret = -EIO;
1201 } else {
1202 qemu_coroutine_yield();
1203 ret = co.ret;
1205 goto emulate_flags;
1208 sector_num = offset >> BDRV_SECTOR_BITS;
1209 nb_sectors = bytes >> BDRV_SECTOR_BITS;
1211 assert(QEMU_IS_ALIGNED(offset, BDRV_SECTOR_SIZE));
1212 assert(QEMU_IS_ALIGNED(bytes, BDRV_SECTOR_SIZE));
1213 assert(bytes <= BDRV_REQUEST_MAX_BYTES);
1215 assert(drv->bdrv_co_writev);
1216 ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, qiov,
1217 flags & bs->supported_write_flags);
1218 flags &= ~bs->supported_write_flags;
1220 emulate_flags:
1221 if (ret == 0 && (flags & BDRV_REQ_FUA)) {
1222 ret = bdrv_co_flush(bs);
1225 if (qiov == &local_qiov) {
1226 qemu_iovec_destroy(&local_qiov);
1229 return ret;
1232 static int coroutine_fn
1233 bdrv_driver_pwritev_compressed(BlockDriverState *bs, uint64_t offset,
1234 uint64_t bytes, QEMUIOVector *qiov,
1235 size_t qiov_offset)
1237 BlockDriver *drv = bs->drv;
1238 QEMUIOVector local_qiov;
1239 int ret;
1241 if (!drv) {
1242 return -ENOMEDIUM;
1245 if (!block_driver_can_compress(drv)) {
1246 return -ENOTSUP;
1249 if (drv->bdrv_co_pwritev_compressed_part) {
1250 return drv->bdrv_co_pwritev_compressed_part(bs, offset, bytes,
1251 qiov, qiov_offset);
1254 if (qiov_offset == 0) {
1255 return drv->bdrv_co_pwritev_compressed(bs, offset, bytes, qiov);
1258 qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes);
1259 ret = drv->bdrv_co_pwritev_compressed(bs, offset, bytes, &local_qiov);
1260 qemu_iovec_destroy(&local_qiov);
1262 return ret;
1265 static int coroutine_fn bdrv_co_do_copy_on_readv(BdrvChild *child,
1266 int64_t offset, unsigned int bytes, QEMUIOVector *qiov,
1267 size_t qiov_offset, int flags)
1269 BlockDriverState *bs = child->bs;
1271 /* Perform I/O through a temporary buffer so that users who scribble over
1272 * their read buffer while the operation is in progress do not end up
1273 * modifying the image file. This is critical for zero-copy guest I/O
1274 * where anything might happen inside guest memory.
1276 void *bounce_buffer = NULL;
1278 BlockDriver *drv = bs->drv;
1279 int64_t cluster_offset;
1280 int64_t cluster_bytes;
1281 size_t skip_bytes;
1282 int ret;
1283 int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer,
1284 BDRV_REQUEST_MAX_BYTES);
1285 unsigned int progress = 0;
1286 bool skip_write;
1288 if (!drv) {
1289 return -ENOMEDIUM;
1293 * Do not write anything when the BDS is inactive. That is not
1294 * allowed, and it would not help.
1296 skip_write = (bs->open_flags & BDRV_O_INACTIVE);
1298 /* FIXME We cannot require callers to have write permissions when all they
1299 * are doing is a read request. If we did things right, write permissions
1300 * would be obtained anyway, but internally by the copy-on-read code. As
1301 * long as it is implemented here rather than in a separate filter driver,
1302 * the copy-on-read code doesn't have its own BdrvChild, however, for which
1303 * it could request permissions. Therefore we have to bypass the permission
1304 * system for the moment. */
1305 // assert(child->perm & (BLK_PERM_WRITE_UNCHANGED | BLK_PERM_WRITE));
1307 /* Cover entire cluster so no additional backing file I/O is required when
1308 * allocating cluster in the image file. Note that this value may exceed
1309 * BDRV_REQUEST_MAX_BYTES (even when the original read did not), which
1310 * is one reason we loop rather than doing it all at once.
1312 bdrv_round_to_clusters(bs, offset, bytes, &cluster_offset, &cluster_bytes);
1313 skip_bytes = offset - cluster_offset;
1315 trace_bdrv_co_do_copy_on_readv(bs, offset, bytes,
1316 cluster_offset, cluster_bytes);
1318 while (cluster_bytes) {
1319 int64_t pnum;
1321 if (skip_write) {
1322 ret = 1; /* "already allocated", so nothing will be copied */
1323 pnum = MIN(cluster_bytes, max_transfer);
1324 } else {
1325 ret = bdrv_is_allocated(bs, cluster_offset,
1326 MIN(cluster_bytes, max_transfer), &pnum);
1327 if (ret < 0) {
1329 * Safe to treat errors in querying allocation as if
1330 * unallocated; we'll probably fail again soon on the
1331 * read, but at least that will set a decent errno.
1333 pnum = MIN(cluster_bytes, max_transfer);
1336 /* Stop at EOF if the image ends in the middle of the cluster */
1337 if (ret == 0 && pnum == 0) {
1338 assert(progress >= bytes);
1339 break;
1342 assert(skip_bytes < pnum);
1345 if (ret <= 0) {
1346 QEMUIOVector local_qiov;
1348 /* Must copy-on-read; use the bounce buffer */
1349 pnum = MIN(pnum, MAX_BOUNCE_BUFFER);
1350 if (!bounce_buffer) {
1351 int64_t max_we_need = MAX(pnum, cluster_bytes - pnum);
1352 int64_t max_allowed = MIN(max_transfer, MAX_BOUNCE_BUFFER);
1353 int64_t bounce_buffer_len = MIN(max_we_need, max_allowed);
1355 bounce_buffer = qemu_try_blockalign(bs, bounce_buffer_len);
1356 if (!bounce_buffer) {
1357 ret = -ENOMEM;
1358 goto err;
1361 qemu_iovec_init_buf(&local_qiov, bounce_buffer, pnum);
1363 ret = bdrv_driver_preadv(bs, cluster_offset, pnum,
1364 &local_qiov, 0, 0);
1365 if (ret < 0) {
1366 goto err;
1369 bdrv_debug_event(bs, BLKDBG_COR_WRITE);
1370 if (drv->bdrv_co_pwrite_zeroes &&
1371 buffer_is_zero(bounce_buffer, pnum)) {
1372 /* FIXME: Should we (perhaps conditionally) be setting
1373 * BDRV_REQ_MAY_UNMAP, if it will allow for a sparser copy
1374 * that still correctly reads as zero? */
1375 ret = bdrv_co_do_pwrite_zeroes(bs, cluster_offset, pnum,
1376 BDRV_REQ_WRITE_UNCHANGED);
1377 } else {
1378 /* This does not change the data on the disk, it is not
1379 * necessary to flush even in cache=writethrough mode.
1381 ret = bdrv_driver_pwritev(bs, cluster_offset, pnum,
1382 &local_qiov, 0,
1383 BDRV_REQ_WRITE_UNCHANGED);
1386 if (ret < 0) {
1387 /* It might be okay to ignore write errors for guest
1388 * requests. If this is a deliberate copy-on-read
1389 * then we don't want to ignore the error. Simply
1390 * report it in all cases.
1392 goto err;
1395 if (!(flags & BDRV_REQ_PREFETCH)) {
1396 qemu_iovec_from_buf(qiov, qiov_offset + progress,
1397 bounce_buffer + skip_bytes,
1398 pnum - skip_bytes);
1400 } else if (!(flags & BDRV_REQ_PREFETCH)) {
1401 /* Read directly into the destination */
1402 ret = bdrv_driver_preadv(bs, offset + progress,
1403 MIN(pnum - skip_bytes, bytes - progress),
1404 qiov, qiov_offset + progress, 0);
1405 if (ret < 0) {
1406 goto err;
1410 cluster_offset += pnum;
1411 cluster_bytes -= pnum;
1412 progress += pnum - skip_bytes;
1413 skip_bytes = 0;
1415 ret = 0;
1417 err:
1418 qemu_vfree(bounce_buffer);
1419 return ret;
1423 * Forwards an already correctly aligned request to the BlockDriver. This
1424 * handles copy on read, zeroing after EOF, and fragmentation of large
1425 * reads; any other features must be implemented by the caller.
1427 static int coroutine_fn bdrv_aligned_preadv(BdrvChild *child,
1428 BdrvTrackedRequest *req, int64_t offset, unsigned int bytes,
1429 int64_t align, QEMUIOVector *qiov, size_t qiov_offset, int flags)
1431 BlockDriverState *bs = child->bs;
1432 int64_t total_bytes, max_bytes;
1433 int ret = 0;
1434 uint64_t bytes_remaining = bytes;
1435 int max_transfer;
1437 assert(is_power_of_2(align));
1438 assert((offset & (align - 1)) == 0);
1439 assert((bytes & (align - 1)) == 0);
1440 assert((bs->open_flags & BDRV_O_NO_IO) == 0);
1441 max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX),
1442 align);
1444 /* TODO: We would need a per-BDS .supported_read_flags and
1445 * potential fallback support, if we ever implement any read flags
1446 * to pass through to drivers. For now, there aren't any
1447 * passthrough flags. */
1448 assert(!(flags & ~(BDRV_REQ_NO_SERIALISING | BDRV_REQ_COPY_ON_READ |
1449 BDRV_REQ_PREFETCH)));
1451 /* Handle Copy on Read and associated serialisation */
1452 if (flags & BDRV_REQ_COPY_ON_READ) {
1453 /* If we touch the same cluster it counts as an overlap. This
1454 * guarantees that allocating writes will be serialized and not race
1455 * with each other for the same cluster. For example, in copy-on-read
1456 * it ensures that the CoR read and write operations are atomic and
1457 * guest writes cannot interleave between them. */
1458 bdrv_mark_request_serialising(req, bdrv_get_cluster_size(bs));
1461 /* BDRV_REQ_SERIALISING is only for write operation */
1462 assert(!(flags & BDRV_REQ_SERIALISING));
1464 if (!(flags & BDRV_REQ_NO_SERIALISING)) {
1465 bdrv_wait_serialising_requests(req);
1468 if (flags & BDRV_REQ_COPY_ON_READ) {
1469 int64_t pnum;
1471 ret = bdrv_is_allocated(bs, offset, bytes, &pnum);
1472 if (ret < 0) {
1473 goto out;
1476 if (!ret || pnum != bytes) {
1477 ret = bdrv_co_do_copy_on_readv(child, offset, bytes,
1478 qiov, qiov_offset, flags);
1479 goto out;
1480 } else if (flags & BDRV_REQ_PREFETCH) {
1481 goto out;
1485 /* Forward the request to the BlockDriver, possibly fragmenting it */
1486 total_bytes = bdrv_getlength(bs);
1487 if (total_bytes < 0) {
1488 ret = total_bytes;
1489 goto out;
1492 max_bytes = ROUND_UP(MAX(0, total_bytes - offset), align);
1493 if (bytes <= max_bytes && bytes <= max_transfer) {
1494 ret = bdrv_driver_preadv(bs, offset, bytes, qiov, qiov_offset, 0);
1495 goto out;
1498 while (bytes_remaining) {
1499 int num;
1501 if (max_bytes) {
1502 num = MIN(bytes_remaining, MIN(max_bytes, max_transfer));
1503 assert(num);
1505 ret = bdrv_driver_preadv(bs, offset + bytes - bytes_remaining,
1506 num, qiov, bytes - bytes_remaining, 0);
1507 max_bytes -= num;
1508 } else {
1509 num = bytes_remaining;
1510 ret = qemu_iovec_memset(qiov, bytes - bytes_remaining, 0,
1511 bytes_remaining);
1513 if (ret < 0) {
1514 goto out;
1516 bytes_remaining -= num;
1519 out:
1520 return ret < 0 ? ret : 0;
1524 * Request padding
1526 * |<---- align ----->| |<----- align ---->|
1527 * |<- head ->|<------------- bytes ------------->|<-- tail -->|
1528 * | | | | | |
1529 * -*----------$-------*-------- ... --------*-----$------------*---
1530 * | | | | | |
1531 * | offset | | end |
1532 * ALIGN_DOWN(offset) ALIGN_UP(offset) ALIGN_DOWN(end) ALIGN_UP(end)
1533 * [buf ... ) [tail_buf )
1535 * @buf is an aligned allocation needed to store @head and @tail paddings. @head
1536 * is placed at the beginning of @buf and @tail at the @end.
1538 * @tail_buf is a pointer to sub-buffer, corresponding to align-sized chunk
1539 * around tail, if tail exists.
1541 * @merge_reads is true for small requests,
1542 * if @buf_len == @head + bytes + @tail. In this case it is possible that both
1543 * head and tail exist but @buf_len == align and @tail_buf == @buf.
1545 typedef struct BdrvRequestPadding {
1546 uint8_t *buf;
1547 size_t buf_len;
1548 uint8_t *tail_buf;
1549 size_t head;
1550 size_t tail;
1551 bool merge_reads;
1552 QEMUIOVector local_qiov;
1553 } BdrvRequestPadding;
1555 static bool bdrv_init_padding(BlockDriverState *bs,
1556 int64_t offset, int64_t bytes,
1557 BdrvRequestPadding *pad)
1559 uint64_t align = bs->bl.request_alignment;
1560 size_t sum;
1562 memset(pad, 0, sizeof(*pad));
1564 pad->head = offset & (align - 1);
1565 pad->tail = ((offset + bytes) & (align - 1));
1566 if (pad->tail) {
1567 pad->tail = align - pad->tail;
1570 if ((!pad->head && !pad->tail) || !bytes) {
1571 return false;
1574 sum = pad->head + bytes + pad->tail;
1575 pad->buf_len = (sum > align && pad->head && pad->tail) ? 2 * align : align;
1576 pad->buf = qemu_blockalign(bs, pad->buf_len);
1577 pad->merge_reads = sum == pad->buf_len;
1578 if (pad->tail) {
1579 pad->tail_buf = pad->buf + pad->buf_len - align;
1582 return true;
1585 static int bdrv_padding_rmw_read(BdrvChild *child,
1586 BdrvTrackedRequest *req,
1587 BdrvRequestPadding *pad,
1588 bool zero_middle)
1590 QEMUIOVector local_qiov;
1591 BlockDriverState *bs = child->bs;
1592 uint64_t align = bs->bl.request_alignment;
1593 int ret;
1595 assert(req->serialising && pad->buf);
1597 if (pad->head || pad->merge_reads) {
1598 uint64_t bytes = pad->merge_reads ? pad->buf_len : align;
1600 qemu_iovec_init_buf(&local_qiov, pad->buf, bytes);
1602 if (pad->head) {
1603 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_HEAD);
1605 if (pad->merge_reads && pad->tail) {
1606 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL);
1608 ret = bdrv_aligned_preadv(child, req, req->overlap_offset, bytes,
1609 align, &local_qiov, 0, 0);
1610 if (ret < 0) {
1611 return ret;
1613 if (pad->head) {
1614 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_HEAD);
1616 if (pad->merge_reads && pad->tail) {
1617 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL);
1620 if (pad->merge_reads) {
1621 goto zero_mem;
1625 if (pad->tail) {
1626 qemu_iovec_init_buf(&local_qiov, pad->tail_buf, align);
1628 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL);
1629 ret = bdrv_aligned_preadv(
1630 child, req,
1631 req->overlap_offset + req->overlap_bytes - align,
1632 align, align, &local_qiov, 0, 0);
1633 if (ret < 0) {
1634 return ret;
1636 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL);
1639 zero_mem:
1640 if (zero_middle) {
1641 memset(pad->buf + pad->head, 0, pad->buf_len - pad->head - pad->tail);
1644 return 0;
1647 static void bdrv_padding_destroy(BdrvRequestPadding *pad)
1649 if (pad->buf) {
1650 qemu_vfree(pad->buf);
1651 qemu_iovec_destroy(&pad->local_qiov);
1656 * bdrv_pad_request
1658 * Exchange request parameters with padded request if needed. Don't include RMW
1659 * read of padding, bdrv_padding_rmw_read() should be called separately if
1660 * needed.
1662 * All parameters except @bs are in-out: they represent original request at
1663 * function call and padded (if padding needed) at function finish.
1665 * Function always succeeds.
1667 static bool bdrv_pad_request(BlockDriverState *bs,
1668 QEMUIOVector **qiov, size_t *qiov_offset,
1669 int64_t *offset, unsigned int *bytes,
1670 BdrvRequestPadding *pad)
1672 if (!bdrv_init_padding(bs, *offset, *bytes, pad)) {
1673 return false;
1676 qemu_iovec_init_extended(&pad->local_qiov, pad->buf, pad->head,
1677 *qiov, *qiov_offset, *bytes,
1678 pad->buf + pad->buf_len - pad->tail, pad->tail);
1679 *bytes += pad->head + pad->tail;
1680 *offset -= pad->head;
1681 *qiov = &pad->local_qiov;
1682 *qiov_offset = 0;
1684 return true;
1687 int coroutine_fn bdrv_co_preadv(BdrvChild *child,
1688 int64_t offset, unsigned int bytes, QEMUIOVector *qiov,
1689 BdrvRequestFlags flags)
1691 return bdrv_co_preadv_part(child, offset, bytes, qiov, 0, flags);
1694 int coroutine_fn bdrv_co_preadv_part(BdrvChild *child,
1695 int64_t offset, unsigned int bytes,
1696 QEMUIOVector *qiov, size_t qiov_offset,
1697 BdrvRequestFlags flags)
1699 BlockDriverState *bs = child->bs;
1700 BdrvTrackedRequest req;
1701 BdrvRequestPadding pad;
1702 int ret;
1704 trace_bdrv_co_preadv(bs, offset, bytes, flags);
1706 ret = bdrv_check_byte_request(bs, offset, bytes);
1707 if (ret < 0) {
1708 return ret;
1711 bdrv_inc_in_flight(bs);
1713 /* Don't do copy-on-read if we read data before write operation */
1714 if (atomic_read(&bs->copy_on_read) && !(flags & BDRV_REQ_NO_SERIALISING)) {
1715 flags |= BDRV_REQ_COPY_ON_READ;
1718 bdrv_pad_request(bs, &qiov, &qiov_offset, &offset, &bytes, &pad);
1720 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_READ);
1721 ret = bdrv_aligned_preadv(child, &req, offset, bytes,
1722 bs->bl.request_alignment,
1723 qiov, qiov_offset, flags);
1724 tracked_request_end(&req);
1725 bdrv_dec_in_flight(bs);
1727 bdrv_padding_destroy(&pad);
1729 return ret;
1732 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs,
1733 int64_t offset, int bytes, BdrvRequestFlags flags)
1735 BlockDriver *drv = bs->drv;
1736 QEMUIOVector qiov;
1737 void *buf = NULL;
1738 int ret = 0;
1739 bool need_flush = false;
1740 int head = 0;
1741 int tail = 0;
1743 int max_write_zeroes = MIN_NON_ZERO(bs->bl.max_pwrite_zeroes, INT_MAX);
1744 int alignment = MAX(bs->bl.pwrite_zeroes_alignment,
1745 bs->bl.request_alignment);
1746 int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer, MAX_BOUNCE_BUFFER);
1748 if (!drv) {
1749 return -ENOMEDIUM;
1752 if ((flags & ~bs->supported_zero_flags) & BDRV_REQ_NO_FALLBACK) {
1753 return -ENOTSUP;
1756 assert(alignment % bs->bl.request_alignment == 0);
1757 head = offset % alignment;
1758 tail = (offset + bytes) % alignment;
1759 max_write_zeroes = QEMU_ALIGN_DOWN(max_write_zeroes, alignment);
1760 assert(max_write_zeroes >= bs->bl.request_alignment);
1762 while (bytes > 0 && !ret) {
1763 int num = bytes;
1765 /* Align request. Block drivers can expect the "bulk" of the request
1766 * to be aligned, and that unaligned requests do not cross cluster
1767 * boundaries.
1769 if (head) {
1770 /* Make a small request up to the first aligned sector. For
1771 * convenience, limit this request to max_transfer even if
1772 * we don't need to fall back to writes. */
1773 num = MIN(MIN(bytes, max_transfer), alignment - head);
1774 head = (head + num) % alignment;
1775 assert(num < max_write_zeroes);
1776 } else if (tail && num > alignment) {
1777 /* Shorten the request to the last aligned sector. */
1778 num -= tail;
1781 /* limit request size */
1782 if (num > max_write_zeroes) {
1783 num = max_write_zeroes;
1786 ret = -ENOTSUP;
1787 /* First try the efficient write zeroes operation */
1788 if (drv->bdrv_co_pwrite_zeroes) {
1789 ret = drv->bdrv_co_pwrite_zeroes(bs, offset, num,
1790 flags & bs->supported_zero_flags);
1791 if (ret != -ENOTSUP && (flags & BDRV_REQ_FUA) &&
1792 !(bs->supported_zero_flags & BDRV_REQ_FUA)) {
1793 need_flush = true;
1795 } else {
1796 assert(!bs->supported_zero_flags);
1799 if (ret == -ENOTSUP && !(flags & BDRV_REQ_NO_FALLBACK)) {
1800 /* Fall back to bounce buffer if write zeroes is unsupported */
1801 BdrvRequestFlags write_flags = flags & ~BDRV_REQ_ZERO_WRITE;
1803 if ((flags & BDRV_REQ_FUA) &&
1804 !(bs->supported_write_flags & BDRV_REQ_FUA)) {
1805 /* No need for bdrv_driver_pwrite() to do a fallback
1806 * flush on each chunk; use just one at the end */
1807 write_flags &= ~BDRV_REQ_FUA;
1808 need_flush = true;
1810 num = MIN(num, max_transfer);
1811 if (buf == NULL) {
1812 buf = qemu_try_blockalign0(bs, num);
1813 if (buf == NULL) {
1814 ret = -ENOMEM;
1815 goto fail;
1818 qemu_iovec_init_buf(&qiov, buf, num);
1820 ret = bdrv_driver_pwritev(bs, offset, num, &qiov, 0, write_flags);
1822 /* Keep bounce buffer around if it is big enough for all
1823 * all future requests.
1825 if (num < max_transfer) {
1826 qemu_vfree(buf);
1827 buf = NULL;
1831 offset += num;
1832 bytes -= num;
1835 fail:
1836 if (ret == 0 && need_flush) {
1837 ret = bdrv_co_flush(bs);
1839 qemu_vfree(buf);
1840 return ret;
1843 static inline int coroutine_fn
1844 bdrv_co_write_req_prepare(BdrvChild *child, int64_t offset, uint64_t bytes,
1845 BdrvTrackedRequest *req, int flags)
1847 BlockDriverState *bs = child->bs;
1848 bool waited;
1849 int64_t end_sector = DIV_ROUND_UP(offset + bytes, BDRV_SECTOR_SIZE);
1851 if (bs->read_only) {
1852 return -EPERM;
1855 /* BDRV_REQ_NO_SERIALISING is only for read operation */
1856 assert(!(flags & BDRV_REQ_NO_SERIALISING));
1857 assert(!(bs->open_flags & BDRV_O_INACTIVE));
1858 assert((bs->open_flags & BDRV_O_NO_IO) == 0);
1859 assert(!(flags & ~BDRV_REQ_MASK));
1861 if (flags & BDRV_REQ_SERIALISING) {
1862 bdrv_mark_request_serialising(req, bdrv_get_cluster_size(bs));
1865 waited = bdrv_wait_serialising_requests(req);
1867 assert(!waited || !req->serialising ||
1868 is_request_serialising_and_aligned(req));
1869 assert(req->overlap_offset <= offset);
1870 assert(offset + bytes <= req->overlap_offset + req->overlap_bytes);
1871 assert(end_sector <= bs->total_sectors || child->perm & BLK_PERM_RESIZE);
1873 switch (req->type) {
1874 case BDRV_TRACKED_WRITE:
1875 case BDRV_TRACKED_DISCARD:
1876 if (flags & BDRV_REQ_WRITE_UNCHANGED) {
1877 assert(child->perm & (BLK_PERM_WRITE_UNCHANGED | BLK_PERM_WRITE));
1878 } else {
1879 assert(child->perm & BLK_PERM_WRITE);
1881 return notifier_with_return_list_notify(&bs->before_write_notifiers,
1882 req);
1883 case BDRV_TRACKED_TRUNCATE:
1884 assert(child->perm & BLK_PERM_RESIZE);
1885 return 0;
1886 default:
1887 abort();
1891 static inline void coroutine_fn
1892 bdrv_co_write_req_finish(BdrvChild *child, int64_t offset, uint64_t bytes,
1893 BdrvTrackedRequest *req, int ret)
1895 int64_t end_sector = DIV_ROUND_UP(offset + bytes, BDRV_SECTOR_SIZE);
1896 BlockDriverState *bs = child->bs;
1898 atomic_inc(&bs->write_gen);
1901 * Discard cannot extend the image, but in error handling cases, such as
1902 * when reverting a qcow2 cluster allocation, the discarded range can pass
1903 * the end of image file, so we cannot assert about BDRV_TRACKED_DISCARD
1904 * here. Instead, just skip it, since semantically a discard request
1905 * beyond EOF cannot expand the image anyway.
1907 if (ret == 0 &&
1908 (req->type == BDRV_TRACKED_TRUNCATE ||
1909 end_sector > bs->total_sectors) &&
1910 req->type != BDRV_TRACKED_DISCARD) {
1911 bs->total_sectors = end_sector;
1912 bdrv_parent_cb_resize(bs);
1913 bdrv_dirty_bitmap_truncate(bs, end_sector << BDRV_SECTOR_BITS);
1915 if (req->bytes) {
1916 switch (req->type) {
1917 case BDRV_TRACKED_WRITE:
1918 stat64_max(&bs->wr_highest_offset, offset + bytes);
1919 /* fall through, to set dirty bits */
1920 case BDRV_TRACKED_DISCARD:
1921 bdrv_set_dirty(bs, offset, bytes);
1922 break;
1923 default:
1924 break;
1930 * Forwards an already correctly aligned write request to the BlockDriver,
1931 * after possibly fragmenting it.
1933 static int coroutine_fn bdrv_aligned_pwritev(BdrvChild *child,
1934 BdrvTrackedRequest *req, int64_t offset, unsigned int bytes,
1935 int64_t align, QEMUIOVector *qiov, size_t qiov_offset, int flags)
1937 BlockDriverState *bs = child->bs;
1938 BlockDriver *drv = bs->drv;
1939 int ret;
1941 uint64_t bytes_remaining = bytes;
1942 int max_transfer;
1944 if (!drv) {
1945 return -ENOMEDIUM;
1948 if (bdrv_has_readonly_bitmaps(bs)) {
1949 return -EPERM;
1952 assert(is_power_of_2(align));
1953 assert((offset & (align - 1)) == 0);
1954 assert((bytes & (align - 1)) == 0);
1955 assert(!qiov || qiov_offset + bytes <= qiov->size);
1956 max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX),
1957 align);
1959 ret = bdrv_co_write_req_prepare(child, offset, bytes, req, flags);
1961 if (!ret && bs->detect_zeroes != BLOCKDEV_DETECT_ZEROES_OPTIONS_OFF &&
1962 !(flags & BDRV_REQ_ZERO_WRITE) && drv->bdrv_co_pwrite_zeroes &&
1963 qemu_iovec_is_zero(qiov, qiov_offset, bytes)) {
1964 flags |= BDRV_REQ_ZERO_WRITE;
1965 if (bs->detect_zeroes == BLOCKDEV_DETECT_ZEROES_OPTIONS_UNMAP) {
1966 flags |= BDRV_REQ_MAY_UNMAP;
1970 if (ret < 0) {
1971 /* Do nothing, write notifier decided to fail this request */
1972 } else if (flags & BDRV_REQ_ZERO_WRITE) {
1973 bdrv_debug_event(bs, BLKDBG_PWRITEV_ZERO);
1974 ret = bdrv_co_do_pwrite_zeroes(bs, offset, bytes, flags);
1975 } else if (flags & BDRV_REQ_WRITE_COMPRESSED) {
1976 ret = bdrv_driver_pwritev_compressed(bs, offset, bytes,
1977 qiov, qiov_offset);
1978 } else if (bytes <= max_transfer) {
1979 bdrv_debug_event(bs, BLKDBG_PWRITEV);
1980 ret = bdrv_driver_pwritev(bs, offset, bytes, qiov, qiov_offset, flags);
1981 } else {
1982 bdrv_debug_event(bs, BLKDBG_PWRITEV);
1983 while (bytes_remaining) {
1984 int num = MIN(bytes_remaining, max_transfer);
1985 int local_flags = flags;
1987 assert(num);
1988 if (num < bytes_remaining && (flags & BDRV_REQ_FUA) &&
1989 !(bs->supported_write_flags & BDRV_REQ_FUA)) {
1990 /* If FUA is going to be emulated by flush, we only
1991 * need to flush on the last iteration */
1992 local_flags &= ~BDRV_REQ_FUA;
1995 ret = bdrv_driver_pwritev(bs, offset + bytes - bytes_remaining,
1996 num, qiov, bytes - bytes_remaining,
1997 local_flags);
1998 if (ret < 0) {
1999 break;
2001 bytes_remaining -= num;
2004 bdrv_debug_event(bs, BLKDBG_PWRITEV_DONE);
2006 if (ret >= 0) {
2007 ret = 0;
2009 bdrv_co_write_req_finish(child, offset, bytes, req, ret);
2011 return ret;
2014 static int coroutine_fn bdrv_co_do_zero_pwritev(BdrvChild *child,
2015 int64_t offset,
2016 unsigned int bytes,
2017 BdrvRequestFlags flags,
2018 BdrvTrackedRequest *req)
2020 BlockDriverState *bs = child->bs;
2021 QEMUIOVector local_qiov;
2022 uint64_t align = bs->bl.request_alignment;
2023 int ret = 0;
2024 bool padding;
2025 BdrvRequestPadding pad;
2027 padding = bdrv_init_padding(bs, offset, bytes, &pad);
2028 if (padding) {
2029 bdrv_mark_request_serialising(req, align);
2030 bdrv_wait_serialising_requests(req);
2032 bdrv_padding_rmw_read(child, req, &pad, true);
2034 if (pad.head || pad.merge_reads) {
2035 int64_t aligned_offset = offset & ~(align - 1);
2036 int64_t write_bytes = pad.merge_reads ? pad.buf_len : align;
2038 qemu_iovec_init_buf(&local_qiov, pad.buf, write_bytes);
2039 ret = bdrv_aligned_pwritev(child, req, aligned_offset, write_bytes,
2040 align, &local_qiov, 0,
2041 flags & ~BDRV_REQ_ZERO_WRITE);
2042 if (ret < 0 || pad.merge_reads) {
2043 /* Error or all work is done */
2044 goto out;
2046 offset += write_bytes - pad.head;
2047 bytes -= write_bytes - pad.head;
2051 assert(!bytes || (offset & (align - 1)) == 0);
2052 if (bytes >= align) {
2053 /* Write the aligned part in the middle. */
2054 uint64_t aligned_bytes = bytes & ~(align - 1);
2055 ret = bdrv_aligned_pwritev(child, req, offset, aligned_bytes, align,
2056 NULL, 0, flags);
2057 if (ret < 0) {
2058 goto out;
2060 bytes -= aligned_bytes;
2061 offset += aligned_bytes;
2064 assert(!bytes || (offset & (align - 1)) == 0);
2065 if (bytes) {
2066 assert(align == pad.tail + bytes);
2068 qemu_iovec_init_buf(&local_qiov, pad.tail_buf, align);
2069 ret = bdrv_aligned_pwritev(child, req, offset, align, align,
2070 &local_qiov, 0,
2071 flags & ~BDRV_REQ_ZERO_WRITE);
2074 out:
2075 bdrv_padding_destroy(&pad);
2077 return ret;
2081 * Handle a write request in coroutine context
2083 int coroutine_fn bdrv_co_pwritev(BdrvChild *child,
2084 int64_t offset, unsigned int bytes, QEMUIOVector *qiov,
2085 BdrvRequestFlags flags)
2087 return bdrv_co_pwritev_part(child, offset, bytes, qiov, 0, flags);
2090 int coroutine_fn bdrv_co_pwritev_part(BdrvChild *child,
2091 int64_t offset, unsigned int bytes, QEMUIOVector *qiov, size_t qiov_offset,
2092 BdrvRequestFlags flags)
2094 BlockDriverState *bs = child->bs;
2095 BdrvTrackedRequest req;
2096 uint64_t align = bs->bl.request_alignment;
2097 BdrvRequestPadding pad;
2098 int ret;
2100 trace_bdrv_co_pwritev(child->bs, offset, bytes, flags);
2102 if (!bs->drv) {
2103 return -ENOMEDIUM;
2106 ret = bdrv_check_byte_request(bs, offset, bytes);
2107 if (ret < 0) {
2108 return ret;
2111 /* If the request is misaligned then we can't make it efficient */
2112 if ((flags & BDRV_REQ_NO_FALLBACK) &&
2113 !QEMU_IS_ALIGNED(offset | bytes, align))
2115 return -ENOTSUP;
2118 bdrv_inc_in_flight(bs);
2120 * Align write if necessary by performing a read-modify-write cycle.
2121 * Pad qiov with the read parts and be sure to have a tracked request not
2122 * only for bdrv_aligned_pwritev, but also for the reads of the RMW cycle.
2124 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_WRITE);
2126 if (flags & BDRV_REQ_ZERO_WRITE) {
2127 ret = bdrv_co_do_zero_pwritev(child, offset, bytes, flags, &req);
2128 goto out;
2131 if (bdrv_pad_request(bs, &qiov, &qiov_offset, &offset, &bytes, &pad)) {
2132 bdrv_mark_request_serialising(&req, align);
2133 bdrv_wait_serialising_requests(&req);
2134 bdrv_padding_rmw_read(child, &req, &pad, false);
2137 ret = bdrv_aligned_pwritev(child, &req, offset, bytes, align,
2138 qiov, qiov_offset, flags);
2140 bdrv_padding_destroy(&pad);
2142 out:
2143 tracked_request_end(&req);
2144 bdrv_dec_in_flight(bs);
2146 return ret;
2149 int coroutine_fn bdrv_co_pwrite_zeroes(BdrvChild *child, int64_t offset,
2150 int bytes, BdrvRequestFlags flags)
2152 trace_bdrv_co_pwrite_zeroes(child->bs, offset, bytes, flags);
2154 if (!(child->bs->open_flags & BDRV_O_UNMAP)) {
2155 flags &= ~BDRV_REQ_MAY_UNMAP;
2158 return bdrv_co_pwritev(child, offset, bytes, NULL,
2159 BDRV_REQ_ZERO_WRITE | flags);
2163 * Flush ALL BDSes regardless of if they are reachable via a BlkBackend or not.
2165 int bdrv_flush_all(void)
2167 BdrvNextIterator it;
2168 BlockDriverState *bs = NULL;
2169 int result = 0;
2172 * bdrv queue is managed by record/replay,
2173 * creating new flush request for stopping
2174 * the VM may break the determinism
2176 if (replay_events_enabled()) {
2177 return result;
2180 for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) {
2181 AioContext *aio_context = bdrv_get_aio_context(bs);
2182 int ret;
2184 aio_context_acquire(aio_context);
2185 ret = bdrv_flush(bs);
2186 if (ret < 0 && !result) {
2187 result = ret;
2189 aio_context_release(aio_context);
2192 return result;
2196 typedef struct BdrvCoBlockStatusData {
2197 BlockDriverState *bs;
2198 BlockDriverState *base;
2199 bool want_zero;
2200 int64_t offset;
2201 int64_t bytes;
2202 int64_t *pnum;
2203 int64_t *map;
2204 BlockDriverState **file;
2205 int ret;
2206 bool done;
2207 } BdrvCoBlockStatusData;
2209 int coroutine_fn bdrv_co_block_status_from_file(BlockDriverState *bs,
2210 bool want_zero,
2211 int64_t offset,
2212 int64_t bytes,
2213 int64_t *pnum,
2214 int64_t *map,
2215 BlockDriverState **file)
2217 assert(bs->file && bs->file->bs);
2218 *pnum = bytes;
2219 *map = offset;
2220 *file = bs->file->bs;
2221 return BDRV_BLOCK_RAW | BDRV_BLOCK_OFFSET_VALID;
2224 int coroutine_fn bdrv_co_block_status_from_backing(BlockDriverState *bs,
2225 bool want_zero,
2226 int64_t offset,
2227 int64_t bytes,
2228 int64_t *pnum,
2229 int64_t *map,
2230 BlockDriverState **file)
2232 assert(bs->backing && bs->backing->bs);
2233 *pnum = bytes;
2234 *map = offset;
2235 *file = bs->backing->bs;
2236 return BDRV_BLOCK_RAW | BDRV_BLOCK_OFFSET_VALID;
2240 * Returns the allocation status of the specified sectors.
2241 * Drivers not implementing the functionality are assumed to not support
2242 * backing files, hence all their sectors are reported as allocated.
2244 * If 'want_zero' is true, the caller is querying for mapping
2245 * purposes, with a focus on valid BDRV_BLOCK_OFFSET_VALID, _DATA, and
2246 * _ZERO where possible; otherwise, the result favors larger 'pnum',
2247 * with a focus on accurate BDRV_BLOCK_ALLOCATED.
2249 * If 'offset' is beyond the end of the disk image the return value is
2250 * BDRV_BLOCK_EOF and 'pnum' is set to 0.
2252 * 'bytes' is the max value 'pnum' should be set to. If bytes goes
2253 * beyond the end of the disk image it will be clamped; if 'pnum' is set to
2254 * the end of the image, then the returned value will include BDRV_BLOCK_EOF.
2256 * 'pnum' is set to the number of bytes (including and immediately
2257 * following the specified offset) that are easily known to be in the
2258 * same allocated/unallocated state. Note that a second call starting
2259 * at the original offset plus returned pnum may have the same status.
2260 * The returned value is non-zero on success except at end-of-file.
2262 * Returns negative errno on failure. Otherwise, if the
2263 * BDRV_BLOCK_OFFSET_VALID bit is set, 'map' and 'file' (if non-NULL) are
2264 * set to the host mapping and BDS corresponding to the guest offset.
2266 static int coroutine_fn bdrv_co_block_status(BlockDriverState *bs,
2267 bool want_zero,
2268 int64_t offset, int64_t bytes,
2269 int64_t *pnum, int64_t *map,
2270 BlockDriverState **file)
2272 int64_t total_size;
2273 int64_t n; /* bytes */
2274 int ret;
2275 int64_t local_map = 0;
2276 BlockDriverState *local_file = NULL;
2277 int64_t aligned_offset, aligned_bytes;
2278 uint32_t align;
2280 assert(pnum);
2281 *pnum = 0;
2282 total_size = bdrv_getlength(bs);
2283 if (total_size < 0) {
2284 ret = total_size;
2285 goto early_out;
2288 if (offset >= total_size) {
2289 ret = BDRV_BLOCK_EOF;
2290 goto early_out;
2292 if (!bytes) {
2293 ret = 0;
2294 goto early_out;
2297 n = total_size - offset;
2298 if (n < bytes) {
2299 bytes = n;
2302 /* Must be non-NULL or bdrv_getlength() would have failed */
2303 assert(bs->drv);
2304 if (!bs->drv->bdrv_co_block_status) {
2305 *pnum = bytes;
2306 ret = BDRV_BLOCK_DATA | BDRV_BLOCK_ALLOCATED;
2307 if (offset + bytes == total_size) {
2308 ret |= BDRV_BLOCK_EOF;
2310 if (bs->drv->protocol_name) {
2311 ret |= BDRV_BLOCK_OFFSET_VALID;
2312 local_map = offset;
2313 local_file = bs;
2315 goto early_out;
2318 bdrv_inc_in_flight(bs);
2320 /* Round out to request_alignment boundaries */
2321 align = bs->bl.request_alignment;
2322 aligned_offset = QEMU_ALIGN_DOWN(offset, align);
2323 aligned_bytes = ROUND_UP(offset + bytes, align) - aligned_offset;
2325 ret = bs->drv->bdrv_co_block_status(bs, want_zero, aligned_offset,
2326 aligned_bytes, pnum, &local_map,
2327 &local_file);
2328 if (ret < 0) {
2329 *pnum = 0;
2330 goto out;
2334 * The driver's result must be a non-zero multiple of request_alignment.
2335 * Clamp pnum and adjust map to original request.
2337 assert(*pnum && QEMU_IS_ALIGNED(*pnum, align) &&
2338 align > offset - aligned_offset);
2339 if (ret & BDRV_BLOCK_RECURSE) {
2340 assert(ret & BDRV_BLOCK_DATA);
2341 assert(ret & BDRV_BLOCK_OFFSET_VALID);
2342 assert(!(ret & BDRV_BLOCK_ZERO));
2345 *pnum -= offset - aligned_offset;
2346 if (*pnum > bytes) {
2347 *pnum = bytes;
2349 if (ret & BDRV_BLOCK_OFFSET_VALID) {
2350 local_map += offset - aligned_offset;
2353 if (ret & BDRV_BLOCK_RAW) {
2354 assert(ret & BDRV_BLOCK_OFFSET_VALID && local_file);
2355 ret = bdrv_co_block_status(local_file, want_zero, local_map,
2356 *pnum, pnum, &local_map, &local_file);
2357 goto out;
2360 if (ret & (BDRV_BLOCK_DATA | BDRV_BLOCK_ZERO)) {
2361 ret |= BDRV_BLOCK_ALLOCATED;
2362 } else if (want_zero) {
2363 if (bdrv_unallocated_blocks_are_zero(bs)) {
2364 ret |= BDRV_BLOCK_ZERO;
2365 } else if (bs->backing) {
2366 BlockDriverState *bs2 = bs->backing->bs;
2367 int64_t size2 = bdrv_getlength(bs2);
2369 if (size2 >= 0 && offset >= size2) {
2370 ret |= BDRV_BLOCK_ZERO;
2375 if (want_zero && ret & BDRV_BLOCK_RECURSE &&
2376 local_file && local_file != bs &&
2377 (ret & BDRV_BLOCK_DATA) && !(ret & BDRV_BLOCK_ZERO) &&
2378 (ret & BDRV_BLOCK_OFFSET_VALID)) {
2379 int64_t file_pnum;
2380 int ret2;
2382 ret2 = bdrv_co_block_status(local_file, want_zero, local_map,
2383 *pnum, &file_pnum, NULL, NULL);
2384 if (ret2 >= 0) {
2385 /* Ignore errors. This is just providing extra information, it
2386 * is useful but not necessary.
2388 if (ret2 & BDRV_BLOCK_EOF &&
2389 (!file_pnum || ret2 & BDRV_BLOCK_ZERO)) {
2391 * It is valid for the format block driver to read
2392 * beyond the end of the underlying file's current
2393 * size; such areas read as zero.
2395 ret |= BDRV_BLOCK_ZERO;
2396 } else {
2397 /* Limit request to the range reported by the protocol driver */
2398 *pnum = file_pnum;
2399 ret |= (ret2 & BDRV_BLOCK_ZERO);
2404 out:
2405 bdrv_dec_in_flight(bs);
2406 if (ret >= 0 && offset + *pnum == total_size) {
2407 ret |= BDRV_BLOCK_EOF;
2409 early_out:
2410 if (file) {
2411 *file = local_file;
2413 if (map) {
2414 *map = local_map;
2416 return ret;
2419 static int coroutine_fn bdrv_co_block_status_above(BlockDriverState *bs,
2420 BlockDriverState *base,
2421 bool want_zero,
2422 int64_t offset,
2423 int64_t bytes,
2424 int64_t *pnum,
2425 int64_t *map,
2426 BlockDriverState **file)
2428 BlockDriverState *p;
2429 int ret = 0;
2430 bool first = true;
2432 assert(bs != base);
2433 for (p = bs; p != base; p = backing_bs(p)) {
2434 ret = bdrv_co_block_status(p, want_zero, offset, bytes, pnum, map,
2435 file);
2436 if (ret < 0) {
2437 break;
2439 if (ret & BDRV_BLOCK_ZERO && ret & BDRV_BLOCK_EOF && !first) {
2441 * Reading beyond the end of the file continues to read
2442 * zeroes, but we can only widen the result to the
2443 * unallocated length we learned from an earlier
2444 * iteration.
2446 *pnum = bytes;
2448 if (ret & (BDRV_BLOCK_ZERO | BDRV_BLOCK_DATA)) {
2449 break;
2451 /* [offset, pnum] unallocated on this layer, which could be only
2452 * the first part of [offset, bytes]. */
2453 bytes = MIN(bytes, *pnum);
2454 first = false;
2456 return ret;
2459 /* Coroutine wrapper for bdrv_block_status_above() */
2460 static void coroutine_fn bdrv_block_status_above_co_entry(void *opaque)
2462 BdrvCoBlockStatusData *data = opaque;
2464 data->ret = bdrv_co_block_status_above(data->bs, data->base,
2465 data->want_zero,
2466 data->offset, data->bytes,
2467 data->pnum, data->map, data->file);
2468 data->done = true;
2469 aio_wait_kick();
2473 * Synchronous wrapper around bdrv_co_block_status_above().
2475 * See bdrv_co_block_status_above() for details.
2477 static int bdrv_common_block_status_above(BlockDriverState *bs,
2478 BlockDriverState *base,
2479 bool want_zero, int64_t offset,
2480 int64_t bytes, int64_t *pnum,
2481 int64_t *map,
2482 BlockDriverState **file)
2484 Coroutine *co;
2485 BdrvCoBlockStatusData data = {
2486 .bs = bs,
2487 .base = base,
2488 .want_zero = want_zero,
2489 .offset = offset,
2490 .bytes = bytes,
2491 .pnum = pnum,
2492 .map = map,
2493 .file = file,
2494 .done = false,
2497 if (qemu_in_coroutine()) {
2498 /* Fast-path if already in coroutine context */
2499 bdrv_block_status_above_co_entry(&data);
2500 } else {
2501 co = qemu_coroutine_create(bdrv_block_status_above_co_entry, &data);
2502 bdrv_coroutine_enter(bs, co);
2503 BDRV_POLL_WHILE(bs, !data.done);
2505 return data.ret;
2508 int bdrv_block_status_above(BlockDriverState *bs, BlockDriverState *base,
2509 int64_t offset, int64_t bytes, int64_t *pnum,
2510 int64_t *map, BlockDriverState **file)
2512 return bdrv_common_block_status_above(bs, base, true, offset, bytes,
2513 pnum, map, file);
2516 int bdrv_block_status(BlockDriverState *bs, int64_t offset, int64_t bytes,
2517 int64_t *pnum, int64_t *map, BlockDriverState **file)
2519 return bdrv_block_status_above(bs, backing_bs(bs),
2520 offset, bytes, pnum, map, file);
2523 int coroutine_fn bdrv_is_allocated(BlockDriverState *bs, int64_t offset,
2524 int64_t bytes, int64_t *pnum)
2526 int ret;
2527 int64_t dummy;
2529 ret = bdrv_common_block_status_above(bs, backing_bs(bs), false, offset,
2530 bytes, pnum ? pnum : &dummy, NULL,
2531 NULL);
2532 if (ret < 0) {
2533 return ret;
2535 return !!(ret & BDRV_BLOCK_ALLOCATED);
2539 * Given an image chain: ... -> [BASE] -> [INTER1] -> [INTER2] -> [TOP]
2541 * Return 1 if (a prefix of) the given range is allocated in any image
2542 * between BASE and TOP (BASE is only included if include_base is set).
2543 * BASE can be NULL to check if the given offset is allocated in any
2544 * image of the chain. Return 0 otherwise, or negative errno on
2545 * failure.
2547 * 'pnum' is set to the number of bytes (including and immediately
2548 * following the specified offset) that are known to be in the same
2549 * allocated/unallocated state. Note that a subsequent call starting
2550 * at 'offset + *pnum' may return the same allocation status (in other
2551 * words, the result is not necessarily the maximum possible range);
2552 * but 'pnum' will only be 0 when end of file is reached.
2555 int bdrv_is_allocated_above(BlockDriverState *top,
2556 BlockDriverState *base,
2557 bool include_base, int64_t offset,
2558 int64_t bytes, int64_t *pnum)
2560 BlockDriverState *intermediate;
2561 int ret;
2562 int64_t n = bytes;
2564 assert(base || !include_base);
2566 intermediate = top;
2567 while (include_base || intermediate != base) {
2568 int64_t pnum_inter;
2569 int64_t size_inter;
2571 assert(intermediate);
2572 ret = bdrv_is_allocated(intermediate, offset, bytes, &pnum_inter);
2573 if (ret < 0) {
2574 return ret;
2576 if (ret) {
2577 *pnum = pnum_inter;
2578 return 1;
2581 size_inter = bdrv_getlength(intermediate);
2582 if (size_inter < 0) {
2583 return size_inter;
2585 if (n > pnum_inter &&
2586 (intermediate == top || offset + pnum_inter < size_inter)) {
2587 n = pnum_inter;
2590 if (intermediate == base) {
2591 break;
2594 intermediate = backing_bs(intermediate);
2597 *pnum = n;
2598 return 0;
2601 typedef struct BdrvVmstateCo {
2602 BlockDriverState *bs;
2603 QEMUIOVector *qiov;
2604 int64_t pos;
2605 bool is_read;
2606 int ret;
2607 } BdrvVmstateCo;
2609 static int coroutine_fn
2610 bdrv_co_rw_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos,
2611 bool is_read)
2613 BlockDriver *drv = bs->drv;
2614 int ret = -ENOTSUP;
2616 bdrv_inc_in_flight(bs);
2618 if (!drv) {
2619 ret = -ENOMEDIUM;
2620 } else if (drv->bdrv_load_vmstate) {
2621 if (is_read) {
2622 ret = drv->bdrv_load_vmstate(bs, qiov, pos);
2623 } else {
2624 ret = drv->bdrv_save_vmstate(bs, qiov, pos);
2626 } else if (bs->file) {
2627 ret = bdrv_co_rw_vmstate(bs->file->bs, qiov, pos, is_read);
2630 bdrv_dec_in_flight(bs);
2631 return ret;
2634 static void coroutine_fn bdrv_co_rw_vmstate_entry(void *opaque)
2636 BdrvVmstateCo *co = opaque;
2637 co->ret = bdrv_co_rw_vmstate(co->bs, co->qiov, co->pos, co->is_read);
2638 aio_wait_kick();
2641 static inline int
2642 bdrv_rw_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos,
2643 bool is_read)
2645 if (qemu_in_coroutine()) {
2646 return bdrv_co_rw_vmstate(bs, qiov, pos, is_read);
2647 } else {
2648 BdrvVmstateCo data = {
2649 .bs = bs,
2650 .qiov = qiov,
2651 .pos = pos,
2652 .is_read = is_read,
2653 .ret = -EINPROGRESS,
2655 Coroutine *co = qemu_coroutine_create(bdrv_co_rw_vmstate_entry, &data);
2657 bdrv_coroutine_enter(bs, co);
2658 BDRV_POLL_WHILE(bs, data.ret == -EINPROGRESS);
2659 return data.ret;
2663 int bdrv_save_vmstate(BlockDriverState *bs, const uint8_t *buf,
2664 int64_t pos, int size)
2666 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, size);
2667 int ret;
2669 ret = bdrv_writev_vmstate(bs, &qiov, pos);
2670 if (ret < 0) {
2671 return ret;
2674 return size;
2677 int bdrv_writev_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos)
2679 return bdrv_rw_vmstate(bs, qiov, pos, false);
2682 int bdrv_load_vmstate(BlockDriverState *bs, uint8_t *buf,
2683 int64_t pos, int size)
2685 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, size);
2686 int ret;
2688 ret = bdrv_readv_vmstate(bs, &qiov, pos);
2689 if (ret < 0) {
2690 return ret;
2693 return size;
2696 int bdrv_readv_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos)
2698 return bdrv_rw_vmstate(bs, qiov, pos, true);
2701 /**************************************************************/
2702 /* async I/Os */
2704 void bdrv_aio_cancel(BlockAIOCB *acb)
2706 qemu_aio_ref(acb);
2707 bdrv_aio_cancel_async(acb);
2708 while (acb->refcnt > 1) {
2709 if (acb->aiocb_info->get_aio_context) {
2710 aio_poll(acb->aiocb_info->get_aio_context(acb), true);
2711 } else if (acb->bs) {
2712 /* qemu_aio_ref and qemu_aio_unref are not thread-safe, so
2713 * assert that we're not using an I/O thread. Thread-safe
2714 * code should use bdrv_aio_cancel_async exclusively.
2716 assert(bdrv_get_aio_context(acb->bs) == qemu_get_aio_context());
2717 aio_poll(bdrv_get_aio_context(acb->bs), true);
2718 } else {
2719 abort();
2722 qemu_aio_unref(acb);
2725 /* Async version of aio cancel. The caller is not blocked if the acb implements
2726 * cancel_async, otherwise we do nothing and let the request normally complete.
2727 * In either case the completion callback must be called. */
2728 void bdrv_aio_cancel_async(BlockAIOCB *acb)
2730 if (acb->aiocb_info->cancel_async) {
2731 acb->aiocb_info->cancel_async(acb);
2735 /**************************************************************/
2736 /* Coroutine block device emulation */
2738 typedef struct FlushCo {
2739 BlockDriverState *bs;
2740 int ret;
2741 } FlushCo;
2744 static void coroutine_fn bdrv_flush_co_entry(void *opaque)
2746 FlushCo *rwco = opaque;
2748 rwco->ret = bdrv_co_flush(rwco->bs);
2749 aio_wait_kick();
2752 int coroutine_fn bdrv_co_flush(BlockDriverState *bs)
2754 int current_gen;
2755 int ret = 0;
2757 bdrv_inc_in_flight(bs);
2759 if (!bdrv_is_inserted(bs) || bdrv_is_read_only(bs) ||
2760 bdrv_is_sg(bs)) {
2761 goto early_exit;
2764 qemu_co_mutex_lock(&bs->reqs_lock);
2765 current_gen = atomic_read(&bs->write_gen);
2767 /* Wait until any previous flushes are completed */
2768 while (bs->active_flush_req) {
2769 qemu_co_queue_wait(&bs->flush_queue, &bs->reqs_lock);
2772 /* Flushes reach this point in nondecreasing current_gen order. */
2773 bs->active_flush_req = true;
2774 qemu_co_mutex_unlock(&bs->reqs_lock);
2776 /* Write back all layers by calling one driver function */
2777 if (bs->drv->bdrv_co_flush) {
2778 ret = bs->drv->bdrv_co_flush(bs);
2779 goto out;
2782 /* Write back cached data to the OS even with cache=unsafe */
2783 BLKDBG_EVENT(bs->file, BLKDBG_FLUSH_TO_OS);
2784 if (bs->drv->bdrv_co_flush_to_os) {
2785 ret = bs->drv->bdrv_co_flush_to_os(bs);
2786 if (ret < 0) {
2787 goto out;
2791 /* But don't actually force it to the disk with cache=unsafe */
2792 if (bs->open_flags & BDRV_O_NO_FLUSH) {
2793 goto flush_parent;
2796 /* Check if we really need to flush anything */
2797 if (bs->flushed_gen == current_gen) {
2798 goto flush_parent;
2801 BLKDBG_EVENT(bs->file, BLKDBG_FLUSH_TO_DISK);
2802 if (!bs->drv) {
2803 /* bs->drv->bdrv_co_flush() might have ejected the BDS
2804 * (even in case of apparent success) */
2805 ret = -ENOMEDIUM;
2806 goto out;
2808 if (bs->drv->bdrv_co_flush_to_disk) {
2809 ret = bs->drv->bdrv_co_flush_to_disk(bs);
2810 } else if (bs->drv->bdrv_aio_flush) {
2811 BlockAIOCB *acb;
2812 CoroutineIOCompletion co = {
2813 .coroutine = qemu_coroutine_self(),
2816 acb = bs->drv->bdrv_aio_flush(bs, bdrv_co_io_em_complete, &co);
2817 if (acb == NULL) {
2818 ret = -EIO;
2819 } else {
2820 qemu_coroutine_yield();
2821 ret = co.ret;
2823 } else {
2825 * Some block drivers always operate in either writethrough or unsafe
2826 * mode and don't support bdrv_flush therefore. Usually qemu doesn't
2827 * know how the server works (because the behaviour is hardcoded or
2828 * depends on server-side configuration), so we can't ensure that
2829 * everything is safe on disk. Returning an error doesn't work because
2830 * that would break guests even if the server operates in writethrough
2831 * mode.
2833 * Let's hope the user knows what he's doing.
2835 ret = 0;
2838 if (ret < 0) {
2839 goto out;
2842 /* Now flush the underlying protocol. It will also have BDRV_O_NO_FLUSH
2843 * in the case of cache=unsafe, so there are no useless flushes.
2845 flush_parent:
2846 ret = bs->file ? bdrv_co_flush(bs->file->bs) : 0;
2847 out:
2848 /* Notify any pending flushes that we have completed */
2849 if (ret == 0) {
2850 bs->flushed_gen = current_gen;
2853 qemu_co_mutex_lock(&bs->reqs_lock);
2854 bs->active_flush_req = false;
2855 /* Return value is ignored - it's ok if wait queue is empty */
2856 qemu_co_queue_next(&bs->flush_queue);
2857 qemu_co_mutex_unlock(&bs->reqs_lock);
2859 early_exit:
2860 bdrv_dec_in_flight(bs);
2861 return ret;
2864 int bdrv_flush(BlockDriverState *bs)
2866 Coroutine *co;
2867 FlushCo flush_co = {
2868 .bs = bs,
2869 .ret = NOT_DONE,
2872 if (qemu_in_coroutine()) {
2873 /* Fast-path if already in coroutine context */
2874 bdrv_flush_co_entry(&flush_co);
2875 } else {
2876 co = qemu_coroutine_create(bdrv_flush_co_entry, &flush_co);
2877 bdrv_coroutine_enter(bs, co);
2878 BDRV_POLL_WHILE(bs, flush_co.ret == NOT_DONE);
2881 return flush_co.ret;
2884 typedef struct DiscardCo {
2885 BdrvChild *child;
2886 int64_t offset;
2887 int64_t bytes;
2888 int ret;
2889 } DiscardCo;
2890 static void coroutine_fn bdrv_pdiscard_co_entry(void *opaque)
2892 DiscardCo *rwco = opaque;
2894 rwco->ret = bdrv_co_pdiscard(rwco->child, rwco->offset, rwco->bytes);
2895 aio_wait_kick();
2898 int coroutine_fn bdrv_co_pdiscard(BdrvChild *child, int64_t offset,
2899 int64_t bytes)
2901 BdrvTrackedRequest req;
2902 int max_pdiscard, ret;
2903 int head, tail, align;
2904 BlockDriverState *bs = child->bs;
2906 if (!bs || !bs->drv || !bdrv_is_inserted(bs)) {
2907 return -ENOMEDIUM;
2910 if (bdrv_has_readonly_bitmaps(bs)) {
2911 return -EPERM;
2914 if (offset < 0 || bytes < 0 || bytes > INT64_MAX - offset) {
2915 return -EIO;
2918 /* Do nothing if disabled. */
2919 if (!(bs->open_flags & BDRV_O_UNMAP)) {
2920 return 0;
2923 if (!bs->drv->bdrv_co_pdiscard && !bs->drv->bdrv_aio_pdiscard) {
2924 return 0;
2927 /* Discard is advisory, but some devices track and coalesce
2928 * unaligned requests, so we must pass everything down rather than
2929 * round here. Still, most devices will just silently ignore
2930 * unaligned requests (by returning -ENOTSUP), so we must fragment
2931 * the request accordingly. */
2932 align = MAX(bs->bl.pdiscard_alignment, bs->bl.request_alignment);
2933 assert(align % bs->bl.request_alignment == 0);
2934 head = offset % align;
2935 tail = (offset + bytes) % align;
2937 bdrv_inc_in_flight(bs);
2938 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_DISCARD);
2940 ret = bdrv_co_write_req_prepare(child, offset, bytes, &req, 0);
2941 if (ret < 0) {
2942 goto out;
2945 max_pdiscard = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_pdiscard, INT_MAX),
2946 align);
2947 assert(max_pdiscard >= bs->bl.request_alignment);
2949 while (bytes > 0) {
2950 int64_t num = bytes;
2952 if (head) {
2953 /* Make small requests to get to alignment boundaries. */
2954 num = MIN(bytes, align - head);
2955 if (!QEMU_IS_ALIGNED(num, bs->bl.request_alignment)) {
2956 num %= bs->bl.request_alignment;
2958 head = (head + num) % align;
2959 assert(num < max_pdiscard);
2960 } else if (tail) {
2961 if (num > align) {
2962 /* Shorten the request to the last aligned cluster. */
2963 num -= tail;
2964 } else if (!QEMU_IS_ALIGNED(tail, bs->bl.request_alignment) &&
2965 tail > bs->bl.request_alignment) {
2966 tail %= bs->bl.request_alignment;
2967 num -= tail;
2970 /* limit request size */
2971 if (num > max_pdiscard) {
2972 num = max_pdiscard;
2975 if (!bs->drv) {
2976 ret = -ENOMEDIUM;
2977 goto out;
2979 if (bs->drv->bdrv_co_pdiscard) {
2980 ret = bs->drv->bdrv_co_pdiscard(bs, offset, num);
2981 } else {
2982 BlockAIOCB *acb;
2983 CoroutineIOCompletion co = {
2984 .coroutine = qemu_coroutine_self(),
2987 acb = bs->drv->bdrv_aio_pdiscard(bs, offset, num,
2988 bdrv_co_io_em_complete, &co);
2989 if (acb == NULL) {
2990 ret = -EIO;
2991 goto out;
2992 } else {
2993 qemu_coroutine_yield();
2994 ret = co.ret;
2997 if (ret && ret != -ENOTSUP) {
2998 goto out;
3001 offset += num;
3002 bytes -= num;
3004 ret = 0;
3005 out:
3006 bdrv_co_write_req_finish(child, req.offset, req.bytes, &req, ret);
3007 tracked_request_end(&req);
3008 bdrv_dec_in_flight(bs);
3009 return ret;
3012 int bdrv_pdiscard(BdrvChild *child, int64_t offset, int64_t bytes)
3014 Coroutine *co;
3015 DiscardCo rwco = {
3016 .child = child,
3017 .offset = offset,
3018 .bytes = bytes,
3019 .ret = NOT_DONE,
3022 if (qemu_in_coroutine()) {
3023 /* Fast-path if already in coroutine context */
3024 bdrv_pdiscard_co_entry(&rwco);
3025 } else {
3026 co = qemu_coroutine_create(bdrv_pdiscard_co_entry, &rwco);
3027 bdrv_coroutine_enter(child->bs, co);
3028 BDRV_POLL_WHILE(child->bs, rwco.ret == NOT_DONE);
3031 return rwco.ret;
3034 int bdrv_co_ioctl(BlockDriverState *bs, int req, void *buf)
3036 BlockDriver *drv = bs->drv;
3037 CoroutineIOCompletion co = {
3038 .coroutine = qemu_coroutine_self(),
3040 BlockAIOCB *acb;
3042 bdrv_inc_in_flight(bs);
3043 if (!drv || (!drv->bdrv_aio_ioctl && !drv->bdrv_co_ioctl)) {
3044 co.ret = -ENOTSUP;
3045 goto out;
3048 if (drv->bdrv_co_ioctl) {
3049 co.ret = drv->bdrv_co_ioctl(bs, req, buf);
3050 } else {
3051 acb = drv->bdrv_aio_ioctl(bs, req, buf, bdrv_co_io_em_complete, &co);
3052 if (!acb) {
3053 co.ret = -ENOTSUP;
3054 goto out;
3056 qemu_coroutine_yield();
3058 out:
3059 bdrv_dec_in_flight(bs);
3060 return co.ret;
3063 void *qemu_blockalign(BlockDriverState *bs, size_t size)
3065 return qemu_memalign(bdrv_opt_mem_align(bs), size);
3068 void *qemu_blockalign0(BlockDriverState *bs, size_t size)
3070 return memset(qemu_blockalign(bs, size), 0, size);
3073 void *qemu_try_blockalign(BlockDriverState *bs, size_t size)
3075 size_t align = bdrv_opt_mem_align(bs);
3077 /* Ensure that NULL is never returned on success */
3078 assert(align > 0);
3079 if (size == 0) {
3080 size = align;
3083 return qemu_try_memalign(align, size);
3086 void *qemu_try_blockalign0(BlockDriverState *bs, size_t size)
3088 void *mem = qemu_try_blockalign(bs, size);
3090 if (mem) {
3091 memset(mem, 0, size);
3094 return mem;
3098 * Check if all memory in this vector is sector aligned.
3100 bool bdrv_qiov_is_aligned(BlockDriverState *bs, QEMUIOVector *qiov)
3102 int i;
3103 size_t alignment = bdrv_min_mem_align(bs);
3105 for (i = 0; i < qiov->niov; i++) {
3106 if ((uintptr_t) qiov->iov[i].iov_base % alignment) {
3107 return false;
3109 if (qiov->iov[i].iov_len % alignment) {
3110 return false;
3114 return true;
3117 void bdrv_add_before_write_notifier(BlockDriverState *bs,
3118 NotifierWithReturn *notifier)
3120 notifier_with_return_list_add(&bs->before_write_notifiers, notifier);
3123 void bdrv_io_plug(BlockDriverState *bs)
3125 BdrvChild *child;
3127 QLIST_FOREACH(child, &bs->children, next) {
3128 bdrv_io_plug(child->bs);
3131 if (atomic_fetch_inc(&bs->io_plugged) == 0) {
3132 BlockDriver *drv = bs->drv;
3133 if (drv && drv->bdrv_io_plug) {
3134 drv->bdrv_io_plug(bs);
3139 void bdrv_io_unplug(BlockDriverState *bs)
3141 BdrvChild *child;
3143 assert(bs->io_plugged);
3144 if (atomic_fetch_dec(&bs->io_plugged) == 1) {
3145 BlockDriver *drv = bs->drv;
3146 if (drv && drv->bdrv_io_unplug) {
3147 drv->bdrv_io_unplug(bs);
3151 QLIST_FOREACH(child, &bs->children, next) {
3152 bdrv_io_unplug(child->bs);
3156 void bdrv_register_buf(BlockDriverState *bs, void *host, size_t size)
3158 BdrvChild *child;
3160 if (bs->drv && bs->drv->bdrv_register_buf) {
3161 bs->drv->bdrv_register_buf(bs, host, size);
3163 QLIST_FOREACH(child, &bs->children, next) {
3164 bdrv_register_buf(child->bs, host, size);
3168 void bdrv_unregister_buf(BlockDriverState *bs, void *host)
3170 BdrvChild *child;
3172 if (bs->drv && bs->drv->bdrv_unregister_buf) {
3173 bs->drv->bdrv_unregister_buf(bs, host);
3175 QLIST_FOREACH(child, &bs->children, next) {
3176 bdrv_unregister_buf(child->bs, host);
3180 static int coroutine_fn bdrv_co_copy_range_internal(
3181 BdrvChild *src, uint64_t src_offset, BdrvChild *dst,
3182 uint64_t dst_offset, uint64_t bytes,
3183 BdrvRequestFlags read_flags, BdrvRequestFlags write_flags,
3184 bool recurse_src)
3186 BdrvTrackedRequest req;
3187 int ret;
3189 /* TODO We can support BDRV_REQ_NO_FALLBACK here */
3190 assert(!(read_flags & BDRV_REQ_NO_FALLBACK));
3191 assert(!(write_flags & BDRV_REQ_NO_FALLBACK));
3193 if (!dst || !dst->bs) {
3194 return -ENOMEDIUM;
3196 ret = bdrv_check_byte_request(dst->bs, dst_offset, bytes);
3197 if (ret) {
3198 return ret;
3200 if (write_flags & BDRV_REQ_ZERO_WRITE) {
3201 return bdrv_co_pwrite_zeroes(dst, dst_offset, bytes, write_flags);
3204 if (!src || !src->bs) {
3205 return -ENOMEDIUM;
3207 ret = bdrv_check_byte_request(src->bs, src_offset, bytes);
3208 if (ret) {
3209 return ret;
3212 if (!src->bs->drv->bdrv_co_copy_range_from
3213 || !dst->bs->drv->bdrv_co_copy_range_to
3214 || src->bs->encrypted || dst->bs->encrypted) {
3215 return -ENOTSUP;
3218 if (recurse_src) {
3219 bdrv_inc_in_flight(src->bs);
3220 tracked_request_begin(&req, src->bs, src_offset, bytes,
3221 BDRV_TRACKED_READ);
3223 /* BDRV_REQ_SERIALISING is only for write operation */
3224 assert(!(read_flags & BDRV_REQ_SERIALISING));
3225 if (!(read_flags & BDRV_REQ_NO_SERIALISING)) {
3226 bdrv_wait_serialising_requests(&req);
3229 ret = src->bs->drv->bdrv_co_copy_range_from(src->bs,
3230 src, src_offset,
3231 dst, dst_offset,
3232 bytes,
3233 read_flags, write_flags);
3235 tracked_request_end(&req);
3236 bdrv_dec_in_flight(src->bs);
3237 } else {
3238 bdrv_inc_in_flight(dst->bs);
3239 tracked_request_begin(&req, dst->bs, dst_offset, bytes,
3240 BDRV_TRACKED_WRITE);
3241 ret = bdrv_co_write_req_prepare(dst, dst_offset, bytes, &req,
3242 write_flags);
3243 if (!ret) {
3244 ret = dst->bs->drv->bdrv_co_copy_range_to(dst->bs,
3245 src, src_offset,
3246 dst, dst_offset,
3247 bytes,
3248 read_flags, write_flags);
3250 bdrv_co_write_req_finish(dst, dst_offset, bytes, &req, ret);
3251 tracked_request_end(&req);
3252 bdrv_dec_in_flight(dst->bs);
3255 return ret;
3258 /* Copy range from @src to @dst.
3260 * See the comment of bdrv_co_copy_range for the parameter and return value
3261 * semantics. */
3262 int coroutine_fn bdrv_co_copy_range_from(BdrvChild *src, uint64_t src_offset,
3263 BdrvChild *dst, uint64_t dst_offset,
3264 uint64_t bytes,
3265 BdrvRequestFlags read_flags,
3266 BdrvRequestFlags write_flags)
3268 trace_bdrv_co_copy_range_from(src, src_offset, dst, dst_offset, bytes,
3269 read_flags, write_flags);
3270 return bdrv_co_copy_range_internal(src, src_offset, dst, dst_offset,
3271 bytes, read_flags, write_flags, true);
3274 /* Copy range from @src to @dst.
3276 * See the comment of bdrv_co_copy_range for the parameter and return value
3277 * semantics. */
3278 int coroutine_fn bdrv_co_copy_range_to(BdrvChild *src, uint64_t src_offset,
3279 BdrvChild *dst, uint64_t dst_offset,
3280 uint64_t bytes,
3281 BdrvRequestFlags read_flags,
3282 BdrvRequestFlags write_flags)
3284 trace_bdrv_co_copy_range_to(src, src_offset, dst, dst_offset, bytes,
3285 read_flags, write_flags);
3286 return bdrv_co_copy_range_internal(src, src_offset, dst, dst_offset,
3287 bytes, read_flags, write_flags, false);
3290 int coroutine_fn bdrv_co_copy_range(BdrvChild *src, uint64_t src_offset,
3291 BdrvChild *dst, uint64_t dst_offset,
3292 uint64_t bytes, BdrvRequestFlags read_flags,
3293 BdrvRequestFlags write_flags)
3295 return bdrv_co_copy_range_from(src, src_offset,
3296 dst, dst_offset,
3297 bytes, read_flags, write_flags);
3300 static void bdrv_parent_cb_resize(BlockDriverState *bs)
3302 BdrvChild *c;
3303 QLIST_FOREACH(c, &bs->parents, next_parent) {
3304 if (c->role->resize) {
3305 c->role->resize(c);
3311 * Truncate file to 'offset' bytes (needed only for file protocols)
3313 * If 'exact' is true, the file must be resized to exactly the given
3314 * 'offset'. Otherwise, it is sufficient for the node to be at least
3315 * 'offset' bytes in length.
3317 int coroutine_fn bdrv_co_truncate(BdrvChild *child, int64_t offset, bool exact,
3318 PreallocMode prealloc, Error **errp)
3320 BlockDriverState *bs = child->bs;
3321 BlockDriver *drv = bs->drv;
3322 BdrvTrackedRequest req;
3323 int64_t old_size, new_bytes;
3324 int ret;
3327 /* if bs->drv == NULL, bs is closed, so there's nothing to do here */
3328 if (!drv) {
3329 error_setg(errp, "No medium inserted");
3330 return -ENOMEDIUM;
3332 if (offset < 0) {
3333 error_setg(errp, "Image size cannot be negative");
3334 return -EINVAL;
3337 old_size = bdrv_getlength(bs);
3338 if (old_size < 0) {
3339 error_setg_errno(errp, -old_size, "Failed to get old image size");
3340 return old_size;
3343 if (offset > old_size) {
3344 new_bytes = offset - old_size;
3345 } else {
3346 new_bytes = 0;
3349 bdrv_inc_in_flight(bs);
3350 tracked_request_begin(&req, bs, offset - new_bytes, new_bytes,
3351 BDRV_TRACKED_TRUNCATE);
3353 /* If we are growing the image and potentially using preallocation for the
3354 * new area, we need to make sure that no write requests are made to it
3355 * concurrently or they might be overwritten by preallocation. */
3356 if (new_bytes) {
3357 bdrv_mark_request_serialising(&req, 1);
3359 if (bs->read_only) {
3360 error_setg(errp, "Image is read-only");
3361 ret = -EACCES;
3362 goto out;
3364 ret = bdrv_co_write_req_prepare(child, offset - new_bytes, new_bytes, &req,
3366 if (ret < 0) {
3367 error_setg_errno(errp, -ret,
3368 "Failed to prepare request for truncation");
3369 goto out;
3372 if (drv->bdrv_co_truncate) {
3373 ret = drv->bdrv_co_truncate(bs, offset, exact, prealloc, errp);
3374 } else if (bs->file && drv->is_filter) {
3375 ret = bdrv_co_truncate(bs->file, offset, exact, prealloc, errp);
3376 } else {
3377 error_setg(errp, "Image format driver does not support resize");
3378 ret = -ENOTSUP;
3379 goto out;
3381 if (ret < 0) {
3382 goto out;
3385 ret = refresh_total_sectors(bs, offset >> BDRV_SECTOR_BITS);
3386 if (ret < 0) {
3387 error_setg_errno(errp, -ret, "Could not refresh total sector count");
3388 } else {
3389 offset = bs->total_sectors * BDRV_SECTOR_SIZE;
3391 /* It's possible that truncation succeeded but refresh_total_sectors
3392 * failed, but the latter doesn't affect how we should finish the request.
3393 * Pass 0 as the last parameter so that dirty bitmaps etc. are handled. */
3394 bdrv_co_write_req_finish(child, offset - new_bytes, new_bytes, &req, 0);
3396 out:
3397 tracked_request_end(&req);
3398 bdrv_dec_in_flight(bs);
3400 return ret;
3403 typedef struct TruncateCo {
3404 BdrvChild *child;
3405 int64_t offset;
3406 bool exact;
3407 PreallocMode prealloc;
3408 Error **errp;
3409 int ret;
3410 } TruncateCo;
3412 static void coroutine_fn bdrv_truncate_co_entry(void *opaque)
3414 TruncateCo *tco = opaque;
3415 tco->ret = bdrv_co_truncate(tco->child, tco->offset, tco->exact,
3416 tco->prealloc, tco->errp);
3417 aio_wait_kick();
3420 int bdrv_truncate(BdrvChild *child, int64_t offset, bool exact,
3421 PreallocMode prealloc, Error **errp)
3423 Coroutine *co;
3424 TruncateCo tco = {
3425 .child = child,
3426 .offset = offset,
3427 .exact = exact,
3428 .prealloc = prealloc,
3429 .errp = errp,
3430 .ret = NOT_DONE,
3433 if (qemu_in_coroutine()) {
3434 /* Fast-path if already in coroutine context */
3435 bdrv_truncate_co_entry(&tco);
3436 } else {
3437 co = qemu_coroutine_create(bdrv_truncate_co_entry, &tco);
3438 bdrv_coroutine_enter(child->bs, co);
3439 BDRV_POLL_WHILE(child->bs, tco.ret == NOT_DONE);
3442 return tco.ret;