s390x: upgrade status of KVM cores to "supported"
[qemu/ar7.git] / hw / intc / arm_gic.c
blobb3ac2d11fc54fe0acaf8d1f68b412af7010d574b
1 /*
2 * ARM Generic/Distributed Interrupt Controller
4 * Copyright (c) 2006-2007 CodeSourcery.
5 * Written by Paul Brook
7 * This code is licensed under the GPL.
8 */
10 /* This file contains implementation code for the RealView EB interrupt
11 * controller, MPCore distributed interrupt controller and ARMv7-M
12 * Nested Vectored Interrupt Controller.
13 * It is compiled in two ways:
14 * (1) as a standalone file to produce a sysbus device which is a GIC
15 * that can be used on the realview board and as one of the builtin
16 * private peripherals for the ARM MP CPUs (11MPCore, A9, etc)
17 * (2) by being directly #included into armv7m_nvic.c to produce the
18 * armv7m_nvic device.
21 #include "qemu/osdep.h"
22 #include "hw/sysbus.h"
23 #include "gic_internal.h"
24 #include "qapi/error.h"
25 #include "qom/cpu.h"
26 #include "qemu/log.h"
27 #include "trace.h"
28 #include "sysemu/kvm.h"
30 /* #define DEBUG_GIC */
32 #ifdef DEBUG_GIC
33 #define DEBUG_GIC_GATE 1
34 #else
35 #define DEBUG_GIC_GATE 0
36 #endif
38 #define DPRINTF(fmt, ...) do { \
39 if (DEBUG_GIC_GATE) { \
40 fprintf(stderr, "%s: " fmt, __func__, ## __VA_ARGS__); \
41 } \
42 } while (0)
44 static const uint8_t gic_id_11mpcore[] = {
45 0x00, 0x00, 0x00, 0x00, 0x90, 0x13, 0x04, 0x00, 0x0d, 0xf0, 0x05, 0xb1
48 static const uint8_t gic_id_gicv1[] = {
49 0x04, 0x00, 0x00, 0x00, 0x90, 0xb3, 0x1b, 0x00, 0x0d, 0xf0, 0x05, 0xb1
52 static const uint8_t gic_id_gicv2[] = {
53 0x04, 0x00, 0x00, 0x00, 0x90, 0xb4, 0x2b, 0x00, 0x0d, 0xf0, 0x05, 0xb1
56 static inline int gic_get_current_cpu(GICState *s)
58 if (s->num_cpu > 1) {
59 return current_cpu->cpu_index;
61 return 0;
64 static inline int gic_get_current_vcpu(GICState *s)
66 return gic_get_current_cpu(s) + GIC_NCPU;
69 /* Return true if this GIC config has interrupt groups, which is
70 * true if we're a GICv2, or a GICv1 with the security extensions.
72 static inline bool gic_has_groups(GICState *s)
74 return s->revision == 2 || s->security_extn;
77 static inline bool gic_cpu_ns_access(GICState *s, int cpu, MemTxAttrs attrs)
79 return !gic_is_vcpu(cpu) && s->security_extn && !attrs.secure;
82 static inline void gic_get_best_irq(GICState *s, int cpu,
83 int *best_irq, int *best_prio, int *group)
85 int irq;
86 int cm = 1 << cpu;
88 *best_irq = 1023;
89 *best_prio = 0x100;
91 for (irq = 0; irq < s->num_irq; irq++) {
92 if (GIC_DIST_TEST_ENABLED(irq, cm) && gic_test_pending(s, irq, cm) &&
93 (!GIC_DIST_TEST_ACTIVE(irq, cm)) &&
94 (irq < GIC_INTERNAL || GIC_DIST_TARGET(irq) & cm)) {
95 if (GIC_DIST_GET_PRIORITY(irq, cpu) < *best_prio) {
96 *best_prio = GIC_DIST_GET_PRIORITY(irq, cpu);
97 *best_irq = irq;
102 if (*best_irq < 1023) {
103 *group = GIC_DIST_TEST_GROUP(*best_irq, cm);
107 static inline void gic_get_best_virq(GICState *s, int cpu,
108 int *best_irq, int *best_prio, int *group)
110 int lr_idx = 0;
112 *best_irq = 1023;
113 *best_prio = 0x100;
115 for (lr_idx = 0; lr_idx < s->num_lrs; lr_idx++) {
116 uint32_t lr_entry = s->h_lr[lr_idx][cpu];
117 int state = GICH_LR_STATE(lr_entry);
119 if (state == GICH_LR_STATE_PENDING) {
120 int prio = GICH_LR_PRIORITY(lr_entry);
122 if (prio < *best_prio) {
123 *best_prio = prio;
124 *best_irq = GICH_LR_VIRT_ID(lr_entry);
125 *group = GICH_LR_GROUP(lr_entry);
131 /* Return true if IRQ signaling is enabled for the given cpu and at least one
132 * of the given groups:
133 * - in the non-virt case, the distributor must be enabled for one of the
134 * given groups
135 * - in the virt case, the virtual interface must be enabled.
136 * - in all cases, the (v)CPU interface must be enabled for one of the given
137 * groups.
139 static inline bool gic_irq_signaling_enabled(GICState *s, int cpu, bool virt,
140 int group_mask)
142 if (!virt && !(s->ctlr & group_mask)) {
143 return false;
146 if (virt && !(s->h_hcr[cpu] & R_GICH_HCR_EN_MASK)) {
147 return false;
150 if (!(s->cpu_ctlr[cpu] & group_mask)) {
151 return false;
154 return true;
157 /* TODO: Many places that call this routine could be optimized. */
158 /* Update interrupt status after enabled or pending bits have been changed. */
159 static inline void gic_update_internal(GICState *s, bool virt)
161 int best_irq;
162 int best_prio;
163 int irq_level, fiq_level;
164 int cpu, cpu_iface;
165 int group = 0;
166 qemu_irq *irq_lines = virt ? s->parent_virq : s->parent_irq;
167 qemu_irq *fiq_lines = virt ? s->parent_vfiq : s->parent_fiq;
169 for (cpu = 0; cpu < s->num_cpu; cpu++) {
170 cpu_iface = virt ? (cpu + GIC_NCPU) : cpu;
172 s->current_pending[cpu_iface] = 1023;
173 if (!gic_irq_signaling_enabled(s, cpu, virt,
174 GICD_CTLR_EN_GRP0 | GICD_CTLR_EN_GRP1)) {
175 qemu_irq_lower(irq_lines[cpu]);
176 qemu_irq_lower(fiq_lines[cpu]);
177 continue;
180 if (virt) {
181 gic_get_best_virq(s, cpu, &best_irq, &best_prio, &group);
182 } else {
183 gic_get_best_irq(s, cpu, &best_irq, &best_prio, &group);
186 if (best_irq != 1023) {
187 trace_gic_update_bestirq(virt ? "vcpu" : "cpu", cpu,
188 best_irq, best_prio,
189 s->priority_mask[cpu_iface],
190 s->running_priority[cpu_iface]);
193 irq_level = fiq_level = 0;
195 if (best_prio < s->priority_mask[cpu_iface]) {
196 s->current_pending[cpu_iface] = best_irq;
197 if (best_prio < s->running_priority[cpu_iface]) {
198 if (gic_irq_signaling_enabled(s, cpu, virt, 1 << group)) {
199 if (group == 0 &&
200 s->cpu_ctlr[cpu_iface] & GICC_CTLR_FIQ_EN) {
201 DPRINTF("Raised pending FIQ %d (cpu %d)\n",
202 best_irq, cpu_iface);
203 fiq_level = 1;
204 trace_gic_update_set_irq(cpu, virt ? "vfiq" : "fiq",
205 fiq_level);
206 } else {
207 DPRINTF("Raised pending IRQ %d (cpu %d)\n",
208 best_irq, cpu_iface);
209 irq_level = 1;
210 trace_gic_update_set_irq(cpu, virt ? "virq" : "irq",
211 irq_level);
217 qemu_set_irq(irq_lines[cpu], irq_level);
218 qemu_set_irq(fiq_lines[cpu], fiq_level);
222 static void gic_update(GICState *s)
224 gic_update_internal(s, false);
227 /* Return true if this LR is empty, i.e. the corresponding bit
228 * in ELRSR is set.
230 static inline bool gic_lr_entry_is_free(uint32_t entry)
232 return (GICH_LR_STATE(entry) == GICH_LR_STATE_INVALID)
233 && (GICH_LR_HW(entry) || !GICH_LR_EOI(entry));
236 /* Return true if this LR should trigger an EOI maintenance interrupt, i.e. the
237 * corrsponding bit in EISR is set.
239 static inline bool gic_lr_entry_is_eoi(uint32_t entry)
241 return (GICH_LR_STATE(entry) == GICH_LR_STATE_INVALID)
242 && !GICH_LR_HW(entry) && GICH_LR_EOI(entry);
245 static inline void gic_extract_lr_info(GICState *s, int cpu,
246 int *num_eoi, int *num_valid, int *num_pending)
248 int lr_idx;
250 *num_eoi = 0;
251 *num_valid = 0;
252 *num_pending = 0;
254 for (lr_idx = 0; lr_idx < s->num_lrs; lr_idx++) {
255 uint32_t *entry = &s->h_lr[lr_idx][cpu];
257 if (gic_lr_entry_is_eoi(*entry)) {
258 (*num_eoi)++;
261 if (GICH_LR_STATE(*entry) != GICH_LR_STATE_INVALID) {
262 (*num_valid)++;
265 if (GICH_LR_STATE(*entry) == GICH_LR_STATE_PENDING) {
266 (*num_pending)++;
271 static void gic_compute_misr(GICState *s, int cpu)
273 uint32_t value = 0;
274 int vcpu = cpu + GIC_NCPU;
276 int num_eoi, num_valid, num_pending;
278 gic_extract_lr_info(s, cpu, &num_eoi, &num_valid, &num_pending);
280 /* EOI */
281 if (num_eoi) {
282 value |= R_GICH_MISR_EOI_MASK;
285 /* U: true if only 0 or 1 LR entry is valid */
286 if ((s->h_hcr[cpu] & R_GICH_HCR_UIE_MASK) && (num_valid < 2)) {
287 value |= R_GICH_MISR_U_MASK;
290 /* LRENP: EOICount is not 0 */
291 if ((s->h_hcr[cpu] & R_GICH_HCR_LRENPIE_MASK) &&
292 ((s->h_hcr[cpu] & R_GICH_HCR_EOICount_MASK) != 0)) {
293 value |= R_GICH_MISR_LRENP_MASK;
296 /* NP: no pending interrupts */
297 if ((s->h_hcr[cpu] & R_GICH_HCR_NPIE_MASK) && (num_pending == 0)) {
298 value |= R_GICH_MISR_NP_MASK;
301 /* VGrp0E: group0 virq signaling enabled */
302 if ((s->h_hcr[cpu] & R_GICH_HCR_VGRP0EIE_MASK) &&
303 (s->cpu_ctlr[vcpu] & GICC_CTLR_EN_GRP0)) {
304 value |= R_GICH_MISR_VGrp0E_MASK;
307 /* VGrp0D: group0 virq signaling disabled */
308 if ((s->h_hcr[cpu] & R_GICH_HCR_VGRP0DIE_MASK) &&
309 !(s->cpu_ctlr[vcpu] & GICC_CTLR_EN_GRP0)) {
310 value |= R_GICH_MISR_VGrp0D_MASK;
313 /* VGrp1E: group1 virq signaling enabled */
314 if ((s->h_hcr[cpu] & R_GICH_HCR_VGRP1EIE_MASK) &&
315 (s->cpu_ctlr[vcpu] & GICC_CTLR_EN_GRP1)) {
316 value |= R_GICH_MISR_VGrp1E_MASK;
319 /* VGrp1D: group1 virq signaling disabled */
320 if ((s->h_hcr[cpu] & R_GICH_HCR_VGRP1DIE_MASK) &&
321 !(s->cpu_ctlr[vcpu] & GICC_CTLR_EN_GRP1)) {
322 value |= R_GICH_MISR_VGrp1D_MASK;
325 s->h_misr[cpu] = value;
328 static void gic_update_maintenance(GICState *s)
330 int cpu = 0;
331 int maint_level;
333 for (cpu = 0; cpu < s->num_cpu; cpu++) {
334 gic_compute_misr(s, cpu);
335 maint_level = (s->h_hcr[cpu] & R_GICH_HCR_EN_MASK) && s->h_misr[cpu];
337 trace_gic_update_maintenance_irq(cpu, maint_level);
338 qemu_set_irq(s->maintenance_irq[cpu], maint_level);
342 static void gic_update_virt(GICState *s)
344 gic_update_internal(s, true);
345 gic_update_maintenance(s);
348 static void gic_set_irq_11mpcore(GICState *s, int irq, int level,
349 int cm, int target)
351 if (level) {
352 GIC_DIST_SET_LEVEL(irq, cm);
353 if (GIC_DIST_TEST_EDGE_TRIGGER(irq) || GIC_DIST_TEST_ENABLED(irq, cm)) {
354 DPRINTF("Set %d pending mask %x\n", irq, target);
355 GIC_DIST_SET_PENDING(irq, target);
357 } else {
358 GIC_DIST_CLEAR_LEVEL(irq, cm);
362 static void gic_set_irq_generic(GICState *s, int irq, int level,
363 int cm, int target)
365 if (level) {
366 GIC_DIST_SET_LEVEL(irq, cm);
367 DPRINTF("Set %d pending mask %x\n", irq, target);
368 if (GIC_DIST_TEST_EDGE_TRIGGER(irq)) {
369 GIC_DIST_SET_PENDING(irq, target);
371 } else {
372 GIC_DIST_CLEAR_LEVEL(irq, cm);
376 /* Process a change in an external IRQ input. */
377 static void gic_set_irq(void *opaque, int irq, int level)
379 /* Meaning of the 'irq' parameter:
380 * [0..N-1] : external interrupts
381 * [N..N+31] : PPI (internal) interrupts for CPU 0
382 * [N+32..N+63] : PPI (internal interrupts for CPU 1
383 * ...
385 GICState *s = (GICState *)opaque;
386 int cm, target;
387 if (irq < (s->num_irq - GIC_INTERNAL)) {
388 /* The first external input line is internal interrupt 32. */
389 cm = ALL_CPU_MASK;
390 irq += GIC_INTERNAL;
391 target = GIC_DIST_TARGET(irq);
392 } else {
393 int cpu;
394 irq -= (s->num_irq - GIC_INTERNAL);
395 cpu = irq / GIC_INTERNAL;
396 irq %= GIC_INTERNAL;
397 cm = 1 << cpu;
398 target = cm;
401 assert(irq >= GIC_NR_SGIS);
403 if (level == GIC_DIST_TEST_LEVEL(irq, cm)) {
404 return;
407 if (s->revision == REV_11MPCORE) {
408 gic_set_irq_11mpcore(s, irq, level, cm, target);
409 } else {
410 gic_set_irq_generic(s, irq, level, cm, target);
412 trace_gic_set_irq(irq, level, cm, target);
414 gic_update(s);
417 static uint16_t gic_get_current_pending_irq(GICState *s, int cpu,
418 MemTxAttrs attrs)
420 uint16_t pending_irq = s->current_pending[cpu];
422 if (pending_irq < GIC_MAXIRQ && gic_has_groups(s)) {
423 int group = gic_test_group(s, pending_irq, cpu);
425 /* On a GIC without the security extensions, reading this register
426 * behaves in the same way as a secure access to a GIC with them.
428 bool secure = !gic_cpu_ns_access(s, cpu, attrs);
430 if (group == 0 && !secure) {
431 /* Group0 interrupts hidden from Non-secure access */
432 return 1023;
434 if (group == 1 && secure && !(s->cpu_ctlr[cpu] & GICC_CTLR_ACK_CTL)) {
435 /* Group1 interrupts only seen by Secure access if
436 * AckCtl bit set.
438 return 1022;
441 return pending_irq;
444 static int gic_get_group_priority(GICState *s, int cpu, int irq)
446 /* Return the group priority of the specified interrupt
447 * (which is the top bits of its priority, with the number
448 * of bits masked determined by the applicable binary point register).
450 int bpr;
451 uint32_t mask;
453 if (gic_has_groups(s) &&
454 !(s->cpu_ctlr[cpu] & GICC_CTLR_CBPR) &&
455 gic_test_group(s, irq, cpu)) {
456 bpr = s->abpr[cpu] - 1;
457 assert(bpr >= 0);
458 } else {
459 bpr = s->bpr[cpu];
462 /* a BPR of 0 means the group priority bits are [7:1];
463 * a BPR of 1 means they are [7:2], and so on down to
464 * a BPR of 7 meaning no group priority bits at all.
466 mask = ~0U << ((bpr & 7) + 1);
468 return gic_get_priority(s, irq, cpu) & mask;
471 static void gic_activate_irq(GICState *s, int cpu, int irq)
473 /* Set the appropriate Active Priority Register bit for this IRQ,
474 * and update the running priority.
476 int prio = gic_get_group_priority(s, cpu, irq);
477 int min_bpr = gic_is_vcpu(cpu) ? GIC_VIRT_MIN_BPR : GIC_MIN_BPR;
478 int preemption_level = prio >> (min_bpr + 1);
479 int regno = preemption_level / 32;
480 int bitno = preemption_level % 32;
481 uint32_t *papr = NULL;
483 if (gic_is_vcpu(cpu)) {
484 assert(regno == 0);
485 papr = &s->h_apr[gic_get_vcpu_real_id(cpu)];
486 } else if (gic_has_groups(s) && gic_test_group(s, irq, cpu)) {
487 papr = &s->nsapr[regno][cpu];
488 } else {
489 papr = &s->apr[regno][cpu];
492 *papr |= (1 << bitno);
494 s->running_priority[cpu] = prio;
495 gic_set_active(s, irq, cpu);
498 static int gic_get_prio_from_apr_bits(GICState *s, int cpu)
500 /* Recalculate the current running priority for this CPU based
501 * on the set bits in the Active Priority Registers.
503 int i;
505 if (gic_is_vcpu(cpu)) {
506 uint32_t apr = s->h_apr[gic_get_vcpu_real_id(cpu)];
507 if (apr) {
508 return ctz32(apr) << (GIC_VIRT_MIN_BPR + 1);
509 } else {
510 return 0x100;
514 for (i = 0; i < GIC_NR_APRS; i++) {
515 uint32_t apr = s->apr[i][cpu] | s->nsapr[i][cpu];
516 if (!apr) {
517 continue;
519 return (i * 32 + ctz32(apr)) << (GIC_MIN_BPR + 1);
521 return 0x100;
524 static void gic_drop_prio(GICState *s, int cpu, int group)
526 /* Drop the priority of the currently active interrupt in the
527 * specified group.
529 * Note that we can guarantee (because of the requirement to nest
530 * GICC_IAR reads [which activate an interrupt and raise priority]
531 * with GICC_EOIR writes [which drop the priority for the interrupt])
532 * that the interrupt we're being called for is the highest priority
533 * active interrupt, meaning that it has the lowest set bit in the
534 * APR registers.
536 * If the guest does not honour the ordering constraints then the
537 * behaviour of the GIC is UNPREDICTABLE, which for us means that
538 * the values of the APR registers might become incorrect and the
539 * running priority will be wrong, so interrupts that should preempt
540 * might not do so, and interrupts that should not preempt might do so.
542 if (gic_is_vcpu(cpu)) {
543 int rcpu = gic_get_vcpu_real_id(cpu);
545 if (s->h_apr[rcpu]) {
546 /* Clear lowest set bit */
547 s->h_apr[rcpu] &= s->h_apr[rcpu] - 1;
549 } else {
550 int i;
552 for (i = 0; i < GIC_NR_APRS; i++) {
553 uint32_t *papr = group ? &s->nsapr[i][cpu] : &s->apr[i][cpu];
554 if (!*papr) {
555 continue;
557 /* Clear lowest set bit */
558 *papr &= *papr - 1;
559 break;
563 s->running_priority[cpu] = gic_get_prio_from_apr_bits(s, cpu);
566 static inline uint32_t gic_clear_pending_sgi(GICState *s, int irq, int cpu)
568 int src;
569 uint32_t ret;
571 if (!gic_is_vcpu(cpu)) {
572 /* Lookup the source CPU for the SGI and clear this in the
573 * sgi_pending map. Return the src and clear the overall pending
574 * state on this CPU if the SGI is not pending from any CPUs.
576 assert(s->sgi_pending[irq][cpu] != 0);
577 src = ctz32(s->sgi_pending[irq][cpu]);
578 s->sgi_pending[irq][cpu] &= ~(1 << src);
579 if (s->sgi_pending[irq][cpu] == 0) {
580 gic_clear_pending(s, irq, cpu);
582 ret = irq | ((src & 0x7) << 10);
583 } else {
584 uint32_t *lr_entry = gic_get_lr_entry(s, irq, cpu);
585 src = GICH_LR_CPUID(*lr_entry);
587 gic_clear_pending(s, irq, cpu);
588 ret = irq | (src << 10);
591 return ret;
594 uint32_t gic_acknowledge_irq(GICState *s, int cpu, MemTxAttrs attrs)
596 int ret, irq;
598 /* gic_get_current_pending_irq() will return 1022 or 1023 appropriately
599 * for the case where this GIC supports grouping and the pending interrupt
600 * is in the wrong group.
602 irq = gic_get_current_pending_irq(s, cpu, attrs);
603 trace_gic_acknowledge_irq(gic_is_vcpu(cpu) ? "vcpu" : "cpu",
604 gic_get_vcpu_real_id(cpu), irq);
606 if (irq >= GIC_MAXIRQ) {
607 DPRINTF("ACK, no pending interrupt or it is hidden: %d\n", irq);
608 return irq;
611 if (gic_get_priority(s, irq, cpu) >= s->running_priority[cpu]) {
612 DPRINTF("ACK, pending interrupt (%d) has insufficient priority\n", irq);
613 return 1023;
616 gic_activate_irq(s, cpu, irq);
618 if (s->revision == REV_11MPCORE) {
619 /* Clear pending flags for both level and edge triggered interrupts.
620 * Level triggered IRQs will be reasserted once they become inactive.
622 gic_clear_pending(s, irq, cpu);
623 ret = irq;
624 } else {
625 if (irq < GIC_NR_SGIS) {
626 ret = gic_clear_pending_sgi(s, irq, cpu);
627 } else {
628 gic_clear_pending(s, irq, cpu);
629 ret = irq;
633 if (gic_is_vcpu(cpu)) {
634 gic_update_virt(s);
635 } else {
636 gic_update(s);
638 DPRINTF("ACK %d\n", irq);
639 return ret;
642 void gic_dist_set_priority(GICState *s, int cpu, int irq, uint8_t val,
643 MemTxAttrs attrs)
645 if (s->security_extn && !attrs.secure) {
646 if (!GIC_DIST_TEST_GROUP(irq, (1 << cpu))) {
647 return; /* Ignore Non-secure access of Group0 IRQ */
649 val = 0x80 | (val >> 1); /* Non-secure view */
652 if (irq < GIC_INTERNAL) {
653 s->priority1[irq][cpu] = val;
654 } else {
655 s->priority2[(irq) - GIC_INTERNAL] = val;
659 static uint32_t gic_dist_get_priority(GICState *s, int cpu, int irq,
660 MemTxAttrs attrs)
662 uint32_t prio = GIC_DIST_GET_PRIORITY(irq, cpu);
664 if (s->security_extn && !attrs.secure) {
665 if (!GIC_DIST_TEST_GROUP(irq, (1 << cpu))) {
666 return 0; /* Non-secure access cannot read priority of Group0 IRQ */
668 prio = (prio << 1) & 0xff; /* Non-secure view */
670 return prio;
673 static void gic_set_priority_mask(GICState *s, int cpu, uint8_t pmask,
674 MemTxAttrs attrs)
676 if (gic_cpu_ns_access(s, cpu, attrs)) {
677 if (s->priority_mask[cpu] & 0x80) {
678 /* Priority Mask in upper half */
679 pmask = 0x80 | (pmask >> 1);
680 } else {
681 /* Non-secure write ignored if priority mask is in lower half */
682 return;
685 s->priority_mask[cpu] = pmask;
688 static uint32_t gic_get_priority_mask(GICState *s, int cpu, MemTxAttrs attrs)
690 uint32_t pmask = s->priority_mask[cpu];
692 if (gic_cpu_ns_access(s, cpu, attrs)) {
693 if (pmask & 0x80) {
694 /* Priority Mask in upper half, return Non-secure view */
695 pmask = (pmask << 1) & 0xff;
696 } else {
697 /* Priority Mask in lower half, RAZ */
698 pmask = 0;
701 return pmask;
704 static uint32_t gic_get_cpu_control(GICState *s, int cpu, MemTxAttrs attrs)
706 uint32_t ret = s->cpu_ctlr[cpu];
708 if (gic_cpu_ns_access(s, cpu, attrs)) {
709 /* Construct the NS banked view of GICC_CTLR from the correct
710 * bits of the S banked view. We don't need to move the bypass
711 * control bits because we don't implement that (IMPDEF) part
712 * of the GIC architecture.
714 ret = (ret & (GICC_CTLR_EN_GRP1 | GICC_CTLR_EOIMODE_NS)) >> 1;
716 return ret;
719 static void gic_set_cpu_control(GICState *s, int cpu, uint32_t value,
720 MemTxAttrs attrs)
722 uint32_t mask;
724 if (gic_cpu_ns_access(s, cpu, attrs)) {
725 /* The NS view can only write certain bits in the register;
726 * the rest are unchanged
728 mask = GICC_CTLR_EN_GRP1;
729 if (s->revision == 2) {
730 mask |= GICC_CTLR_EOIMODE_NS;
732 s->cpu_ctlr[cpu] &= ~mask;
733 s->cpu_ctlr[cpu] |= (value << 1) & mask;
734 } else {
735 if (s->revision == 2) {
736 mask = s->security_extn ? GICC_CTLR_V2_S_MASK : GICC_CTLR_V2_MASK;
737 } else {
738 mask = s->security_extn ? GICC_CTLR_V1_S_MASK : GICC_CTLR_V1_MASK;
740 s->cpu_ctlr[cpu] = value & mask;
742 DPRINTF("CPU Interface %d: Group0 Interrupts %sabled, "
743 "Group1 Interrupts %sabled\n", cpu,
744 (s->cpu_ctlr[cpu] & GICC_CTLR_EN_GRP0) ? "En" : "Dis",
745 (s->cpu_ctlr[cpu] & GICC_CTLR_EN_GRP1) ? "En" : "Dis");
748 static uint8_t gic_get_running_priority(GICState *s, int cpu, MemTxAttrs attrs)
750 if ((s->revision != REV_11MPCORE) && (s->running_priority[cpu] > 0xff)) {
751 /* Idle priority */
752 return 0xff;
755 if (gic_cpu_ns_access(s, cpu, attrs)) {
756 if (s->running_priority[cpu] & 0x80) {
757 /* Running priority in upper half of range: return the Non-secure
758 * view of the priority.
760 return s->running_priority[cpu] << 1;
761 } else {
762 /* Running priority in lower half of range: RAZ */
763 return 0;
765 } else {
766 return s->running_priority[cpu];
770 /* Return true if we should split priority drop and interrupt deactivation,
771 * ie whether the relevant EOIMode bit is set.
773 static bool gic_eoi_split(GICState *s, int cpu, MemTxAttrs attrs)
775 if (s->revision != 2) {
776 /* Before GICv2 prio-drop and deactivate are not separable */
777 return false;
779 if (gic_cpu_ns_access(s, cpu, attrs)) {
780 return s->cpu_ctlr[cpu] & GICC_CTLR_EOIMODE_NS;
782 return s->cpu_ctlr[cpu] & GICC_CTLR_EOIMODE;
785 static void gic_deactivate_irq(GICState *s, int cpu, int irq, MemTxAttrs attrs)
787 int group;
789 if (irq >= GIC_MAXIRQ || (!gic_is_vcpu(cpu) && irq >= s->num_irq)) {
791 * This handles two cases:
792 * 1. If software writes the ID of a spurious interrupt [ie 1023]
793 * to the GICC_DIR, the GIC ignores that write.
794 * 2. If software writes the number of a non-existent interrupt
795 * this must be a subcase of "value written is not an active interrupt"
796 * and so this is UNPREDICTABLE. We choose to ignore it. For vCPUs,
797 * all IRQs potentially exist, so this limit does not apply.
799 return;
802 if (!gic_eoi_split(s, cpu, attrs)) {
803 /* This is UNPREDICTABLE; we choose to ignore it */
804 qemu_log_mask(LOG_GUEST_ERROR,
805 "gic_deactivate_irq: GICC_DIR write when EOIMode clear");
806 return;
809 if (gic_is_vcpu(cpu) && !gic_virq_is_valid(s, irq, cpu)) {
810 /* This vIRQ does not have an LR entry which is either active or
811 * pending and active. Increment EOICount and ignore the write.
813 int rcpu = gic_get_vcpu_real_id(cpu);
814 s->h_hcr[rcpu] += 1 << R_GICH_HCR_EOICount_SHIFT;
816 /* Update the virtual interface in case a maintenance interrupt should
817 * be raised.
819 gic_update_virt(s);
820 return;
823 group = gic_has_groups(s) && gic_test_group(s, irq, cpu);
825 if (gic_cpu_ns_access(s, cpu, attrs) && !group) {
826 DPRINTF("Non-secure DI for Group0 interrupt %d ignored\n", irq);
827 return;
830 gic_clear_active(s, irq, cpu);
833 static void gic_complete_irq(GICState *s, int cpu, int irq, MemTxAttrs attrs)
835 int cm = 1 << cpu;
836 int group;
838 DPRINTF("EOI %d\n", irq);
839 if (gic_is_vcpu(cpu)) {
840 /* The call to gic_prio_drop() will clear a bit in GICH_APR iff the
841 * running prio is < 0x100.
843 bool prio_drop = s->running_priority[cpu] < 0x100;
845 if (irq >= GIC_MAXIRQ) {
846 /* Ignore spurious interrupt */
847 return;
850 gic_drop_prio(s, cpu, 0);
852 if (!gic_eoi_split(s, cpu, attrs)) {
853 bool valid = gic_virq_is_valid(s, irq, cpu);
854 if (prio_drop && !valid) {
855 /* We are in a situation where:
856 * - V_CTRL.EOIMode is false (no EOI split),
857 * - The call to gic_drop_prio() cleared a bit in GICH_APR,
858 * - This vIRQ does not have an LR entry which is either
859 * active or pending and active.
860 * In that case, we must increment EOICount.
862 int rcpu = gic_get_vcpu_real_id(cpu);
863 s->h_hcr[rcpu] += 1 << R_GICH_HCR_EOICount_SHIFT;
864 } else if (valid) {
865 gic_clear_active(s, irq, cpu);
869 gic_update_virt(s);
870 return;
873 if (irq >= s->num_irq) {
874 /* This handles two cases:
875 * 1. If software writes the ID of a spurious interrupt [ie 1023]
876 * to the GICC_EOIR, the GIC ignores that write.
877 * 2. If software writes the number of a non-existent interrupt
878 * this must be a subcase of "value written does not match the last
879 * valid interrupt value read from the Interrupt Acknowledge
880 * register" and so this is UNPREDICTABLE. We choose to ignore it.
882 return;
884 if (s->running_priority[cpu] == 0x100) {
885 return; /* No active IRQ. */
888 if (s->revision == REV_11MPCORE) {
889 /* Mark level triggered interrupts as pending if they are still
890 raised. */
891 if (!GIC_DIST_TEST_EDGE_TRIGGER(irq) && GIC_DIST_TEST_ENABLED(irq, cm)
892 && GIC_DIST_TEST_LEVEL(irq, cm)
893 && (GIC_DIST_TARGET(irq) & cm) != 0) {
894 DPRINTF("Set %d pending mask %x\n", irq, cm);
895 GIC_DIST_SET_PENDING(irq, cm);
899 group = gic_has_groups(s) && gic_test_group(s, irq, cpu);
901 if (gic_cpu_ns_access(s, cpu, attrs) && !group) {
902 DPRINTF("Non-secure EOI for Group0 interrupt %d ignored\n", irq);
903 return;
906 /* Secure EOI with GICC_CTLR.AckCtl == 0 when the IRQ is a Group 1
907 * interrupt is UNPREDICTABLE. We choose to handle it as if AckCtl == 1,
908 * i.e. go ahead and complete the irq anyway.
911 gic_drop_prio(s, cpu, group);
913 /* In GICv2 the guest can choose to split priority-drop and deactivate */
914 if (!gic_eoi_split(s, cpu, attrs)) {
915 gic_clear_active(s, irq, cpu);
917 gic_update(s);
920 static uint32_t gic_dist_readb(void *opaque, hwaddr offset, MemTxAttrs attrs)
922 GICState *s = (GICState *)opaque;
923 uint32_t res;
924 int irq;
925 int i;
926 int cpu;
927 int cm;
928 int mask;
930 cpu = gic_get_current_cpu(s);
931 cm = 1 << cpu;
932 if (offset < 0x100) {
933 if (offset == 0) { /* GICD_CTLR */
934 if (s->security_extn && !attrs.secure) {
935 /* The NS bank of this register is just an alias of the
936 * EnableGrp1 bit in the S bank version.
938 return extract32(s->ctlr, 1, 1);
939 } else {
940 return s->ctlr;
943 if (offset == 4)
944 /* Interrupt Controller Type Register */
945 return ((s->num_irq / 32) - 1)
946 | ((s->num_cpu - 1) << 5)
947 | (s->security_extn << 10);
948 if (offset < 0x08)
949 return 0;
950 if (offset >= 0x80) {
951 /* Interrupt Group Registers: these RAZ/WI if this is an NS
952 * access to a GIC with the security extensions, or if the GIC
953 * doesn't have groups at all.
955 res = 0;
956 if (!(s->security_extn && !attrs.secure) && gic_has_groups(s)) {
957 /* Every byte offset holds 8 group status bits */
958 irq = (offset - 0x080) * 8;
959 if (irq >= s->num_irq) {
960 goto bad_reg;
962 for (i = 0; i < 8; i++) {
963 if (GIC_DIST_TEST_GROUP(irq + i, cm)) {
964 res |= (1 << i);
968 return res;
970 goto bad_reg;
971 } else if (offset < 0x200) {
972 /* Interrupt Set/Clear Enable. */
973 if (offset < 0x180)
974 irq = (offset - 0x100) * 8;
975 else
976 irq = (offset - 0x180) * 8;
977 if (irq >= s->num_irq)
978 goto bad_reg;
979 res = 0;
980 for (i = 0; i < 8; i++) {
981 if (s->security_extn && !attrs.secure &&
982 !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
983 continue; /* Ignore Non-secure access of Group0 IRQ */
986 if (GIC_DIST_TEST_ENABLED(irq + i, cm)) {
987 res |= (1 << i);
990 } else if (offset < 0x300) {
991 /* Interrupt Set/Clear Pending. */
992 if (offset < 0x280)
993 irq = (offset - 0x200) * 8;
994 else
995 irq = (offset - 0x280) * 8;
996 if (irq >= s->num_irq)
997 goto bad_reg;
998 res = 0;
999 mask = (irq < GIC_INTERNAL) ? cm : ALL_CPU_MASK;
1000 for (i = 0; i < 8; i++) {
1001 if (s->security_extn && !attrs.secure &&
1002 !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
1003 continue; /* Ignore Non-secure access of Group0 IRQ */
1006 if (gic_test_pending(s, irq + i, mask)) {
1007 res |= (1 << i);
1010 } else if (offset < 0x400) {
1011 /* Interrupt Set/Clear Active. */
1012 if (offset < 0x380) {
1013 irq = (offset - 0x300) * 8;
1014 } else if (s->revision == 2) {
1015 irq = (offset - 0x380) * 8;
1016 } else {
1017 goto bad_reg;
1020 if (irq >= s->num_irq)
1021 goto bad_reg;
1022 res = 0;
1023 mask = (irq < GIC_INTERNAL) ? cm : ALL_CPU_MASK;
1024 for (i = 0; i < 8; i++) {
1025 if (s->security_extn && !attrs.secure &&
1026 !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
1027 continue; /* Ignore Non-secure access of Group0 IRQ */
1030 if (GIC_DIST_TEST_ACTIVE(irq + i, mask)) {
1031 res |= (1 << i);
1034 } else if (offset < 0x800) {
1035 /* Interrupt Priority. */
1036 irq = (offset - 0x400);
1037 if (irq >= s->num_irq)
1038 goto bad_reg;
1039 res = gic_dist_get_priority(s, cpu, irq, attrs);
1040 } else if (offset < 0xc00) {
1041 /* Interrupt CPU Target. */
1042 if (s->num_cpu == 1 && s->revision != REV_11MPCORE) {
1043 /* For uniprocessor GICs these RAZ/WI */
1044 res = 0;
1045 } else {
1046 irq = (offset - 0x800);
1047 if (irq >= s->num_irq) {
1048 goto bad_reg;
1050 if (irq < 29 && s->revision == REV_11MPCORE) {
1051 res = 0;
1052 } else if (irq < GIC_INTERNAL) {
1053 res = cm;
1054 } else {
1055 res = GIC_DIST_TARGET(irq);
1058 } else if (offset < 0xf00) {
1059 /* Interrupt Configuration. */
1060 irq = (offset - 0xc00) * 4;
1061 if (irq >= s->num_irq)
1062 goto bad_reg;
1063 res = 0;
1064 for (i = 0; i < 4; i++) {
1065 if (s->security_extn && !attrs.secure &&
1066 !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
1067 continue; /* Ignore Non-secure access of Group0 IRQ */
1070 if (GIC_DIST_TEST_MODEL(irq + i)) {
1071 res |= (1 << (i * 2));
1073 if (GIC_DIST_TEST_EDGE_TRIGGER(irq + i)) {
1074 res |= (2 << (i * 2));
1077 } else if (offset < 0xf10) {
1078 goto bad_reg;
1079 } else if (offset < 0xf30) {
1080 if (s->revision == REV_11MPCORE) {
1081 goto bad_reg;
1084 if (offset < 0xf20) {
1085 /* GICD_CPENDSGIRn */
1086 irq = (offset - 0xf10);
1087 } else {
1088 irq = (offset - 0xf20);
1089 /* GICD_SPENDSGIRn */
1092 if (s->security_extn && !attrs.secure &&
1093 !GIC_DIST_TEST_GROUP(irq, 1 << cpu)) {
1094 res = 0; /* Ignore Non-secure access of Group0 IRQ */
1095 } else {
1096 res = s->sgi_pending[irq][cpu];
1098 } else if (offset < 0xfd0) {
1099 goto bad_reg;
1100 } else if (offset < 0x1000) {
1101 if (offset & 3) {
1102 res = 0;
1103 } else {
1104 switch (s->revision) {
1105 case REV_11MPCORE:
1106 res = gic_id_11mpcore[(offset - 0xfd0) >> 2];
1107 break;
1108 case 1:
1109 res = gic_id_gicv1[(offset - 0xfd0) >> 2];
1110 break;
1111 case 2:
1112 res = gic_id_gicv2[(offset - 0xfd0) >> 2];
1113 break;
1114 default:
1115 res = 0;
1118 } else {
1119 g_assert_not_reached();
1121 return res;
1122 bad_reg:
1123 qemu_log_mask(LOG_GUEST_ERROR,
1124 "gic_dist_readb: Bad offset %x\n", (int)offset);
1125 return 0;
1128 static MemTxResult gic_dist_read(void *opaque, hwaddr offset, uint64_t *data,
1129 unsigned size, MemTxAttrs attrs)
1131 switch (size) {
1132 case 1:
1133 *data = gic_dist_readb(opaque, offset, attrs);
1134 break;
1135 case 2:
1136 *data = gic_dist_readb(opaque, offset, attrs);
1137 *data |= gic_dist_readb(opaque, offset + 1, attrs) << 8;
1138 break;
1139 case 4:
1140 *data = gic_dist_readb(opaque, offset, attrs);
1141 *data |= gic_dist_readb(opaque, offset + 1, attrs) << 8;
1142 *data |= gic_dist_readb(opaque, offset + 2, attrs) << 16;
1143 *data |= gic_dist_readb(opaque, offset + 3, attrs) << 24;
1144 break;
1145 default:
1146 return MEMTX_ERROR;
1149 trace_gic_dist_read(offset, size, *data);
1150 return MEMTX_OK;
1153 static void gic_dist_writeb(void *opaque, hwaddr offset,
1154 uint32_t value, MemTxAttrs attrs)
1156 GICState *s = (GICState *)opaque;
1157 int irq;
1158 int i;
1159 int cpu;
1161 cpu = gic_get_current_cpu(s);
1162 if (offset < 0x100) {
1163 if (offset == 0) {
1164 if (s->security_extn && !attrs.secure) {
1165 /* NS version is just an alias of the S version's bit 1 */
1166 s->ctlr = deposit32(s->ctlr, 1, 1, value);
1167 } else if (gic_has_groups(s)) {
1168 s->ctlr = value & (GICD_CTLR_EN_GRP0 | GICD_CTLR_EN_GRP1);
1169 } else {
1170 s->ctlr = value & GICD_CTLR_EN_GRP0;
1172 DPRINTF("Distributor: Group0 %sabled; Group 1 %sabled\n",
1173 s->ctlr & GICD_CTLR_EN_GRP0 ? "En" : "Dis",
1174 s->ctlr & GICD_CTLR_EN_GRP1 ? "En" : "Dis");
1175 } else if (offset < 4) {
1176 /* ignored. */
1177 } else if (offset >= 0x80) {
1178 /* Interrupt Group Registers: RAZ/WI for NS access to secure
1179 * GIC, or for GICs without groups.
1181 if (!(s->security_extn && !attrs.secure) && gic_has_groups(s)) {
1182 /* Every byte offset holds 8 group status bits */
1183 irq = (offset - 0x80) * 8;
1184 if (irq >= s->num_irq) {
1185 goto bad_reg;
1187 for (i = 0; i < 8; i++) {
1188 /* Group bits are banked for private interrupts */
1189 int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK;
1190 if (value & (1 << i)) {
1191 /* Group1 (Non-secure) */
1192 GIC_DIST_SET_GROUP(irq + i, cm);
1193 } else {
1194 /* Group0 (Secure) */
1195 GIC_DIST_CLEAR_GROUP(irq + i, cm);
1199 } else {
1200 goto bad_reg;
1202 } else if (offset < 0x180) {
1203 /* Interrupt Set Enable. */
1204 irq = (offset - 0x100) * 8;
1205 if (irq >= s->num_irq)
1206 goto bad_reg;
1207 if (irq < GIC_NR_SGIS) {
1208 value = 0xff;
1211 for (i = 0; i < 8; i++) {
1212 if (value & (1 << i)) {
1213 int mask =
1214 (irq < GIC_INTERNAL) ? (1 << cpu)
1215 : GIC_DIST_TARGET(irq + i);
1216 int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK;
1218 if (s->security_extn && !attrs.secure &&
1219 !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
1220 continue; /* Ignore Non-secure access of Group0 IRQ */
1223 if (!GIC_DIST_TEST_ENABLED(irq + i, cm)) {
1224 DPRINTF("Enabled IRQ %d\n", irq + i);
1225 trace_gic_enable_irq(irq + i);
1227 GIC_DIST_SET_ENABLED(irq + i, cm);
1228 /* If a raised level triggered IRQ enabled then mark
1229 is as pending. */
1230 if (GIC_DIST_TEST_LEVEL(irq + i, mask)
1231 && !GIC_DIST_TEST_EDGE_TRIGGER(irq + i)) {
1232 DPRINTF("Set %d pending mask %x\n", irq + i, mask);
1233 GIC_DIST_SET_PENDING(irq + i, mask);
1237 } else if (offset < 0x200) {
1238 /* Interrupt Clear Enable. */
1239 irq = (offset - 0x180) * 8;
1240 if (irq >= s->num_irq)
1241 goto bad_reg;
1242 if (irq < GIC_NR_SGIS) {
1243 value = 0;
1246 for (i = 0; i < 8; i++) {
1247 if (value & (1 << i)) {
1248 int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK;
1250 if (s->security_extn && !attrs.secure &&
1251 !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
1252 continue; /* Ignore Non-secure access of Group0 IRQ */
1255 if (GIC_DIST_TEST_ENABLED(irq + i, cm)) {
1256 DPRINTF("Disabled IRQ %d\n", irq + i);
1257 trace_gic_disable_irq(irq + i);
1259 GIC_DIST_CLEAR_ENABLED(irq + i, cm);
1262 } else if (offset < 0x280) {
1263 /* Interrupt Set Pending. */
1264 irq = (offset - 0x200) * 8;
1265 if (irq >= s->num_irq)
1266 goto bad_reg;
1267 if (irq < GIC_NR_SGIS) {
1268 value = 0;
1271 for (i = 0; i < 8; i++) {
1272 if (value & (1 << i)) {
1273 if (s->security_extn && !attrs.secure &&
1274 !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
1275 continue; /* Ignore Non-secure access of Group0 IRQ */
1278 GIC_DIST_SET_PENDING(irq + i, GIC_DIST_TARGET(irq + i));
1281 } else if (offset < 0x300) {
1282 /* Interrupt Clear Pending. */
1283 irq = (offset - 0x280) * 8;
1284 if (irq >= s->num_irq)
1285 goto bad_reg;
1286 if (irq < GIC_NR_SGIS) {
1287 value = 0;
1290 for (i = 0; i < 8; i++) {
1291 if (s->security_extn && !attrs.secure &&
1292 !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
1293 continue; /* Ignore Non-secure access of Group0 IRQ */
1296 /* ??? This currently clears the pending bit for all CPUs, even
1297 for per-CPU interrupts. It's unclear whether this is the
1298 corect behavior. */
1299 if (value & (1 << i)) {
1300 GIC_DIST_CLEAR_PENDING(irq + i, ALL_CPU_MASK);
1303 } else if (offset < 0x380) {
1304 /* Interrupt Set Active. */
1305 if (s->revision != 2) {
1306 goto bad_reg;
1309 irq = (offset - 0x300) * 8;
1310 if (irq >= s->num_irq) {
1311 goto bad_reg;
1314 /* This register is banked per-cpu for PPIs */
1315 int cm = irq < GIC_INTERNAL ? (1 << cpu) : ALL_CPU_MASK;
1317 for (i = 0; i < 8; i++) {
1318 if (s->security_extn && !attrs.secure &&
1319 !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
1320 continue; /* Ignore Non-secure access of Group0 IRQ */
1323 if (value & (1 << i)) {
1324 GIC_DIST_SET_ACTIVE(irq + i, cm);
1327 } else if (offset < 0x400) {
1328 /* Interrupt Clear Active. */
1329 if (s->revision != 2) {
1330 goto bad_reg;
1333 irq = (offset - 0x380) * 8;
1334 if (irq >= s->num_irq) {
1335 goto bad_reg;
1338 /* This register is banked per-cpu for PPIs */
1339 int cm = irq < GIC_INTERNAL ? (1 << cpu) : ALL_CPU_MASK;
1341 for (i = 0; i < 8; i++) {
1342 if (s->security_extn && !attrs.secure &&
1343 !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
1344 continue; /* Ignore Non-secure access of Group0 IRQ */
1347 if (value & (1 << i)) {
1348 GIC_DIST_CLEAR_ACTIVE(irq + i, cm);
1351 } else if (offset < 0x800) {
1352 /* Interrupt Priority. */
1353 irq = (offset - 0x400);
1354 if (irq >= s->num_irq)
1355 goto bad_reg;
1356 gic_dist_set_priority(s, cpu, irq, value, attrs);
1357 } else if (offset < 0xc00) {
1358 /* Interrupt CPU Target. RAZ/WI on uniprocessor GICs, with the
1359 * annoying exception of the 11MPCore's GIC.
1361 if (s->num_cpu != 1 || s->revision == REV_11MPCORE) {
1362 irq = (offset - 0x800);
1363 if (irq >= s->num_irq) {
1364 goto bad_reg;
1366 if (irq < 29 && s->revision == REV_11MPCORE) {
1367 value = 0;
1368 } else if (irq < GIC_INTERNAL) {
1369 value = ALL_CPU_MASK;
1371 s->irq_target[irq] = value & ALL_CPU_MASK;
1373 } else if (offset < 0xf00) {
1374 /* Interrupt Configuration. */
1375 irq = (offset - 0xc00) * 4;
1376 if (irq >= s->num_irq)
1377 goto bad_reg;
1378 if (irq < GIC_NR_SGIS)
1379 value |= 0xaa;
1380 for (i = 0; i < 4; i++) {
1381 if (s->security_extn && !attrs.secure &&
1382 !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
1383 continue; /* Ignore Non-secure access of Group0 IRQ */
1386 if (s->revision == REV_11MPCORE) {
1387 if (value & (1 << (i * 2))) {
1388 GIC_DIST_SET_MODEL(irq + i);
1389 } else {
1390 GIC_DIST_CLEAR_MODEL(irq + i);
1393 if (value & (2 << (i * 2))) {
1394 GIC_DIST_SET_EDGE_TRIGGER(irq + i);
1395 } else {
1396 GIC_DIST_CLEAR_EDGE_TRIGGER(irq + i);
1399 } else if (offset < 0xf10) {
1400 /* 0xf00 is only handled for 32-bit writes. */
1401 goto bad_reg;
1402 } else if (offset < 0xf20) {
1403 /* GICD_CPENDSGIRn */
1404 if (s->revision == REV_11MPCORE) {
1405 goto bad_reg;
1407 irq = (offset - 0xf10);
1409 if (!s->security_extn || attrs.secure ||
1410 GIC_DIST_TEST_GROUP(irq, 1 << cpu)) {
1411 s->sgi_pending[irq][cpu] &= ~value;
1412 if (s->sgi_pending[irq][cpu] == 0) {
1413 GIC_DIST_CLEAR_PENDING(irq, 1 << cpu);
1416 } else if (offset < 0xf30) {
1417 /* GICD_SPENDSGIRn */
1418 if (s->revision == REV_11MPCORE) {
1419 goto bad_reg;
1421 irq = (offset - 0xf20);
1423 if (!s->security_extn || attrs.secure ||
1424 GIC_DIST_TEST_GROUP(irq, 1 << cpu)) {
1425 GIC_DIST_SET_PENDING(irq, 1 << cpu);
1426 s->sgi_pending[irq][cpu] |= value;
1428 } else {
1429 goto bad_reg;
1431 gic_update(s);
1432 return;
1433 bad_reg:
1434 qemu_log_mask(LOG_GUEST_ERROR,
1435 "gic_dist_writeb: Bad offset %x\n", (int)offset);
1438 static void gic_dist_writew(void *opaque, hwaddr offset,
1439 uint32_t value, MemTxAttrs attrs)
1441 gic_dist_writeb(opaque, offset, value & 0xff, attrs);
1442 gic_dist_writeb(opaque, offset + 1, value >> 8, attrs);
1445 static void gic_dist_writel(void *opaque, hwaddr offset,
1446 uint32_t value, MemTxAttrs attrs)
1448 GICState *s = (GICState *)opaque;
1449 if (offset == 0xf00) {
1450 int cpu;
1451 int irq;
1452 int mask;
1453 int target_cpu;
1455 cpu = gic_get_current_cpu(s);
1456 irq = value & 0x3ff;
1457 switch ((value >> 24) & 3) {
1458 case 0:
1459 mask = (value >> 16) & ALL_CPU_MASK;
1460 break;
1461 case 1:
1462 mask = ALL_CPU_MASK ^ (1 << cpu);
1463 break;
1464 case 2:
1465 mask = 1 << cpu;
1466 break;
1467 default:
1468 DPRINTF("Bad Soft Int target filter\n");
1469 mask = ALL_CPU_MASK;
1470 break;
1472 GIC_DIST_SET_PENDING(irq, mask);
1473 target_cpu = ctz32(mask);
1474 while (target_cpu < GIC_NCPU) {
1475 s->sgi_pending[irq][target_cpu] |= (1 << cpu);
1476 mask &= ~(1 << target_cpu);
1477 target_cpu = ctz32(mask);
1479 gic_update(s);
1480 return;
1482 gic_dist_writew(opaque, offset, value & 0xffff, attrs);
1483 gic_dist_writew(opaque, offset + 2, value >> 16, attrs);
1486 static MemTxResult gic_dist_write(void *opaque, hwaddr offset, uint64_t data,
1487 unsigned size, MemTxAttrs attrs)
1489 trace_gic_dist_write(offset, size, data);
1491 switch (size) {
1492 case 1:
1493 gic_dist_writeb(opaque, offset, data, attrs);
1494 return MEMTX_OK;
1495 case 2:
1496 gic_dist_writew(opaque, offset, data, attrs);
1497 return MEMTX_OK;
1498 case 4:
1499 gic_dist_writel(opaque, offset, data, attrs);
1500 return MEMTX_OK;
1501 default:
1502 return MEMTX_ERROR;
1506 static inline uint32_t gic_apr_ns_view(GICState *s, int cpu, int regno)
1508 /* Return the Nonsecure view of GICC_APR<regno>. This is the
1509 * second half of GICC_NSAPR.
1511 switch (GIC_MIN_BPR) {
1512 case 0:
1513 if (regno < 2) {
1514 return s->nsapr[regno + 2][cpu];
1516 break;
1517 case 1:
1518 if (regno == 0) {
1519 return s->nsapr[regno + 1][cpu];
1521 break;
1522 case 2:
1523 if (regno == 0) {
1524 return extract32(s->nsapr[0][cpu], 16, 16);
1526 break;
1527 case 3:
1528 if (regno == 0) {
1529 return extract32(s->nsapr[0][cpu], 8, 8);
1531 break;
1532 default:
1533 g_assert_not_reached();
1535 return 0;
1538 static inline void gic_apr_write_ns_view(GICState *s, int cpu, int regno,
1539 uint32_t value)
1541 /* Write the Nonsecure view of GICC_APR<regno>. */
1542 switch (GIC_MIN_BPR) {
1543 case 0:
1544 if (regno < 2) {
1545 s->nsapr[regno + 2][cpu] = value;
1547 break;
1548 case 1:
1549 if (regno == 0) {
1550 s->nsapr[regno + 1][cpu] = value;
1552 break;
1553 case 2:
1554 if (regno == 0) {
1555 s->nsapr[0][cpu] = deposit32(s->nsapr[0][cpu], 16, 16, value);
1557 break;
1558 case 3:
1559 if (regno == 0) {
1560 s->nsapr[0][cpu] = deposit32(s->nsapr[0][cpu], 8, 8, value);
1562 break;
1563 default:
1564 g_assert_not_reached();
1568 static MemTxResult gic_cpu_read(GICState *s, int cpu, int offset,
1569 uint64_t *data, MemTxAttrs attrs)
1571 switch (offset) {
1572 case 0x00: /* Control */
1573 *data = gic_get_cpu_control(s, cpu, attrs);
1574 break;
1575 case 0x04: /* Priority mask */
1576 *data = gic_get_priority_mask(s, cpu, attrs);
1577 break;
1578 case 0x08: /* Binary Point */
1579 if (gic_cpu_ns_access(s, cpu, attrs)) {
1580 if (s->cpu_ctlr[cpu] & GICC_CTLR_CBPR) {
1581 /* NS view of BPR when CBPR is 1 */
1582 *data = MIN(s->bpr[cpu] + 1, 7);
1583 } else {
1584 /* BPR is banked. Non-secure copy stored in ABPR. */
1585 *data = s->abpr[cpu];
1587 } else {
1588 *data = s->bpr[cpu];
1590 break;
1591 case 0x0c: /* Acknowledge */
1592 *data = gic_acknowledge_irq(s, cpu, attrs);
1593 break;
1594 case 0x14: /* Running Priority */
1595 *data = gic_get_running_priority(s, cpu, attrs);
1596 break;
1597 case 0x18: /* Highest Pending Interrupt */
1598 *data = gic_get_current_pending_irq(s, cpu, attrs);
1599 break;
1600 case 0x1c: /* Aliased Binary Point */
1601 /* GIC v2, no security: ABPR
1602 * GIC v1, no security: not implemented (RAZ/WI)
1603 * With security extensions, secure access: ABPR (alias of NS BPR)
1604 * With security extensions, nonsecure access: RAZ/WI
1606 if (!gic_has_groups(s) || (gic_cpu_ns_access(s, cpu, attrs))) {
1607 *data = 0;
1608 } else {
1609 *data = s->abpr[cpu];
1611 break;
1612 case 0xd0: case 0xd4: case 0xd8: case 0xdc:
1614 int regno = (offset - 0xd0) / 4;
1615 int nr_aprs = gic_is_vcpu(cpu) ? GIC_VIRT_NR_APRS : GIC_NR_APRS;
1617 if (regno >= nr_aprs || s->revision != 2) {
1618 *data = 0;
1619 } else if (gic_is_vcpu(cpu)) {
1620 *data = s->h_apr[gic_get_vcpu_real_id(cpu)];
1621 } else if (gic_cpu_ns_access(s, cpu, attrs)) {
1622 /* NS view of GICC_APR<n> is the top half of GIC_NSAPR<n> */
1623 *data = gic_apr_ns_view(s, regno, cpu);
1624 } else {
1625 *data = s->apr[regno][cpu];
1627 break;
1629 case 0xe0: case 0xe4: case 0xe8: case 0xec:
1631 int regno = (offset - 0xe0) / 4;
1633 if (regno >= GIC_NR_APRS || s->revision != 2 || !gic_has_groups(s) ||
1634 gic_cpu_ns_access(s, cpu, attrs) || gic_is_vcpu(cpu)) {
1635 *data = 0;
1636 } else {
1637 *data = s->nsapr[regno][cpu];
1639 break;
1641 default:
1642 qemu_log_mask(LOG_GUEST_ERROR,
1643 "gic_cpu_read: Bad offset %x\n", (int)offset);
1644 *data = 0;
1645 break;
1648 trace_gic_cpu_read(gic_is_vcpu(cpu) ? "vcpu" : "cpu",
1649 gic_get_vcpu_real_id(cpu), offset, *data);
1650 return MEMTX_OK;
1653 static MemTxResult gic_cpu_write(GICState *s, int cpu, int offset,
1654 uint32_t value, MemTxAttrs attrs)
1656 trace_gic_cpu_write(gic_is_vcpu(cpu) ? "vcpu" : "cpu",
1657 gic_get_vcpu_real_id(cpu), offset, value);
1659 switch (offset) {
1660 case 0x00: /* Control */
1661 gic_set_cpu_control(s, cpu, value, attrs);
1662 break;
1663 case 0x04: /* Priority mask */
1664 gic_set_priority_mask(s, cpu, value, attrs);
1665 break;
1666 case 0x08: /* Binary Point */
1667 if (gic_cpu_ns_access(s, cpu, attrs)) {
1668 if (s->cpu_ctlr[cpu] & GICC_CTLR_CBPR) {
1669 /* WI when CBPR is 1 */
1670 return MEMTX_OK;
1671 } else {
1672 s->abpr[cpu] = MAX(value & 0x7, GIC_MIN_ABPR);
1674 } else {
1675 int min_bpr = gic_is_vcpu(cpu) ? GIC_VIRT_MIN_BPR : GIC_MIN_BPR;
1676 s->bpr[cpu] = MAX(value & 0x7, min_bpr);
1678 break;
1679 case 0x10: /* End Of Interrupt */
1680 gic_complete_irq(s, cpu, value & 0x3ff, attrs);
1681 return MEMTX_OK;
1682 case 0x1c: /* Aliased Binary Point */
1683 if (!gic_has_groups(s) || (gic_cpu_ns_access(s, cpu, attrs))) {
1684 /* unimplemented, or NS access: RAZ/WI */
1685 return MEMTX_OK;
1686 } else {
1687 s->abpr[cpu] = MAX(value & 0x7, GIC_MIN_ABPR);
1689 break;
1690 case 0xd0: case 0xd4: case 0xd8: case 0xdc:
1692 int regno = (offset - 0xd0) / 4;
1693 int nr_aprs = gic_is_vcpu(cpu) ? GIC_VIRT_NR_APRS : GIC_NR_APRS;
1695 if (regno >= nr_aprs || s->revision != 2) {
1696 return MEMTX_OK;
1698 if (gic_is_vcpu(cpu)) {
1699 s->h_apr[gic_get_vcpu_real_id(cpu)] = value;
1700 } else if (gic_cpu_ns_access(s, cpu, attrs)) {
1701 /* NS view of GICC_APR<n> is the top half of GIC_NSAPR<n> */
1702 gic_apr_write_ns_view(s, regno, cpu, value);
1703 } else {
1704 s->apr[regno][cpu] = value;
1706 break;
1708 case 0xe0: case 0xe4: case 0xe8: case 0xec:
1710 int regno = (offset - 0xe0) / 4;
1712 if (regno >= GIC_NR_APRS || s->revision != 2) {
1713 return MEMTX_OK;
1715 if (gic_is_vcpu(cpu)) {
1716 return MEMTX_OK;
1718 if (!gic_has_groups(s) || (gic_cpu_ns_access(s, cpu, attrs))) {
1719 return MEMTX_OK;
1721 s->nsapr[regno][cpu] = value;
1722 break;
1724 case 0x1000:
1725 /* GICC_DIR */
1726 gic_deactivate_irq(s, cpu, value & 0x3ff, attrs);
1727 break;
1728 default:
1729 qemu_log_mask(LOG_GUEST_ERROR,
1730 "gic_cpu_write: Bad offset %x\n", (int)offset);
1731 return MEMTX_OK;
1734 if (gic_is_vcpu(cpu)) {
1735 gic_update_virt(s);
1736 } else {
1737 gic_update(s);
1740 return MEMTX_OK;
1743 /* Wrappers to read/write the GIC CPU interface for the current CPU */
1744 static MemTxResult gic_thiscpu_read(void *opaque, hwaddr addr, uint64_t *data,
1745 unsigned size, MemTxAttrs attrs)
1747 GICState *s = (GICState *)opaque;
1748 return gic_cpu_read(s, gic_get_current_cpu(s), addr, data, attrs);
1751 static MemTxResult gic_thiscpu_write(void *opaque, hwaddr addr,
1752 uint64_t value, unsigned size,
1753 MemTxAttrs attrs)
1755 GICState *s = (GICState *)opaque;
1756 return gic_cpu_write(s, gic_get_current_cpu(s), addr, value, attrs);
1759 /* Wrappers to read/write the GIC CPU interface for a specific CPU.
1760 * These just decode the opaque pointer into GICState* + cpu id.
1762 static MemTxResult gic_do_cpu_read(void *opaque, hwaddr addr, uint64_t *data,
1763 unsigned size, MemTxAttrs attrs)
1765 GICState **backref = (GICState **)opaque;
1766 GICState *s = *backref;
1767 int id = (backref - s->backref);
1768 return gic_cpu_read(s, id, addr, data, attrs);
1771 static MemTxResult gic_do_cpu_write(void *opaque, hwaddr addr,
1772 uint64_t value, unsigned size,
1773 MemTxAttrs attrs)
1775 GICState **backref = (GICState **)opaque;
1776 GICState *s = *backref;
1777 int id = (backref - s->backref);
1778 return gic_cpu_write(s, id, addr, value, attrs);
1781 static MemTxResult gic_thisvcpu_read(void *opaque, hwaddr addr, uint64_t *data,
1782 unsigned size, MemTxAttrs attrs)
1784 GICState *s = (GICState *)opaque;
1786 return gic_cpu_read(s, gic_get_current_vcpu(s), addr, data, attrs);
1789 static MemTxResult gic_thisvcpu_write(void *opaque, hwaddr addr,
1790 uint64_t value, unsigned size,
1791 MemTxAttrs attrs)
1793 GICState *s = (GICState *)opaque;
1795 return gic_cpu_write(s, gic_get_current_vcpu(s), addr, value, attrs);
1798 static uint32_t gic_compute_eisr(GICState *s, int cpu, int lr_start)
1800 int lr_idx;
1801 uint32_t ret = 0;
1803 for (lr_idx = lr_start; lr_idx < s->num_lrs; lr_idx++) {
1804 uint32_t *entry = &s->h_lr[lr_idx][cpu];
1805 ret = deposit32(ret, lr_idx - lr_start, 1,
1806 gic_lr_entry_is_eoi(*entry));
1809 return ret;
1812 static uint32_t gic_compute_elrsr(GICState *s, int cpu, int lr_start)
1814 int lr_idx;
1815 uint32_t ret = 0;
1817 for (lr_idx = lr_start; lr_idx < s->num_lrs; lr_idx++) {
1818 uint32_t *entry = &s->h_lr[lr_idx][cpu];
1819 ret = deposit32(ret, lr_idx - lr_start, 1,
1820 gic_lr_entry_is_free(*entry));
1823 return ret;
1826 static void gic_vmcr_write(GICState *s, uint32_t value, MemTxAttrs attrs)
1828 int vcpu = gic_get_current_vcpu(s);
1829 uint32_t ctlr;
1830 uint32_t abpr;
1831 uint32_t bpr;
1832 uint32_t prio_mask;
1834 ctlr = FIELD_EX32(value, GICH_VMCR, VMCCtlr);
1835 abpr = FIELD_EX32(value, GICH_VMCR, VMABP);
1836 bpr = FIELD_EX32(value, GICH_VMCR, VMBP);
1837 prio_mask = FIELD_EX32(value, GICH_VMCR, VMPriMask) << 3;
1839 gic_set_cpu_control(s, vcpu, ctlr, attrs);
1840 s->abpr[vcpu] = MAX(abpr, GIC_VIRT_MIN_ABPR);
1841 s->bpr[vcpu] = MAX(bpr, GIC_VIRT_MIN_BPR);
1842 gic_set_priority_mask(s, vcpu, prio_mask, attrs);
1845 static MemTxResult gic_hyp_read(void *opaque, int cpu, hwaddr addr,
1846 uint64_t *data, MemTxAttrs attrs)
1848 GICState *s = ARM_GIC(opaque);
1849 int vcpu = cpu + GIC_NCPU;
1851 switch (addr) {
1852 case A_GICH_HCR: /* Hypervisor Control */
1853 *data = s->h_hcr[cpu];
1854 break;
1856 case A_GICH_VTR: /* VGIC Type */
1857 *data = FIELD_DP32(0, GICH_VTR, ListRegs, s->num_lrs - 1);
1858 *data = FIELD_DP32(*data, GICH_VTR, PREbits,
1859 GIC_VIRT_MAX_GROUP_PRIO_BITS - 1);
1860 *data = FIELD_DP32(*data, GICH_VTR, PRIbits,
1861 (7 - GIC_VIRT_MIN_BPR) - 1);
1862 break;
1864 case A_GICH_VMCR: /* Virtual Machine Control */
1865 *data = FIELD_DP32(0, GICH_VMCR, VMCCtlr,
1866 extract32(s->cpu_ctlr[vcpu], 0, 10));
1867 *data = FIELD_DP32(*data, GICH_VMCR, VMABP, s->abpr[vcpu]);
1868 *data = FIELD_DP32(*data, GICH_VMCR, VMBP, s->bpr[vcpu]);
1869 *data = FIELD_DP32(*data, GICH_VMCR, VMPriMask,
1870 extract32(s->priority_mask[vcpu], 3, 5));
1871 break;
1873 case A_GICH_MISR: /* Maintenance Interrupt Status */
1874 *data = s->h_misr[cpu];
1875 break;
1877 case A_GICH_EISR0: /* End of Interrupt Status 0 and 1 */
1878 case A_GICH_EISR1:
1879 *data = gic_compute_eisr(s, cpu, (addr - A_GICH_EISR0) * 8);
1880 break;
1882 case A_GICH_ELRSR0: /* Empty List Status 0 and 1 */
1883 case A_GICH_ELRSR1:
1884 *data = gic_compute_elrsr(s, cpu, (addr - A_GICH_ELRSR0) * 8);
1885 break;
1887 case A_GICH_APR: /* Active Priorities */
1888 *data = s->h_apr[cpu];
1889 break;
1891 case A_GICH_LR0 ... A_GICH_LR63: /* List Registers */
1893 int lr_idx = (addr - A_GICH_LR0) / 4;
1895 if (lr_idx > s->num_lrs) {
1896 *data = 0;
1897 } else {
1898 *data = s->h_lr[lr_idx][cpu];
1900 break;
1903 default:
1904 qemu_log_mask(LOG_GUEST_ERROR,
1905 "gic_hyp_read: Bad offset %" HWADDR_PRIx "\n", addr);
1906 return MEMTX_OK;
1909 trace_gic_hyp_read(addr, *data);
1910 return MEMTX_OK;
1913 static MemTxResult gic_hyp_write(void *opaque, int cpu, hwaddr addr,
1914 uint64_t value, MemTxAttrs attrs)
1916 GICState *s = ARM_GIC(opaque);
1917 int vcpu = cpu + GIC_NCPU;
1919 trace_gic_hyp_write(addr, value);
1921 switch (addr) {
1922 case A_GICH_HCR: /* Hypervisor Control */
1923 s->h_hcr[cpu] = value & GICH_HCR_MASK;
1924 break;
1926 case A_GICH_VMCR: /* Virtual Machine Control */
1927 gic_vmcr_write(s, value, attrs);
1928 break;
1930 case A_GICH_APR: /* Active Priorities */
1931 s->h_apr[cpu] = value;
1932 s->running_priority[vcpu] = gic_get_prio_from_apr_bits(s, vcpu);
1933 break;
1935 case A_GICH_LR0 ... A_GICH_LR63: /* List Registers */
1937 int lr_idx = (addr - A_GICH_LR0) / 4;
1939 if (lr_idx > s->num_lrs) {
1940 return MEMTX_OK;
1943 s->h_lr[lr_idx][cpu] = value & GICH_LR_MASK;
1944 trace_gic_lr_entry(cpu, lr_idx, s->h_lr[lr_idx][cpu]);
1945 break;
1948 default:
1949 qemu_log_mask(LOG_GUEST_ERROR,
1950 "gic_hyp_write: Bad offset %" HWADDR_PRIx "\n", addr);
1951 return MEMTX_OK;
1954 gic_update_virt(s);
1955 return MEMTX_OK;
1958 static MemTxResult gic_thiscpu_hyp_read(void *opaque, hwaddr addr, uint64_t *data,
1959 unsigned size, MemTxAttrs attrs)
1961 GICState *s = (GICState *)opaque;
1963 return gic_hyp_read(s, gic_get_current_cpu(s), addr, data, attrs);
1966 static MemTxResult gic_thiscpu_hyp_write(void *opaque, hwaddr addr,
1967 uint64_t value, unsigned size,
1968 MemTxAttrs attrs)
1970 GICState *s = (GICState *)opaque;
1972 return gic_hyp_write(s, gic_get_current_cpu(s), addr, value, attrs);
1975 static MemTxResult gic_do_hyp_read(void *opaque, hwaddr addr, uint64_t *data,
1976 unsigned size, MemTxAttrs attrs)
1978 GICState **backref = (GICState **)opaque;
1979 GICState *s = *backref;
1980 int id = (backref - s->backref);
1982 return gic_hyp_read(s, id, addr, data, attrs);
1985 static MemTxResult gic_do_hyp_write(void *opaque, hwaddr addr,
1986 uint64_t value, unsigned size,
1987 MemTxAttrs attrs)
1989 GICState **backref = (GICState **)opaque;
1990 GICState *s = *backref;
1991 int id = (backref - s->backref);
1993 return gic_hyp_write(s, id + GIC_NCPU, addr, value, attrs);
1997 static const MemoryRegionOps gic_ops[2] = {
1999 .read_with_attrs = gic_dist_read,
2000 .write_with_attrs = gic_dist_write,
2001 .endianness = DEVICE_NATIVE_ENDIAN,
2004 .read_with_attrs = gic_thiscpu_read,
2005 .write_with_attrs = gic_thiscpu_write,
2006 .endianness = DEVICE_NATIVE_ENDIAN,
2010 static const MemoryRegionOps gic_cpu_ops = {
2011 .read_with_attrs = gic_do_cpu_read,
2012 .write_with_attrs = gic_do_cpu_write,
2013 .endianness = DEVICE_NATIVE_ENDIAN,
2016 static const MemoryRegionOps gic_virt_ops[2] = {
2018 .read_with_attrs = gic_thiscpu_hyp_read,
2019 .write_with_attrs = gic_thiscpu_hyp_write,
2020 .endianness = DEVICE_NATIVE_ENDIAN,
2023 .read_with_attrs = gic_thisvcpu_read,
2024 .write_with_attrs = gic_thisvcpu_write,
2025 .endianness = DEVICE_NATIVE_ENDIAN,
2029 static const MemoryRegionOps gic_viface_ops = {
2030 .read_with_attrs = gic_do_hyp_read,
2031 .write_with_attrs = gic_do_hyp_write,
2032 .endianness = DEVICE_NATIVE_ENDIAN,
2035 static void arm_gic_realize(DeviceState *dev, Error **errp)
2037 /* Device instance realize function for the GIC sysbus device */
2038 int i;
2039 GICState *s = ARM_GIC(dev);
2040 SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
2041 ARMGICClass *agc = ARM_GIC_GET_CLASS(s);
2042 Error *local_err = NULL;
2044 agc->parent_realize(dev, &local_err);
2045 if (local_err) {
2046 error_propagate(errp, local_err);
2047 return;
2050 if (kvm_enabled() && !kvm_arm_supports_user_irq()) {
2051 error_setg(errp, "KVM with user space irqchip only works when the "
2052 "host kernel supports KVM_CAP_ARM_USER_IRQ");
2053 return;
2056 /* This creates distributor, main CPU interface (s->cpuiomem[0]) and if
2057 * enabled, virtualization extensions related interfaces (main virtual
2058 * interface (s->vifaceiomem[0]) and virtual CPU interface).
2060 gic_init_irqs_and_mmio(s, gic_set_irq, gic_ops, gic_virt_ops);
2062 /* Extra core-specific regions for the CPU interfaces. This is
2063 * necessary for "franken-GIC" implementations, for example on
2064 * Exynos 4.
2065 * NB that the memory region size of 0x100 applies for the 11MPCore
2066 * and also cores following the GIC v1 spec (ie A9).
2067 * GIC v2 defines a larger memory region (0x1000) so this will need
2068 * to be extended when we implement A15.
2070 for (i = 0; i < s->num_cpu; i++) {
2071 s->backref[i] = s;
2072 memory_region_init_io(&s->cpuiomem[i+1], OBJECT(s), &gic_cpu_ops,
2073 &s->backref[i], "gic_cpu", 0x100);
2074 sysbus_init_mmio(sbd, &s->cpuiomem[i+1]);
2077 /* Extra core-specific regions for virtual interfaces. This is required by
2078 * the GICv2 specification.
2080 if (s->virt_extn) {
2081 for (i = 0; i < s->num_cpu; i++) {
2082 memory_region_init_io(&s->vifaceiomem[i + 1], OBJECT(s),
2083 &gic_viface_ops, &s->backref[i],
2084 "gic_viface", 0x200);
2085 sysbus_init_mmio(sbd, &s->vifaceiomem[i + 1]);
2091 static void arm_gic_class_init(ObjectClass *klass, void *data)
2093 DeviceClass *dc = DEVICE_CLASS(klass);
2094 ARMGICClass *agc = ARM_GIC_CLASS(klass);
2096 device_class_set_parent_realize(dc, arm_gic_realize, &agc->parent_realize);
2099 static const TypeInfo arm_gic_info = {
2100 .name = TYPE_ARM_GIC,
2101 .parent = TYPE_ARM_GIC_COMMON,
2102 .instance_size = sizeof(GICState),
2103 .class_init = arm_gic_class_init,
2104 .class_size = sizeof(ARMGICClass),
2107 static void arm_gic_register_types(void)
2109 type_register_static(&arm_gic_info);
2112 type_init(arm_gic_register_types)