hw/timer/sse-timer: Model the SSE Subsystem System Timer
[qemu/ar7.git] / hw / arm / virt.c
blob371147f3ae9c2ea62a58aa5cca63e2734d1c3e7f
1 /*
2 * ARM mach-virt emulation
4 * Copyright (c) 2013 Linaro Limited
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2 or later, as published by the Free Software Foundation.
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
15 * You should have received a copy of the GNU General Public License along with
16 * this program. If not, see <http://www.gnu.org/licenses/>.
18 * Emulate a virtual board which works by passing Linux all the information
19 * it needs about what devices are present via the device tree.
20 * There are some restrictions about what we can do here:
21 * + we can only present devices whose Linux drivers will work based
22 * purely on the device tree with no platform data at all
23 * + we want to present a very stripped-down minimalist platform,
24 * both because this reduces the security attack surface from the guest
25 * and also because it reduces our exposure to being broken when
26 * the kernel updates its device tree bindings and requires further
27 * information in a device binding that we aren't providing.
28 * This is essentially the same approach kvmtool uses.
31 #include "qemu/osdep.h"
32 #include "qemu-common.h"
33 #include "qemu/datadir.h"
34 #include "qemu/units.h"
35 #include "qemu/option.h"
36 #include "monitor/qdev.h"
37 #include "qapi/error.h"
38 #include "hw/sysbus.h"
39 #include "hw/boards.h"
40 #include "hw/arm/boot.h"
41 #include "hw/arm/primecell.h"
42 #include "hw/arm/virt.h"
43 #include "hw/block/flash.h"
44 #include "hw/vfio/vfio-calxeda-xgmac.h"
45 #include "hw/vfio/vfio-amd-xgbe.h"
46 #include "hw/display/ramfb.h"
47 #include "net/net.h"
48 #include "sysemu/device_tree.h"
49 #include "sysemu/numa.h"
50 #include "sysemu/runstate.h"
51 #include "sysemu/sysemu.h"
52 #include "sysemu/tpm.h"
53 #include "sysemu/kvm.h"
54 #include "hw/loader.h"
55 #include "exec/address-spaces.h"
56 #include "qemu/bitops.h"
57 #include "qemu/error-report.h"
58 #include "qemu/module.h"
59 #include "hw/pci-host/gpex.h"
60 #include "hw/virtio/virtio-pci.h"
61 #include "hw/arm/sysbus-fdt.h"
62 #include "hw/platform-bus.h"
63 #include "hw/qdev-properties.h"
64 #include "hw/arm/fdt.h"
65 #include "hw/intc/arm_gic.h"
66 #include "hw/intc/arm_gicv3_common.h"
67 #include "hw/irq.h"
68 #include "kvm_arm.h"
69 #include "hw/firmware/smbios.h"
70 #include "qapi/visitor.h"
71 #include "qapi/qapi-visit-common.h"
72 #include "standard-headers/linux/input.h"
73 #include "hw/arm/smmuv3.h"
74 #include "hw/acpi/acpi.h"
75 #include "target/arm/internals.h"
76 #include "hw/mem/pc-dimm.h"
77 #include "hw/mem/nvdimm.h"
78 #include "hw/acpi/generic_event_device.h"
79 #include "hw/virtio/virtio-iommu.h"
80 #include "hw/char/pl011.h"
81 #include "qemu/guest-random.h"
83 #define DEFINE_VIRT_MACHINE_LATEST(major, minor, latest) \
84 static void virt_##major##_##minor##_class_init(ObjectClass *oc, \
85 void *data) \
86 { \
87 MachineClass *mc = MACHINE_CLASS(oc); \
88 virt_machine_##major##_##minor##_options(mc); \
89 mc->desc = "QEMU " # major "." # minor " ARM Virtual Machine"; \
90 if (latest) { \
91 mc->alias = "virt"; \
92 } \
93 } \
94 static const TypeInfo machvirt_##major##_##minor##_info = { \
95 .name = MACHINE_TYPE_NAME("virt-" # major "." # minor), \
96 .parent = TYPE_VIRT_MACHINE, \
97 .class_init = virt_##major##_##minor##_class_init, \
98 }; \
99 static void machvirt_machine_##major##_##minor##_init(void) \
101 type_register_static(&machvirt_##major##_##minor##_info); \
103 type_init(machvirt_machine_##major##_##minor##_init);
105 #define DEFINE_VIRT_MACHINE_AS_LATEST(major, minor) \
106 DEFINE_VIRT_MACHINE_LATEST(major, minor, true)
107 #define DEFINE_VIRT_MACHINE(major, minor) \
108 DEFINE_VIRT_MACHINE_LATEST(major, minor, false)
111 /* Number of external interrupt lines to configure the GIC with */
112 #define NUM_IRQS 256
114 #define PLATFORM_BUS_NUM_IRQS 64
116 /* Legacy RAM limit in GB (< version 4.0) */
117 #define LEGACY_RAMLIMIT_GB 255
118 #define LEGACY_RAMLIMIT_BYTES (LEGACY_RAMLIMIT_GB * GiB)
120 /* Addresses and sizes of our components.
121 * 0..128MB is space for a flash device so we can run bootrom code such as UEFI.
122 * 128MB..256MB is used for miscellaneous device I/O.
123 * 256MB..1GB is reserved for possible future PCI support (ie where the
124 * PCI memory window will go if we add a PCI host controller).
125 * 1GB and up is RAM (which may happily spill over into the
126 * high memory region beyond 4GB).
127 * This represents a compromise between how much RAM can be given to
128 * a 32 bit VM and leaving space for expansion and in particular for PCI.
129 * Note that devices should generally be placed at multiples of 0x10000,
130 * to accommodate guests using 64K pages.
132 static const MemMapEntry base_memmap[] = {
133 /* Space up to 0x8000000 is reserved for a boot ROM */
134 [VIRT_FLASH] = { 0, 0x08000000 },
135 [VIRT_CPUPERIPHS] = { 0x08000000, 0x00020000 },
136 /* GIC distributor and CPU interfaces sit inside the CPU peripheral space */
137 [VIRT_GIC_DIST] = { 0x08000000, 0x00010000 },
138 [VIRT_GIC_CPU] = { 0x08010000, 0x00010000 },
139 [VIRT_GIC_V2M] = { 0x08020000, 0x00001000 },
140 [VIRT_GIC_HYP] = { 0x08030000, 0x00010000 },
141 [VIRT_GIC_VCPU] = { 0x08040000, 0x00010000 },
142 /* The space in between here is reserved for GICv3 CPU/vCPU/HYP */
143 [VIRT_GIC_ITS] = { 0x08080000, 0x00020000 },
144 /* This redistributor space allows up to 2*64kB*123 CPUs */
145 [VIRT_GIC_REDIST] = { 0x080A0000, 0x00F60000 },
146 [VIRT_UART] = { 0x09000000, 0x00001000 },
147 [VIRT_RTC] = { 0x09010000, 0x00001000 },
148 [VIRT_FW_CFG] = { 0x09020000, 0x00000018 },
149 [VIRT_GPIO] = { 0x09030000, 0x00001000 },
150 [VIRT_SECURE_UART] = { 0x09040000, 0x00001000 },
151 [VIRT_SMMU] = { 0x09050000, 0x00020000 },
152 [VIRT_PCDIMM_ACPI] = { 0x09070000, MEMORY_HOTPLUG_IO_LEN },
153 [VIRT_ACPI_GED] = { 0x09080000, ACPI_GED_EVT_SEL_LEN },
154 [VIRT_NVDIMM_ACPI] = { 0x09090000, NVDIMM_ACPI_IO_LEN},
155 [VIRT_PVTIME] = { 0x090a0000, 0x00010000 },
156 [VIRT_SECURE_GPIO] = { 0x090b0000, 0x00001000 },
157 [VIRT_MMIO] = { 0x0a000000, 0x00000200 },
158 /* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */
159 [VIRT_PLATFORM_BUS] = { 0x0c000000, 0x02000000 },
160 [VIRT_SECURE_MEM] = { 0x0e000000, 0x01000000 },
161 [VIRT_PCIE_MMIO] = { 0x10000000, 0x2eff0000 },
162 [VIRT_PCIE_PIO] = { 0x3eff0000, 0x00010000 },
163 [VIRT_PCIE_ECAM] = { 0x3f000000, 0x01000000 },
164 /* Actual RAM size depends on initial RAM and device memory settings */
165 [VIRT_MEM] = { GiB, LEGACY_RAMLIMIT_BYTES },
169 * Highmem IO Regions: This memory map is floating, located after the RAM.
170 * Each MemMapEntry base (GPA) will be dynamically computed, depending on the
171 * top of the RAM, so that its base get the same alignment as the size,
172 * ie. a 512GiB entry will be aligned on a 512GiB boundary. If there is
173 * less than 256GiB of RAM, the floating area starts at the 256GiB mark.
174 * Note the extended_memmap is sized so that it eventually also includes the
175 * base_memmap entries (VIRT_HIGH_GIC_REDIST2 index is greater than the last
176 * index of base_memmap).
178 static MemMapEntry extended_memmap[] = {
179 /* Additional 64 MB redist region (can contain up to 512 redistributors) */
180 [VIRT_HIGH_GIC_REDIST2] = { 0x0, 64 * MiB },
181 [VIRT_HIGH_PCIE_ECAM] = { 0x0, 256 * MiB },
182 /* Second PCIe window */
183 [VIRT_HIGH_PCIE_MMIO] = { 0x0, 512 * GiB },
186 static const int a15irqmap[] = {
187 [VIRT_UART] = 1,
188 [VIRT_RTC] = 2,
189 [VIRT_PCIE] = 3, /* ... to 6 */
190 [VIRT_GPIO] = 7,
191 [VIRT_SECURE_UART] = 8,
192 [VIRT_ACPI_GED] = 9,
193 [VIRT_MMIO] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */
194 [VIRT_GIC_V2M] = 48, /* ...to 48 + NUM_GICV2M_SPIS - 1 */
195 [VIRT_SMMU] = 74, /* ...to 74 + NUM_SMMU_IRQS - 1 */
196 [VIRT_PLATFORM_BUS] = 112, /* ...to 112 + PLATFORM_BUS_NUM_IRQS -1 */
199 static const char *valid_cpus[] = {
200 ARM_CPU_TYPE_NAME("cortex-a7"),
201 ARM_CPU_TYPE_NAME("cortex-a15"),
202 ARM_CPU_TYPE_NAME("cortex-a53"),
203 ARM_CPU_TYPE_NAME("cortex-a57"),
204 ARM_CPU_TYPE_NAME("cortex-a72"),
205 ARM_CPU_TYPE_NAME("host"),
206 ARM_CPU_TYPE_NAME("max"),
209 static bool cpu_type_valid(const char *cpu)
211 int i;
213 for (i = 0; i < ARRAY_SIZE(valid_cpus); i++) {
214 if (strcmp(cpu, valid_cpus[i]) == 0) {
215 return true;
218 return false;
221 static void create_kaslr_seed(VirtMachineState *vms, const char *node)
223 uint64_t seed;
225 if (qemu_guest_getrandom(&seed, sizeof(seed), NULL)) {
226 return;
228 qemu_fdt_setprop_u64(vms->fdt, node, "kaslr-seed", seed);
231 static void create_fdt(VirtMachineState *vms)
233 MachineState *ms = MACHINE(vms);
234 int nb_numa_nodes = ms->numa_state->num_nodes;
235 void *fdt = create_device_tree(&vms->fdt_size);
237 if (!fdt) {
238 error_report("create_device_tree() failed");
239 exit(1);
242 vms->fdt = fdt;
244 /* Header */
245 qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,dummy-virt");
246 qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2);
247 qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2);
249 /* /chosen must exist for load_dtb to fill in necessary properties later */
250 qemu_fdt_add_subnode(fdt, "/chosen");
251 create_kaslr_seed(vms, "/chosen");
253 if (vms->secure) {
254 qemu_fdt_add_subnode(fdt, "/secure-chosen");
255 create_kaslr_seed(vms, "/secure-chosen");
258 /* Clock node, for the benefit of the UART. The kernel device tree
259 * binding documentation claims the PL011 node clock properties are
260 * optional but in practice if you omit them the kernel refuses to
261 * probe for the device.
263 vms->clock_phandle = qemu_fdt_alloc_phandle(fdt);
264 qemu_fdt_add_subnode(fdt, "/apb-pclk");
265 qemu_fdt_setprop_string(fdt, "/apb-pclk", "compatible", "fixed-clock");
266 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "#clock-cells", 0x0);
267 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "clock-frequency", 24000000);
268 qemu_fdt_setprop_string(fdt, "/apb-pclk", "clock-output-names",
269 "clk24mhz");
270 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "phandle", vms->clock_phandle);
272 if (nb_numa_nodes > 0 && ms->numa_state->have_numa_distance) {
273 int size = nb_numa_nodes * nb_numa_nodes * 3 * sizeof(uint32_t);
274 uint32_t *matrix = g_malloc0(size);
275 int idx, i, j;
277 for (i = 0; i < nb_numa_nodes; i++) {
278 for (j = 0; j < nb_numa_nodes; j++) {
279 idx = (i * nb_numa_nodes + j) * 3;
280 matrix[idx + 0] = cpu_to_be32(i);
281 matrix[idx + 1] = cpu_to_be32(j);
282 matrix[idx + 2] =
283 cpu_to_be32(ms->numa_state->nodes[i].distance[j]);
287 qemu_fdt_add_subnode(fdt, "/distance-map");
288 qemu_fdt_setprop_string(fdt, "/distance-map", "compatible",
289 "numa-distance-map-v1");
290 qemu_fdt_setprop(fdt, "/distance-map", "distance-matrix",
291 matrix, size);
292 g_free(matrix);
296 static void fdt_add_timer_nodes(const VirtMachineState *vms)
298 /* On real hardware these interrupts are level-triggered.
299 * On KVM they were edge-triggered before host kernel version 4.4,
300 * and level-triggered afterwards.
301 * On emulated QEMU they are level-triggered.
303 * Getting the DTB info about them wrong is awkward for some
304 * guest kernels:
305 * pre-4.8 ignore the DT and leave the interrupt configured
306 * with whatever the GIC reset value (or the bootloader) left it at
307 * 4.8 before rc6 honour the incorrect data by programming it back
308 * into the GIC, causing problems
309 * 4.8rc6 and later ignore the DT and always write "level triggered"
310 * into the GIC
312 * For backwards-compatibility, virt-2.8 and earlier will continue
313 * to say these are edge-triggered, but later machines will report
314 * the correct information.
316 ARMCPU *armcpu;
317 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
318 uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
320 if (vmc->claim_edge_triggered_timers) {
321 irqflags = GIC_FDT_IRQ_FLAGS_EDGE_LO_HI;
324 if (vms->gic_version == VIRT_GIC_VERSION_2) {
325 irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
326 GIC_FDT_IRQ_PPI_CPU_WIDTH,
327 (1 << MACHINE(vms)->smp.cpus) - 1);
330 qemu_fdt_add_subnode(vms->fdt, "/timer");
332 armcpu = ARM_CPU(qemu_get_cpu(0));
333 if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
334 const char compat[] = "arm,armv8-timer\0arm,armv7-timer";
335 qemu_fdt_setprop(vms->fdt, "/timer", "compatible",
336 compat, sizeof(compat));
337 } else {
338 qemu_fdt_setprop_string(vms->fdt, "/timer", "compatible",
339 "arm,armv7-timer");
341 qemu_fdt_setprop(vms->fdt, "/timer", "always-on", NULL, 0);
342 qemu_fdt_setprop_cells(vms->fdt, "/timer", "interrupts",
343 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_S_EL1_IRQ, irqflags,
344 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL1_IRQ, irqflags,
345 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_VIRT_IRQ, irqflags,
346 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL2_IRQ, irqflags);
349 static void fdt_add_cpu_nodes(const VirtMachineState *vms)
351 int cpu;
352 int addr_cells = 1;
353 const MachineState *ms = MACHINE(vms);
354 int smp_cpus = ms->smp.cpus;
357 * From Documentation/devicetree/bindings/arm/cpus.txt
358 * On ARM v8 64-bit systems value should be set to 2,
359 * that corresponds to the MPIDR_EL1 register size.
360 * If MPIDR_EL1[63:32] value is equal to 0 on all CPUs
361 * in the system, #address-cells can be set to 1, since
362 * MPIDR_EL1[63:32] bits are not used for CPUs
363 * identification.
365 * Here we actually don't know whether our system is 32- or 64-bit one.
366 * The simplest way to go is to examine affinity IDs of all our CPUs. If
367 * at least one of them has Aff3 populated, we set #address-cells to 2.
369 for (cpu = 0; cpu < smp_cpus; cpu++) {
370 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
372 if (armcpu->mp_affinity & ARM_AFF3_MASK) {
373 addr_cells = 2;
374 break;
378 qemu_fdt_add_subnode(vms->fdt, "/cpus");
379 qemu_fdt_setprop_cell(vms->fdt, "/cpus", "#address-cells", addr_cells);
380 qemu_fdt_setprop_cell(vms->fdt, "/cpus", "#size-cells", 0x0);
382 for (cpu = smp_cpus - 1; cpu >= 0; cpu--) {
383 char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu);
384 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
385 CPUState *cs = CPU(armcpu);
387 qemu_fdt_add_subnode(vms->fdt, nodename);
388 qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "cpu");
389 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible",
390 armcpu->dtb_compatible);
392 if (vms->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED && smp_cpus > 1) {
393 qemu_fdt_setprop_string(vms->fdt, nodename,
394 "enable-method", "psci");
397 if (addr_cells == 2) {
398 qemu_fdt_setprop_u64(vms->fdt, nodename, "reg",
399 armcpu->mp_affinity);
400 } else {
401 qemu_fdt_setprop_cell(vms->fdt, nodename, "reg",
402 armcpu->mp_affinity);
405 if (ms->possible_cpus->cpus[cs->cpu_index].props.has_node_id) {
406 qemu_fdt_setprop_cell(vms->fdt, nodename, "numa-node-id",
407 ms->possible_cpus->cpus[cs->cpu_index].props.node_id);
410 g_free(nodename);
414 static void fdt_add_its_gic_node(VirtMachineState *vms)
416 char *nodename;
418 vms->msi_phandle = qemu_fdt_alloc_phandle(vms->fdt);
419 nodename = g_strdup_printf("/intc/its@%" PRIx64,
420 vms->memmap[VIRT_GIC_ITS].base);
421 qemu_fdt_add_subnode(vms->fdt, nodename);
422 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible",
423 "arm,gic-v3-its");
424 qemu_fdt_setprop(vms->fdt, nodename, "msi-controller", NULL, 0);
425 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
426 2, vms->memmap[VIRT_GIC_ITS].base,
427 2, vms->memmap[VIRT_GIC_ITS].size);
428 qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", vms->msi_phandle);
429 g_free(nodename);
432 static void fdt_add_v2m_gic_node(VirtMachineState *vms)
434 char *nodename;
436 nodename = g_strdup_printf("/intc/v2m@%" PRIx64,
437 vms->memmap[VIRT_GIC_V2M].base);
438 vms->msi_phandle = qemu_fdt_alloc_phandle(vms->fdt);
439 qemu_fdt_add_subnode(vms->fdt, nodename);
440 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible",
441 "arm,gic-v2m-frame");
442 qemu_fdt_setprop(vms->fdt, nodename, "msi-controller", NULL, 0);
443 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
444 2, vms->memmap[VIRT_GIC_V2M].base,
445 2, vms->memmap[VIRT_GIC_V2M].size);
446 qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", vms->msi_phandle);
447 g_free(nodename);
450 static void fdt_add_gic_node(VirtMachineState *vms)
452 char *nodename;
454 vms->gic_phandle = qemu_fdt_alloc_phandle(vms->fdt);
455 qemu_fdt_setprop_cell(vms->fdt, "/", "interrupt-parent", vms->gic_phandle);
457 nodename = g_strdup_printf("/intc@%" PRIx64,
458 vms->memmap[VIRT_GIC_DIST].base);
459 qemu_fdt_add_subnode(vms->fdt, nodename);
460 qemu_fdt_setprop_cell(vms->fdt, nodename, "#interrupt-cells", 3);
461 qemu_fdt_setprop(vms->fdt, nodename, "interrupt-controller", NULL, 0);
462 qemu_fdt_setprop_cell(vms->fdt, nodename, "#address-cells", 0x2);
463 qemu_fdt_setprop_cell(vms->fdt, nodename, "#size-cells", 0x2);
464 qemu_fdt_setprop(vms->fdt, nodename, "ranges", NULL, 0);
465 if (vms->gic_version == VIRT_GIC_VERSION_3) {
466 int nb_redist_regions = virt_gicv3_redist_region_count(vms);
468 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible",
469 "arm,gic-v3");
471 qemu_fdt_setprop_cell(vms->fdt, nodename,
472 "#redistributor-regions", nb_redist_regions);
474 if (nb_redist_regions == 1) {
475 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
476 2, vms->memmap[VIRT_GIC_DIST].base,
477 2, vms->memmap[VIRT_GIC_DIST].size,
478 2, vms->memmap[VIRT_GIC_REDIST].base,
479 2, vms->memmap[VIRT_GIC_REDIST].size);
480 } else {
481 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
482 2, vms->memmap[VIRT_GIC_DIST].base,
483 2, vms->memmap[VIRT_GIC_DIST].size,
484 2, vms->memmap[VIRT_GIC_REDIST].base,
485 2, vms->memmap[VIRT_GIC_REDIST].size,
486 2, vms->memmap[VIRT_HIGH_GIC_REDIST2].base,
487 2, vms->memmap[VIRT_HIGH_GIC_REDIST2].size);
490 if (vms->virt) {
491 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
492 GIC_FDT_IRQ_TYPE_PPI, ARCH_GIC_MAINT_IRQ,
493 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
495 } else {
496 /* 'cortex-a15-gic' means 'GIC v2' */
497 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible",
498 "arm,cortex-a15-gic");
499 if (!vms->virt) {
500 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
501 2, vms->memmap[VIRT_GIC_DIST].base,
502 2, vms->memmap[VIRT_GIC_DIST].size,
503 2, vms->memmap[VIRT_GIC_CPU].base,
504 2, vms->memmap[VIRT_GIC_CPU].size);
505 } else {
506 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
507 2, vms->memmap[VIRT_GIC_DIST].base,
508 2, vms->memmap[VIRT_GIC_DIST].size,
509 2, vms->memmap[VIRT_GIC_CPU].base,
510 2, vms->memmap[VIRT_GIC_CPU].size,
511 2, vms->memmap[VIRT_GIC_HYP].base,
512 2, vms->memmap[VIRT_GIC_HYP].size,
513 2, vms->memmap[VIRT_GIC_VCPU].base,
514 2, vms->memmap[VIRT_GIC_VCPU].size);
515 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
516 GIC_FDT_IRQ_TYPE_PPI, ARCH_GIC_MAINT_IRQ,
517 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
521 qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", vms->gic_phandle);
522 g_free(nodename);
525 static void fdt_add_pmu_nodes(const VirtMachineState *vms)
527 ARMCPU *armcpu = ARM_CPU(first_cpu);
528 uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
530 if (!arm_feature(&armcpu->env, ARM_FEATURE_PMU)) {
531 assert(!object_property_get_bool(OBJECT(armcpu), "pmu", NULL));
532 return;
535 if (vms->gic_version == VIRT_GIC_VERSION_2) {
536 irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
537 GIC_FDT_IRQ_PPI_CPU_WIDTH,
538 (1 << MACHINE(vms)->smp.cpus) - 1);
541 qemu_fdt_add_subnode(vms->fdt, "/pmu");
542 if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
543 const char compat[] = "arm,armv8-pmuv3";
544 qemu_fdt_setprop(vms->fdt, "/pmu", "compatible",
545 compat, sizeof(compat));
546 qemu_fdt_setprop_cells(vms->fdt, "/pmu", "interrupts",
547 GIC_FDT_IRQ_TYPE_PPI, VIRTUAL_PMU_IRQ, irqflags);
551 static inline DeviceState *create_acpi_ged(VirtMachineState *vms)
553 DeviceState *dev;
554 MachineState *ms = MACHINE(vms);
555 int irq = vms->irqmap[VIRT_ACPI_GED];
556 uint32_t event = ACPI_GED_PWR_DOWN_EVT;
558 if (ms->ram_slots) {
559 event |= ACPI_GED_MEM_HOTPLUG_EVT;
562 if (ms->nvdimms_state->is_enabled) {
563 event |= ACPI_GED_NVDIMM_HOTPLUG_EVT;
566 dev = qdev_new(TYPE_ACPI_GED);
567 qdev_prop_set_uint32(dev, "ged-event", event);
569 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_ACPI_GED].base);
570 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 1, vms->memmap[VIRT_PCDIMM_ACPI].base);
571 sysbus_connect_irq(SYS_BUS_DEVICE(dev), 0, qdev_get_gpio_in(vms->gic, irq));
573 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
575 return dev;
578 static void create_its(VirtMachineState *vms)
580 const char *itsclass = its_class_name();
581 DeviceState *dev;
583 if (!itsclass) {
584 /* Do nothing if not supported */
585 return;
588 dev = qdev_new(itsclass);
590 object_property_set_link(OBJECT(dev), "parent-gicv3", OBJECT(vms->gic),
591 &error_abort);
592 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
593 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_ITS].base);
595 fdt_add_its_gic_node(vms);
596 vms->msi_controller = VIRT_MSI_CTRL_ITS;
599 static void create_v2m(VirtMachineState *vms)
601 int i;
602 int irq = vms->irqmap[VIRT_GIC_V2M];
603 DeviceState *dev;
605 dev = qdev_new("arm-gicv2m");
606 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_V2M].base);
607 qdev_prop_set_uint32(dev, "base-spi", irq);
608 qdev_prop_set_uint32(dev, "num-spi", NUM_GICV2M_SPIS);
609 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
611 for (i = 0; i < NUM_GICV2M_SPIS; i++) {
612 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i,
613 qdev_get_gpio_in(vms->gic, irq + i));
616 fdt_add_v2m_gic_node(vms);
617 vms->msi_controller = VIRT_MSI_CTRL_GICV2M;
620 static void create_gic(VirtMachineState *vms)
622 MachineState *ms = MACHINE(vms);
623 /* We create a standalone GIC */
624 SysBusDevice *gicbusdev;
625 const char *gictype;
626 int type = vms->gic_version, i;
627 unsigned int smp_cpus = ms->smp.cpus;
628 uint32_t nb_redist_regions = 0;
630 gictype = (type == 3) ? gicv3_class_name() : gic_class_name();
632 vms->gic = qdev_new(gictype);
633 qdev_prop_set_uint32(vms->gic, "revision", type);
634 qdev_prop_set_uint32(vms->gic, "num-cpu", smp_cpus);
635 /* Note that the num-irq property counts both internal and external
636 * interrupts; there are always 32 of the former (mandated by GIC spec).
638 qdev_prop_set_uint32(vms->gic, "num-irq", NUM_IRQS + 32);
639 if (!kvm_irqchip_in_kernel()) {
640 qdev_prop_set_bit(vms->gic, "has-security-extensions", vms->secure);
643 if (type == 3) {
644 uint32_t redist0_capacity =
645 vms->memmap[VIRT_GIC_REDIST].size / GICV3_REDIST_SIZE;
646 uint32_t redist0_count = MIN(smp_cpus, redist0_capacity);
648 nb_redist_regions = virt_gicv3_redist_region_count(vms);
650 qdev_prop_set_uint32(vms->gic, "len-redist-region-count",
651 nb_redist_regions);
652 qdev_prop_set_uint32(vms->gic, "redist-region-count[0]", redist0_count);
654 if (nb_redist_regions == 2) {
655 uint32_t redist1_capacity =
656 vms->memmap[VIRT_HIGH_GIC_REDIST2].size / GICV3_REDIST_SIZE;
658 qdev_prop_set_uint32(vms->gic, "redist-region-count[1]",
659 MIN(smp_cpus - redist0_count, redist1_capacity));
661 } else {
662 if (!kvm_irqchip_in_kernel()) {
663 qdev_prop_set_bit(vms->gic, "has-virtualization-extensions",
664 vms->virt);
667 gicbusdev = SYS_BUS_DEVICE(vms->gic);
668 sysbus_realize_and_unref(gicbusdev, &error_fatal);
669 sysbus_mmio_map(gicbusdev, 0, vms->memmap[VIRT_GIC_DIST].base);
670 if (type == 3) {
671 sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_REDIST].base);
672 if (nb_redist_regions == 2) {
673 sysbus_mmio_map(gicbusdev, 2,
674 vms->memmap[VIRT_HIGH_GIC_REDIST2].base);
676 } else {
677 sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_CPU].base);
678 if (vms->virt) {
679 sysbus_mmio_map(gicbusdev, 2, vms->memmap[VIRT_GIC_HYP].base);
680 sysbus_mmio_map(gicbusdev, 3, vms->memmap[VIRT_GIC_VCPU].base);
684 /* Wire the outputs from each CPU's generic timer and the GICv3
685 * maintenance interrupt signal to the appropriate GIC PPI inputs,
686 * and the GIC's IRQ/FIQ/VIRQ/VFIQ interrupt outputs to the CPU's inputs.
688 for (i = 0; i < smp_cpus; i++) {
689 DeviceState *cpudev = DEVICE(qemu_get_cpu(i));
690 int ppibase = NUM_IRQS + i * GIC_INTERNAL + GIC_NR_SGIS;
691 int irq;
692 /* Mapping from the output timer irq lines from the CPU to the
693 * GIC PPI inputs we use for the virt board.
695 const int timer_irq[] = {
696 [GTIMER_PHYS] = ARCH_TIMER_NS_EL1_IRQ,
697 [GTIMER_VIRT] = ARCH_TIMER_VIRT_IRQ,
698 [GTIMER_HYP] = ARCH_TIMER_NS_EL2_IRQ,
699 [GTIMER_SEC] = ARCH_TIMER_S_EL1_IRQ,
702 for (irq = 0; irq < ARRAY_SIZE(timer_irq); irq++) {
703 qdev_connect_gpio_out(cpudev, irq,
704 qdev_get_gpio_in(vms->gic,
705 ppibase + timer_irq[irq]));
708 if (type == 3) {
709 qemu_irq irq = qdev_get_gpio_in(vms->gic,
710 ppibase + ARCH_GIC_MAINT_IRQ);
711 qdev_connect_gpio_out_named(cpudev, "gicv3-maintenance-interrupt",
712 0, irq);
713 } else if (vms->virt) {
714 qemu_irq irq = qdev_get_gpio_in(vms->gic,
715 ppibase + ARCH_GIC_MAINT_IRQ);
716 sysbus_connect_irq(gicbusdev, i + 4 * smp_cpus, irq);
719 qdev_connect_gpio_out_named(cpudev, "pmu-interrupt", 0,
720 qdev_get_gpio_in(vms->gic, ppibase
721 + VIRTUAL_PMU_IRQ));
723 sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ));
724 sysbus_connect_irq(gicbusdev, i + smp_cpus,
725 qdev_get_gpio_in(cpudev, ARM_CPU_FIQ));
726 sysbus_connect_irq(gicbusdev, i + 2 * smp_cpus,
727 qdev_get_gpio_in(cpudev, ARM_CPU_VIRQ));
728 sysbus_connect_irq(gicbusdev, i + 3 * smp_cpus,
729 qdev_get_gpio_in(cpudev, ARM_CPU_VFIQ));
732 fdt_add_gic_node(vms);
734 if (type == 3 && vms->its) {
735 create_its(vms);
736 } else if (type == 2) {
737 create_v2m(vms);
741 static void create_uart(const VirtMachineState *vms, int uart,
742 MemoryRegion *mem, Chardev *chr)
744 char *nodename;
745 hwaddr base = vms->memmap[uart].base;
746 hwaddr size = vms->memmap[uart].size;
747 int irq = vms->irqmap[uart];
748 const char compat[] = "arm,pl011\0arm,primecell";
749 const char clocknames[] = "uartclk\0apb_pclk";
750 DeviceState *dev = qdev_new(TYPE_PL011);
751 SysBusDevice *s = SYS_BUS_DEVICE(dev);
753 qdev_prop_set_chr(dev, "chardev", chr);
754 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
755 memory_region_add_subregion(mem, base,
756 sysbus_mmio_get_region(s, 0));
757 sysbus_connect_irq(s, 0, qdev_get_gpio_in(vms->gic, irq));
759 nodename = g_strdup_printf("/pl011@%" PRIx64, base);
760 qemu_fdt_add_subnode(vms->fdt, nodename);
761 /* Note that we can't use setprop_string because of the embedded NUL */
762 qemu_fdt_setprop(vms->fdt, nodename, "compatible",
763 compat, sizeof(compat));
764 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
765 2, base, 2, size);
766 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
767 GIC_FDT_IRQ_TYPE_SPI, irq,
768 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
769 qemu_fdt_setprop_cells(vms->fdt, nodename, "clocks",
770 vms->clock_phandle, vms->clock_phandle);
771 qemu_fdt_setprop(vms->fdt, nodename, "clock-names",
772 clocknames, sizeof(clocknames));
774 if (uart == VIRT_UART) {
775 qemu_fdt_setprop_string(vms->fdt, "/chosen", "stdout-path", nodename);
776 } else {
777 /* Mark as not usable by the normal world */
778 qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled");
779 qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay");
781 qemu_fdt_setprop_string(vms->fdt, "/secure-chosen", "stdout-path",
782 nodename);
785 g_free(nodename);
788 static void create_rtc(const VirtMachineState *vms)
790 char *nodename;
791 hwaddr base = vms->memmap[VIRT_RTC].base;
792 hwaddr size = vms->memmap[VIRT_RTC].size;
793 int irq = vms->irqmap[VIRT_RTC];
794 const char compat[] = "arm,pl031\0arm,primecell";
796 sysbus_create_simple("pl031", base, qdev_get_gpio_in(vms->gic, irq));
798 nodename = g_strdup_printf("/pl031@%" PRIx64, base);
799 qemu_fdt_add_subnode(vms->fdt, nodename);
800 qemu_fdt_setprop(vms->fdt, nodename, "compatible", compat, sizeof(compat));
801 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
802 2, base, 2, size);
803 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
804 GIC_FDT_IRQ_TYPE_SPI, irq,
805 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
806 qemu_fdt_setprop_cell(vms->fdt, nodename, "clocks", vms->clock_phandle);
807 qemu_fdt_setprop_string(vms->fdt, nodename, "clock-names", "apb_pclk");
808 g_free(nodename);
811 static DeviceState *gpio_key_dev;
812 static void virt_powerdown_req(Notifier *n, void *opaque)
814 VirtMachineState *s = container_of(n, VirtMachineState, powerdown_notifier);
816 if (s->acpi_dev) {
817 acpi_send_event(s->acpi_dev, ACPI_POWER_DOWN_STATUS);
818 } else {
819 /* use gpio Pin 3 for power button event */
820 qemu_set_irq(qdev_get_gpio_in(gpio_key_dev, 0), 1);
824 static void create_gpio_keys(const VirtMachineState *vms,
825 DeviceState *pl061_dev,
826 uint32_t phandle)
828 gpio_key_dev = sysbus_create_simple("gpio-key", -1,
829 qdev_get_gpio_in(pl061_dev, 3));
831 qemu_fdt_add_subnode(vms->fdt, "/gpio-keys");
832 qemu_fdt_setprop_string(vms->fdt, "/gpio-keys", "compatible", "gpio-keys");
833 qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys", "#size-cells", 0);
834 qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys", "#address-cells", 1);
836 qemu_fdt_add_subnode(vms->fdt, "/gpio-keys/poweroff");
837 qemu_fdt_setprop_string(vms->fdt, "/gpio-keys/poweroff",
838 "label", "GPIO Key Poweroff");
839 qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys/poweroff", "linux,code",
840 KEY_POWER);
841 qemu_fdt_setprop_cells(vms->fdt, "/gpio-keys/poweroff",
842 "gpios", phandle, 3, 0);
845 #define SECURE_GPIO_POWEROFF 0
846 #define SECURE_GPIO_RESET 1
848 static void create_secure_gpio_pwr(const VirtMachineState *vms,
849 DeviceState *pl061_dev,
850 uint32_t phandle)
852 DeviceState *gpio_pwr_dev;
854 /* gpio-pwr */
855 gpio_pwr_dev = sysbus_create_simple("gpio-pwr", -1, NULL);
857 /* connect secure pl061 to gpio-pwr */
858 qdev_connect_gpio_out(pl061_dev, SECURE_GPIO_RESET,
859 qdev_get_gpio_in_named(gpio_pwr_dev, "reset", 0));
860 qdev_connect_gpio_out(pl061_dev, SECURE_GPIO_POWEROFF,
861 qdev_get_gpio_in_named(gpio_pwr_dev, "shutdown", 0));
863 qemu_fdt_add_subnode(vms->fdt, "/gpio-poweroff");
864 qemu_fdt_setprop_string(vms->fdt, "/gpio-poweroff", "compatible",
865 "gpio-poweroff");
866 qemu_fdt_setprop_cells(vms->fdt, "/gpio-poweroff",
867 "gpios", phandle, SECURE_GPIO_POWEROFF, 0);
868 qemu_fdt_setprop_string(vms->fdt, "/gpio-poweroff", "status", "disabled");
869 qemu_fdt_setprop_string(vms->fdt, "/gpio-poweroff", "secure-status",
870 "okay");
872 qemu_fdt_add_subnode(vms->fdt, "/gpio-restart");
873 qemu_fdt_setprop_string(vms->fdt, "/gpio-restart", "compatible",
874 "gpio-restart");
875 qemu_fdt_setprop_cells(vms->fdt, "/gpio-restart",
876 "gpios", phandle, SECURE_GPIO_RESET, 0);
877 qemu_fdt_setprop_string(vms->fdt, "/gpio-restart", "status", "disabled");
878 qemu_fdt_setprop_string(vms->fdt, "/gpio-restart", "secure-status",
879 "okay");
882 static void create_gpio_devices(const VirtMachineState *vms, int gpio,
883 MemoryRegion *mem)
885 char *nodename;
886 DeviceState *pl061_dev;
887 hwaddr base = vms->memmap[gpio].base;
888 hwaddr size = vms->memmap[gpio].size;
889 int irq = vms->irqmap[gpio];
890 const char compat[] = "arm,pl061\0arm,primecell";
891 SysBusDevice *s;
893 pl061_dev = qdev_new("pl061");
894 s = SYS_BUS_DEVICE(pl061_dev);
895 sysbus_realize_and_unref(s, &error_fatal);
896 memory_region_add_subregion(mem, base, sysbus_mmio_get_region(s, 0));
897 sysbus_connect_irq(s, 0, qdev_get_gpio_in(vms->gic, irq));
899 uint32_t phandle = qemu_fdt_alloc_phandle(vms->fdt);
900 nodename = g_strdup_printf("/pl061@%" PRIx64, base);
901 qemu_fdt_add_subnode(vms->fdt, nodename);
902 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
903 2, base, 2, size);
904 qemu_fdt_setprop(vms->fdt, nodename, "compatible", compat, sizeof(compat));
905 qemu_fdt_setprop_cell(vms->fdt, nodename, "#gpio-cells", 2);
906 qemu_fdt_setprop(vms->fdt, nodename, "gpio-controller", NULL, 0);
907 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
908 GIC_FDT_IRQ_TYPE_SPI, irq,
909 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
910 qemu_fdt_setprop_cell(vms->fdt, nodename, "clocks", vms->clock_phandle);
911 qemu_fdt_setprop_string(vms->fdt, nodename, "clock-names", "apb_pclk");
912 qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", phandle);
914 if (gpio != VIRT_GPIO) {
915 /* Mark as not usable by the normal world */
916 qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled");
917 qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay");
919 g_free(nodename);
921 /* Child gpio devices */
922 if (gpio == VIRT_GPIO) {
923 create_gpio_keys(vms, pl061_dev, phandle);
924 } else {
925 create_secure_gpio_pwr(vms, pl061_dev, phandle);
929 static void create_virtio_devices(const VirtMachineState *vms)
931 int i;
932 hwaddr size = vms->memmap[VIRT_MMIO].size;
934 /* We create the transports in forwards order. Since qbus_realize()
935 * prepends (not appends) new child buses, the incrementing loop below will
936 * create a list of virtio-mmio buses with decreasing base addresses.
938 * When a -device option is processed from the command line,
939 * qbus_find_recursive() picks the next free virtio-mmio bus in forwards
940 * order. The upshot is that -device options in increasing command line
941 * order are mapped to virtio-mmio buses with decreasing base addresses.
943 * When this code was originally written, that arrangement ensured that the
944 * guest Linux kernel would give the lowest "name" (/dev/vda, eth0, etc) to
945 * the first -device on the command line. (The end-to-end order is a
946 * function of this loop, qbus_realize(), qbus_find_recursive(), and the
947 * guest kernel's name-to-address assignment strategy.)
949 * Meanwhile, the kernel's traversal seems to have been reversed; see eg.
950 * the message, if not necessarily the code, of commit 70161ff336.
951 * Therefore the loop now establishes the inverse of the original intent.
953 * Unfortunately, we can't counteract the kernel change by reversing the
954 * loop; it would break existing command lines.
956 * In any case, the kernel makes no guarantee about the stability of
957 * enumeration order of virtio devices (as demonstrated by it changing
958 * between kernel versions). For reliable and stable identification
959 * of disks users must use UUIDs or similar mechanisms.
961 for (i = 0; i < NUM_VIRTIO_TRANSPORTS; i++) {
962 int irq = vms->irqmap[VIRT_MMIO] + i;
963 hwaddr base = vms->memmap[VIRT_MMIO].base + i * size;
965 sysbus_create_simple("virtio-mmio", base,
966 qdev_get_gpio_in(vms->gic, irq));
969 /* We add dtb nodes in reverse order so that they appear in the finished
970 * device tree lowest address first.
972 * Note that this mapping is independent of the loop above. The previous
973 * loop influences virtio device to virtio transport assignment, whereas
974 * this loop controls how virtio transports are laid out in the dtb.
976 for (i = NUM_VIRTIO_TRANSPORTS - 1; i >= 0; i--) {
977 char *nodename;
978 int irq = vms->irqmap[VIRT_MMIO] + i;
979 hwaddr base = vms->memmap[VIRT_MMIO].base + i * size;
981 nodename = g_strdup_printf("/virtio_mmio@%" PRIx64, base);
982 qemu_fdt_add_subnode(vms->fdt, nodename);
983 qemu_fdt_setprop_string(vms->fdt, nodename,
984 "compatible", "virtio,mmio");
985 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
986 2, base, 2, size);
987 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
988 GIC_FDT_IRQ_TYPE_SPI, irq,
989 GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
990 qemu_fdt_setprop(vms->fdt, nodename, "dma-coherent", NULL, 0);
991 g_free(nodename);
995 #define VIRT_FLASH_SECTOR_SIZE (256 * KiB)
997 static PFlashCFI01 *virt_flash_create1(VirtMachineState *vms,
998 const char *name,
999 const char *alias_prop_name)
1002 * Create a single flash device. We use the same parameters as
1003 * the flash devices on the Versatile Express board.
1005 DeviceState *dev = qdev_new(TYPE_PFLASH_CFI01);
1007 qdev_prop_set_uint64(dev, "sector-length", VIRT_FLASH_SECTOR_SIZE);
1008 qdev_prop_set_uint8(dev, "width", 4);
1009 qdev_prop_set_uint8(dev, "device-width", 2);
1010 qdev_prop_set_bit(dev, "big-endian", false);
1011 qdev_prop_set_uint16(dev, "id0", 0x89);
1012 qdev_prop_set_uint16(dev, "id1", 0x18);
1013 qdev_prop_set_uint16(dev, "id2", 0x00);
1014 qdev_prop_set_uint16(dev, "id3", 0x00);
1015 qdev_prop_set_string(dev, "name", name);
1016 object_property_add_child(OBJECT(vms), name, OBJECT(dev));
1017 object_property_add_alias(OBJECT(vms), alias_prop_name,
1018 OBJECT(dev), "drive");
1019 return PFLASH_CFI01(dev);
1022 static void virt_flash_create(VirtMachineState *vms)
1024 vms->flash[0] = virt_flash_create1(vms, "virt.flash0", "pflash0");
1025 vms->flash[1] = virt_flash_create1(vms, "virt.flash1", "pflash1");
1028 static void virt_flash_map1(PFlashCFI01 *flash,
1029 hwaddr base, hwaddr size,
1030 MemoryRegion *sysmem)
1032 DeviceState *dev = DEVICE(flash);
1034 assert(QEMU_IS_ALIGNED(size, VIRT_FLASH_SECTOR_SIZE));
1035 assert(size / VIRT_FLASH_SECTOR_SIZE <= UINT32_MAX);
1036 qdev_prop_set_uint32(dev, "num-blocks", size / VIRT_FLASH_SECTOR_SIZE);
1037 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
1039 memory_region_add_subregion(sysmem, base,
1040 sysbus_mmio_get_region(SYS_BUS_DEVICE(dev),
1041 0));
1044 static void virt_flash_map(VirtMachineState *vms,
1045 MemoryRegion *sysmem,
1046 MemoryRegion *secure_sysmem)
1049 * Map two flash devices to fill the VIRT_FLASH space in the memmap.
1050 * sysmem is the system memory space. secure_sysmem is the secure view
1051 * of the system, and the first flash device should be made visible only
1052 * there. The second flash device is visible to both secure and nonsecure.
1053 * If sysmem == secure_sysmem this means there is no separate Secure
1054 * address space and both flash devices are generally visible.
1056 hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2;
1057 hwaddr flashbase = vms->memmap[VIRT_FLASH].base;
1059 virt_flash_map1(vms->flash[0], flashbase, flashsize,
1060 secure_sysmem);
1061 virt_flash_map1(vms->flash[1], flashbase + flashsize, flashsize,
1062 sysmem);
1065 static void virt_flash_fdt(VirtMachineState *vms,
1066 MemoryRegion *sysmem,
1067 MemoryRegion *secure_sysmem)
1069 hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2;
1070 hwaddr flashbase = vms->memmap[VIRT_FLASH].base;
1071 char *nodename;
1073 if (sysmem == secure_sysmem) {
1074 /* Report both flash devices as a single node in the DT */
1075 nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
1076 qemu_fdt_add_subnode(vms->fdt, nodename);
1077 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash");
1078 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
1079 2, flashbase, 2, flashsize,
1080 2, flashbase + flashsize, 2, flashsize);
1081 qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4);
1082 g_free(nodename);
1083 } else {
1085 * Report the devices as separate nodes so we can mark one as
1086 * only visible to the secure world.
1088 nodename = g_strdup_printf("/secflash@%" PRIx64, flashbase);
1089 qemu_fdt_add_subnode(vms->fdt, nodename);
1090 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash");
1091 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
1092 2, flashbase, 2, flashsize);
1093 qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4);
1094 qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled");
1095 qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay");
1096 g_free(nodename);
1098 nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
1099 qemu_fdt_add_subnode(vms->fdt, nodename);
1100 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash");
1101 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
1102 2, flashbase + flashsize, 2, flashsize);
1103 qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4);
1104 g_free(nodename);
1108 static bool virt_firmware_init(VirtMachineState *vms,
1109 MemoryRegion *sysmem,
1110 MemoryRegion *secure_sysmem)
1112 int i;
1113 const char *bios_name;
1114 BlockBackend *pflash_blk0;
1116 /* Map legacy -drive if=pflash to machine properties */
1117 for (i = 0; i < ARRAY_SIZE(vms->flash); i++) {
1118 pflash_cfi01_legacy_drive(vms->flash[i],
1119 drive_get(IF_PFLASH, 0, i));
1122 virt_flash_map(vms, sysmem, secure_sysmem);
1124 pflash_blk0 = pflash_cfi01_get_blk(vms->flash[0]);
1126 bios_name = MACHINE(vms)->firmware;
1127 if (bios_name) {
1128 char *fname;
1129 MemoryRegion *mr;
1130 int image_size;
1132 if (pflash_blk0) {
1133 error_report("The contents of the first flash device may be "
1134 "specified with -bios or with -drive if=pflash... "
1135 "but you cannot use both options at once");
1136 exit(1);
1139 /* Fall back to -bios */
1141 fname = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
1142 if (!fname) {
1143 error_report("Could not find ROM image '%s'", bios_name);
1144 exit(1);
1146 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(vms->flash[0]), 0);
1147 image_size = load_image_mr(fname, mr);
1148 g_free(fname);
1149 if (image_size < 0) {
1150 error_report("Could not load ROM image '%s'", bios_name);
1151 exit(1);
1155 return pflash_blk0 || bios_name;
1158 static FWCfgState *create_fw_cfg(const VirtMachineState *vms, AddressSpace *as)
1160 MachineState *ms = MACHINE(vms);
1161 hwaddr base = vms->memmap[VIRT_FW_CFG].base;
1162 hwaddr size = vms->memmap[VIRT_FW_CFG].size;
1163 FWCfgState *fw_cfg;
1164 char *nodename;
1166 fw_cfg = fw_cfg_init_mem_wide(base + 8, base, 8, base + 16, as);
1167 fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, (uint16_t)ms->smp.cpus);
1169 nodename = g_strdup_printf("/fw-cfg@%" PRIx64, base);
1170 qemu_fdt_add_subnode(vms->fdt, nodename);
1171 qemu_fdt_setprop_string(vms->fdt, nodename,
1172 "compatible", "qemu,fw-cfg-mmio");
1173 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
1174 2, base, 2, size);
1175 qemu_fdt_setprop(vms->fdt, nodename, "dma-coherent", NULL, 0);
1176 g_free(nodename);
1177 return fw_cfg;
1180 static void create_pcie_irq_map(const VirtMachineState *vms,
1181 uint32_t gic_phandle,
1182 int first_irq, const char *nodename)
1184 int devfn, pin;
1185 uint32_t full_irq_map[4 * 4 * 10] = { 0 };
1186 uint32_t *irq_map = full_irq_map;
1188 for (devfn = 0; devfn <= 0x18; devfn += 0x8) {
1189 for (pin = 0; pin < 4; pin++) {
1190 int irq_type = GIC_FDT_IRQ_TYPE_SPI;
1191 int irq_nr = first_irq + ((pin + PCI_SLOT(devfn)) % PCI_NUM_PINS);
1192 int irq_level = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
1193 int i;
1195 uint32_t map[] = {
1196 devfn << 8, 0, 0, /* devfn */
1197 pin + 1, /* PCI pin */
1198 gic_phandle, 0, 0, irq_type, irq_nr, irq_level }; /* GIC irq */
1200 /* Convert map to big endian */
1201 for (i = 0; i < 10; i++) {
1202 irq_map[i] = cpu_to_be32(map[i]);
1204 irq_map += 10;
1208 qemu_fdt_setprop(vms->fdt, nodename, "interrupt-map",
1209 full_irq_map, sizeof(full_irq_map));
1211 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupt-map-mask",
1212 cpu_to_be16(PCI_DEVFN(3, 0)), /* Slot 3 */
1213 0, 0,
1214 0x7 /* PCI irq */);
1217 static void create_smmu(const VirtMachineState *vms,
1218 PCIBus *bus)
1220 char *node;
1221 const char compat[] = "arm,smmu-v3";
1222 int irq = vms->irqmap[VIRT_SMMU];
1223 int i;
1224 hwaddr base = vms->memmap[VIRT_SMMU].base;
1225 hwaddr size = vms->memmap[VIRT_SMMU].size;
1226 const char irq_names[] = "eventq\0priq\0cmdq-sync\0gerror";
1227 DeviceState *dev;
1229 if (vms->iommu != VIRT_IOMMU_SMMUV3 || !vms->iommu_phandle) {
1230 return;
1233 dev = qdev_new("arm-smmuv3");
1235 object_property_set_link(OBJECT(dev), "primary-bus", OBJECT(bus),
1236 &error_abort);
1237 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
1238 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base);
1239 for (i = 0; i < NUM_SMMU_IRQS; i++) {
1240 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i,
1241 qdev_get_gpio_in(vms->gic, irq + i));
1244 node = g_strdup_printf("/smmuv3@%" PRIx64, base);
1245 qemu_fdt_add_subnode(vms->fdt, node);
1246 qemu_fdt_setprop(vms->fdt, node, "compatible", compat, sizeof(compat));
1247 qemu_fdt_setprop_sized_cells(vms->fdt, node, "reg", 2, base, 2, size);
1249 qemu_fdt_setprop_cells(vms->fdt, node, "interrupts",
1250 GIC_FDT_IRQ_TYPE_SPI, irq , GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
1251 GIC_FDT_IRQ_TYPE_SPI, irq + 1, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
1252 GIC_FDT_IRQ_TYPE_SPI, irq + 2, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
1253 GIC_FDT_IRQ_TYPE_SPI, irq + 3, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
1255 qemu_fdt_setprop(vms->fdt, node, "interrupt-names", irq_names,
1256 sizeof(irq_names));
1258 qemu_fdt_setprop_cell(vms->fdt, node, "clocks", vms->clock_phandle);
1259 qemu_fdt_setprop_string(vms->fdt, node, "clock-names", "apb_pclk");
1260 qemu_fdt_setprop(vms->fdt, node, "dma-coherent", NULL, 0);
1262 qemu_fdt_setprop_cell(vms->fdt, node, "#iommu-cells", 1);
1264 qemu_fdt_setprop_cell(vms->fdt, node, "phandle", vms->iommu_phandle);
1265 g_free(node);
1268 static void create_virtio_iommu_dt_bindings(VirtMachineState *vms)
1270 const char compat[] = "virtio,pci-iommu";
1271 uint16_t bdf = vms->virtio_iommu_bdf;
1272 char *node;
1274 vms->iommu_phandle = qemu_fdt_alloc_phandle(vms->fdt);
1276 node = g_strdup_printf("%s/virtio_iommu@%d", vms->pciehb_nodename, bdf);
1277 qemu_fdt_add_subnode(vms->fdt, node);
1278 qemu_fdt_setprop(vms->fdt, node, "compatible", compat, sizeof(compat));
1279 qemu_fdt_setprop_sized_cells(vms->fdt, node, "reg",
1280 1, bdf << 8, 1, 0, 1, 0,
1281 1, 0, 1, 0);
1283 qemu_fdt_setprop_cell(vms->fdt, node, "#iommu-cells", 1);
1284 qemu_fdt_setprop_cell(vms->fdt, node, "phandle", vms->iommu_phandle);
1285 g_free(node);
1287 qemu_fdt_setprop_cells(vms->fdt, vms->pciehb_nodename, "iommu-map",
1288 0x0, vms->iommu_phandle, 0x0, bdf,
1289 bdf + 1, vms->iommu_phandle, bdf + 1, 0xffff - bdf);
1292 static void create_pcie(VirtMachineState *vms)
1294 hwaddr base_mmio = vms->memmap[VIRT_PCIE_MMIO].base;
1295 hwaddr size_mmio = vms->memmap[VIRT_PCIE_MMIO].size;
1296 hwaddr base_mmio_high = vms->memmap[VIRT_HIGH_PCIE_MMIO].base;
1297 hwaddr size_mmio_high = vms->memmap[VIRT_HIGH_PCIE_MMIO].size;
1298 hwaddr base_pio = vms->memmap[VIRT_PCIE_PIO].base;
1299 hwaddr size_pio = vms->memmap[VIRT_PCIE_PIO].size;
1300 hwaddr base_ecam, size_ecam;
1301 hwaddr base = base_mmio;
1302 int nr_pcie_buses;
1303 int irq = vms->irqmap[VIRT_PCIE];
1304 MemoryRegion *mmio_alias;
1305 MemoryRegion *mmio_reg;
1306 MemoryRegion *ecam_alias;
1307 MemoryRegion *ecam_reg;
1308 DeviceState *dev;
1309 char *nodename;
1310 int i, ecam_id;
1311 PCIHostState *pci;
1313 dev = qdev_new(TYPE_GPEX_HOST);
1314 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
1316 ecam_id = VIRT_ECAM_ID(vms->highmem_ecam);
1317 base_ecam = vms->memmap[ecam_id].base;
1318 size_ecam = vms->memmap[ecam_id].size;
1319 nr_pcie_buses = size_ecam / PCIE_MMCFG_SIZE_MIN;
1320 /* Map only the first size_ecam bytes of ECAM space */
1321 ecam_alias = g_new0(MemoryRegion, 1);
1322 ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0);
1323 memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam",
1324 ecam_reg, 0, size_ecam);
1325 memory_region_add_subregion(get_system_memory(), base_ecam, ecam_alias);
1327 /* Map the MMIO window into system address space so as to expose
1328 * the section of PCI MMIO space which starts at the same base address
1329 * (ie 1:1 mapping for that part of PCI MMIO space visible through
1330 * the window).
1332 mmio_alias = g_new0(MemoryRegion, 1);
1333 mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1);
1334 memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio",
1335 mmio_reg, base_mmio, size_mmio);
1336 memory_region_add_subregion(get_system_memory(), base_mmio, mmio_alias);
1338 if (vms->highmem) {
1339 /* Map high MMIO space */
1340 MemoryRegion *high_mmio_alias = g_new0(MemoryRegion, 1);
1342 memory_region_init_alias(high_mmio_alias, OBJECT(dev), "pcie-mmio-high",
1343 mmio_reg, base_mmio_high, size_mmio_high);
1344 memory_region_add_subregion(get_system_memory(), base_mmio_high,
1345 high_mmio_alias);
1348 /* Map IO port space */
1349 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, base_pio);
1351 for (i = 0; i < GPEX_NUM_IRQS; i++) {
1352 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i,
1353 qdev_get_gpio_in(vms->gic, irq + i));
1354 gpex_set_irq_num(GPEX_HOST(dev), i, irq + i);
1357 pci = PCI_HOST_BRIDGE(dev);
1358 vms->bus = pci->bus;
1359 if (vms->bus) {
1360 for (i = 0; i < nb_nics; i++) {
1361 NICInfo *nd = &nd_table[i];
1363 if (!nd->model) {
1364 nd->model = g_strdup("virtio");
1367 pci_nic_init_nofail(nd, pci->bus, nd->model, NULL);
1371 nodename = vms->pciehb_nodename = g_strdup_printf("/pcie@%" PRIx64, base);
1372 qemu_fdt_add_subnode(vms->fdt, nodename);
1373 qemu_fdt_setprop_string(vms->fdt, nodename,
1374 "compatible", "pci-host-ecam-generic");
1375 qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "pci");
1376 qemu_fdt_setprop_cell(vms->fdt, nodename, "#address-cells", 3);
1377 qemu_fdt_setprop_cell(vms->fdt, nodename, "#size-cells", 2);
1378 qemu_fdt_setprop_cell(vms->fdt, nodename, "linux,pci-domain", 0);
1379 qemu_fdt_setprop_cells(vms->fdt, nodename, "bus-range", 0,
1380 nr_pcie_buses - 1);
1381 qemu_fdt_setprop(vms->fdt, nodename, "dma-coherent", NULL, 0);
1383 if (vms->msi_phandle) {
1384 qemu_fdt_setprop_cells(vms->fdt, nodename, "msi-parent",
1385 vms->msi_phandle);
1388 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
1389 2, base_ecam, 2, size_ecam);
1391 if (vms->highmem) {
1392 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "ranges",
1393 1, FDT_PCI_RANGE_IOPORT, 2, 0,
1394 2, base_pio, 2, size_pio,
1395 1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
1396 2, base_mmio, 2, size_mmio,
1397 1, FDT_PCI_RANGE_MMIO_64BIT,
1398 2, base_mmio_high,
1399 2, base_mmio_high, 2, size_mmio_high);
1400 } else {
1401 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "ranges",
1402 1, FDT_PCI_RANGE_IOPORT, 2, 0,
1403 2, base_pio, 2, size_pio,
1404 1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
1405 2, base_mmio, 2, size_mmio);
1408 qemu_fdt_setprop_cell(vms->fdt, nodename, "#interrupt-cells", 1);
1409 create_pcie_irq_map(vms, vms->gic_phandle, irq, nodename);
1411 if (vms->iommu) {
1412 vms->iommu_phandle = qemu_fdt_alloc_phandle(vms->fdt);
1414 switch (vms->iommu) {
1415 case VIRT_IOMMU_SMMUV3:
1416 create_smmu(vms, vms->bus);
1417 qemu_fdt_setprop_cells(vms->fdt, nodename, "iommu-map",
1418 0x0, vms->iommu_phandle, 0x0, 0x10000);
1419 break;
1420 default:
1421 g_assert_not_reached();
1426 static void create_platform_bus(VirtMachineState *vms)
1428 DeviceState *dev;
1429 SysBusDevice *s;
1430 int i;
1431 MemoryRegion *sysmem = get_system_memory();
1433 dev = qdev_new(TYPE_PLATFORM_BUS_DEVICE);
1434 dev->id = TYPE_PLATFORM_BUS_DEVICE;
1435 qdev_prop_set_uint32(dev, "num_irqs", PLATFORM_BUS_NUM_IRQS);
1436 qdev_prop_set_uint32(dev, "mmio_size", vms->memmap[VIRT_PLATFORM_BUS].size);
1437 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
1438 vms->platform_bus_dev = dev;
1440 s = SYS_BUS_DEVICE(dev);
1441 for (i = 0; i < PLATFORM_BUS_NUM_IRQS; i++) {
1442 int irq = vms->irqmap[VIRT_PLATFORM_BUS] + i;
1443 sysbus_connect_irq(s, i, qdev_get_gpio_in(vms->gic, irq));
1446 memory_region_add_subregion(sysmem,
1447 vms->memmap[VIRT_PLATFORM_BUS].base,
1448 sysbus_mmio_get_region(s, 0));
1451 static void create_tag_ram(MemoryRegion *tag_sysmem,
1452 hwaddr base, hwaddr size,
1453 const char *name)
1455 MemoryRegion *tagram = g_new(MemoryRegion, 1);
1457 memory_region_init_ram(tagram, NULL, name, size / 32, &error_fatal);
1458 memory_region_add_subregion(tag_sysmem, base / 32, tagram);
1461 static void create_secure_ram(VirtMachineState *vms,
1462 MemoryRegion *secure_sysmem,
1463 MemoryRegion *secure_tag_sysmem)
1465 MemoryRegion *secram = g_new(MemoryRegion, 1);
1466 char *nodename;
1467 hwaddr base = vms->memmap[VIRT_SECURE_MEM].base;
1468 hwaddr size = vms->memmap[VIRT_SECURE_MEM].size;
1470 memory_region_init_ram(secram, NULL, "virt.secure-ram", size,
1471 &error_fatal);
1472 memory_region_add_subregion(secure_sysmem, base, secram);
1474 nodename = g_strdup_printf("/secram@%" PRIx64, base);
1475 qemu_fdt_add_subnode(vms->fdt, nodename);
1476 qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "memory");
1477 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 2, base, 2, size);
1478 qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled");
1479 qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay");
1481 if (secure_tag_sysmem) {
1482 create_tag_ram(secure_tag_sysmem, base, size, "mach-virt.secure-tag");
1485 g_free(nodename);
1488 static void *machvirt_dtb(const struct arm_boot_info *binfo, int *fdt_size)
1490 const VirtMachineState *board = container_of(binfo, VirtMachineState,
1491 bootinfo);
1493 *fdt_size = board->fdt_size;
1494 return board->fdt;
1497 static void virt_build_smbios(VirtMachineState *vms)
1499 MachineClass *mc = MACHINE_GET_CLASS(vms);
1500 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
1501 uint8_t *smbios_tables, *smbios_anchor;
1502 size_t smbios_tables_len, smbios_anchor_len;
1503 const char *product = "QEMU Virtual Machine";
1505 if (kvm_enabled()) {
1506 product = "KVM Virtual Machine";
1509 smbios_set_defaults("QEMU", product,
1510 vmc->smbios_old_sys_ver ? "1.0" : mc->name, false,
1511 true, SMBIOS_ENTRY_POINT_30);
1513 smbios_get_tables(MACHINE(vms), NULL, 0, &smbios_tables, &smbios_tables_len,
1514 &smbios_anchor, &smbios_anchor_len);
1516 if (smbios_anchor) {
1517 fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-tables",
1518 smbios_tables, smbios_tables_len);
1519 fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-anchor",
1520 smbios_anchor, smbios_anchor_len);
1524 static
1525 void virt_machine_done(Notifier *notifier, void *data)
1527 VirtMachineState *vms = container_of(notifier, VirtMachineState,
1528 machine_done);
1529 MachineState *ms = MACHINE(vms);
1530 ARMCPU *cpu = ARM_CPU(first_cpu);
1531 struct arm_boot_info *info = &vms->bootinfo;
1532 AddressSpace *as = arm_boot_address_space(cpu, info);
1535 * If the user provided a dtb, we assume the dynamic sysbus nodes
1536 * already are integrated there. This corresponds to a use case where
1537 * the dynamic sysbus nodes are complex and their generation is not yet
1538 * supported. In that case the user can take charge of the guest dt
1539 * while qemu takes charge of the qom stuff.
1541 if (info->dtb_filename == NULL) {
1542 platform_bus_add_all_fdt_nodes(vms->fdt, "/intc",
1543 vms->memmap[VIRT_PLATFORM_BUS].base,
1544 vms->memmap[VIRT_PLATFORM_BUS].size,
1545 vms->irqmap[VIRT_PLATFORM_BUS]);
1547 if (arm_load_dtb(info->dtb_start, info, info->dtb_limit, as, ms) < 0) {
1548 exit(1);
1551 fw_cfg_add_extra_pci_roots(vms->bus, vms->fw_cfg);
1553 virt_acpi_setup(vms);
1554 virt_build_smbios(vms);
1557 static uint64_t virt_cpu_mp_affinity(VirtMachineState *vms, int idx)
1559 uint8_t clustersz = ARM_DEFAULT_CPUS_PER_CLUSTER;
1560 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
1562 if (!vmc->disallow_affinity_adjustment) {
1563 /* Adjust MPIDR like 64-bit KVM hosts, which incorporate the
1564 * GIC's target-list limitations. 32-bit KVM hosts currently
1565 * always create clusters of 4 CPUs, but that is expected to
1566 * change when they gain support for gicv3. When KVM is enabled
1567 * it will override the changes we make here, therefore our
1568 * purposes are to make TCG consistent (with 64-bit KVM hosts)
1569 * and to improve SGI efficiency.
1571 if (vms->gic_version == VIRT_GIC_VERSION_3) {
1572 clustersz = GICV3_TARGETLIST_BITS;
1573 } else {
1574 clustersz = GIC_TARGETLIST_BITS;
1577 return arm_cpu_mp_affinity(idx, clustersz);
1580 static void virt_set_memmap(VirtMachineState *vms)
1582 MachineState *ms = MACHINE(vms);
1583 hwaddr base, device_memory_base, device_memory_size;
1584 int i;
1586 vms->memmap = extended_memmap;
1588 for (i = 0; i < ARRAY_SIZE(base_memmap); i++) {
1589 vms->memmap[i] = base_memmap[i];
1592 if (ms->ram_slots > ACPI_MAX_RAM_SLOTS) {
1593 error_report("unsupported number of memory slots: %"PRIu64,
1594 ms->ram_slots);
1595 exit(EXIT_FAILURE);
1599 * We compute the base of the high IO region depending on the
1600 * amount of initial and device memory. The device memory start/size
1601 * is aligned on 1GiB. We never put the high IO region below 256GiB
1602 * so that if maxram_size is < 255GiB we keep the legacy memory map.
1603 * The device region size assumes 1GiB page max alignment per slot.
1605 device_memory_base =
1606 ROUND_UP(vms->memmap[VIRT_MEM].base + ms->ram_size, GiB);
1607 device_memory_size = ms->maxram_size - ms->ram_size + ms->ram_slots * GiB;
1609 /* Base address of the high IO region */
1610 base = device_memory_base + ROUND_UP(device_memory_size, GiB);
1611 if (base < device_memory_base) {
1612 error_report("maxmem/slots too huge");
1613 exit(EXIT_FAILURE);
1615 if (base < vms->memmap[VIRT_MEM].base + LEGACY_RAMLIMIT_BYTES) {
1616 base = vms->memmap[VIRT_MEM].base + LEGACY_RAMLIMIT_BYTES;
1619 for (i = VIRT_LOWMEMMAP_LAST; i < ARRAY_SIZE(extended_memmap); i++) {
1620 hwaddr size = extended_memmap[i].size;
1622 base = ROUND_UP(base, size);
1623 vms->memmap[i].base = base;
1624 vms->memmap[i].size = size;
1625 base += size;
1627 vms->highest_gpa = base - 1;
1628 if (device_memory_size > 0) {
1629 ms->device_memory = g_malloc0(sizeof(*ms->device_memory));
1630 ms->device_memory->base = device_memory_base;
1631 memory_region_init(&ms->device_memory->mr, OBJECT(vms),
1632 "device-memory", device_memory_size);
1637 * finalize_gic_version - Determines the final gic_version
1638 * according to the gic-version property
1640 * Default GIC type is v2
1642 static void finalize_gic_version(VirtMachineState *vms)
1644 unsigned int max_cpus = MACHINE(vms)->smp.max_cpus;
1646 if (kvm_enabled()) {
1647 int probe_bitmap;
1649 if (!kvm_irqchip_in_kernel()) {
1650 switch (vms->gic_version) {
1651 case VIRT_GIC_VERSION_HOST:
1652 warn_report(
1653 "gic-version=host not relevant with kernel-irqchip=off "
1654 "as only userspace GICv2 is supported. Using v2 ...");
1655 return;
1656 case VIRT_GIC_VERSION_MAX:
1657 case VIRT_GIC_VERSION_NOSEL:
1658 vms->gic_version = VIRT_GIC_VERSION_2;
1659 return;
1660 case VIRT_GIC_VERSION_2:
1661 return;
1662 case VIRT_GIC_VERSION_3:
1663 error_report(
1664 "gic-version=3 is not supported with kernel-irqchip=off");
1665 exit(1);
1669 probe_bitmap = kvm_arm_vgic_probe();
1670 if (!probe_bitmap) {
1671 error_report("Unable to determine GIC version supported by host");
1672 exit(1);
1675 switch (vms->gic_version) {
1676 case VIRT_GIC_VERSION_HOST:
1677 case VIRT_GIC_VERSION_MAX:
1678 if (probe_bitmap & KVM_ARM_VGIC_V3) {
1679 vms->gic_version = VIRT_GIC_VERSION_3;
1680 } else {
1681 vms->gic_version = VIRT_GIC_VERSION_2;
1683 return;
1684 case VIRT_GIC_VERSION_NOSEL:
1685 if ((probe_bitmap & KVM_ARM_VGIC_V2) && max_cpus <= GIC_NCPU) {
1686 vms->gic_version = VIRT_GIC_VERSION_2;
1687 } else if (probe_bitmap & KVM_ARM_VGIC_V3) {
1689 * in case the host does not support v2 in-kernel emulation or
1690 * the end-user requested more than 8 VCPUs we now default
1691 * to v3. In any case defaulting to v2 would be broken.
1693 vms->gic_version = VIRT_GIC_VERSION_3;
1694 } else if (max_cpus > GIC_NCPU) {
1695 error_report("host only supports in-kernel GICv2 emulation "
1696 "but more than 8 vcpus are requested");
1697 exit(1);
1699 break;
1700 case VIRT_GIC_VERSION_2:
1701 case VIRT_GIC_VERSION_3:
1702 break;
1705 /* Check chosen version is effectively supported by the host */
1706 if (vms->gic_version == VIRT_GIC_VERSION_2 &&
1707 !(probe_bitmap & KVM_ARM_VGIC_V2)) {
1708 error_report("host does not support in-kernel GICv2 emulation");
1709 exit(1);
1710 } else if (vms->gic_version == VIRT_GIC_VERSION_3 &&
1711 !(probe_bitmap & KVM_ARM_VGIC_V3)) {
1712 error_report("host does not support in-kernel GICv3 emulation");
1713 exit(1);
1715 return;
1718 /* TCG mode */
1719 switch (vms->gic_version) {
1720 case VIRT_GIC_VERSION_NOSEL:
1721 vms->gic_version = VIRT_GIC_VERSION_2;
1722 break;
1723 case VIRT_GIC_VERSION_MAX:
1724 vms->gic_version = VIRT_GIC_VERSION_3;
1725 break;
1726 case VIRT_GIC_VERSION_HOST:
1727 error_report("gic-version=host requires KVM");
1728 exit(1);
1729 case VIRT_GIC_VERSION_2:
1730 case VIRT_GIC_VERSION_3:
1731 break;
1736 * virt_cpu_post_init() must be called after the CPUs have
1737 * been realized and the GIC has been created.
1739 static void virt_cpu_post_init(VirtMachineState *vms, MemoryRegion *sysmem)
1741 int max_cpus = MACHINE(vms)->smp.max_cpus;
1742 bool aarch64, pmu, steal_time;
1743 CPUState *cpu;
1745 aarch64 = object_property_get_bool(OBJECT(first_cpu), "aarch64", NULL);
1746 pmu = object_property_get_bool(OBJECT(first_cpu), "pmu", NULL);
1747 steal_time = object_property_get_bool(OBJECT(first_cpu),
1748 "kvm-steal-time", NULL);
1750 if (kvm_enabled()) {
1751 hwaddr pvtime_reg_base = vms->memmap[VIRT_PVTIME].base;
1752 hwaddr pvtime_reg_size = vms->memmap[VIRT_PVTIME].size;
1754 if (steal_time) {
1755 MemoryRegion *pvtime = g_new(MemoryRegion, 1);
1756 hwaddr pvtime_size = max_cpus * PVTIME_SIZE_PER_CPU;
1758 /* The memory region size must be a multiple of host page size. */
1759 pvtime_size = REAL_HOST_PAGE_ALIGN(pvtime_size);
1761 if (pvtime_size > pvtime_reg_size) {
1762 error_report("pvtime requires a %" HWADDR_PRId
1763 " byte memory region for %d CPUs,"
1764 " but only %" HWADDR_PRId " has been reserved",
1765 pvtime_size, max_cpus, pvtime_reg_size);
1766 exit(1);
1769 memory_region_init_ram(pvtime, NULL, "pvtime", pvtime_size, NULL);
1770 memory_region_add_subregion(sysmem, pvtime_reg_base, pvtime);
1773 CPU_FOREACH(cpu) {
1774 if (pmu) {
1775 assert(arm_feature(&ARM_CPU(cpu)->env, ARM_FEATURE_PMU));
1776 if (kvm_irqchip_in_kernel()) {
1777 kvm_arm_pmu_set_irq(cpu, PPI(VIRTUAL_PMU_IRQ));
1779 kvm_arm_pmu_init(cpu);
1781 if (steal_time) {
1782 kvm_arm_pvtime_init(cpu, pvtime_reg_base +
1783 cpu->cpu_index * PVTIME_SIZE_PER_CPU);
1786 } else {
1787 if (aarch64 && vms->highmem) {
1788 int requested_pa_size = 64 - clz64(vms->highest_gpa);
1789 int pamax = arm_pamax(ARM_CPU(first_cpu));
1791 if (pamax < requested_pa_size) {
1792 error_report("VCPU supports less PA bits (%d) than "
1793 "requested by the memory map (%d)",
1794 pamax, requested_pa_size);
1795 exit(1);
1801 static void machvirt_init(MachineState *machine)
1803 VirtMachineState *vms = VIRT_MACHINE(machine);
1804 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(machine);
1805 MachineClass *mc = MACHINE_GET_CLASS(machine);
1806 const CPUArchIdList *possible_cpus;
1807 MemoryRegion *sysmem = get_system_memory();
1808 MemoryRegion *secure_sysmem = NULL;
1809 MemoryRegion *tag_sysmem = NULL;
1810 MemoryRegion *secure_tag_sysmem = NULL;
1811 int n, virt_max_cpus;
1812 bool firmware_loaded;
1813 bool aarch64 = true;
1814 bool has_ged = !vmc->no_ged;
1815 unsigned int smp_cpus = machine->smp.cpus;
1816 unsigned int max_cpus = machine->smp.max_cpus;
1819 * In accelerated mode, the memory map is computed earlier in kvm_type()
1820 * to create a VM with the right number of IPA bits.
1822 if (!vms->memmap) {
1823 virt_set_memmap(vms);
1826 /* We can probe only here because during property set
1827 * KVM is not available yet
1829 finalize_gic_version(vms);
1831 if (!cpu_type_valid(machine->cpu_type)) {
1832 error_report("mach-virt: CPU type %s not supported", machine->cpu_type);
1833 exit(1);
1836 if (vms->secure) {
1837 if (kvm_enabled()) {
1838 error_report("mach-virt: KVM does not support Security extensions");
1839 exit(1);
1843 * The Secure view of the world is the same as the NonSecure,
1844 * but with a few extra devices. Create it as a container region
1845 * containing the system memory at low priority; any secure-only
1846 * devices go in at higher priority and take precedence.
1848 secure_sysmem = g_new(MemoryRegion, 1);
1849 memory_region_init(secure_sysmem, OBJECT(machine), "secure-memory",
1850 UINT64_MAX);
1851 memory_region_add_subregion_overlap(secure_sysmem, 0, sysmem, -1);
1854 firmware_loaded = virt_firmware_init(vms, sysmem,
1855 secure_sysmem ?: sysmem);
1857 /* If we have an EL3 boot ROM then the assumption is that it will
1858 * implement PSCI itself, so disable QEMU's internal implementation
1859 * so it doesn't get in the way. Instead of starting secondary
1860 * CPUs in PSCI powerdown state we will start them all running and
1861 * let the boot ROM sort them out.
1862 * The usual case is that we do use QEMU's PSCI implementation;
1863 * if the guest has EL2 then we will use SMC as the conduit,
1864 * and otherwise we will use HVC (for backwards compatibility and
1865 * because if we're using KVM then we must use HVC).
1867 if (vms->secure && firmware_loaded) {
1868 vms->psci_conduit = QEMU_PSCI_CONDUIT_DISABLED;
1869 } else if (vms->virt) {
1870 vms->psci_conduit = QEMU_PSCI_CONDUIT_SMC;
1871 } else {
1872 vms->psci_conduit = QEMU_PSCI_CONDUIT_HVC;
1875 /* The maximum number of CPUs depends on the GIC version, or on how
1876 * many redistributors we can fit into the memory map.
1878 if (vms->gic_version == VIRT_GIC_VERSION_3) {
1879 virt_max_cpus =
1880 vms->memmap[VIRT_GIC_REDIST].size / GICV3_REDIST_SIZE;
1881 virt_max_cpus +=
1882 vms->memmap[VIRT_HIGH_GIC_REDIST2].size / GICV3_REDIST_SIZE;
1883 } else {
1884 virt_max_cpus = GIC_NCPU;
1887 if (max_cpus > virt_max_cpus) {
1888 error_report("Number of SMP CPUs requested (%d) exceeds max CPUs "
1889 "supported by machine 'mach-virt' (%d)",
1890 max_cpus, virt_max_cpus);
1891 exit(1);
1894 if (vms->virt && kvm_enabled()) {
1895 error_report("mach-virt: KVM does not support providing "
1896 "Virtualization extensions to the guest CPU");
1897 exit(1);
1900 if (vms->mte && kvm_enabled()) {
1901 error_report("mach-virt: KVM does not support providing "
1902 "MTE to the guest CPU");
1903 exit(1);
1906 create_fdt(vms);
1908 possible_cpus = mc->possible_cpu_arch_ids(machine);
1909 assert(possible_cpus->len == max_cpus);
1910 for (n = 0; n < possible_cpus->len; n++) {
1911 Object *cpuobj;
1912 CPUState *cs;
1914 if (n >= smp_cpus) {
1915 break;
1918 cpuobj = object_new(possible_cpus->cpus[n].type);
1919 object_property_set_int(cpuobj, "mp-affinity",
1920 possible_cpus->cpus[n].arch_id, NULL);
1922 cs = CPU(cpuobj);
1923 cs->cpu_index = n;
1925 numa_cpu_pre_plug(&possible_cpus->cpus[cs->cpu_index], DEVICE(cpuobj),
1926 &error_fatal);
1928 aarch64 &= object_property_get_bool(cpuobj, "aarch64", NULL);
1930 if (!vms->secure) {
1931 object_property_set_bool(cpuobj, "has_el3", false, NULL);
1934 if (!vms->virt && object_property_find(cpuobj, "has_el2")) {
1935 object_property_set_bool(cpuobj, "has_el2", false, NULL);
1938 if (vms->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED) {
1939 object_property_set_int(cpuobj, "psci-conduit", vms->psci_conduit,
1940 NULL);
1942 /* Secondary CPUs start in PSCI powered-down state */
1943 if (n > 0) {
1944 object_property_set_bool(cpuobj, "start-powered-off", true,
1945 NULL);
1949 if (vmc->kvm_no_adjvtime &&
1950 object_property_find(cpuobj, "kvm-no-adjvtime")) {
1951 object_property_set_bool(cpuobj, "kvm-no-adjvtime", true, NULL);
1954 if (vmc->no_kvm_steal_time &&
1955 object_property_find(cpuobj, "kvm-steal-time")) {
1956 object_property_set_bool(cpuobj, "kvm-steal-time", false, NULL);
1959 if (vmc->no_pmu && object_property_find(cpuobj, "pmu")) {
1960 object_property_set_bool(cpuobj, "pmu", false, NULL);
1963 if (object_property_find(cpuobj, "reset-cbar")) {
1964 object_property_set_int(cpuobj, "reset-cbar",
1965 vms->memmap[VIRT_CPUPERIPHS].base,
1966 &error_abort);
1969 object_property_set_link(cpuobj, "memory", OBJECT(sysmem),
1970 &error_abort);
1971 if (vms->secure) {
1972 object_property_set_link(cpuobj, "secure-memory",
1973 OBJECT(secure_sysmem), &error_abort);
1976 if (vms->mte) {
1977 /* Create the memory region only once, but link to all cpus. */
1978 if (!tag_sysmem) {
1980 * The property exists only if MemTag is supported.
1981 * If it is, we must allocate the ram to back that up.
1983 if (!object_property_find(cpuobj, "tag-memory")) {
1984 error_report("MTE requested, but not supported "
1985 "by the guest CPU");
1986 exit(1);
1989 tag_sysmem = g_new(MemoryRegion, 1);
1990 memory_region_init(tag_sysmem, OBJECT(machine),
1991 "tag-memory", UINT64_MAX / 32);
1993 if (vms->secure) {
1994 secure_tag_sysmem = g_new(MemoryRegion, 1);
1995 memory_region_init(secure_tag_sysmem, OBJECT(machine),
1996 "secure-tag-memory", UINT64_MAX / 32);
1998 /* As with ram, secure-tag takes precedence over tag. */
1999 memory_region_add_subregion_overlap(secure_tag_sysmem, 0,
2000 tag_sysmem, -1);
2004 object_property_set_link(cpuobj, "tag-memory", OBJECT(tag_sysmem),
2005 &error_abort);
2006 if (vms->secure) {
2007 object_property_set_link(cpuobj, "secure-tag-memory",
2008 OBJECT(secure_tag_sysmem),
2009 &error_abort);
2013 qdev_realize(DEVICE(cpuobj), NULL, &error_fatal);
2014 object_unref(cpuobj);
2016 fdt_add_timer_nodes(vms);
2017 fdt_add_cpu_nodes(vms);
2019 memory_region_add_subregion(sysmem, vms->memmap[VIRT_MEM].base,
2020 machine->ram);
2021 if (machine->device_memory) {
2022 memory_region_add_subregion(sysmem, machine->device_memory->base,
2023 &machine->device_memory->mr);
2026 virt_flash_fdt(vms, sysmem, secure_sysmem ?: sysmem);
2028 create_gic(vms);
2030 virt_cpu_post_init(vms, sysmem);
2032 fdt_add_pmu_nodes(vms);
2034 create_uart(vms, VIRT_UART, sysmem, serial_hd(0));
2036 if (vms->secure) {
2037 create_secure_ram(vms, secure_sysmem, secure_tag_sysmem);
2038 create_uart(vms, VIRT_SECURE_UART, secure_sysmem, serial_hd(1));
2041 if (tag_sysmem) {
2042 create_tag_ram(tag_sysmem, vms->memmap[VIRT_MEM].base,
2043 machine->ram_size, "mach-virt.tag");
2046 vms->highmem_ecam &= vms->highmem && (!firmware_loaded || aarch64);
2048 create_rtc(vms);
2050 create_pcie(vms);
2052 if (has_ged && aarch64 && firmware_loaded && virt_is_acpi_enabled(vms)) {
2053 vms->acpi_dev = create_acpi_ged(vms);
2054 } else {
2055 create_gpio_devices(vms, VIRT_GPIO, sysmem);
2058 if (vms->secure && !vmc->no_secure_gpio) {
2059 create_gpio_devices(vms, VIRT_SECURE_GPIO, secure_sysmem);
2062 /* connect powerdown request */
2063 vms->powerdown_notifier.notify = virt_powerdown_req;
2064 qemu_register_powerdown_notifier(&vms->powerdown_notifier);
2066 /* Create mmio transports, so the user can create virtio backends
2067 * (which will be automatically plugged in to the transports). If
2068 * no backend is created the transport will just sit harmlessly idle.
2070 create_virtio_devices(vms);
2072 vms->fw_cfg = create_fw_cfg(vms, &address_space_memory);
2073 rom_set_fw(vms->fw_cfg);
2075 create_platform_bus(vms);
2077 if (machine->nvdimms_state->is_enabled) {
2078 const struct AcpiGenericAddress arm_virt_nvdimm_acpi_dsmio = {
2079 .space_id = AML_AS_SYSTEM_MEMORY,
2080 .address = vms->memmap[VIRT_NVDIMM_ACPI].base,
2081 .bit_width = NVDIMM_ACPI_IO_LEN << 3
2084 nvdimm_init_acpi_state(machine->nvdimms_state, sysmem,
2085 arm_virt_nvdimm_acpi_dsmio,
2086 vms->fw_cfg, OBJECT(vms));
2089 vms->bootinfo.ram_size = machine->ram_size;
2090 vms->bootinfo.nb_cpus = smp_cpus;
2091 vms->bootinfo.board_id = -1;
2092 vms->bootinfo.loader_start = vms->memmap[VIRT_MEM].base;
2093 vms->bootinfo.get_dtb = machvirt_dtb;
2094 vms->bootinfo.skip_dtb_autoload = true;
2095 vms->bootinfo.firmware_loaded = firmware_loaded;
2096 arm_load_kernel(ARM_CPU(first_cpu), machine, &vms->bootinfo);
2098 vms->machine_done.notify = virt_machine_done;
2099 qemu_add_machine_init_done_notifier(&vms->machine_done);
2102 static bool virt_get_secure(Object *obj, Error **errp)
2104 VirtMachineState *vms = VIRT_MACHINE(obj);
2106 return vms->secure;
2109 static void virt_set_secure(Object *obj, bool value, Error **errp)
2111 VirtMachineState *vms = VIRT_MACHINE(obj);
2113 vms->secure = value;
2116 static bool virt_get_virt(Object *obj, Error **errp)
2118 VirtMachineState *vms = VIRT_MACHINE(obj);
2120 return vms->virt;
2123 static void virt_set_virt(Object *obj, bool value, Error **errp)
2125 VirtMachineState *vms = VIRT_MACHINE(obj);
2127 vms->virt = value;
2130 static bool virt_get_highmem(Object *obj, Error **errp)
2132 VirtMachineState *vms = VIRT_MACHINE(obj);
2134 return vms->highmem;
2137 static void virt_set_highmem(Object *obj, bool value, Error **errp)
2139 VirtMachineState *vms = VIRT_MACHINE(obj);
2141 vms->highmem = value;
2144 static bool virt_get_its(Object *obj, Error **errp)
2146 VirtMachineState *vms = VIRT_MACHINE(obj);
2148 return vms->its;
2151 static void virt_set_its(Object *obj, bool value, Error **errp)
2153 VirtMachineState *vms = VIRT_MACHINE(obj);
2155 vms->its = value;
2158 static char *virt_get_oem_id(Object *obj, Error **errp)
2160 VirtMachineState *vms = VIRT_MACHINE(obj);
2162 return g_strdup(vms->oem_id);
2165 static void virt_set_oem_id(Object *obj, const char *value, Error **errp)
2167 VirtMachineState *vms = VIRT_MACHINE(obj);
2168 size_t len = strlen(value);
2170 if (len > 6) {
2171 error_setg(errp,
2172 "User specified oem-id value is bigger than 6 bytes in size");
2173 return;
2176 strncpy(vms->oem_id, value, 6);
2179 static char *virt_get_oem_table_id(Object *obj, Error **errp)
2181 VirtMachineState *vms = VIRT_MACHINE(obj);
2183 return g_strdup(vms->oem_table_id);
2186 static void virt_set_oem_table_id(Object *obj, const char *value,
2187 Error **errp)
2189 VirtMachineState *vms = VIRT_MACHINE(obj);
2190 size_t len = strlen(value);
2192 if (len > 8) {
2193 error_setg(errp,
2194 "User specified oem-table-id value is bigger than 8 bytes in size");
2195 return;
2197 strncpy(vms->oem_table_id, value, 8);
2201 bool virt_is_acpi_enabled(VirtMachineState *vms)
2203 if (vms->acpi == ON_OFF_AUTO_OFF) {
2204 return false;
2206 return true;
2209 static void virt_get_acpi(Object *obj, Visitor *v, const char *name,
2210 void *opaque, Error **errp)
2212 VirtMachineState *vms = VIRT_MACHINE(obj);
2213 OnOffAuto acpi = vms->acpi;
2215 visit_type_OnOffAuto(v, name, &acpi, errp);
2218 static void virt_set_acpi(Object *obj, Visitor *v, const char *name,
2219 void *opaque, Error **errp)
2221 VirtMachineState *vms = VIRT_MACHINE(obj);
2223 visit_type_OnOffAuto(v, name, &vms->acpi, errp);
2226 static bool virt_get_ras(Object *obj, Error **errp)
2228 VirtMachineState *vms = VIRT_MACHINE(obj);
2230 return vms->ras;
2233 static void virt_set_ras(Object *obj, bool value, Error **errp)
2235 VirtMachineState *vms = VIRT_MACHINE(obj);
2237 vms->ras = value;
2240 static bool virt_get_mte(Object *obj, Error **errp)
2242 VirtMachineState *vms = VIRT_MACHINE(obj);
2244 return vms->mte;
2247 static void virt_set_mte(Object *obj, bool value, Error **errp)
2249 VirtMachineState *vms = VIRT_MACHINE(obj);
2251 vms->mte = value;
2254 static char *virt_get_gic_version(Object *obj, Error **errp)
2256 VirtMachineState *vms = VIRT_MACHINE(obj);
2257 const char *val = vms->gic_version == VIRT_GIC_VERSION_3 ? "3" : "2";
2259 return g_strdup(val);
2262 static void virt_set_gic_version(Object *obj, const char *value, Error **errp)
2264 VirtMachineState *vms = VIRT_MACHINE(obj);
2266 if (!strcmp(value, "3")) {
2267 vms->gic_version = VIRT_GIC_VERSION_3;
2268 } else if (!strcmp(value, "2")) {
2269 vms->gic_version = VIRT_GIC_VERSION_2;
2270 } else if (!strcmp(value, "host")) {
2271 vms->gic_version = VIRT_GIC_VERSION_HOST; /* Will probe later */
2272 } else if (!strcmp(value, "max")) {
2273 vms->gic_version = VIRT_GIC_VERSION_MAX; /* Will probe later */
2274 } else {
2275 error_setg(errp, "Invalid gic-version value");
2276 error_append_hint(errp, "Valid values are 3, 2, host, max.\n");
2280 static char *virt_get_iommu(Object *obj, Error **errp)
2282 VirtMachineState *vms = VIRT_MACHINE(obj);
2284 switch (vms->iommu) {
2285 case VIRT_IOMMU_NONE:
2286 return g_strdup("none");
2287 case VIRT_IOMMU_SMMUV3:
2288 return g_strdup("smmuv3");
2289 default:
2290 g_assert_not_reached();
2294 static void virt_set_iommu(Object *obj, const char *value, Error **errp)
2296 VirtMachineState *vms = VIRT_MACHINE(obj);
2298 if (!strcmp(value, "smmuv3")) {
2299 vms->iommu = VIRT_IOMMU_SMMUV3;
2300 } else if (!strcmp(value, "none")) {
2301 vms->iommu = VIRT_IOMMU_NONE;
2302 } else {
2303 error_setg(errp, "Invalid iommu value");
2304 error_append_hint(errp, "Valid values are none, smmuv3.\n");
2308 static CpuInstanceProperties
2309 virt_cpu_index_to_props(MachineState *ms, unsigned cpu_index)
2311 MachineClass *mc = MACHINE_GET_CLASS(ms);
2312 const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms);
2314 assert(cpu_index < possible_cpus->len);
2315 return possible_cpus->cpus[cpu_index].props;
2318 static int64_t virt_get_default_cpu_node_id(const MachineState *ms, int idx)
2320 return idx % ms->numa_state->num_nodes;
2323 static const CPUArchIdList *virt_possible_cpu_arch_ids(MachineState *ms)
2325 int n;
2326 unsigned int max_cpus = ms->smp.max_cpus;
2327 VirtMachineState *vms = VIRT_MACHINE(ms);
2329 if (ms->possible_cpus) {
2330 assert(ms->possible_cpus->len == max_cpus);
2331 return ms->possible_cpus;
2334 ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
2335 sizeof(CPUArchId) * max_cpus);
2336 ms->possible_cpus->len = max_cpus;
2337 for (n = 0; n < ms->possible_cpus->len; n++) {
2338 ms->possible_cpus->cpus[n].type = ms->cpu_type;
2339 ms->possible_cpus->cpus[n].arch_id =
2340 virt_cpu_mp_affinity(vms, n);
2341 ms->possible_cpus->cpus[n].props.has_thread_id = true;
2342 ms->possible_cpus->cpus[n].props.thread_id = n;
2344 return ms->possible_cpus;
2347 static void virt_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
2348 Error **errp)
2350 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2351 const MachineState *ms = MACHINE(hotplug_dev);
2352 const bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
2354 if (!vms->acpi_dev) {
2355 error_setg(errp,
2356 "memory hotplug is not enabled: missing acpi-ged device");
2357 return;
2360 if (vms->mte) {
2361 error_setg(errp, "memory hotplug is not enabled: MTE is enabled");
2362 return;
2365 if (is_nvdimm && !ms->nvdimms_state->is_enabled) {
2366 error_setg(errp, "nvdimm is not enabled: add 'nvdimm=on' to '-M'");
2367 return;
2370 pc_dimm_pre_plug(PC_DIMM(dev), MACHINE(hotplug_dev), NULL, errp);
2373 static void virt_memory_plug(HotplugHandler *hotplug_dev,
2374 DeviceState *dev, Error **errp)
2376 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2377 MachineState *ms = MACHINE(hotplug_dev);
2378 bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
2380 pc_dimm_plug(PC_DIMM(dev), MACHINE(vms));
2382 if (is_nvdimm) {
2383 nvdimm_plug(ms->nvdimms_state);
2386 hotplug_handler_plug(HOTPLUG_HANDLER(vms->acpi_dev),
2387 dev, &error_abort);
2390 static void virt_machine_device_pre_plug_cb(HotplugHandler *hotplug_dev,
2391 DeviceState *dev, Error **errp)
2393 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2395 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2396 virt_memory_pre_plug(hotplug_dev, dev, errp);
2397 } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_IOMMU_PCI)) {
2398 hwaddr db_start = 0, db_end = 0;
2399 char *resv_prop_str;
2401 switch (vms->msi_controller) {
2402 case VIRT_MSI_CTRL_NONE:
2403 return;
2404 case VIRT_MSI_CTRL_ITS:
2405 /* GITS_TRANSLATER page */
2406 db_start = base_memmap[VIRT_GIC_ITS].base + 0x10000;
2407 db_end = base_memmap[VIRT_GIC_ITS].base +
2408 base_memmap[VIRT_GIC_ITS].size - 1;
2409 break;
2410 case VIRT_MSI_CTRL_GICV2M:
2411 /* MSI_SETSPI_NS page */
2412 db_start = base_memmap[VIRT_GIC_V2M].base;
2413 db_end = db_start + base_memmap[VIRT_GIC_V2M].size - 1;
2414 break;
2416 resv_prop_str = g_strdup_printf("0x%"PRIx64":0x%"PRIx64":%u",
2417 db_start, db_end,
2418 VIRTIO_IOMMU_RESV_MEM_T_MSI);
2420 qdev_prop_set_uint32(dev, "len-reserved-regions", 1);
2421 qdev_prop_set_string(dev, "reserved-regions[0]", resv_prop_str);
2422 g_free(resv_prop_str);
2426 static void virt_machine_device_plug_cb(HotplugHandler *hotplug_dev,
2427 DeviceState *dev, Error **errp)
2429 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2431 if (vms->platform_bus_dev) {
2432 if (object_dynamic_cast(OBJECT(dev), TYPE_SYS_BUS_DEVICE)) {
2433 platform_bus_link_device(PLATFORM_BUS_DEVICE(vms->platform_bus_dev),
2434 SYS_BUS_DEVICE(dev));
2437 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2438 virt_memory_plug(hotplug_dev, dev, errp);
2440 if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_IOMMU_PCI)) {
2441 PCIDevice *pdev = PCI_DEVICE(dev);
2443 vms->iommu = VIRT_IOMMU_VIRTIO;
2444 vms->virtio_iommu_bdf = pci_get_bdf(pdev);
2445 create_virtio_iommu_dt_bindings(vms);
2449 static void virt_dimm_unplug_request(HotplugHandler *hotplug_dev,
2450 DeviceState *dev, Error **errp)
2452 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2453 Error *local_err = NULL;
2455 if (!vms->acpi_dev) {
2456 error_setg(&local_err,
2457 "memory hotplug is not enabled: missing acpi-ged device");
2458 goto out;
2461 if (object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM)) {
2462 error_setg(&local_err,
2463 "nvdimm device hot unplug is not supported yet.");
2464 goto out;
2467 hotplug_handler_unplug_request(HOTPLUG_HANDLER(vms->acpi_dev), dev,
2468 &local_err);
2469 out:
2470 error_propagate(errp, local_err);
2473 static void virt_dimm_unplug(HotplugHandler *hotplug_dev,
2474 DeviceState *dev, Error **errp)
2476 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2477 Error *local_err = NULL;
2479 hotplug_handler_unplug(HOTPLUG_HANDLER(vms->acpi_dev), dev, &local_err);
2480 if (local_err) {
2481 goto out;
2484 pc_dimm_unplug(PC_DIMM(dev), MACHINE(vms));
2485 qdev_unrealize(dev);
2487 out:
2488 error_propagate(errp, local_err);
2491 static void virt_machine_device_unplug_request_cb(HotplugHandler *hotplug_dev,
2492 DeviceState *dev, Error **errp)
2494 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2495 virt_dimm_unplug_request(hotplug_dev, dev, errp);
2496 } else {
2497 error_setg(errp, "device unplug request for unsupported device"
2498 " type: %s", object_get_typename(OBJECT(dev)));
2502 static void virt_machine_device_unplug_cb(HotplugHandler *hotplug_dev,
2503 DeviceState *dev, Error **errp)
2505 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2506 virt_dimm_unplug(hotplug_dev, dev, errp);
2507 } else {
2508 error_setg(errp, "virt: device unplug for unsupported device"
2509 " type: %s", object_get_typename(OBJECT(dev)));
2513 static HotplugHandler *virt_machine_get_hotplug_handler(MachineState *machine,
2514 DeviceState *dev)
2516 if (object_dynamic_cast(OBJECT(dev), TYPE_SYS_BUS_DEVICE) ||
2517 (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM))) {
2518 return HOTPLUG_HANDLER(machine);
2520 if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_IOMMU_PCI)) {
2521 VirtMachineState *vms = VIRT_MACHINE(machine);
2523 if (!vms->bootinfo.firmware_loaded || !virt_is_acpi_enabled(vms)) {
2524 return HOTPLUG_HANDLER(machine);
2527 return NULL;
2531 * for arm64 kvm_type [7-0] encodes the requested number of bits
2532 * in the IPA address space
2534 static int virt_kvm_type(MachineState *ms, const char *type_str)
2536 VirtMachineState *vms = VIRT_MACHINE(ms);
2537 int max_vm_pa_size = kvm_arm_get_max_vm_ipa_size(ms);
2538 int requested_pa_size;
2540 /* we freeze the memory map to compute the highest gpa */
2541 virt_set_memmap(vms);
2543 requested_pa_size = 64 - clz64(vms->highest_gpa);
2545 if (requested_pa_size > max_vm_pa_size) {
2546 error_report("-m and ,maxmem option values "
2547 "require an IPA range (%d bits) larger than "
2548 "the one supported by the host (%d bits)",
2549 requested_pa_size, max_vm_pa_size);
2550 exit(1);
2553 * By default we return 0 which corresponds to an implicit legacy
2554 * 40b IPA setting. Otherwise we return the actual requested PA
2555 * logsize
2557 return requested_pa_size > 40 ? requested_pa_size : 0;
2560 static void virt_machine_class_init(ObjectClass *oc, void *data)
2562 MachineClass *mc = MACHINE_CLASS(oc);
2563 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
2565 mc->init = machvirt_init;
2566 /* Start with max_cpus set to 512, which is the maximum supported by KVM.
2567 * The value may be reduced later when we have more information about the
2568 * configuration of the particular instance.
2570 mc->max_cpus = 512;
2571 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_CALXEDA_XGMAC);
2572 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_AMD_XGBE);
2573 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_RAMFB_DEVICE);
2574 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_PLATFORM);
2575 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_TPM_TIS_SYSBUS);
2576 mc->block_default_type = IF_VIRTIO;
2577 mc->no_cdrom = 1;
2578 mc->pci_allow_0_address = true;
2579 /* We know we will never create a pre-ARMv7 CPU which needs 1K pages */
2580 mc->minimum_page_bits = 12;
2581 mc->possible_cpu_arch_ids = virt_possible_cpu_arch_ids;
2582 mc->cpu_index_to_instance_props = virt_cpu_index_to_props;
2583 mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-a15");
2584 mc->get_default_cpu_node_id = virt_get_default_cpu_node_id;
2585 mc->kvm_type = virt_kvm_type;
2586 assert(!mc->get_hotplug_handler);
2587 mc->get_hotplug_handler = virt_machine_get_hotplug_handler;
2588 hc->pre_plug = virt_machine_device_pre_plug_cb;
2589 hc->plug = virt_machine_device_plug_cb;
2590 hc->unplug_request = virt_machine_device_unplug_request_cb;
2591 hc->unplug = virt_machine_device_unplug_cb;
2592 mc->nvdimm_supported = true;
2593 mc->auto_enable_numa_with_memhp = true;
2594 mc->auto_enable_numa_with_memdev = true;
2595 mc->default_ram_id = "mach-virt.ram";
2597 object_class_property_add(oc, "acpi", "OnOffAuto",
2598 virt_get_acpi, virt_set_acpi,
2599 NULL, NULL);
2600 object_class_property_set_description(oc, "acpi",
2601 "Enable ACPI");
2602 object_class_property_add_bool(oc, "secure", virt_get_secure,
2603 virt_set_secure);
2604 object_class_property_set_description(oc, "secure",
2605 "Set on/off to enable/disable the ARM "
2606 "Security Extensions (TrustZone)");
2608 object_class_property_add_bool(oc, "virtualization", virt_get_virt,
2609 virt_set_virt);
2610 object_class_property_set_description(oc, "virtualization",
2611 "Set on/off to enable/disable emulating a "
2612 "guest CPU which implements the ARM "
2613 "Virtualization Extensions");
2615 object_class_property_add_bool(oc, "highmem", virt_get_highmem,
2616 virt_set_highmem);
2617 object_class_property_set_description(oc, "highmem",
2618 "Set on/off to enable/disable using "
2619 "physical address space above 32 bits");
2621 object_class_property_add_str(oc, "gic-version", virt_get_gic_version,
2622 virt_set_gic_version);
2623 object_class_property_set_description(oc, "gic-version",
2624 "Set GIC version. "
2625 "Valid values are 2, 3, host and max");
2627 object_class_property_add_str(oc, "iommu", virt_get_iommu, virt_set_iommu);
2628 object_class_property_set_description(oc, "iommu",
2629 "Set the IOMMU type. "
2630 "Valid values are none and smmuv3");
2632 object_class_property_add_bool(oc, "ras", virt_get_ras,
2633 virt_set_ras);
2634 object_class_property_set_description(oc, "ras",
2635 "Set on/off to enable/disable reporting host memory errors "
2636 "to a KVM guest using ACPI and guest external abort exceptions");
2638 object_class_property_add_bool(oc, "mte", virt_get_mte, virt_set_mte);
2639 object_class_property_set_description(oc, "mte",
2640 "Set on/off to enable/disable emulating a "
2641 "guest CPU which implements the ARM "
2642 "Memory Tagging Extension");
2644 object_class_property_add_bool(oc, "its", virt_get_its,
2645 virt_set_its);
2646 object_class_property_set_description(oc, "its",
2647 "Set on/off to enable/disable "
2648 "ITS instantiation");
2650 object_class_property_add_str(oc, "oem-id",
2651 virt_get_oem_id,
2652 virt_set_oem_id);
2653 object_class_property_set_description(oc, "oem-id",
2654 "Override the default value of field OEMID "
2655 "in ACPI table header."
2656 "The string may be up to 6 bytes in size");
2659 object_class_property_add_str(oc, "oem-table-id",
2660 virt_get_oem_table_id,
2661 virt_set_oem_table_id);
2662 object_class_property_set_description(oc, "oem-table-id",
2663 "Override the default value of field OEM Table ID "
2664 "in ACPI table header."
2665 "The string may be up to 8 bytes in size");
2669 static void virt_instance_init(Object *obj)
2671 VirtMachineState *vms = VIRT_MACHINE(obj);
2672 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
2674 /* EL3 is disabled by default on virt: this makes us consistent
2675 * between KVM and TCG for this board, and it also allows us to
2676 * boot UEFI blobs which assume no TrustZone support.
2678 vms->secure = false;
2680 /* EL2 is also disabled by default, for similar reasons */
2681 vms->virt = false;
2683 /* High memory is enabled by default */
2684 vms->highmem = true;
2685 vms->gic_version = VIRT_GIC_VERSION_NOSEL;
2687 vms->highmem_ecam = !vmc->no_highmem_ecam;
2689 if (vmc->no_its) {
2690 vms->its = false;
2691 } else {
2692 /* Default allows ITS instantiation */
2693 vms->its = true;
2696 /* Default disallows iommu instantiation */
2697 vms->iommu = VIRT_IOMMU_NONE;
2699 /* Default disallows RAS instantiation */
2700 vms->ras = false;
2702 /* MTE is disabled by default. */
2703 vms->mte = false;
2705 vms->irqmap = a15irqmap;
2707 virt_flash_create(vms);
2709 vms->oem_id = g_strndup(ACPI_BUILD_APPNAME6, 6);
2710 vms->oem_table_id = g_strndup(ACPI_BUILD_APPNAME8, 8);
2713 static const TypeInfo virt_machine_info = {
2714 .name = TYPE_VIRT_MACHINE,
2715 .parent = TYPE_MACHINE,
2716 .abstract = true,
2717 .instance_size = sizeof(VirtMachineState),
2718 .class_size = sizeof(VirtMachineClass),
2719 .class_init = virt_machine_class_init,
2720 .instance_init = virt_instance_init,
2721 .interfaces = (InterfaceInfo[]) {
2722 { TYPE_HOTPLUG_HANDLER },
2727 static void machvirt_machine_init(void)
2729 type_register_static(&virt_machine_info);
2731 type_init(machvirt_machine_init);
2733 static void virt_machine_6_0_options(MachineClass *mc)
2736 DEFINE_VIRT_MACHINE_AS_LATEST(6, 0)
2738 static void virt_machine_5_2_options(MachineClass *mc)
2740 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2742 virt_machine_6_0_options(mc);
2743 compat_props_add(mc->compat_props, hw_compat_5_2, hw_compat_5_2_len);
2744 vmc->no_secure_gpio = true;
2746 DEFINE_VIRT_MACHINE(5, 2)
2748 static void virt_machine_5_1_options(MachineClass *mc)
2750 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2752 virt_machine_5_2_options(mc);
2753 compat_props_add(mc->compat_props, hw_compat_5_1, hw_compat_5_1_len);
2754 vmc->no_kvm_steal_time = true;
2756 DEFINE_VIRT_MACHINE(5, 1)
2758 static void virt_machine_5_0_options(MachineClass *mc)
2760 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2762 virt_machine_5_1_options(mc);
2763 compat_props_add(mc->compat_props, hw_compat_5_0, hw_compat_5_0_len);
2764 mc->numa_mem_supported = true;
2765 vmc->acpi_expose_flash = true;
2766 mc->auto_enable_numa_with_memdev = false;
2768 DEFINE_VIRT_MACHINE(5, 0)
2770 static void virt_machine_4_2_options(MachineClass *mc)
2772 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2774 virt_machine_5_0_options(mc);
2775 compat_props_add(mc->compat_props, hw_compat_4_2, hw_compat_4_2_len);
2776 vmc->kvm_no_adjvtime = true;
2778 DEFINE_VIRT_MACHINE(4, 2)
2780 static void virt_machine_4_1_options(MachineClass *mc)
2782 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2784 virt_machine_4_2_options(mc);
2785 compat_props_add(mc->compat_props, hw_compat_4_1, hw_compat_4_1_len);
2786 vmc->no_ged = true;
2787 mc->auto_enable_numa_with_memhp = false;
2789 DEFINE_VIRT_MACHINE(4, 1)
2791 static void virt_machine_4_0_options(MachineClass *mc)
2793 virt_machine_4_1_options(mc);
2794 compat_props_add(mc->compat_props, hw_compat_4_0, hw_compat_4_0_len);
2796 DEFINE_VIRT_MACHINE(4, 0)
2798 static void virt_machine_3_1_options(MachineClass *mc)
2800 virt_machine_4_0_options(mc);
2801 compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len);
2803 DEFINE_VIRT_MACHINE(3, 1)
2805 static void virt_machine_3_0_options(MachineClass *mc)
2807 virt_machine_3_1_options(mc);
2808 compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len);
2810 DEFINE_VIRT_MACHINE(3, 0)
2812 static void virt_machine_2_12_options(MachineClass *mc)
2814 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2816 virt_machine_3_0_options(mc);
2817 compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len);
2818 vmc->no_highmem_ecam = true;
2819 mc->max_cpus = 255;
2821 DEFINE_VIRT_MACHINE(2, 12)
2823 static void virt_machine_2_11_options(MachineClass *mc)
2825 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2827 virt_machine_2_12_options(mc);
2828 compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len);
2829 vmc->smbios_old_sys_ver = true;
2831 DEFINE_VIRT_MACHINE(2, 11)
2833 static void virt_machine_2_10_options(MachineClass *mc)
2835 virt_machine_2_11_options(mc);
2836 compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len);
2837 /* before 2.11 we never faulted accesses to bad addresses */
2838 mc->ignore_memory_transaction_failures = true;
2840 DEFINE_VIRT_MACHINE(2, 10)
2842 static void virt_machine_2_9_options(MachineClass *mc)
2844 virt_machine_2_10_options(mc);
2845 compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len);
2847 DEFINE_VIRT_MACHINE(2, 9)
2849 static void virt_machine_2_8_options(MachineClass *mc)
2851 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2853 virt_machine_2_9_options(mc);
2854 compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len);
2855 /* For 2.8 and earlier we falsely claimed in the DT that
2856 * our timers were edge-triggered, not level-triggered.
2858 vmc->claim_edge_triggered_timers = true;
2860 DEFINE_VIRT_MACHINE(2, 8)
2862 static void virt_machine_2_7_options(MachineClass *mc)
2864 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2866 virt_machine_2_8_options(mc);
2867 compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len);
2868 /* ITS was introduced with 2.8 */
2869 vmc->no_its = true;
2870 /* Stick with 1K pages for migration compatibility */
2871 mc->minimum_page_bits = 0;
2873 DEFINE_VIRT_MACHINE(2, 7)
2875 static void virt_machine_2_6_options(MachineClass *mc)
2877 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2879 virt_machine_2_7_options(mc);
2880 compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len);
2881 vmc->disallow_affinity_adjustment = true;
2882 /* Disable PMU for 2.6 as PMU support was first introduced in 2.7 */
2883 vmc->no_pmu = true;
2885 DEFINE_VIRT_MACHINE(2, 6)