hw/arm/virt: add pmu interrupt state
[qemu/ar7.git] / hw / arm / virt.c
bloba06ec13f083d332748d3b112bdcb7e28968c4c31
1 /*
2 * ARM mach-virt emulation
4 * Copyright (c) 2013 Linaro Limited
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2 or later, as published by the Free Software Foundation.
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
15 * You should have received a copy of the GNU General Public License along with
16 * this program. If not, see <http://www.gnu.org/licenses/>.
18 * Emulate a virtual board which works by passing Linux all the information
19 * it needs about what devices are present via the device tree.
20 * There are some restrictions about what we can do here:
21 * + we can only present devices whose Linux drivers will work based
22 * purely on the device tree with no platform data at all
23 * + we want to present a very stripped-down minimalist platform,
24 * both because this reduces the security attack surface from the guest
25 * and also because it reduces our exposure to being broken when
26 * the kernel updates its device tree bindings and requires further
27 * information in a device binding that we aren't providing.
28 * This is essentially the same approach kvmtool uses.
31 #include "qemu/osdep.h"
32 #include "qapi/error.h"
33 #include "hw/sysbus.h"
34 #include "hw/arm/arm.h"
35 #include "hw/arm/primecell.h"
36 #include "hw/arm/virt.h"
37 #include "hw/devices.h"
38 #include "net/net.h"
39 #include "sysemu/block-backend.h"
40 #include "sysemu/device_tree.h"
41 #include "sysemu/numa.h"
42 #include "sysemu/sysemu.h"
43 #include "sysemu/kvm.h"
44 #include "hw/compat.h"
45 #include "hw/loader.h"
46 #include "exec/address-spaces.h"
47 #include "qemu/bitops.h"
48 #include "qemu/error-report.h"
49 #include "hw/pci-host/gpex.h"
50 #include "hw/arm/sysbus-fdt.h"
51 #include "hw/platform-bus.h"
52 #include "hw/arm/fdt.h"
53 #include "hw/intc/arm_gic.h"
54 #include "hw/intc/arm_gicv3_common.h"
55 #include "kvm_arm.h"
56 #include "hw/smbios/smbios.h"
57 #include "qapi/visitor.h"
58 #include "standard-headers/linux/input.h"
60 #define DEFINE_VIRT_MACHINE_LATEST(major, minor, latest) \
61 static void virt_##major##_##minor##_class_init(ObjectClass *oc, \
62 void *data) \
63 { \
64 MachineClass *mc = MACHINE_CLASS(oc); \
65 virt_machine_##major##_##minor##_options(mc); \
66 mc->desc = "QEMU " # major "." # minor " ARM Virtual Machine"; \
67 if (latest) { \
68 mc->alias = "virt"; \
69 } \
70 } \
71 static const TypeInfo machvirt_##major##_##minor##_info = { \
72 .name = MACHINE_TYPE_NAME("virt-" # major "." # minor), \
73 .parent = TYPE_VIRT_MACHINE, \
74 .instance_init = virt_##major##_##minor##_instance_init, \
75 .class_init = virt_##major##_##minor##_class_init, \
76 }; \
77 static void machvirt_machine_##major##_##minor##_init(void) \
78 { \
79 type_register_static(&machvirt_##major##_##minor##_info); \
80 } \
81 type_init(machvirt_machine_##major##_##minor##_init);
83 #define DEFINE_VIRT_MACHINE_AS_LATEST(major, minor) \
84 DEFINE_VIRT_MACHINE_LATEST(major, minor, true)
85 #define DEFINE_VIRT_MACHINE(major, minor) \
86 DEFINE_VIRT_MACHINE_LATEST(major, minor, false)
89 /* Number of external interrupt lines to configure the GIC with */
90 #define NUM_IRQS 256
92 #define PLATFORM_BUS_NUM_IRQS 64
94 static ARMPlatformBusSystemParams platform_bus_params;
96 /* RAM limit in GB. Since VIRT_MEM starts at the 1GB mark, this means
97 * RAM can go up to the 256GB mark, leaving 256GB of the physical
98 * address space unallocated and free for future use between 256G and 512G.
99 * If we need to provide more RAM to VMs in the future then we need to:
100 * * allocate a second bank of RAM starting at 2TB and working up
101 * * fix the DT and ACPI table generation code in QEMU to correctly
102 * report two split lumps of RAM to the guest
103 * * fix KVM in the host kernel to allow guests with >40 bit address spaces
104 * (We don't want to fill all the way up to 512GB with RAM because
105 * we might want it for non-RAM purposes later. Conversely it seems
106 * reasonable to assume that anybody configuring a VM with a quarter
107 * of a terabyte of RAM will be doing it on a host with more than a
108 * terabyte of physical address space.)
110 #define RAMLIMIT_GB 255
111 #define RAMLIMIT_BYTES (RAMLIMIT_GB * 1024ULL * 1024 * 1024)
113 /* Addresses and sizes of our components.
114 * 0..128MB is space for a flash device so we can run bootrom code such as UEFI.
115 * 128MB..256MB is used for miscellaneous device I/O.
116 * 256MB..1GB is reserved for possible future PCI support (ie where the
117 * PCI memory window will go if we add a PCI host controller).
118 * 1GB and up is RAM (which may happily spill over into the
119 * high memory region beyond 4GB).
120 * This represents a compromise between how much RAM can be given to
121 * a 32 bit VM and leaving space for expansion and in particular for PCI.
122 * Note that devices should generally be placed at multiples of 0x10000,
123 * to accommodate guests using 64K pages.
125 static const MemMapEntry a15memmap[] = {
126 /* Space up to 0x8000000 is reserved for a boot ROM */
127 [VIRT_FLASH] = { 0, 0x08000000 },
128 [VIRT_CPUPERIPHS] = { 0x08000000, 0x00020000 },
129 /* GIC distributor and CPU interfaces sit inside the CPU peripheral space */
130 [VIRT_GIC_DIST] = { 0x08000000, 0x00010000 },
131 [VIRT_GIC_CPU] = { 0x08010000, 0x00010000 },
132 [VIRT_GIC_V2M] = { 0x08020000, 0x00001000 },
133 /* The space in between here is reserved for GICv3 CPU/vCPU/HYP */
134 [VIRT_GIC_ITS] = { 0x08080000, 0x00020000 },
135 /* This redistributor space allows up to 2*64kB*123 CPUs */
136 [VIRT_GIC_REDIST] = { 0x080A0000, 0x00F60000 },
137 [VIRT_UART] = { 0x09000000, 0x00001000 },
138 [VIRT_RTC] = { 0x09010000, 0x00001000 },
139 [VIRT_FW_CFG] = { 0x09020000, 0x00000018 },
140 [VIRT_GPIO] = { 0x09030000, 0x00001000 },
141 [VIRT_SECURE_UART] = { 0x09040000, 0x00001000 },
142 [VIRT_MMIO] = { 0x0a000000, 0x00000200 },
143 /* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */
144 [VIRT_PLATFORM_BUS] = { 0x0c000000, 0x02000000 },
145 [VIRT_SECURE_MEM] = { 0x0e000000, 0x01000000 },
146 [VIRT_PCIE_MMIO] = { 0x10000000, 0x2eff0000 },
147 [VIRT_PCIE_PIO] = { 0x3eff0000, 0x00010000 },
148 [VIRT_PCIE_ECAM] = { 0x3f000000, 0x01000000 },
149 [VIRT_MEM] = { 0x40000000, RAMLIMIT_BYTES },
150 /* Second PCIe window, 512GB wide at the 512GB boundary */
151 [VIRT_PCIE_MMIO_HIGH] = { 0x8000000000ULL, 0x8000000000ULL },
154 static const int a15irqmap[] = {
155 [VIRT_UART] = 1,
156 [VIRT_RTC] = 2,
157 [VIRT_PCIE] = 3, /* ... to 6 */
158 [VIRT_GPIO] = 7,
159 [VIRT_SECURE_UART] = 8,
160 [VIRT_MMIO] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */
161 [VIRT_GIC_V2M] = 48, /* ...to 48 + NUM_GICV2M_SPIS - 1 */
162 [VIRT_PLATFORM_BUS] = 112, /* ...to 112 + PLATFORM_BUS_NUM_IRQS -1 */
165 static const char *valid_cpus[] = {
166 "cortex-a15",
167 "cortex-a53",
168 "cortex-a57",
169 "host",
172 static bool cpuname_valid(const char *cpu)
174 int i;
176 for (i = 0; i < ARRAY_SIZE(valid_cpus); i++) {
177 if (strcmp(cpu, valid_cpus[i]) == 0) {
178 return true;
181 return false;
184 static void create_fdt(VirtMachineState *vms)
186 void *fdt = create_device_tree(&vms->fdt_size);
188 if (!fdt) {
189 error_report("create_device_tree() failed");
190 exit(1);
193 vms->fdt = fdt;
195 /* Header */
196 qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,dummy-virt");
197 qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2);
198 qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2);
201 * /chosen and /memory nodes must exist for load_dtb
202 * to fill in necessary properties later
204 qemu_fdt_add_subnode(fdt, "/chosen");
205 qemu_fdt_add_subnode(fdt, "/memory");
206 qemu_fdt_setprop_string(fdt, "/memory", "device_type", "memory");
208 /* Clock node, for the benefit of the UART. The kernel device tree
209 * binding documentation claims the PL011 node clock properties are
210 * optional but in practice if you omit them the kernel refuses to
211 * probe for the device.
213 vms->clock_phandle = qemu_fdt_alloc_phandle(fdt);
214 qemu_fdt_add_subnode(fdt, "/apb-pclk");
215 qemu_fdt_setprop_string(fdt, "/apb-pclk", "compatible", "fixed-clock");
216 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "#clock-cells", 0x0);
217 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "clock-frequency", 24000000);
218 qemu_fdt_setprop_string(fdt, "/apb-pclk", "clock-output-names",
219 "clk24mhz");
220 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "phandle", vms->clock_phandle);
222 if (have_numa_distance) {
223 int size = nb_numa_nodes * nb_numa_nodes * 3 * sizeof(uint32_t);
224 uint32_t *matrix = g_malloc0(size);
225 int idx, i, j;
227 for (i = 0; i < nb_numa_nodes; i++) {
228 for (j = 0; j < nb_numa_nodes; j++) {
229 idx = (i * nb_numa_nodes + j) * 3;
230 matrix[idx + 0] = cpu_to_be32(i);
231 matrix[idx + 1] = cpu_to_be32(j);
232 matrix[idx + 2] = cpu_to_be32(numa_info[i].distance[j]);
236 qemu_fdt_add_subnode(fdt, "/distance-map");
237 qemu_fdt_setprop_string(fdt, "/distance-map", "compatible",
238 "numa-distance-map-v1");
239 qemu_fdt_setprop(fdt, "/distance-map", "distance-matrix",
240 matrix, size);
241 g_free(matrix);
245 static void fdt_add_psci_node(const VirtMachineState *vms)
247 uint32_t cpu_suspend_fn;
248 uint32_t cpu_off_fn;
249 uint32_t cpu_on_fn;
250 uint32_t migrate_fn;
251 void *fdt = vms->fdt;
252 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(0));
253 const char *psci_method;
255 switch (vms->psci_conduit) {
256 case QEMU_PSCI_CONDUIT_DISABLED:
257 return;
258 case QEMU_PSCI_CONDUIT_HVC:
259 psci_method = "hvc";
260 break;
261 case QEMU_PSCI_CONDUIT_SMC:
262 psci_method = "smc";
263 break;
264 default:
265 g_assert_not_reached();
268 qemu_fdt_add_subnode(fdt, "/psci");
269 if (armcpu->psci_version == 2) {
270 const char comp[] = "arm,psci-0.2\0arm,psci";
271 qemu_fdt_setprop(fdt, "/psci", "compatible", comp, sizeof(comp));
273 cpu_off_fn = QEMU_PSCI_0_2_FN_CPU_OFF;
274 if (arm_feature(&armcpu->env, ARM_FEATURE_AARCH64)) {
275 cpu_suspend_fn = QEMU_PSCI_0_2_FN64_CPU_SUSPEND;
276 cpu_on_fn = QEMU_PSCI_0_2_FN64_CPU_ON;
277 migrate_fn = QEMU_PSCI_0_2_FN64_MIGRATE;
278 } else {
279 cpu_suspend_fn = QEMU_PSCI_0_2_FN_CPU_SUSPEND;
280 cpu_on_fn = QEMU_PSCI_0_2_FN_CPU_ON;
281 migrate_fn = QEMU_PSCI_0_2_FN_MIGRATE;
283 } else {
284 qemu_fdt_setprop_string(fdt, "/psci", "compatible", "arm,psci");
286 cpu_suspend_fn = QEMU_PSCI_0_1_FN_CPU_SUSPEND;
287 cpu_off_fn = QEMU_PSCI_0_1_FN_CPU_OFF;
288 cpu_on_fn = QEMU_PSCI_0_1_FN_CPU_ON;
289 migrate_fn = QEMU_PSCI_0_1_FN_MIGRATE;
292 /* We adopt the PSCI spec's nomenclature, and use 'conduit' to refer
293 * to the instruction that should be used to invoke PSCI functions.
294 * However, the device tree binding uses 'method' instead, so that is
295 * what we should use here.
297 qemu_fdt_setprop_string(fdt, "/psci", "method", psci_method);
299 qemu_fdt_setprop_cell(fdt, "/psci", "cpu_suspend", cpu_suspend_fn);
300 qemu_fdt_setprop_cell(fdt, "/psci", "cpu_off", cpu_off_fn);
301 qemu_fdt_setprop_cell(fdt, "/psci", "cpu_on", cpu_on_fn);
302 qemu_fdt_setprop_cell(fdt, "/psci", "migrate", migrate_fn);
305 static void fdt_add_timer_nodes(const VirtMachineState *vms)
307 /* On real hardware these interrupts are level-triggered.
308 * On KVM they were edge-triggered before host kernel version 4.4,
309 * and level-triggered afterwards.
310 * On emulated QEMU they are level-triggered.
312 * Getting the DTB info about them wrong is awkward for some
313 * guest kernels:
314 * pre-4.8 ignore the DT and leave the interrupt configured
315 * with whatever the GIC reset value (or the bootloader) left it at
316 * 4.8 before rc6 honour the incorrect data by programming it back
317 * into the GIC, causing problems
318 * 4.8rc6 and later ignore the DT and always write "level triggered"
319 * into the GIC
321 * For backwards-compatibility, virt-2.8 and earlier will continue
322 * to say these are edge-triggered, but later machines will report
323 * the correct information.
325 ARMCPU *armcpu;
326 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
327 uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
329 if (vmc->claim_edge_triggered_timers) {
330 irqflags = GIC_FDT_IRQ_FLAGS_EDGE_LO_HI;
333 if (vms->gic_version == 2) {
334 irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
335 GIC_FDT_IRQ_PPI_CPU_WIDTH,
336 (1 << vms->smp_cpus) - 1);
339 qemu_fdt_add_subnode(vms->fdt, "/timer");
341 armcpu = ARM_CPU(qemu_get_cpu(0));
342 if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
343 const char compat[] = "arm,armv8-timer\0arm,armv7-timer";
344 qemu_fdt_setprop(vms->fdt, "/timer", "compatible",
345 compat, sizeof(compat));
346 } else {
347 qemu_fdt_setprop_string(vms->fdt, "/timer", "compatible",
348 "arm,armv7-timer");
350 qemu_fdt_setprop(vms->fdt, "/timer", "always-on", NULL, 0);
351 qemu_fdt_setprop_cells(vms->fdt, "/timer", "interrupts",
352 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_S_EL1_IRQ, irqflags,
353 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL1_IRQ, irqflags,
354 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_VIRT_IRQ, irqflags,
355 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL2_IRQ, irqflags);
358 static void fdt_add_cpu_nodes(const VirtMachineState *vms)
360 int cpu;
361 int addr_cells = 1;
362 const MachineState *ms = MACHINE(vms);
365 * From Documentation/devicetree/bindings/arm/cpus.txt
366 * On ARM v8 64-bit systems value should be set to 2,
367 * that corresponds to the MPIDR_EL1 register size.
368 * If MPIDR_EL1[63:32] value is equal to 0 on all CPUs
369 * in the system, #address-cells can be set to 1, since
370 * MPIDR_EL1[63:32] bits are not used for CPUs
371 * identification.
373 * Here we actually don't know whether our system is 32- or 64-bit one.
374 * The simplest way to go is to examine affinity IDs of all our CPUs. If
375 * at least one of them has Aff3 populated, we set #address-cells to 2.
377 for (cpu = 0; cpu < vms->smp_cpus; cpu++) {
378 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
380 if (armcpu->mp_affinity & ARM_AFF3_MASK) {
381 addr_cells = 2;
382 break;
386 qemu_fdt_add_subnode(vms->fdt, "/cpus");
387 qemu_fdt_setprop_cell(vms->fdt, "/cpus", "#address-cells", addr_cells);
388 qemu_fdt_setprop_cell(vms->fdt, "/cpus", "#size-cells", 0x0);
390 for (cpu = vms->smp_cpus - 1; cpu >= 0; cpu--) {
391 char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu);
392 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
393 CPUState *cs = CPU(armcpu);
395 qemu_fdt_add_subnode(vms->fdt, nodename);
396 qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "cpu");
397 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible",
398 armcpu->dtb_compatible);
400 if (vms->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED
401 && vms->smp_cpus > 1) {
402 qemu_fdt_setprop_string(vms->fdt, nodename,
403 "enable-method", "psci");
406 if (addr_cells == 2) {
407 qemu_fdt_setprop_u64(vms->fdt, nodename, "reg",
408 armcpu->mp_affinity);
409 } else {
410 qemu_fdt_setprop_cell(vms->fdt, nodename, "reg",
411 armcpu->mp_affinity);
414 if (ms->possible_cpus->cpus[cs->cpu_index].props.has_node_id) {
415 qemu_fdt_setprop_cell(vms->fdt, nodename, "numa-node-id",
416 ms->possible_cpus->cpus[cs->cpu_index].props.node_id);
419 g_free(nodename);
423 static void fdt_add_its_gic_node(VirtMachineState *vms)
425 vms->msi_phandle = qemu_fdt_alloc_phandle(vms->fdt);
426 qemu_fdt_add_subnode(vms->fdt, "/intc/its");
427 qemu_fdt_setprop_string(vms->fdt, "/intc/its", "compatible",
428 "arm,gic-v3-its");
429 qemu_fdt_setprop(vms->fdt, "/intc/its", "msi-controller", NULL, 0);
430 qemu_fdt_setprop_sized_cells(vms->fdt, "/intc/its", "reg",
431 2, vms->memmap[VIRT_GIC_ITS].base,
432 2, vms->memmap[VIRT_GIC_ITS].size);
433 qemu_fdt_setprop_cell(vms->fdt, "/intc/its", "phandle", vms->msi_phandle);
436 static void fdt_add_v2m_gic_node(VirtMachineState *vms)
438 vms->msi_phandle = qemu_fdt_alloc_phandle(vms->fdt);
439 qemu_fdt_add_subnode(vms->fdt, "/intc/v2m");
440 qemu_fdt_setprop_string(vms->fdt, "/intc/v2m", "compatible",
441 "arm,gic-v2m-frame");
442 qemu_fdt_setprop(vms->fdt, "/intc/v2m", "msi-controller", NULL, 0);
443 qemu_fdt_setprop_sized_cells(vms->fdt, "/intc/v2m", "reg",
444 2, vms->memmap[VIRT_GIC_V2M].base,
445 2, vms->memmap[VIRT_GIC_V2M].size);
446 qemu_fdt_setprop_cell(vms->fdt, "/intc/v2m", "phandle", vms->msi_phandle);
449 static void fdt_add_gic_node(VirtMachineState *vms)
451 vms->gic_phandle = qemu_fdt_alloc_phandle(vms->fdt);
452 qemu_fdt_setprop_cell(vms->fdt, "/", "interrupt-parent", vms->gic_phandle);
454 qemu_fdt_add_subnode(vms->fdt, "/intc");
455 qemu_fdt_setprop_cell(vms->fdt, "/intc", "#interrupt-cells", 3);
456 qemu_fdt_setprop(vms->fdt, "/intc", "interrupt-controller", NULL, 0);
457 qemu_fdt_setprop_cell(vms->fdt, "/intc", "#address-cells", 0x2);
458 qemu_fdt_setprop_cell(vms->fdt, "/intc", "#size-cells", 0x2);
459 qemu_fdt_setprop(vms->fdt, "/intc", "ranges", NULL, 0);
460 if (vms->gic_version == 3) {
461 qemu_fdt_setprop_string(vms->fdt, "/intc", "compatible",
462 "arm,gic-v3");
463 qemu_fdt_setprop_sized_cells(vms->fdt, "/intc", "reg",
464 2, vms->memmap[VIRT_GIC_DIST].base,
465 2, vms->memmap[VIRT_GIC_DIST].size,
466 2, vms->memmap[VIRT_GIC_REDIST].base,
467 2, vms->memmap[VIRT_GIC_REDIST].size);
468 if (vms->virt) {
469 qemu_fdt_setprop_cells(vms->fdt, "/intc", "interrupts",
470 GIC_FDT_IRQ_TYPE_PPI, ARCH_GICV3_MAINT_IRQ,
471 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
473 } else {
474 /* 'cortex-a15-gic' means 'GIC v2' */
475 qemu_fdt_setprop_string(vms->fdt, "/intc", "compatible",
476 "arm,cortex-a15-gic");
477 qemu_fdt_setprop_sized_cells(vms->fdt, "/intc", "reg",
478 2, vms->memmap[VIRT_GIC_DIST].base,
479 2, vms->memmap[VIRT_GIC_DIST].size,
480 2, vms->memmap[VIRT_GIC_CPU].base,
481 2, vms->memmap[VIRT_GIC_CPU].size);
484 qemu_fdt_setprop_cell(vms->fdt, "/intc", "phandle", vms->gic_phandle);
487 static void fdt_add_pmu_nodes(const VirtMachineState *vms)
489 CPUState *cpu;
490 ARMCPU *armcpu;
491 uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
493 CPU_FOREACH(cpu) {
494 armcpu = ARM_CPU(cpu);
495 if (!arm_feature(&armcpu->env, ARM_FEATURE_PMU) ||
496 (kvm_enabled() && !kvm_arm_pmu_create(cpu, PPI(VIRTUAL_PMU_IRQ)))) {
497 return;
501 if (vms->gic_version == 2) {
502 irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
503 GIC_FDT_IRQ_PPI_CPU_WIDTH,
504 (1 << vms->smp_cpus) - 1);
507 armcpu = ARM_CPU(qemu_get_cpu(0));
508 qemu_fdt_add_subnode(vms->fdt, "/pmu");
509 if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
510 const char compat[] = "arm,armv8-pmuv3";
511 qemu_fdt_setprop(vms->fdt, "/pmu", "compatible",
512 compat, sizeof(compat));
513 qemu_fdt_setprop_cells(vms->fdt, "/pmu", "interrupts",
514 GIC_FDT_IRQ_TYPE_PPI, VIRTUAL_PMU_IRQ, irqflags);
518 static void create_its(VirtMachineState *vms, DeviceState *gicdev)
520 const char *itsclass = its_class_name();
521 DeviceState *dev;
523 if (!itsclass) {
524 /* Do nothing if not supported */
525 return;
528 dev = qdev_create(NULL, itsclass);
530 object_property_set_link(OBJECT(dev), OBJECT(gicdev), "parent-gicv3",
531 &error_abort);
532 qdev_init_nofail(dev);
533 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_ITS].base);
535 fdt_add_its_gic_node(vms);
538 static void create_v2m(VirtMachineState *vms, qemu_irq *pic)
540 int i;
541 int irq = vms->irqmap[VIRT_GIC_V2M];
542 DeviceState *dev;
544 dev = qdev_create(NULL, "arm-gicv2m");
545 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_V2M].base);
546 qdev_prop_set_uint32(dev, "base-spi", irq);
547 qdev_prop_set_uint32(dev, "num-spi", NUM_GICV2M_SPIS);
548 qdev_init_nofail(dev);
550 for (i = 0; i < NUM_GICV2M_SPIS; i++) {
551 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]);
554 fdt_add_v2m_gic_node(vms);
557 static void create_gic(VirtMachineState *vms, qemu_irq *pic)
559 /* We create a standalone GIC */
560 DeviceState *gicdev;
561 SysBusDevice *gicbusdev;
562 const char *gictype;
563 int type = vms->gic_version, i;
565 gictype = (type == 3) ? gicv3_class_name() : gic_class_name();
567 gicdev = qdev_create(NULL, gictype);
568 qdev_prop_set_uint32(gicdev, "revision", type);
569 qdev_prop_set_uint32(gicdev, "num-cpu", smp_cpus);
570 /* Note that the num-irq property counts both internal and external
571 * interrupts; there are always 32 of the former (mandated by GIC spec).
573 qdev_prop_set_uint32(gicdev, "num-irq", NUM_IRQS + 32);
574 if (!kvm_irqchip_in_kernel()) {
575 qdev_prop_set_bit(gicdev, "has-security-extensions", vms->secure);
577 qdev_init_nofail(gicdev);
578 gicbusdev = SYS_BUS_DEVICE(gicdev);
579 sysbus_mmio_map(gicbusdev, 0, vms->memmap[VIRT_GIC_DIST].base);
580 if (type == 3) {
581 sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_REDIST].base);
582 } else {
583 sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_CPU].base);
586 /* Wire the outputs from each CPU's generic timer and the GICv3
587 * maintenance interrupt signal to the appropriate GIC PPI inputs,
588 * and the GIC's IRQ/FIQ/VIRQ/VFIQ interrupt outputs to the CPU's inputs.
590 for (i = 0; i < smp_cpus; i++) {
591 DeviceState *cpudev = DEVICE(qemu_get_cpu(i));
592 int ppibase = NUM_IRQS + i * GIC_INTERNAL + GIC_NR_SGIS;
593 int irq;
594 /* Mapping from the output timer irq lines from the CPU to the
595 * GIC PPI inputs we use for the virt board.
597 const int timer_irq[] = {
598 [GTIMER_PHYS] = ARCH_TIMER_NS_EL1_IRQ,
599 [GTIMER_VIRT] = ARCH_TIMER_VIRT_IRQ,
600 [GTIMER_HYP] = ARCH_TIMER_NS_EL2_IRQ,
601 [GTIMER_SEC] = ARCH_TIMER_S_EL1_IRQ,
604 for (irq = 0; irq < ARRAY_SIZE(timer_irq); irq++) {
605 qdev_connect_gpio_out(cpudev, irq,
606 qdev_get_gpio_in(gicdev,
607 ppibase + timer_irq[irq]));
610 qdev_connect_gpio_out_named(cpudev, "gicv3-maintenance-interrupt", 0,
611 qdev_get_gpio_in(gicdev, ppibase
612 + ARCH_GICV3_MAINT_IRQ));
613 qdev_connect_gpio_out_named(cpudev, "pmu-interrupt", 0,
614 qdev_get_gpio_in(gicdev, ppibase
615 + VIRTUAL_PMU_IRQ));
617 sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ));
618 sysbus_connect_irq(gicbusdev, i + smp_cpus,
619 qdev_get_gpio_in(cpudev, ARM_CPU_FIQ));
620 sysbus_connect_irq(gicbusdev, i + 2 * smp_cpus,
621 qdev_get_gpio_in(cpudev, ARM_CPU_VIRQ));
622 sysbus_connect_irq(gicbusdev, i + 3 * smp_cpus,
623 qdev_get_gpio_in(cpudev, ARM_CPU_VFIQ));
626 for (i = 0; i < NUM_IRQS; i++) {
627 pic[i] = qdev_get_gpio_in(gicdev, i);
630 fdt_add_gic_node(vms);
632 if (type == 3 && vms->its) {
633 create_its(vms, gicdev);
634 } else if (type == 2) {
635 create_v2m(vms, pic);
639 static void create_uart(const VirtMachineState *vms, qemu_irq *pic, int uart,
640 MemoryRegion *mem, Chardev *chr)
642 char *nodename;
643 hwaddr base = vms->memmap[uart].base;
644 hwaddr size = vms->memmap[uart].size;
645 int irq = vms->irqmap[uart];
646 const char compat[] = "arm,pl011\0arm,primecell";
647 const char clocknames[] = "uartclk\0apb_pclk";
648 DeviceState *dev = qdev_create(NULL, "pl011");
649 SysBusDevice *s = SYS_BUS_DEVICE(dev);
651 qdev_prop_set_chr(dev, "chardev", chr);
652 qdev_init_nofail(dev);
653 memory_region_add_subregion(mem, base,
654 sysbus_mmio_get_region(s, 0));
655 sysbus_connect_irq(s, 0, pic[irq]);
657 nodename = g_strdup_printf("/pl011@%" PRIx64, base);
658 qemu_fdt_add_subnode(vms->fdt, nodename);
659 /* Note that we can't use setprop_string because of the embedded NUL */
660 qemu_fdt_setprop(vms->fdt, nodename, "compatible",
661 compat, sizeof(compat));
662 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
663 2, base, 2, size);
664 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
665 GIC_FDT_IRQ_TYPE_SPI, irq,
666 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
667 qemu_fdt_setprop_cells(vms->fdt, nodename, "clocks",
668 vms->clock_phandle, vms->clock_phandle);
669 qemu_fdt_setprop(vms->fdt, nodename, "clock-names",
670 clocknames, sizeof(clocknames));
672 if (uart == VIRT_UART) {
673 qemu_fdt_setprop_string(vms->fdt, "/chosen", "stdout-path", nodename);
674 } else {
675 /* Mark as not usable by the normal world */
676 qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled");
677 qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay");
680 g_free(nodename);
683 static void create_rtc(const VirtMachineState *vms, qemu_irq *pic)
685 char *nodename;
686 hwaddr base = vms->memmap[VIRT_RTC].base;
687 hwaddr size = vms->memmap[VIRT_RTC].size;
688 int irq = vms->irqmap[VIRT_RTC];
689 const char compat[] = "arm,pl031\0arm,primecell";
691 sysbus_create_simple("pl031", base, pic[irq]);
693 nodename = g_strdup_printf("/pl031@%" PRIx64, base);
694 qemu_fdt_add_subnode(vms->fdt, nodename);
695 qemu_fdt_setprop(vms->fdt, nodename, "compatible", compat, sizeof(compat));
696 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
697 2, base, 2, size);
698 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
699 GIC_FDT_IRQ_TYPE_SPI, irq,
700 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
701 qemu_fdt_setprop_cell(vms->fdt, nodename, "clocks", vms->clock_phandle);
702 qemu_fdt_setprop_string(vms->fdt, nodename, "clock-names", "apb_pclk");
703 g_free(nodename);
706 static DeviceState *gpio_key_dev;
707 static void virt_powerdown_req(Notifier *n, void *opaque)
709 /* use gpio Pin 3 for power button event */
710 qemu_set_irq(qdev_get_gpio_in(gpio_key_dev, 0), 1);
713 static Notifier virt_system_powerdown_notifier = {
714 .notify = virt_powerdown_req
717 static void create_gpio(const VirtMachineState *vms, qemu_irq *pic)
719 char *nodename;
720 DeviceState *pl061_dev;
721 hwaddr base = vms->memmap[VIRT_GPIO].base;
722 hwaddr size = vms->memmap[VIRT_GPIO].size;
723 int irq = vms->irqmap[VIRT_GPIO];
724 const char compat[] = "arm,pl061\0arm,primecell";
726 pl061_dev = sysbus_create_simple("pl061", base, pic[irq]);
728 uint32_t phandle = qemu_fdt_alloc_phandle(vms->fdt);
729 nodename = g_strdup_printf("/pl061@%" PRIx64, base);
730 qemu_fdt_add_subnode(vms->fdt, nodename);
731 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
732 2, base, 2, size);
733 qemu_fdt_setprop(vms->fdt, nodename, "compatible", compat, sizeof(compat));
734 qemu_fdt_setprop_cell(vms->fdt, nodename, "#gpio-cells", 2);
735 qemu_fdt_setprop(vms->fdt, nodename, "gpio-controller", NULL, 0);
736 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
737 GIC_FDT_IRQ_TYPE_SPI, irq,
738 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
739 qemu_fdt_setprop_cell(vms->fdt, nodename, "clocks", vms->clock_phandle);
740 qemu_fdt_setprop_string(vms->fdt, nodename, "clock-names", "apb_pclk");
741 qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", phandle);
743 gpio_key_dev = sysbus_create_simple("gpio-key", -1,
744 qdev_get_gpio_in(pl061_dev, 3));
745 qemu_fdt_add_subnode(vms->fdt, "/gpio-keys");
746 qemu_fdt_setprop_string(vms->fdt, "/gpio-keys", "compatible", "gpio-keys");
747 qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys", "#size-cells", 0);
748 qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys", "#address-cells", 1);
750 qemu_fdt_add_subnode(vms->fdt, "/gpio-keys/poweroff");
751 qemu_fdt_setprop_string(vms->fdt, "/gpio-keys/poweroff",
752 "label", "GPIO Key Poweroff");
753 qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys/poweroff", "linux,code",
754 KEY_POWER);
755 qemu_fdt_setprop_cells(vms->fdt, "/gpio-keys/poweroff",
756 "gpios", phandle, 3, 0);
758 /* connect powerdown request */
759 qemu_register_powerdown_notifier(&virt_system_powerdown_notifier);
761 g_free(nodename);
764 static void create_virtio_devices(const VirtMachineState *vms, qemu_irq *pic)
766 int i;
767 hwaddr size = vms->memmap[VIRT_MMIO].size;
769 /* We create the transports in forwards order. Since qbus_realize()
770 * prepends (not appends) new child buses, the incrementing loop below will
771 * create a list of virtio-mmio buses with decreasing base addresses.
773 * When a -device option is processed from the command line,
774 * qbus_find_recursive() picks the next free virtio-mmio bus in forwards
775 * order. The upshot is that -device options in increasing command line
776 * order are mapped to virtio-mmio buses with decreasing base addresses.
778 * When this code was originally written, that arrangement ensured that the
779 * guest Linux kernel would give the lowest "name" (/dev/vda, eth0, etc) to
780 * the first -device on the command line. (The end-to-end order is a
781 * function of this loop, qbus_realize(), qbus_find_recursive(), and the
782 * guest kernel's name-to-address assignment strategy.)
784 * Meanwhile, the kernel's traversal seems to have been reversed; see eg.
785 * the message, if not necessarily the code, of commit 70161ff336.
786 * Therefore the loop now establishes the inverse of the original intent.
788 * Unfortunately, we can't counteract the kernel change by reversing the
789 * loop; it would break existing command lines.
791 * In any case, the kernel makes no guarantee about the stability of
792 * enumeration order of virtio devices (as demonstrated by it changing
793 * between kernel versions). For reliable and stable identification
794 * of disks users must use UUIDs or similar mechanisms.
796 for (i = 0; i < NUM_VIRTIO_TRANSPORTS; i++) {
797 int irq = vms->irqmap[VIRT_MMIO] + i;
798 hwaddr base = vms->memmap[VIRT_MMIO].base + i * size;
800 sysbus_create_simple("virtio-mmio", base, pic[irq]);
803 /* We add dtb nodes in reverse order so that they appear in the finished
804 * device tree lowest address first.
806 * Note that this mapping is independent of the loop above. The previous
807 * loop influences virtio device to virtio transport assignment, whereas
808 * this loop controls how virtio transports are laid out in the dtb.
810 for (i = NUM_VIRTIO_TRANSPORTS - 1; i >= 0; i--) {
811 char *nodename;
812 int irq = vms->irqmap[VIRT_MMIO] + i;
813 hwaddr base = vms->memmap[VIRT_MMIO].base + i * size;
815 nodename = g_strdup_printf("/virtio_mmio@%" PRIx64, base);
816 qemu_fdt_add_subnode(vms->fdt, nodename);
817 qemu_fdt_setprop_string(vms->fdt, nodename,
818 "compatible", "virtio,mmio");
819 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
820 2, base, 2, size);
821 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
822 GIC_FDT_IRQ_TYPE_SPI, irq,
823 GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
824 qemu_fdt_setprop(vms->fdt, nodename, "dma-coherent", NULL, 0);
825 g_free(nodename);
829 static void create_one_flash(const char *name, hwaddr flashbase,
830 hwaddr flashsize, const char *file,
831 MemoryRegion *sysmem)
833 /* Create and map a single flash device. We use the same
834 * parameters as the flash devices on the Versatile Express board.
836 DriveInfo *dinfo = drive_get_next(IF_PFLASH);
837 DeviceState *dev = qdev_create(NULL, "cfi.pflash01");
838 SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
839 const uint64_t sectorlength = 256 * 1024;
841 if (dinfo) {
842 qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
843 &error_abort);
846 qdev_prop_set_uint32(dev, "num-blocks", flashsize / sectorlength);
847 qdev_prop_set_uint64(dev, "sector-length", sectorlength);
848 qdev_prop_set_uint8(dev, "width", 4);
849 qdev_prop_set_uint8(dev, "device-width", 2);
850 qdev_prop_set_bit(dev, "big-endian", false);
851 qdev_prop_set_uint16(dev, "id0", 0x89);
852 qdev_prop_set_uint16(dev, "id1", 0x18);
853 qdev_prop_set_uint16(dev, "id2", 0x00);
854 qdev_prop_set_uint16(dev, "id3", 0x00);
855 qdev_prop_set_string(dev, "name", name);
856 qdev_init_nofail(dev);
858 memory_region_add_subregion(sysmem, flashbase,
859 sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0));
861 if (file) {
862 char *fn;
863 int image_size;
865 if (drive_get(IF_PFLASH, 0, 0)) {
866 error_report("The contents of the first flash device may be "
867 "specified with -bios or with -drive if=pflash... "
868 "but you cannot use both options at once");
869 exit(1);
871 fn = qemu_find_file(QEMU_FILE_TYPE_BIOS, file);
872 if (!fn) {
873 error_report("Could not find ROM image '%s'", file);
874 exit(1);
876 image_size = load_image_mr(fn, sysbus_mmio_get_region(sbd, 0));
877 g_free(fn);
878 if (image_size < 0) {
879 error_report("Could not load ROM image '%s'", file);
880 exit(1);
885 static void create_flash(const VirtMachineState *vms,
886 MemoryRegion *sysmem,
887 MemoryRegion *secure_sysmem)
889 /* Create two flash devices to fill the VIRT_FLASH space in the memmap.
890 * Any file passed via -bios goes in the first of these.
891 * sysmem is the system memory space. secure_sysmem is the secure view
892 * of the system, and the first flash device should be made visible only
893 * there. The second flash device is visible to both secure and nonsecure.
894 * If sysmem == secure_sysmem this means there is no separate Secure
895 * address space and both flash devices are generally visible.
897 hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2;
898 hwaddr flashbase = vms->memmap[VIRT_FLASH].base;
899 char *nodename;
901 create_one_flash("virt.flash0", flashbase, flashsize,
902 bios_name, secure_sysmem);
903 create_one_flash("virt.flash1", flashbase + flashsize, flashsize,
904 NULL, sysmem);
906 if (sysmem == secure_sysmem) {
907 /* Report both flash devices as a single node in the DT */
908 nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
909 qemu_fdt_add_subnode(vms->fdt, nodename);
910 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash");
911 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
912 2, flashbase, 2, flashsize,
913 2, flashbase + flashsize, 2, flashsize);
914 qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4);
915 g_free(nodename);
916 } else {
917 /* Report the devices as separate nodes so we can mark one as
918 * only visible to the secure world.
920 nodename = g_strdup_printf("/secflash@%" PRIx64, flashbase);
921 qemu_fdt_add_subnode(vms->fdt, nodename);
922 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash");
923 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
924 2, flashbase, 2, flashsize);
925 qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4);
926 qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled");
927 qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay");
928 g_free(nodename);
930 nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
931 qemu_fdt_add_subnode(vms->fdt, nodename);
932 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash");
933 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
934 2, flashbase + flashsize, 2, flashsize);
935 qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4);
936 g_free(nodename);
940 static FWCfgState *create_fw_cfg(const VirtMachineState *vms, AddressSpace *as)
942 hwaddr base = vms->memmap[VIRT_FW_CFG].base;
943 hwaddr size = vms->memmap[VIRT_FW_CFG].size;
944 FWCfgState *fw_cfg;
945 char *nodename;
947 fw_cfg = fw_cfg_init_mem_wide(base + 8, base, 8, base + 16, as);
948 fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, (uint16_t)smp_cpus);
950 nodename = g_strdup_printf("/fw-cfg@%" PRIx64, base);
951 qemu_fdt_add_subnode(vms->fdt, nodename);
952 qemu_fdt_setprop_string(vms->fdt, nodename,
953 "compatible", "qemu,fw-cfg-mmio");
954 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
955 2, base, 2, size);
956 qemu_fdt_setprop(vms->fdt, nodename, "dma-coherent", NULL, 0);
957 g_free(nodename);
958 return fw_cfg;
961 static void create_pcie_irq_map(const VirtMachineState *vms,
962 uint32_t gic_phandle,
963 int first_irq, const char *nodename)
965 int devfn, pin;
966 uint32_t full_irq_map[4 * 4 * 10] = { 0 };
967 uint32_t *irq_map = full_irq_map;
969 for (devfn = 0; devfn <= 0x18; devfn += 0x8) {
970 for (pin = 0; pin < 4; pin++) {
971 int irq_type = GIC_FDT_IRQ_TYPE_SPI;
972 int irq_nr = first_irq + ((pin + PCI_SLOT(devfn)) % PCI_NUM_PINS);
973 int irq_level = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
974 int i;
976 uint32_t map[] = {
977 devfn << 8, 0, 0, /* devfn */
978 pin + 1, /* PCI pin */
979 gic_phandle, 0, 0, irq_type, irq_nr, irq_level }; /* GIC irq */
981 /* Convert map to big endian */
982 for (i = 0; i < 10; i++) {
983 irq_map[i] = cpu_to_be32(map[i]);
985 irq_map += 10;
989 qemu_fdt_setprop(vms->fdt, nodename, "interrupt-map",
990 full_irq_map, sizeof(full_irq_map));
992 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupt-map-mask",
993 0x1800, 0, 0, /* devfn (PCI_SLOT(3)) */
994 0x7 /* PCI irq */);
997 static void create_pcie(const VirtMachineState *vms, qemu_irq *pic)
999 hwaddr base_mmio = vms->memmap[VIRT_PCIE_MMIO].base;
1000 hwaddr size_mmio = vms->memmap[VIRT_PCIE_MMIO].size;
1001 hwaddr base_mmio_high = vms->memmap[VIRT_PCIE_MMIO_HIGH].base;
1002 hwaddr size_mmio_high = vms->memmap[VIRT_PCIE_MMIO_HIGH].size;
1003 hwaddr base_pio = vms->memmap[VIRT_PCIE_PIO].base;
1004 hwaddr size_pio = vms->memmap[VIRT_PCIE_PIO].size;
1005 hwaddr base_ecam = vms->memmap[VIRT_PCIE_ECAM].base;
1006 hwaddr size_ecam = vms->memmap[VIRT_PCIE_ECAM].size;
1007 hwaddr base = base_mmio;
1008 int nr_pcie_buses = size_ecam / PCIE_MMCFG_SIZE_MIN;
1009 int irq = vms->irqmap[VIRT_PCIE];
1010 MemoryRegion *mmio_alias;
1011 MemoryRegion *mmio_reg;
1012 MemoryRegion *ecam_alias;
1013 MemoryRegion *ecam_reg;
1014 DeviceState *dev;
1015 char *nodename;
1016 int i;
1017 PCIHostState *pci;
1019 dev = qdev_create(NULL, TYPE_GPEX_HOST);
1020 qdev_init_nofail(dev);
1022 /* Map only the first size_ecam bytes of ECAM space */
1023 ecam_alias = g_new0(MemoryRegion, 1);
1024 ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0);
1025 memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam",
1026 ecam_reg, 0, size_ecam);
1027 memory_region_add_subregion(get_system_memory(), base_ecam, ecam_alias);
1029 /* Map the MMIO window into system address space so as to expose
1030 * the section of PCI MMIO space which starts at the same base address
1031 * (ie 1:1 mapping for that part of PCI MMIO space visible through
1032 * the window).
1034 mmio_alias = g_new0(MemoryRegion, 1);
1035 mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1);
1036 memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio",
1037 mmio_reg, base_mmio, size_mmio);
1038 memory_region_add_subregion(get_system_memory(), base_mmio, mmio_alias);
1040 if (vms->highmem) {
1041 /* Map high MMIO space */
1042 MemoryRegion *high_mmio_alias = g_new0(MemoryRegion, 1);
1044 memory_region_init_alias(high_mmio_alias, OBJECT(dev), "pcie-mmio-high",
1045 mmio_reg, base_mmio_high, size_mmio_high);
1046 memory_region_add_subregion(get_system_memory(), base_mmio_high,
1047 high_mmio_alias);
1050 /* Map IO port space */
1051 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, base_pio);
1053 for (i = 0; i < GPEX_NUM_IRQS; i++) {
1054 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]);
1057 pci = PCI_HOST_BRIDGE(dev);
1058 if (pci->bus) {
1059 for (i = 0; i < nb_nics; i++) {
1060 NICInfo *nd = &nd_table[i];
1062 if (!nd->model) {
1063 nd->model = g_strdup("virtio");
1066 pci_nic_init_nofail(nd, pci->bus, nd->model, NULL);
1070 nodename = g_strdup_printf("/pcie@%" PRIx64, base);
1071 qemu_fdt_add_subnode(vms->fdt, nodename);
1072 qemu_fdt_setprop_string(vms->fdt, nodename,
1073 "compatible", "pci-host-ecam-generic");
1074 qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "pci");
1075 qemu_fdt_setprop_cell(vms->fdt, nodename, "#address-cells", 3);
1076 qemu_fdt_setprop_cell(vms->fdt, nodename, "#size-cells", 2);
1077 qemu_fdt_setprop_cells(vms->fdt, nodename, "bus-range", 0,
1078 nr_pcie_buses - 1);
1079 qemu_fdt_setprop(vms->fdt, nodename, "dma-coherent", NULL, 0);
1081 if (vms->msi_phandle) {
1082 qemu_fdt_setprop_cells(vms->fdt, nodename, "msi-parent",
1083 vms->msi_phandle);
1086 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
1087 2, base_ecam, 2, size_ecam);
1089 if (vms->highmem) {
1090 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "ranges",
1091 1, FDT_PCI_RANGE_IOPORT, 2, 0,
1092 2, base_pio, 2, size_pio,
1093 1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
1094 2, base_mmio, 2, size_mmio,
1095 1, FDT_PCI_RANGE_MMIO_64BIT,
1096 2, base_mmio_high,
1097 2, base_mmio_high, 2, size_mmio_high);
1098 } else {
1099 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "ranges",
1100 1, FDT_PCI_RANGE_IOPORT, 2, 0,
1101 2, base_pio, 2, size_pio,
1102 1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
1103 2, base_mmio, 2, size_mmio);
1106 qemu_fdt_setprop_cell(vms->fdt, nodename, "#interrupt-cells", 1);
1107 create_pcie_irq_map(vms, vms->gic_phandle, irq, nodename);
1109 g_free(nodename);
1112 static void create_platform_bus(VirtMachineState *vms, qemu_irq *pic)
1114 DeviceState *dev;
1115 SysBusDevice *s;
1116 int i;
1117 ARMPlatformBusFDTParams *fdt_params = g_new(ARMPlatformBusFDTParams, 1);
1118 MemoryRegion *sysmem = get_system_memory();
1120 platform_bus_params.platform_bus_base = vms->memmap[VIRT_PLATFORM_BUS].base;
1121 platform_bus_params.platform_bus_size = vms->memmap[VIRT_PLATFORM_BUS].size;
1122 platform_bus_params.platform_bus_first_irq = vms->irqmap[VIRT_PLATFORM_BUS];
1123 platform_bus_params.platform_bus_num_irqs = PLATFORM_BUS_NUM_IRQS;
1125 fdt_params->system_params = &platform_bus_params;
1126 fdt_params->binfo = &vms->bootinfo;
1127 fdt_params->intc = "/intc";
1129 * register a machine init done notifier that creates the device tree
1130 * nodes of the platform bus and its children dynamic sysbus devices
1132 arm_register_platform_bus_fdt_creator(fdt_params);
1134 dev = qdev_create(NULL, TYPE_PLATFORM_BUS_DEVICE);
1135 dev->id = TYPE_PLATFORM_BUS_DEVICE;
1136 qdev_prop_set_uint32(dev, "num_irqs",
1137 platform_bus_params.platform_bus_num_irqs);
1138 qdev_prop_set_uint32(dev, "mmio_size",
1139 platform_bus_params.platform_bus_size);
1140 qdev_init_nofail(dev);
1141 s = SYS_BUS_DEVICE(dev);
1143 for (i = 0; i < platform_bus_params.platform_bus_num_irqs; i++) {
1144 int irqn = platform_bus_params.platform_bus_first_irq + i;
1145 sysbus_connect_irq(s, i, pic[irqn]);
1148 memory_region_add_subregion(sysmem,
1149 platform_bus_params.platform_bus_base,
1150 sysbus_mmio_get_region(s, 0));
1153 static void create_secure_ram(VirtMachineState *vms,
1154 MemoryRegion *secure_sysmem)
1156 MemoryRegion *secram = g_new(MemoryRegion, 1);
1157 char *nodename;
1158 hwaddr base = vms->memmap[VIRT_SECURE_MEM].base;
1159 hwaddr size = vms->memmap[VIRT_SECURE_MEM].size;
1161 memory_region_init_ram(secram, NULL, "virt.secure-ram", size,
1162 &error_fatal);
1163 memory_region_add_subregion(secure_sysmem, base, secram);
1165 nodename = g_strdup_printf("/secram@%" PRIx64, base);
1166 qemu_fdt_add_subnode(vms->fdt, nodename);
1167 qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "memory");
1168 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 2, base, 2, size);
1169 qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled");
1170 qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay");
1172 g_free(nodename);
1175 static void *machvirt_dtb(const struct arm_boot_info *binfo, int *fdt_size)
1177 const VirtMachineState *board = container_of(binfo, VirtMachineState,
1178 bootinfo);
1180 *fdt_size = board->fdt_size;
1181 return board->fdt;
1184 static void virt_build_smbios(VirtMachineState *vms)
1186 uint8_t *smbios_tables, *smbios_anchor;
1187 size_t smbios_tables_len, smbios_anchor_len;
1188 const char *product = "QEMU Virtual Machine";
1190 if (!vms->fw_cfg) {
1191 return;
1194 if (kvm_enabled()) {
1195 product = "KVM Virtual Machine";
1198 smbios_set_defaults("QEMU", product,
1199 "1.0", false, true, SMBIOS_ENTRY_POINT_30);
1201 smbios_get_tables(NULL, 0, &smbios_tables, &smbios_tables_len,
1202 &smbios_anchor, &smbios_anchor_len);
1204 if (smbios_anchor) {
1205 fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-tables",
1206 smbios_tables, smbios_tables_len);
1207 fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-anchor",
1208 smbios_anchor, smbios_anchor_len);
1212 static
1213 void virt_machine_done(Notifier *notifier, void *data)
1215 VirtMachineState *vms = container_of(notifier, VirtMachineState,
1216 machine_done);
1218 virt_acpi_setup(vms);
1219 virt_build_smbios(vms);
1222 static uint64_t virt_cpu_mp_affinity(VirtMachineState *vms, int idx)
1224 uint8_t clustersz = ARM_DEFAULT_CPUS_PER_CLUSTER;
1225 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
1227 if (!vmc->disallow_affinity_adjustment) {
1228 /* Adjust MPIDR like 64-bit KVM hosts, which incorporate the
1229 * GIC's target-list limitations. 32-bit KVM hosts currently
1230 * always create clusters of 4 CPUs, but that is expected to
1231 * change when they gain support for gicv3. When KVM is enabled
1232 * it will override the changes we make here, therefore our
1233 * purposes are to make TCG consistent (with 64-bit KVM hosts)
1234 * and to improve SGI efficiency.
1236 if (vms->gic_version == 3) {
1237 clustersz = GICV3_TARGETLIST_BITS;
1238 } else {
1239 clustersz = GIC_TARGETLIST_BITS;
1242 return arm_cpu_mp_affinity(idx, clustersz);
1245 static void machvirt_init(MachineState *machine)
1247 VirtMachineState *vms = VIRT_MACHINE(machine);
1248 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(machine);
1249 MachineClass *mc = MACHINE_GET_CLASS(machine);
1250 const CPUArchIdList *possible_cpus;
1251 qemu_irq pic[NUM_IRQS];
1252 MemoryRegion *sysmem = get_system_memory();
1253 MemoryRegion *secure_sysmem = NULL;
1254 int n, virt_max_cpus;
1255 MemoryRegion *ram = g_new(MemoryRegion, 1);
1256 const char *cpu_model = machine->cpu_model;
1257 char **cpustr;
1258 ObjectClass *oc;
1259 const char *typename;
1260 CPUClass *cc;
1261 Error *err = NULL;
1262 bool firmware_loaded = bios_name || drive_get(IF_PFLASH, 0, 0);
1264 if (!cpu_model) {
1265 cpu_model = "cortex-a15";
1268 /* We can probe only here because during property set
1269 * KVM is not available yet
1271 if (!vms->gic_version) {
1272 if (!kvm_enabled()) {
1273 error_report("gic-version=host requires KVM");
1274 exit(1);
1277 vms->gic_version = kvm_arm_vgic_probe();
1278 if (!vms->gic_version) {
1279 error_report("Unable to determine GIC version supported by host");
1280 exit(1);
1284 /* Separate the actual CPU model name from any appended features */
1285 cpustr = g_strsplit(cpu_model, ",", 2);
1287 if (!cpuname_valid(cpustr[0])) {
1288 error_report("mach-virt: CPU %s not supported", cpustr[0]);
1289 exit(1);
1292 /* If we have an EL3 boot ROM then the assumption is that it will
1293 * implement PSCI itself, so disable QEMU's internal implementation
1294 * so it doesn't get in the way. Instead of starting secondary
1295 * CPUs in PSCI powerdown state we will start them all running and
1296 * let the boot ROM sort them out.
1297 * The usual case is that we do use QEMU's PSCI implementation;
1298 * if the guest has EL2 then we will use SMC as the conduit,
1299 * and otherwise we will use HVC (for backwards compatibility and
1300 * because if we're using KVM then we must use HVC).
1302 if (vms->secure && firmware_loaded) {
1303 vms->psci_conduit = QEMU_PSCI_CONDUIT_DISABLED;
1304 } else if (vms->virt) {
1305 vms->psci_conduit = QEMU_PSCI_CONDUIT_SMC;
1306 } else {
1307 vms->psci_conduit = QEMU_PSCI_CONDUIT_HVC;
1310 /* The maximum number of CPUs depends on the GIC version, or on how
1311 * many redistributors we can fit into the memory map.
1313 if (vms->gic_version == 3) {
1314 virt_max_cpus = vms->memmap[VIRT_GIC_REDIST].size / 0x20000;
1315 } else {
1316 virt_max_cpus = GIC_NCPU;
1319 if (max_cpus > virt_max_cpus) {
1320 error_report("Number of SMP CPUs requested (%d) exceeds max CPUs "
1321 "supported by machine 'mach-virt' (%d)",
1322 max_cpus, virt_max_cpus);
1323 exit(1);
1326 vms->smp_cpus = smp_cpus;
1328 if (machine->ram_size > vms->memmap[VIRT_MEM].size) {
1329 error_report("mach-virt: cannot model more than %dGB RAM", RAMLIMIT_GB);
1330 exit(1);
1333 if (vms->virt && kvm_enabled()) {
1334 error_report("mach-virt: KVM does not support providing "
1335 "Virtualization extensions to the guest CPU");
1336 exit(1);
1339 if (vms->secure) {
1340 if (kvm_enabled()) {
1341 error_report("mach-virt: KVM does not support Security extensions");
1342 exit(1);
1345 /* The Secure view of the world is the same as the NonSecure,
1346 * but with a few extra devices. Create it as a container region
1347 * containing the system memory at low priority; any secure-only
1348 * devices go in at higher priority and take precedence.
1350 secure_sysmem = g_new(MemoryRegion, 1);
1351 memory_region_init(secure_sysmem, OBJECT(machine), "secure-memory",
1352 UINT64_MAX);
1353 memory_region_add_subregion_overlap(secure_sysmem, 0, sysmem, -1);
1356 create_fdt(vms);
1358 oc = cpu_class_by_name(TYPE_ARM_CPU, cpustr[0]);
1359 if (!oc) {
1360 error_report("Unable to find CPU definition");
1361 exit(1);
1363 typename = object_class_get_name(oc);
1365 /* convert -smp CPU options specified by the user into global props */
1366 cc = CPU_CLASS(oc);
1367 cc->parse_features(typename, cpustr[1], &err);
1368 g_strfreev(cpustr);
1369 if (err) {
1370 error_report_err(err);
1371 exit(1);
1374 possible_cpus = mc->possible_cpu_arch_ids(machine);
1375 for (n = 0; n < possible_cpus->len; n++) {
1376 Object *cpuobj;
1377 CPUState *cs;
1379 if (n >= smp_cpus) {
1380 break;
1383 cpuobj = object_new(typename);
1384 object_property_set_int(cpuobj, possible_cpus->cpus[n].arch_id,
1385 "mp-affinity", NULL);
1387 cs = CPU(cpuobj);
1388 cs->cpu_index = n;
1390 numa_cpu_pre_plug(&possible_cpus->cpus[cs->cpu_index], DEVICE(cpuobj),
1391 &error_fatal);
1393 if (!vms->secure) {
1394 object_property_set_bool(cpuobj, false, "has_el3", NULL);
1397 if (!vms->virt && object_property_find(cpuobj, "has_el2", NULL)) {
1398 object_property_set_bool(cpuobj, false, "has_el2", NULL);
1401 if (vms->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED) {
1402 object_property_set_int(cpuobj, vms->psci_conduit,
1403 "psci-conduit", NULL);
1405 /* Secondary CPUs start in PSCI powered-down state */
1406 if (n > 0) {
1407 object_property_set_bool(cpuobj, true,
1408 "start-powered-off", NULL);
1412 if (vmc->no_pmu && object_property_find(cpuobj, "pmu", NULL)) {
1413 object_property_set_bool(cpuobj, false, "pmu", NULL);
1416 if (object_property_find(cpuobj, "reset-cbar", NULL)) {
1417 object_property_set_int(cpuobj, vms->memmap[VIRT_CPUPERIPHS].base,
1418 "reset-cbar", &error_abort);
1421 object_property_set_link(cpuobj, OBJECT(sysmem), "memory",
1422 &error_abort);
1423 if (vms->secure) {
1424 object_property_set_link(cpuobj, OBJECT(secure_sysmem),
1425 "secure-memory", &error_abort);
1428 object_property_set_bool(cpuobj, true, "realized", NULL);
1429 object_unref(cpuobj);
1431 fdt_add_timer_nodes(vms);
1432 fdt_add_cpu_nodes(vms);
1433 fdt_add_psci_node(vms);
1435 memory_region_allocate_system_memory(ram, NULL, "mach-virt.ram",
1436 machine->ram_size);
1437 memory_region_add_subregion(sysmem, vms->memmap[VIRT_MEM].base, ram);
1439 create_flash(vms, sysmem, secure_sysmem ? secure_sysmem : sysmem);
1441 create_gic(vms, pic);
1443 fdt_add_pmu_nodes(vms);
1445 create_uart(vms, pic, VIRT_UART, sysmem, serial_hds[0]);
1447 if (vms->secure) {
1448 create_secure_ram(vms, secure_sysmem);
1449 create_uart(vms, pic, VIRT_SECURE_UART, secure_sysmem, serial_hds[1]);
1452 create_rtc(vms, pic);
1454 create_pcie(vms, pic);
1456 create_gpio(vms, pic);
1458 /* Create mmio transports, so the user can create virtio backends
1459 * (which will be automatically plugged in to the transports). If
1460 * no backend is created the transport will just sit harmlessly idle.
1462 create_virtio_devices(vms, pic);
1464 vms->fw_cfg = create_fw_cfg(vms, &address_space_memory);
1465 rom_set_fw(vms->fw_cfg);
1467 vms->machine_done.notify = virt_machine_done;
1468 qemu_add_machine_init_done_notifier(&vms->machine_done);
1470 vms->bootinfo.ram_size = machine->ram_size;
1471 vms->bootinfo.kernel_filename = machine->kernel_filename;
1472 vms->bootinfo.kernel_cmdline = machine->kernel_cmdline;
1473 vms->bootinfo.initrd_filename = machine->initrd_filename;
1474 vms->bootinfo.nb_cpus = smp_cpus;
1475 vms->bootinfo.board_id = -1;
1476 vms->bootinfo.loader_start = vms->memmap[VIRT_MEM].base;
1477 vms->bootinfo.get_dtb = machvirt_dtb;
1478 vms->bootinfo.firmware_loaded = firmware_loaded;
1479 arm_load_kernel(ARM_CPU(first_cpu), &vms->bootinfo);
1482 * arm_load_kernel machine init done notifier registration must
1483 * happen before the platform_bus_create call. In this latter,
1484 * another notifier is registered which adds platform bus nodes.
1485 * Notifiers are executed in registration reverse order.
1487 create_platform_bus(vms, pic);
1490 static bool virt_get_secure(Object *obj, Error **errp)
1492 VirtMachineState *vms = VIRT_MACHINE(obj);
1494 return vms->secure;
1497 static void virt_set_secure(Object *obj, bool value, Error **errp)
1499 VirtMachineState *vms = VIRT_MACHINE(obj);
1501 vms->secure = value;
1504 static bool virt_get_virt(Object *obj, Error **errp)
1506 VirtMachineState *vms = VIRT_MACHINE(obj);
1508 return vms->virt;
1511 static void virt_set_virt(Object *obj, bool value, Error **errp)
1513 VirtMachineState *vms = VIRT_MACHINE(obj);
1515 vms->virt = value;
1518 static bool virt_get_highmem(Object *obj, Error **errp)
1520 VirtMachineState *vms = VIRT_MACHINE(obj);
1522 return vms->highmem;
1525 static void virt_set_highmem(Object *obj, bool value, Error **errp)
1527 VirtMachineState *vms = VIRT_MACHINE(obj);
1529 vms->highmem = value;
1532 static bool virt_get_its(Object *obj, Error **errp)
1534 VirtMachineState *vms = VIRT_MACHINE(obj);
1536 return vms->its;
1539 static void virt_set_its(Object *obj, bool value, Error **errp)
1541 VirtMachineState *vms = VIRT_MACHINE(obj);
1543 vms->its = value;
1546 static char *virt_get_gic_version(Object *obj, Error **errp)
1548 VirtMachineState *vms = VIRT_MACHINE(obj);
1549 const char *val = vms->gic_version == 3 ? "3" : "2";
1551 return g_strdup(val);
1554 static void virt_set_gic_version(Object *obj, const char *value, Error **errp)
1556 VirtMachineState *vms = VIRT_MACHINE(obj);
1558 if (!strcmp(value, "3")) {
1559 vms->gic_version = 3;
1560 } else if (!strcmp(value, "2")) {
1561 vms->gic_version = 2;
1562 } else if (!strcmp(value, "host")) {
1563 vms->gic_version = 0; /* Will probe later */
1564 } else {
1565 error_setg(errp, "Invalid gic-version value");
1566 error_append_hint(errp, "Valid values are 3, 2, host.\n");
1570 static CpuInstanceProperties
1571 virt_cpu_index_to_props(MachineState *ms, unsigned cpu_index)
1573 MachineClass *mc = MACHINE_GET_CLASS(ms);
1574 const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms);
1576 assert(cpu_index < possible_cpus->len);
1577 return possible_cpus->cpus[cpu_index].props;
1580 static const CPUArchIdList *virt_possible_cpu_arch_ids(MachineState *ms)
1582 int n;
1583 VirtMachineState *vms = VIRT_MACHINE(ms);
1585 if (ms->possible_cpus) {
1586 assert(ms->possible_cpus->len == max_cpus);
1587 return ms->possible_cpus;
1590 ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
1591 sizeof(CPUArchId) * max_cpus);
1592 ms->possible_cpus->len = max_cpus;
1593 for (n = 0; n < ms->possible_cpus->len; n++) {
1594 ms->possible_cpus->cpus[n].arch_id =
1595 virt_cpu_mp_affinity(vms, n);
1596 ms->possible_cpus->cpus[n].props.has_thread_id = true;
1597 ms->possible_cpus->cpus[n].props.thread_id = n;
1599 /* default distribution of CPUs over NUMA nodes */
1600 if (nb_numa_nodes) {
1601 /* preset values but do not enable them i.e. 'has_node_id = false',
1602 * numa init code will enable them later if manual mapping wasn't
1603 * present on CLI */
1604 ms->possible_cpus->cpus[n].props.node_id = n % nb_numa_nodes;
1607 return ms->possible_cpus;
1610 static void virt_machine_class_init(ObjectClass *oc, void *data)
1612 MachineClass *mc = MACHINE_CLASS(oc);
1614 mc->init = machvirt_init;
1615 /* Start max_cpus at the maximum QEMU supports. We'll further restrict
1616 * it later in machvirt_init, where we have more information about the
1617 * configuration of the particular instance.
1619 mc->max_cpus = 255;
1620 mc->has_dynamic_sysbus = true;
1621 mc->block_default_type = IF_VIRTIO;
1622 mc->no_cdrom = 1;
1623 mc->pci_allow_0_address = true;
1624 /* We know we will never create a pre-ARMv7 CPU which needs 1K pages */
1625 mc->minimum_page_bits = 12;
1626 mc->possible_cpu_arch_ids = virt_possible_cpu_arch_ids;
1627 mc->cpu_index_to_instance_props = virt_cpu_index_to_props;
1630 static const TypeInfo virt_machine_info = {
1631 .name = TYPE_VIRT_MACHINE,
1632 .parent = TYPE_MACHINE,
1633 .abstract = true,
1634 .instance_size = sizeof(VirtMachineState),
1635 .class_size = sizeof(VirtMachineClass),
1636 .class_init = virt_machine_class_init,
1639 static void machvirt_machine_init(void)
1641 type_register_static(&virt_machine_info);
1643 type_init(machvirt_machine_init);
1645 static void virt_2_10_instance_init(Object *obj)
1647 VirtMachineState *vms = VIRT_MACHINE(obj);
1648 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
1650 /* EL3 is disabled by default on virt: this makes us consistent
1651 * between KVM and TCG for this board, and it also allows us to
1652 * boot UEFI blobs which assume no TrustZone support.
1654 vms->secure = false;
1655 object_property_add_bool(obj, "secure", virt_get_secure,
1656 virt_set_secure, NULL);
1657 object_property_set_description(obj, "secure",
1658 "Set on/off to enable/disable the ARM "
1659 "Security Extensions (TrustZone)",
1660 NULL);
1662 /* EL2 is also disabled by default, for similar reasons */
1663 vms->virt = false;
1664 object_property_add_bool(obj, "virtualization", virt_get_virt,
1665 virt_set_virt, NULL);
1666 object_property_set_description(obj, "virtualization",
1667 "Set on/off to enable/disable emulating a "
1668 "guest CPU which implements the ARM "
1669 "Virtualization Extensions",
1670 NULL);
1672 /* High memory is enabled by default */
1673 vms->highmem = true;
1674 object_property_add_bool(obj, "highmem", virt_get_highmem,
1675 virt_set_highmem, NULL);
1676 object_property_set_description(obj, "highmem",
1677 "Set on/off to enable/disable using "
1678 "physical address space above 32 bits",
1679 NULL);
1680 /* Default GIC type is v2 */
1681 vms->gic_version = 2;
1682 object_property_add_str(obj, "gic-version", virt_get_gic_version,
1683 virt_set_gic_version, NULL);
1684 object_property_set_description(obj, "gic-version",
1685 "Set GIC version. "
1686 "Valid values are 2, 3 and host", NULL);
1688 if (vmc->no_its) {
1689 vms->its = false;
1690 } else {
1691 /* Default allows ITS instantiation */
1692 vms->its = true;
1693 object_property_add_bool(obj, "its", virt_get_its,
1694 virt_set_its, NULL);
1695 object_property_set_description(obj, "its",
1696 "Set on/off to enable/disable "
1697 "ITS instantiation",
1698 NULL);
1701 vms->memmap = a15memmap;
1702 vms->irqmap = a15irqmap;
1705 static void virt_machine_2_10_options(MachineClass *mc)
1708 DEFINE_VIRT_MACHINE_AS_LATEST(2, 10)
1710 #define VIRT_COMPAT_2_9 \
1711 HW_COMPAT_2_9
1713 static void virt_2_9_instance_init(Object *obj)
1715 virt_2_10_instance_init(obj);
1718 static void virt_machine_2_9_options(MachineClass *mc)
1720 virt_machine_2_10_options(mc);
1721 SET_MACHINE_COMPAT(mc, VIRT_COMPAT_2_9);
1723 DEFINE_VIRT_MACHINE(2, 9)
1725 #define VIRT_COMPAT_2_8 \
1726 HW_COMPAT_2_8
1728 static void virt_2_8_instance_init(Object *obj)
1730 virt_2_9_instance_init(obj);
1733 static void virt_machine_2_8_options(MachineClass *mc)
1735 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
1737 virt_machine_2_9_options(mc);
1738 SET_MACHINE_COMPAT(mc, VIRT_COMPAT_2_8);
1739 /* For 2.8 and earlier we falsely claimed in the DT that
1740 * our timers were edge-triggered, not level-triggered.
1742 vmc->claim_edge_triggered_timers = true;
1744 DEFINE_VIRT_MACHINE(2, 8)
1746 #define VIRT_COMPAT_2_7 \
1747 HW_COMPAT_2_7
1749 static void virt_2_7_instance_init(Object *obj)
1751 virt_2_8_instance_init(obj);
1754 static void virt_machine_2_7_options(MachineClass *mc)
1756 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
1758 virt_machine_2_8_options(mc);
1759 SET_MACHINE_COMPAT(mc, VIRT_COMPAT_2_7);
1760 /* ITS was introduced with 2.8 */
1761 vmc->no_its = true;
1762 /* Stick with 1K pages for migration compatibility */
1763 mc->minimum_page_bits = 0;
1765 DEFINE_VIRT_MACHINE(2, 7)
1767 #define VIRT_COMPAT_2_6 \
1768 HW_COMPAT_2_6
1770 static void virt_2_6_instance_init(Object *obj)
1772 virt_2_7_instance_init(obj);
1775 static void virt_machine_2_6_options(MachineClass *mc)
1777 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
1779 virt_machine_2_7_options(mc);
1780 SET_MACHINE_COMPAT(mc, VIRT_COMPAT_2_6);
1781 vmc->disallow_affinity_adjustment = true;
1782 /* Disable PMU for 2.6 as PMU support was first introduced in 2.7 */
1783 vmc->no_pmu = true;
1785 DEFINE_VIRT_MACHINE(2, 6)