xics: Minor fixes for XICSFabric interface
[qemu/ar7.git] / target / arm / m_helper.c
blob27cd2f3f96413089efc99652212dae1e08987347
1 /*
2 * ARM generic helpers.
4 * This code is licensed under the GNU GPL v2 or later.
6 * SPDX-License-Identifier: GPL-2.0-or-later
7 */
9 #include "qemu/osdep.h"
10 #include "qemu/units.h"
11 #include "target/arm/idau.h"
12 #include "trace.h"
13 #include "cpu.h"
14 #include "internals.h"
15 #include "exec/gdbstub.h"
16 #include "exec/helper-proto.h"
17 #include "qemu/host-utils.h"
18 #include "qemu/main-loop.h"
19 #include "qemu/bitops.h"
20 #include "qemu/crc32c.h"
21 #include "qemu/qemu-print.h"
22 #include "exec/exec-all.h"
23 #include <zlib.h> /* For crc32 */
24 #include "hw/semihosting/semihost.h"
25 #include "sysemu/cpus.h"
26 #include "sysemu/kvm.h"
27 #include "qemu/range.h"
28 #include "qapi/qapi-commands-machine-target.h"
29 #include "qapi/error.h"
30 #include "qemu/guest-random.h"
31 #ifdef CONFIG_TCG
32 #include "arm_ldst.h"
33 #include "exec/cpu_ldst.h"
34 #endif
36 #ifdef CONFIG_USER_ONLY
38 /* These should probably raise undefined insn exceptions. */
39 void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val)
41 ARMCPU *cpu = env_archcpu(env);
43 cpu_abort(CPU(cpu), "v7m_msr %d\n", reg);
46 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
48 ARMCPU *cpu = env_archcpu(env);
50 cpu_abort(CPU(cpu), "v7m_mrs %d\n", reg);
51 return 0;
54 void HELPER(v7m_bxns)(CPUARMState *env, uint32_t dest)
56 /* translate.c should never generate calls here in user-only mode */
57 g_assert_not_reached();
60 void HELPER(v7m_blxns)(CPUARMState *env, uint32_t dest)
62 /* translate.c should never generate calls here in user-only mode */
63 g_assert_not_reached();
66 void HELPER(v7m_preserve_fp_state)(CPUARMState *env)
68 /* translate.c should never generate calls here in user-only mode */
69 g_assert_not_reached();
72 void HELPER(v7m_vlstm)(CPUARMState *env, uint32_t fptr)
74 /* translate.c should never generate calls here in user-only mode */
75 g_assert_not_reached();
78 void HELPER(v7m_vlldm)(CPUARMState *env, uint32_t fptr)
80 /* translate.c should never generate calls here in user-only mode */
81 g_assert_not_reached();
84 uint32_t HELPER(v7m_tt)(CPUARMState *env, uint32_t addr, uint32_t op)
87 * The TT instructions can be used by unprivileged code, but in
88 * user-only emulation we don't have the MPU.
89 * Luckily since we know we are NonSecure unprivileged (and that in
90 * turn means that the A flag wasn't specified), all the bits in the
91 * register must be zero:
92 * IREGION: 0 because IRVALID is 0
93 * IRVALID: 0 because NS
94 * S: 0 because NS
95 * NSRW: 0 because NS
96 * NSR: 0 because NS
97 * RW: 0 because unpriv and A flag not set
98 * R: 0 because unpriv and A flag not set
99 * SRVALID: 0 because NS
100 * MRVALID: 0 because unpriv and A flag not set
101 * SREGION: 0 becaus SRVALID is 0
102 * MREGION: 0 because MRVALID is 0
104 return 0;
107 #else
110 * What kind of stack write are we doing? This affects how exceptions
111 * generated during the stacking are treated.
113 typedef enum StackingMode {
114 STACK_NORMAL,
115 STACK_IGNFAULTS,
116 STACK_LAZYFP,
117 } StackingMode;
119 static bool v7m_stack_write(ARMCPU *cpu, uint32_t addr, uint32_t value,
120 ARMMMUIdx mmu_idx, StackingMode mode)
122 CPUState *cs = CPU(cpu);
123 CPUARMState *env = &cpu->env;
124 MemTxAttrs attrs = {};
125 MemTxResult txres;
126 target_ulong page_size;
127 hwaddr physaddr;
128 int prot;
129 ARMMMUFaultInfo fi = {};
130 bool secure = mmu_idx & ARM_MMU_IDX_M_S;
131 int exc;
132 bool exc_secure;
134 if (get_phys_addr(env, addr, MMU_DATA_STORE, mmu_idx, &physaddr,
135 &attrs, &prot, &page_size, &fi, NULL)) {
136 /* MPU/SAU lookup failed */
137 if (fi.type == ARMFault_QEMU_SFault) {
138 if (mode == STACK_LAZYFP) {
139 qemu_log_mask(CPU_LOG_INT,
140 "...SecureFault with SFSR.LSPERR "
141 "during lazy stacking\n");
142 env->v7m.sfsr |= R_V7M_SFSR_LSPERR_MASK;
143 } else {
144 qemu_log_mask(CPU_LOG_INT,
145 "...SecureFault with SFSR.AUVIOL "
146 "during stacking\n");
147 env->v7m.sfsr |= R_V7M_SFSR_AUVIOL_MASK;
149 env->v7m.sfsr |= R_V7M_SFSR_SFARVALID_MASK;
150 env->v7m.sfar = addr;
151 exc = ARMV7M_EXCP_SECURE;
152 exc_secure = false;
153 } else {
154 if (mode == STACK_LAZYFP) {
155 qemu_log_mask(CPU_LOG_INT,
156 "...MemManageFault with CFSR.MLSPERR\n");
157 env->v7m.cfsr[secure] |= R_V7M_CFSR_MLSPERR_MASK;
158 } else {
159 qemu_log_mask(CPU_LOG_INT,
160 "...MemManageFault with CFSR.MSTKERR\n");
161 env->v7m.cfsr[secure] |= R_V7M_CFSR_MSTKERR_MASK;
163 exc = ARMV7M_EXCP_MEM;
164 exc_secure = secure;
166 goto pend_fault;
168 address_space_stl_le(arm_addressspace(cs, attrs), physaddr, value,
169 attrs, &txres);
170 if (txres != MEMTX_OK) {
171 /* BusFault trying to write the data */
172 if (mode == STACK_LAZYFP) {
173 qemu_log_mask(CPU_LOG_INT, "...BusFault with BFSR.LSPERR\n");
174 env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_LSPERR_MASK;
175 } else {
176 qemu_log_mask(CPU_LOG_INT, "...BusFault with BFSR.STKERR\n");
177 env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_STKERR_MASK;
179 exc = ARMV7M_EXCP_BUS;
180 exc_secure = false;
181 goto pend_fault;
183 return true;
185 pend_fault:
187 * By pending the exception at this point we are making
188 * the IMPDEF choice "overridden exceptions pended" (see the
189 * MergeExcInfo() pseudocode). The other choice would be to not
190 * pend them now and then make a choice about which to throw away
191 * later if we have two derived exceptions.
192 * The only case when we must not pend the exception but instead
193 * throw it away is if we are doing the push of the callee registers
194 * and we've already generated a derived exception (this is indicated
195 * by the caller passing STACK_IGNFAULTS). Even in this case we will
196 * still update the fault status registers.
198 switch (mode) {
199 case STACK_NORMAL:
200 armv7m_nvic_set_pending_derived(env->nvic, exc, exc_secure);
201 break;
202 case STACK_LAZYFP:
203 armv7m_nvic_set_pending_lazyfp(env->nvic, exc, exc_secure);
204 break;
205 case STACK_IGNFAULTS:
206 break;
208 return false;
211 static bool v7m_stack_read(ARMCPU *cpu, uint32_t *dest, uint32_t addr,
212 ARMMMUIdx mmu_idx)
214 CPUState *cs = CPU(cpu);
215 CPUARMState *env = &cpu->env;
216 MemTxAttrs attrs = {};
217 MemTxResult txres;
218 target_ulong page_size;
219 hwaddr physaddr;
220 int prot;
221 ARMMMUFaultInfo fi = {};
222 bool secure = mmu_idx & ARM_MMU_IDX_M_S;
223 int exc;
224 bool exc_secure;
225 uint32_t value;
227 if (get_phys_addr(env, addr, MMU_DATA_LOAD, mmu_idx, &physaddr,
228 &attrs, &prot, &page_size, &fi, NULL)) {
229 /* MPU/SAU lookup failed */
230 if (fi.type == ARMFault_QEMU_SFault) {
231 qemu_log_mask(CPU_LOG_INT,
232 "...SecureFault with SFSR.AUVIOL during unstack\n");
233 env->v7m.sfsr |= R_V7M_SFSR_AUVIOL_MASK | R_V7M_SFSR_SFARVALID_MASK;
234 env->v7m.sfar = addr;
235 exc = ARMV7M_EXCP_SECURE;
236 exc_secure = false;
237 } else {
238 qemu_log_mask(CPU_LOG_INT,
239 "...MemManageFault with CFSR.MUNSTKERR\n");
240 env->v7m.cfsr[secure] |= R_V7M_CFSR_MUNSTKERR_MASK;
241 exc = ARMV7M_EXCP_MEM;
242 exc_secure = secure;
244 goto pend_fault;
247 value = address_space_ldl(arm_addressspace(cs, attrs), physaddr,
248 attrs, &txres);
249 if (txres != MEMTX_OK) {
250 /* BusFault trying to read the data */
251 qemu_log_mask(CPU_LOG_INT, "...BusFault with BFSR.UNSTKERR\n");
252 env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_UNSTKERR_MASK;
253 exc = ARMV7M_EXCP_BUS;
254 exc_secure = false;
255 goto pend_fault;
258 *dest = value;
259 return true;
261 pend_fault:
263 * By pending the exception at this point we are making
264 * the IMPDEF choice "overridden exceptions pended" (see the
265 * MergeExcInfo() pseudocode). The other choice would be to not
266 * pend them now and then make a choice about which to throw away
267 * later if we have two derived exceptions.
269 armv7m_nvic_set_pending(env->nvic, exc, exc_secure);
270 return false;
273 void HELPER(v7m_preserve_fp_state)(CPUARMState *env)
276 * Preserve FP state (because LSPACT was set and we are about
277 * to execute an FP instruction). This corresponds to the
278 * PreserveFPState() pseudocode.
279 * We may throw an exception if the stacking fails.
281 ARMCPU *cpu = env_archcpu(env);
282 bool is_secure = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_S_MASK;
283 bool negpri = !(env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_HFRDY_MASK);
284 bool is_priv = !(env->v7m.fpccr[is_secure] & R_V7M_FPCCR_USER_MASK);
285 bool splimviol = env->v7m.fpccr[is_secure] & R_V7M_FPCCR_SPLIMVIOL_MASK;
286 uint32_t fpcar = env->v7m.fpcar[is_secure];
287 bool stacked_ok = true;
288 bool ts = is_secure && (env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_TS_MASK);
289 bool take_exception;
291 /* Take the iothread lock as we are going to touch the NVIC */
292 qemu_mutex_lock_iothread();
294 /* Check the background context had access to the FPU */
295 if (!v7m_cpacr_pass(env, is_secure, is_priv)) {
296 armv7m_nvic_set_pending_lazyfp(env->nvic, ARMV7M_EXCP_USAGE, is_secure);
297 env->v7m.cfsr[is_secure] |= R_V7M_CFSR_NOCP_MASK;
298 stacked_ok = false;
299 } else if (!is_secure && !extract32(env->v7m.nsacr, 10, 1)) {
300 armv7m_nvic_set_pending_lazyfp(env->nvic, ARMV7M_EXCP_USAGE, M_REG_S);
301 env->v7m.cfsr[M_REG_S] |= R_V7M_CFSR_NOCP_MASK;
302 stacked_ok = false;
305 if (!splimviol && stacked_ok) {
306 /* We only stack if the stack limit wasn't violated */
307 int i;
308 ARMMMUIdx mmu_idx;
310 mmu_idx = arm_v7m_mmu_idx_all(env, is_secure, is_priv, negpri);
311 for (i = 0; i < (ts ? 32 : 16); i += 2) {
312 uint64_t dn = *aa32_vfp_dreg(env, i / 2);
313 uint32_t faddr = fpcar + 4 * i;
314 uint32_t slo = extract64(dn, 0, 32);
315 uint32_t shi = extract64(dn, 32, 32);
317 if (i >= 16) {
318 faddr += 8; /* skip the slot for the FPSCR */
320 stacked_ok = stacked_ok &&
321 v7m_stack_write(cpu, faddr, slo, mmu_idx, STACK_LAZYFP) &&
322 v7m_stack_write(cpu, faddr + 4, shi, mmu_idx, STACK_LAZYFP);
325 stacked_ok = stacked_ok &&
326 v7m_stack_write(cpu, fpcar + 0x40,
327 vfp_get_fpscr(env), mmu_idx, STACK_LAZYFP);
331 * We definitely pended an exception, but it's possible that it
332 * might not be able to be taken now. If its priority permits us
333 * to take it now, then we must not update the LSPACT or FP regs,
334 * but instead jump out to take the exception immediately.
335 * If it's just pending and won't be taken until the current
336 * handler exits, then we do update LSPACT and the FP regs.
338 take_exception = !stacked_ok &&
339 armv7m_nvic_can_take_pending_exception(env->nvic);
341 qemu_mutex_unlock_iothread();
343 if (take_exception) {
344 raise_exception_ra(env, EXCP_LAZYFP, 0, 1, GETPC());
347 env->v7m.fpccr[is_secure] &= ~R_V7M_FPCCR_LSPACT_MASK;
349 if (ts) {
350 /* Clear s0 to s31 and the FPSCR */
351 int i;
353 for (i = 0; i < 32; i += 2) {
354 *aa32_vfp_dreg(env, i / 2) = 0;
356 vfp_set_fpscr(env, 0);
359 * Otherwise s0 to s15 and FPSCR are UNKNOWN; we choose to leave them
360 * unchanged.
365 * Write to v7M CONTROL.SPSEL bit for the specified security bank.
366 * This may change the current stack pointer between Main and Process
367 * stack pointers if it is done for the CONTROL register for the current
368 * security state.
370 static void write_v7m_control_spsel_for_secstate(CPUARMState *env,
371 bool new_spsel,
372 bool secstate)
374 bool old_is_psp = v7m_using_psp(env);
376 env->v7m.control[secstate] =
377 deposit32(env->v7m.control[secstate],
378 R_V7M_CONTROL_SPSEL_SHIFT,
379 R_V7M_CONTROL_SPSEL_LENGTH, new_spsel);
381 if (secstate == env->v7m.secure) {
382 bool new_is_psp = v7m_using_psp(env);
383 uint32_t tmp;
385 if (old_is_psp != new_is_psp) {
386 tmp = env->v7m.other_sp;
387 env->v7m.other_sp = env->regs[13];
388 env->regs[13] = tmp;
394 * Write to v7M CONTROL.SPSEL bit. This may change the current
395 * stack pointer between Main and Process stack pointers.
397 static void write_v7m_control_spsel(CPUARMState *env, bool new_spsel)
399 write_v7m_control_spsel_for_secstate(env, new_spsel, env->v7m.secure);
402 void write_v7m_exception(CPUARMState *env, uint32_t new_exc)
405 * Write a new value to v7m.exception, thus transitioning into or out
406 * of Handler mode; this may result in a change of active stack pointer.
408 bool new_is_psp, old_is_psp = v7m_using_psp(env);
409 uint32_t tmp;
411 env->v7m.exception = new_exc;
413 new_is_psp = v7m_using_psp(env);
415 if (old_is_psp != new_is_psp) {
416 tmp = env->v7m.other_sp;
417 env->v7m.other_sp = env->regs[13];
418 env->regs[13] = tmp;
422 /* Switch M profile security state between NS and S */
423 static void switch_v7m_security_state(CPUARMState *env, bool new_secstate)
425 uint32_t new_ss_msp, new_ss_psp;
427 if (env->v7m.secure == new_secstate) {
428 return;
432 * All the banked state is accessed by looking at env->v7m.secure
433 * except for the stack pointer; rearrange the SP appropriately.
435 new_ss_msp = env->v7m.other_ss_msp;
436 new_ss_psp = env->v7m.other_ss_psp;
438 if (v7m_using_psp(env)) {
439 env->v7m.other_ss_psp = env->regs[13];
440 env->v7m.other_ss_msp = env->v7m.other_sp;
441 } else {
442 env->v7m.other_ss_msp = env->regs[13];
443 env->v7m.other_ss_psp = env->v7m.other_sp;
446 env->v7m.secure = new_secstate;
448 if (v7m_using_psp(env)) {
449 env->regs[13] = new_ss_psp;
450 env->v7m.other_sp = new_ss_msp;
451 } else {
452 env->regs[13] = new_ss_msp;
453 env->v7m.other_sp = new_ss_psp;
457 void HELPER(v7m_bxns)(CPUARMState *env, uint32_t dest)
460 * Handle v7M BXNS:
461 * - if the return value is a magic value, do exception return (like BX)
462 * - otherwise bit 0 of the return value is the target security state
464 uint32_t min_magic;
466 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
467 /* Covers FNC_RETURN and EXC_RETURN magic */
468 min_magic = FNC_RETURN_MIN_MAGIC;
469 } else {
470 /* EXC_RETURN magic only */
471 min_magic = EXC_RETURN_MIN_MAGIC;
474 if (dest >= min_magic) {
476 * This is an exception return magic value; put it where
477 * do_v7m_exception_exit() expects and raise EXCEPTION_EXIT.
478 * Note that if we ever add gen_ss_advance() singlestep support to
479 * M profile this should count as an "instruction execution complete"
480 * event (compare gen_bx_excret_final_code()).
482 env->regs[15] = dest & ~1;
483 env->thumb = dest & 1;
484 HELPER(exception_internal)(env, EXCP_EXCEPTION_EXIT);
485 /* notreached */
488 /* translate.c should have made BXNS UNDEF unless we're secure */
489 assert(env->v7m.secure);
491 if (!(dest & 1)) {
492 env->v7m.control[M_REG_S] &= ~R_V7M_CONTROL_SFPA_MASK;
494 switch_v7m_security_state(env, dest & 1);
495 env->thumb = 1;
496 env->regs[15] = dest & ~1;
499 void HELPER(v7m_blxns)(CPUARMState *env, uint32_t dest)
502 * Handle v7M BLXNS:
503 * - bit 0 of the destination address is the target security state
506 /* At this point regs[15] is the address just after the BLXNS */
507 uint32_t nextinst = env->regs[15] | 1;
508 uint32_t sp = env->regs[13] - 8;
509 uint32_t saved_psr;
511 /* translate.c will have made BLXNS UNDEF unless we're secure */
512 assert(env->v7m.secure);
514 if (dest & 1) {
516 * Target is Secure, so this is just a normal BLX,
517 * except that the low bit doesn't indicate Thumb/not.
519 env->regs[14] = nextinst;
520 env->thumb = 1;
521 env->regs[15] = dest & ~1;
522 return;
525 /* Target is non-secure: first push a stack frame */
526 if (!QEMU_IS_ALIGNED(sp, 8)) {
527 qemu_log_mask(LOG_GUEST_ERROR,
528 "BLXNS with misaligned SP is UNPREDICTABLE\n");
531 if (sp < v7m_sp_limit(env)) {
532 raise_exception(env, EXCP_STKOF, 0, 1);
535 saved_psr = env->v7m.exception;
536 if (env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK) {
537 saved_psr |= XPSR_SFPA;
540 /* Note that these stores can throw exceptions on MPU faults */
541 cpu_stl_data_ra(env, sp, nextinst, GETPC());
542 cpu_stl_data_ra(env, sp + 4, saved_psr, GETPC());
544 env->regs[13] = sp;
545 env->regs[14] = 0xfeffffff;
546 if (arm_v7m_is_handler_mode(env)) {
548 * Write a dummy value to IPSR, to avoid leaking the current secure
549 * exception number to non-secure code. This is guaranteed not
550 * to cause write_v7m_exception() to actually change stacks.
552 write_v7m_exception(env, 1);
554 env->v7m.control[M_REG_S] &= ~R_V7M_CONTROL_SFPA_MASK;
555 switch_v7m_security_state(env, 0);
556 env->thumb = 1;
557 env->regs[15] = dest;
560 static uint32_t *get_v7m_sp_ptr(CPUARMState *env, bool secure, bool threadmode,
561 bool spsel)
564 * Return a pointer to the location where we currently store the
565 * stack pointer for the requested security state and thread mode.
566 * This pointer will become invalid if the CPU state is updated
567 * such that the stack pointers are switched around (eg changing
568 * the SPSEL control bit).
569 * Compare the v8M ARM ARM pseudocode LookUpSP_with_security_mode().
570 * Unlike that pseudocode, we require the caller to pass us in the
571 * SPSEL control bit value; this is because we also use this
572 * function in handling of pushing of the callee-saves registers
573 * part of the v8M stack frame (pseudocode PushCalleeStack()),
574 * and in the tailchain codepath the SPSEL bit comes from the exception
575 * return magic LR value from the previous exception. The pseudocode
576 * opencodes the stack-selection in PushCalleeStack(), but we prefer
577 * to make this utility function generic enough to do the job.
579 bool want_psp = threadmode && spsel;
581 if (secure == env->v7m.secure) {
582 if (want_psp == v7m_using_psp(env)) {
583 return &env->regs[13];
584 } else {
585 return &env->v7m.other_sp;
587 } else {
588 if (want_psp) {
589 return &env->v7m.other_ss_psp;
590 } else {
591 return &env->v7m.other_ss_msp;
596 static bool arm_v7m_load_vector(ARMCPU *cpu, int exc, bool targets_secure,
597 uint32_t *pvec)
599 CPUState *cs = CPU(cpu);
600 CPUARMState *env = &cpu->env;
601 MemTxResult result;
602 uint32_t addr = env->v7m.vecbase[targets_secure] + exc * 4;
603 uint32_t vector_entry;
604 MemTxAttrs attrs = {};
605 ARMMMUIdx mmu_idx;
606 bool exc_secure;
608 mmu_idx = arm_v7m_mmu_idx_for_secstate_and_priv(env, targets_secure, true);
611 * We don't do a get_phys_addr() here because the rules for vector
612 * loads are special: they always use the default memory map, and
613 * the default memory map permits reads from all addresses.
614 * Since there's no easy way to pass through to pmsav8_mpu_lookup()
615 * that we want this special case which would always say "yes",
616 * we just do the SAU lookup here followed by a direct physical load.
618 attrs.secure = targets_secure;
619 attrs.user = false;
621 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
622 V8M_SAttributes sattrs = {};
624 v8m_security_lookup(env, addr, MMU_DATA_LOAD, mmu_idx, &sattrs);
625 if (sattrs.ns) {
626 attrs.secure = false;
627 } else if (!targets_secure) {
629 * NS access to S memory: the underlying exception which we escalate
630 * to HardFault is SecureFault, which always targets Secure.
632 exc_secure = true;
633 goto load_fail;
637 vector_entry = address_space_ldl(arm_addressspace(cs, attrs), addr,
638 attrs, &result);
639 if (result != MEMTX_OK) {
641 * Underlying exception is BusFault: its target security state
642 * depends on BFHFNMINS.
644 exc_secure = !(cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK);
645 goto load_fail;
647 *pvec = vector_entry;
648 return true;
650 load_fail:
652 * All vector table fetch fails are reported as HardFault, with
653 * HFSR.VECTTBL and .FORCED set. (FORCED is set because
654 * technically the underlying exception is a SecureFault or BusFault
655 * that is escalated to HardFault.) This is a terminal exception,
656 * so we will either take the HardFault immediately or else enter
657 * lockup (the latter case is handled in armv7m_nvic_set_pending_derived()).
658 * The HardFault is Secure if BFHFNMINS is 0 (meaning that all HFs are
659 * secure); otherwise it targets the same security state as the
660 * underlying exception.
662 if (!(cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
663 exc_secure = true;
665 env->v7m.hfsr |= R_V7M_HFSR_VECTTBL_MASK | R_V7M_HFSR_FORCED_MASK;
666 armv7m_nvic_set_pending_derived(env->nvic, ARMV7M_EXCP_HARD, exc_secure);
667 return false;
670 static uint32_t v7m_integrity_sig(CPUARMState *env, uint32_t lr)
673 * Return the integrity signature value for the callee-saves
674 * stack frame section. @lr is the exception return payload/LR value
675 * whose FType bit forms bit 0 of the signature if FP is present.
677 uint32_t sig = 0xfefa125a;
679 if (!arm_feature(env, ARM_FEATURE_VFP) || (lr & R_V7M_EXCRET_FTYPE_MASK)) {
680 sig |= 1;
682 return sig;
685 static bool v7m_push_callee_stack(ARMCPU *cpu, uint32_t lr, bool dotailchain,
686 bool ignore_faults)
689 * For v8M, push the callee-saves register part of the stack frame.
690 * Compare the v8M pseudocode PushCalleeStack().
691 * In the tailchaining case this may not be the current stack.
693 CPUARMState *env = &cpu->env;
694 uint32_t *frame_sp_p;
695 uint32_t frameptr;
696 ARMMMUIdx mmu_idx;
697 bool stacked_ok;
698 uint32_t limit;
699 bool want_psp;
700 uint32_t sig;
701 StackingMode smode = ignore_faults ? STACK_IGNFAULTS : STACK_NORMAL;
703 if (dotailchain) {
704 bool mode = lr & R_V7M_EXCRET_MODE_MASK;
705 bool priv = !(env->v7m.control[M_REG_S] & R_V7M_CONTROL_NPRIV_MASK) ||
706 !mode;
708 mmu_idx = arm_v7m_mmu_idx_for_secstate_and_priv(env, M_REG_S, priv);
709 frame_sp_p = get_v7m_sp_ptr(env, M_REG_S, mode,
710 lr & R_V7M_EXCRET_SPSEL_MASK);
711 want_psp = mode && (lr & R_V7M_EXCRET_SPSEL_MASK);
712 if (want_psp) {
713 limit = env->v7m.psplim[M_REG_S];
714 } else {
715 limit = env->v7m.msplim[M_REG_S];
717 } else {
718 mmu_idx = arm_mmu_idx(env);
719 frame_sp_p = &env->regs[13];
720 limit = v7m_sp_limit(env);
723 frameptr = *frame_sp_p - 0x28;
724 if (frameptr < limit) {
726 * Stack limit failure: set SP to the limit value, and generate
727 * STKOF UsageFault. Stack pushes below the limit must not be
728 * performed. It is IMPDEF whether pushes above the limit are
729 * performed; we choose not to.
731 qemu_log_mask(CPU_LOG_INT,
732 "...STKOF during callee-saves register stacking\n");
733 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_STKOF_MASK;
734 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE,
735 env->v7m.secure);
736 *frame_sp_p = limit;
737 return true;
741 * Write as much of the stack frame as we can. A write failure may
742 * cause us to pend a derived exception.
744 sig = v7m_integrity_sig(env, lr);
745 stacked_ok =
746 v7m_stack_write(cpu, frameptr, sig, mmu_idx, smode) &&
747 v7m_stack_write(cpu, frameptr + 0x8, env->regs[4], mmu_idx, smode) &&
748 v7m_stack_write(cpu, frameptr + 0xc, env->regs[5], mmu_idx, smode) &&
749 v7m_stack_write(cpu, frameptr + 0x10, env->regs[6], mmu_idx, smode) &&
750 v7m_stack_write(cpu, frameptr + 0x14, env->regs[7], mmu_idx, smode) &&
751 v7m_stack_write(cpu, frameptr + 0x18, env->regs[8], mmu_idx, smode) &&
752 v7m_stack_write(cpu, frameptr + 0x1c, env->regs[9], mmu_idx, smode) &&
753 v7m_stack_write(cpu, frameptr + 0x20, env->regs[10], mmu_idx, smode) &&
754 v7m_stack_write(cpu, frameptr + 0x24, env->regs[11], mmu_idx, smode);
756 /* Update SP regardless of whether any of the stack accesses failed. */
757 *frame_sp_p = frameptr;
759 return !stacked_ok;
762 static void v7m_exception_taken(ARMCPU *cpu, uint32_t lr, bool dotailchain,
763 bool ignore_stackfaults)
766 * Do the "take the exception" parts of exception entry,
767 * but not the pushing of state to the stack. This is
768 * similar to the pseudocode ExceptionTaken() function.
770 CPUARMState *env = &cpu->env;
771 uint32_t addr;
772 bool targets_secure;
773 int exc;
774 bool push_failed = false;
776 armv7m_nvic_get_pending_irq_info(env->nvic, &exc, &targets_secure);
777 qemu_log_mask(CPU_LOG_INT, "...taking pending %s exception %d\n",
778 targets_secure ? "secure" : "nonsecure", exc);
780 if (dotailchain) {
781 /* Sanitize LR FType and PREFIX bits */
782 if (!arm_feature(env, ARM_FEATURE_VFP)) {
783 lr |= R_V7M_EXCRET_FTYPE_MASK;
785 lr = deposit32(lr, 24, 8, 0xff);
788 if (arm_feature(env, ARM_FEATURE_V8)) {
789 if (arm_feature(env, ARM_FEATURE_M_SECURITY) &&
790 (lr & R_V7M_EXCRET_S_MASK)) {
792 * The background code (the owner of the registers in the
793 * exception frame) is Secure. This means it may either already
794 * have or now needs to push callee-saves registers.
796 if (targets_secure) {
797 if (dotailchain && !(lr & R_V7M_EXCRET_ES_MASK)) {
799 * We took an exception from Secure to NonSecure
800 * (which means the callee-saved registers got stacked)
801 * and are now tailchaining to a Secure exception.
802 * Clear DCRS so eventual return from this Secure
803 * exception unstacks the callee-saved registers.
805 lr &= ~R_V7M_EXCRET_DCRS_MASK;
807 } else {
809 * We're going to a non-secure exception; push the
810 * callee-saves registers to the stack now, if they're
811 * not already saved.
813 if (lr & R_V7M_EXCRET_DCRS_MASK &&
814 !(dotailchain && !(lr & R_V7M_EXCRET_ES_MASK))) {
815 push_failed = v7m_push_callee_stack(cpu, lr, dotailchain,
816 ignore_stackfaults);
818 lr |= R_V7M_EXCRET_DCRS_MASK;
822 lr &= ~R_V7M_EXCRET_ES_MASK;
823 if (targets_secure || !arm_feature(env, ARM_FEATURE_M_SECURITY)) {
824 lr |= R_V7M_EXCRET_ES_MASK;
826 lr &= ~R_V7M_EXCRET_SPSEL_MASK;
827 if (env->v7m.control[targets_secure] & R_V7M_CONTROL_SPSEL_MASK) {
828 lr |= R_V7M_EXCRET_SPSEL_MASK;
832 * Clear registers if necessary to prevent non-secure exception
833 * code being able to see register values from secure code.
834 * Where register values become architecturally UNKNOWN we leave
835 * them with their previous values.
837 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
838 if (!targets_secure) {
840 * Always clear the caller-saved registers (they have been
841 * pushed to the stack earlier in v7m_push_stack()).
842 * Clear callee-saved registers if the background code is
843 * Secure (in which case these regs were saved in
844 * v7m_push_callee_stack()).
846 int i;
848 for (i = 0; i < 13; i++) {
849 /* r4..r11 are callee-saves, zero only if EXCRET.S == 1 */
850 if (i < 4 || i > 11 || (lr & R_V7M_EXCRET_S_MASK)) {
851 env->regs[i] = 0;
854 /* Clear EAPSR */
855 xpsr_write(env, 0, XPSR_NZCV | XPSR_Q | XPSR_GE | XPSR_IT);
860 if (push_failed && !ignore_stackfaults) {
862 * Derived exception on callee-saves register stacking:
863 * we might now want to take a different exception which
864 * targets a different security state, so try again from the top.
866 qemu_log_mask(CPU_LOG_INT,
867 "...derived exception on callee-saves register stacking");
868 v7m_exception_taken(cpu, lr, true, true);
869 return;
872 if (!arm_v7m_load_vector(cpu, exc, targets_secure, &addr)) {
873 /* Vector load failed: derived exception */
874 qemu_log_mask(CPU_LOG_INT, "...derived exception on vector table load");
875 v7m_exception_taken(cpu, lr, true, true);
876 return;
880 * Now we've done everything that might cause a derived exception
881 * we can go ahead and activate whichever exception we're going to
882 * take (which might now be the derived exception).
884 armv7m_nvic_acknowledge_irq(env->nvic);
886 /* Switch to target security state -- must do this before writing SPSEL */
887 switch_v7m_security_state(env, targets_secure);
888 write_v7m_control_spsel(env, 0);
889 arm_clear_exclusive(env);
890 /* Clear SFPA and FPCA (has no effect if no FPU) */
891 env->v7m.control[M_REG_S] &=
892 ~(R_V7M_CONTROL_FPCA_MASK | R_V7M_CONTROL_SFPA_MASK);
893 /* Clear IT bits */
894 env->condexec_bits = 0;
895 env->regs[14] = lr;
896 env->regs[15] = addr & 0xfffffffe;
897 env->thumb = addr & 1;
900 static void v7m_update_fpccr(CPUARMState *env, uint32_t frameptr,
901 bool apply_splim)
904 * Like the pseudocode UpdateFPCCR: save state in FPCAR and FPCCR
905 * that we will need later in order to do lazy FP reg stacking.
907 bool is_secure = env->v7m.secure;
908 void *nvic = env->nvic;
910 * Some bits are unbanked and live always in fpccr[M_REG_S]; some bits
911 * are banked and we want to update the bit in the bank for the
912 * current security state; and in one case we want to specifically
913 * update the NS banked version of a bit even if we are secure.
915 uint32_t *fpccr_s = &env->v7m.fpccr[M_REG_S];
916 uint32_t *fpccr_ns = &env->v7m.fpccr[M_REG_NS];
917 uint32_t *fpccr = &env->v7m.fpccr[is_secure];
918 bool hfrdy, bfrdy, mmrdy, ns_ufrdy, s_ufrdy, sfrdy, monrdy;
920 env->v7m.fpcar[is_secure] = frameptr & ~0x7;
922 if (apply_splim && arm_feature(env, ARM_FEATURE_V8)) {
923 bool splimviol;
924 uint32_t splim = v7m_sp_limit(env);
925 bool ign = armv7m_nvic_neg_prio_requested(nvic, is_secure) &&
926 (env->v7m.ccr[is_secure] & R_V7M_CCR_STKOFHFNMIGN_MASK);
928 splimviol = !ign && frameptr < splim;
929 *fpccr = FIELD_DP32(*fpccr, V7M_FPCCR, SPLIMVIOL, splimviol);
932 *fpccr = FIELD_DP32(*fpccr, V7M_FPCCR, LSPACT, 1);
934 *fpccr_s = FIELD_DP32(*fpccr_s, V7M_FPCCR, S, is_secure);
936 *fpccr = FIELD_DP32(*fpccr, V7M_FPCCR, USER, arm_current_el(env) == 0);
938 *fpccr = FIELD_DP32(*fpccr, V7M_FPCCR, THREAD,
939 !arm_v7m_is_handler_mode(env));
941 hfrdy = armv7m_nvic_get_ready_status(nvic, ARMV7M_EXCP_HARD, false);
942 *fpccr_s = FIELD_DP32(*fpccr_s, V7M_FPCCR, HFRDY, hfrdy);
944 bfrdy = armv7m_nvic_get_ready_status(nvic, ARMV7M_EXCP_BUS, false);
945 *fpccr_s = FIELD_DP32(*fpccr_s, V7M_FPCCR, BFRDY, bfrdy);
947 mmrdy = armv7m_nvic_get_ready_status(nvic, ARMV7M_EXCP_MEM, is_secure);
948 *fpccr = FIELD_DP32(*fpccr, V7M_FPCCR, MMRDY, mmrdy);
950 ns_ufrdy = armv7m_nvic_get_ready_status(nvic, ARMV7M_EXCP_USAGE, false);
951 *fpccr_ns = FIELD_DP32(*fpccr_ns, V7M_FPCCR, UFRDY, ns_ufrdy);
953 monrdy = armv7m_nvic_get_ready_status(nvic, ARMV7M_EXCP_DEBUG, false);
954 *fpccr_s = FIELD_DP32(*fpccr_s, V7M_FPCCR, MONRDY, monrdy);
956 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
957 s_ufrdy = armv7m_nvic_get_ready_status(nvic, ARMV7M_EXCP_USAGE, true);
958 *fpccr_s = FIELD_DP32(*fpccr_s, V7M_FPCCR, UFRDY, s_ufrdy);
960 sfrdy = armv7m_nvic_get_ready_status(nvic, ARMV7M_EXCP_SECURE, false);
961 *fpccr_s = FIELD_DP32(*fpccr_s, V7M_FPCCR, SFRDY, sfrdy);
965 void HELPER(v7m_vlstm)(CPUARMState *env, uint32_t fptr)
967 /* fptr is the value of Rn, the frame pointer we store the FP regs to */
968 bool s = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_S_MASK;
969 bool lspact = env->v7m.fpccr[s] & R_V7M_FPCCR_LSPACT_MASK;
970 uintptr_t ra = GETPC();
972 assert(env->v7m.secure);
974 if (!(env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK)) {
975 return;
978 /* Check access to the coprocessor is permitted */
979 if (!v7m_cpacr_pass(env, true, arm_current_el(env) != 0)) {
980 raise_exception_ra(env, EXCP_NOCP, 0, 1, GETPC());
983 if (lspact) {
984 /* LSPACT should not be active when there is active FP state */
985 raise_exception_ra(env, EXCP_LSERR, 0, 1, GETPC());
988 if (fptr & 7) {
989 raise_exception_ra(env, EXCP_UNALIGNED, 0, 1, GETPC());
993 * Note that we do not use v7m_stack_write() here, because the
994 * accesses should not set the FSR bits for stacking errors if they
995 * fail. (In pseudocode terms, they are AccType_NORMAL, not AccType_STACK
996 * or AccType_LAZYFP). Faults in cpu_stl_data_ra() will throw exceptions
997 * and longjmp out.
999 if (!(env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_LSPEN_MASK)) {
1000 bool ts = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_TS_MASK;
1001 int i;
1003 for (i = 0; i < (ts ? 32 : 16); i += 2) {
1004 uint64_t dn = *aa32_vfp_dreg(env, i / 2);
1005 uint32_t faddr = fptr + 4 * i;
1006 uint32_t slo = extract64(dn, 0, 32);
1007 uint32_t shi = extract64(dn, 32, 32);
1009 if (i >= 16) {
1010 faddr += 8; /* skip the slot for the FPSCR */
1012 cpu_stl_data_ra(env, faddr, slo, ra);
1013 cpu_stl_data_ra(env, faddr + 4, shi, ra);
1015 cpu_stl_data_ra(env, fptr + 0x40, vfp_get_fpscr(env), ra);
1018 * If TS is 0 then s0 to s15 and FPSCR are UNKNOWN; we choose to
1019 * leave them unchanged, matching our choice in v7m_preserve_fp_state.
1021 if (ts) {
1022 for (i = 0; i < 32; i += 2) {
1023 *aa32_vfp_dreg(env, i / 2) = 0;
1025 vfp_set_fpscr(env, 0);
1027 } else {
1028 v7m_update_fpccr(env, fptr, false);
1031 env->v7m.control[M_REG_S] &= ~R_V7M_CONTROL_FPCA_MASK;
1034 void HELPER(v7m_vlldm)(CPUARMState *env, uint32_t fptr)
1036 uintptr_t ra = GETPC();
1038 /* fptr is the value of Rn, the frame pointer we load the FP regs from */
1039 assert(env->v7m.secure);
1041 if (!(env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK)) {
1042 return;
1045 /* Check access to the coprocessor is permitted */
1046 if (!v7m_cpacr_pass(env, true, arm_current_el(env) != 0)) {
1047 raise_exception_ra(env, EXCP_NOCP, 0, 1, GETPC());
1050 if (env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_LSPACT_MASK) {
1051 /* State in FP is still valid */
1052 env->v7m.fpccr[M_REG_S] &= ~R_V7M_FPCCR_LSPACT_MASK;
1053 } else {
1054 bool ts = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_TS_MASK;
1055 int i;
1056 uint32_t fpscr;
1058 if (fptr & 7) {
1059 raise_exception_ra(env, EXCP_UNALIGNED, 0, 1, GETPC());
1062 for (i = 0; i < (ts ? 32 : 16); i += 2) {
1063 uint32_t slo, shi;
1064 uint64_t dn;
1065 uint32_t faddr = fptr + 4 * i;
1067 if (i >= 16) {
1068 faddr += 8; /* skip the slot for the FPSCR */
1071 slo = cpu_ldl_data_ra(env, faddr, ra);
1072 shi = cpu_ldl_data_ra(env, faddr + 4, ra);
1074 dn = (uint64_t) shi << 32 | slo;
1075 *aa32_vfp_dreg(env, i / 2) = dn;
1077 fpscr = cpu_ldl_data_ra(env, fptr + 0x40, ra);
1078 vfp_set_fpscr(env, fpscr);
1081 env->v7m.control[M_REG_S] |= R_V7M_CONTROL_FPCA_MASK;
1084 static bool v7m_push_stack(ARMCPU *cpu)
1087 * Do the "set up stack frame" part of exception entry,
1088 * similar to pseudocode PushStack().
1089 * Return true if we generate a derived exception (and so
1090 * should ignore further stack faults trying to process
1091 * that derived exception.)
1093 bool stacked_ok = true, limitviol = false;
1094 CPUARMState *env = &cpu->env;
1095 uint32_t xpsr = xpsr_read(env);
1096 uint32_t frameptr = env->regs[13];
1097 ARMMMUIdx mmu_idx = arm_mmu_idx(env);
1098 uint32_t framesize;
1099 bool nsacr_cp10 = extract32(env->v7m.nsacr, 10, 1);
1101 if ((env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK) &&
1102 (env->v7m.secure || nsacr_cp10)) {
1103 if (env->v7m.secure &&
1104 env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_TS_MASK) {
1105 framesize = 0xa8;
1106 } else {
1107 framesize = 0x68;
1109 } else {
1110 framesize = 0x20;
1113 /* Align stack pointer if the guest wants that */
1114 if ((frameptr & 4) &&
1115 (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_STKALIGN_MASK)) {
1116 frameptr -= 4;
1117 xpsr |= XPSR_SPREALIGN;
1120 xpsr &= ~XPSR_SFPA;
1121 if (env->v7m.secure &&
1122 (env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK)) {
1123 xpsr |= XPSR_SFPA;
1126 frameptr -= framesize;
1128 if (arm_feature(env, ARM_FEATURE_V8)) {
1129 uint32_t limit = v7m_sp_limit(env);
1131 if (frameptr < limit) {
1133 * Stack limit failure: set SP to the limit value, and generate
1134 * STKOF UsageFault. Stack pushes below the limit must not be
1135 * performed. It is IMPDEF whether pushes above the limit are
1136 * performed; we choose not to.
1138 qemu_log_mask(CPU_LOG_INT,
1139 "...STKOF during stacking\n");
1140 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_STKOF_MASK;
1141 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE,
1142 env->v7m.secure);
1143 env->regs[13] = limit;
1145 * We won't try to perform any further memory accesses but
1146 * we must continue through the following code to check for
1147 * permission faults during FPU state preservation, and we
1148 * must update FPCCR if lazy stacking is enabled.
1150 limitviol = true;
1151 stacked_ok = false;
1156 * Write as much of the stack frame as we can. If we fail a stack
1157 * write this will result in a derived exception being pended
1158 * (which may be taken in preference to the one we started with
1159 * if it has higher priority).
1161 stacked_ok = stacked_ok &&
1162 v7m_stack_write(cpu, frameptr, env->regs[0], mmu_idx, STACK_NORMAL) &&
1163 v7m_stack_write(cpu, frameptr + 4, env->regs[1],
1164 mmu_idx, STACK_NORMAL) &&
1165 v7m_stack_write(cpu, frameptr + 8, env->regs[2],
1166 mmu_idx, STACK_NORMAL) &&
1167 v7m_stack_write(cpu, frameptr + 12, env->regs[3],
1168 mmu_idx, STACK_NORMAL) &&
1169 v7m_stack_write(cpu, frameptr + 16, env->regs[12],
1170 mmu_idx, STACK_NORMAL) &&
1171 v7m_stack_write(cpu, frameptr + 20, env->regs[14],
1172 mmu_idx, STACK_NORMAL) &&
1173 v7m_stack_write(cpu, frameptr + 24, env->regs[15],
1174 mmu_idx, STACK_NORMAL) &&
1175 v7m_stack_write(cpu, frameptr + 28, xpsr, mmu_idx, STACK_NORMAL);
1177 if (env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK) {
1178 /* FPU is active, try to save its registers */
1179 bool fpccr_s = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_S_MASK;
1180 bool lspact = env->v7m.fpccr[fpccr_s] & R_V7M_FPCCR_LSPACT_MASK;
1182 if (lspact && arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1183 qemu_log_mask(CPU_LOG_INT,
1184 "...SecureFault because LSPACT and FPCA both set\n");
1185 env->v7m.sfsr |= R_V7M_SFSR_LSERR_MASK;
1186 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
1187 } else if (!env->v7m.secure && !nsacr_cp10) {
1188 qemu_log_mask(CPU_LOG_INT,
1189 "...Secure UsageFault with CFSR.NOCP because "
1190 "NSACR.CP10 prevents stacking FP regs\n");
1191 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, M_REG_S);
1192 env->v7m.cfsr[M_REG_S] |= R_V7M_CFSR_NOCP_MASK;
1193 } else {
1194 if (!(env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_LSPEN_MASK)) {
1195 /* Lazy stacking disabled, save registers now */
1196 int i;
1197 bool cpacr_pass = v7m_cpacr_pass(env, env->v7m.secure,
1198 arm_current_el(env) != 0);
1200 if (stacked_ok && !cpacr_pass) {
1202 * Take UsageFault if CPACR forbids access. The pseudocode
1203 * here does a full CheckCPEnabled() but we know the NSACR
1204 * check can never fail as we have already handled that.
1206 qemu_log_mask(CPU_LOG_INT,
1207 "...UsageFault with CFSR.NOCP because "
1208 "CPACR.CP10 prevents stacking FP regs\n");
1209 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE,
1210 env->v7m.secure);
1211 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_NOCP_MASK;
1212 stacked_ok = false;
1215 for (i = 0; i < ((framesize == 0xa8) ? 32 : 16); i += 2) {
1216 uint64_t dn = *aa32_vfp_dreg(env, i / 2);
1217 uint32_t faddr = frameptr + 0x20 + 4 * i;
1218 uint32_t slo = extract64(dn, 0, 32);
1219 uint32_t shi = extract64(dn, 32, 32);
1221 if (i >= 16) {
1222 faddr += 8; /* skip the slot for the FPSCR */
1224 stacked_ok = stacked_ok &&
1225 v7m_stack_write(cpu, faddr, slo,
1226 mmu_idx, STACK_NORMAL) &&
1227 v7m_stack_write(cpu, faddr + 4, shi,
1228 mmu_idx, STACK_NORMAL);
1230 stacked_ok = stacked_ok &&
1231 v7m_stack_write(cpu, frameptr + 0x60,
1232 vfp_get_fpscr(env), mmu_idx, STACK_NORMAL);
1233 if (cpacr_pass) {
1234 for (i = 0; i < ((framesize == 0xa8) ? 32 : 16); i += 2) {
1235 *aa32_vfp_dreg(env, i / 2) = 0;
1237 vfp_set_fpscr(env, 0);
1239 } else {
1240 /* Lazy stacking enabled, save necessary info to stack later */
1241 v7m_update_fpccr(env, frameptr + 0x20, true);
1247 * If we broke a stack limit then SP was already updated earlier;
1248 * otherwise we update SP regardless of whether any of the stack
1249 * accesses failed or we took some other kind of fault.
1251 if (!limitviol) {
1252 env->regs[13] = frameptr;
1255 return !stacked_ok;
1258 static void do_v7m_exception_exit(ARMCPU *cpu)
1260 CPUARMState *env = &cpu->env;
1261 uint32_t excret;
1262 uint32_t xpsr, xpsr_mask;
1263 bool ufault = false;
1264 bool sfault = false;
1265 bool return_to_sp_process;
1266 bool return_to_handler;
1267 bool rettobase = false;
1268 bool exc_secure = false;
1269 bool return_to_secure;
1270 bool ftype;
1271 bool restore_s16_s31;
1274 * If we're not in Handler mode then jumps to magic exception-exit
1275 * addresses don't have magic behaviour. However for the v8M
1276 * security extensions the magic secure-function-return has to
1277 * work in thread mode too, so to avoid doing an extra check in
1278 * the generated code we allow exception-exit magic to also cause the
1279 * internal exception and bring us here in thread mode. Correct code
1280 * will never try to do this (the following insn fetch will always
1281 * fault) so we the overhead of having taken an unnecessary exception
1282 * doesn't matter.
1284 if (!arm_v7m_is_handler_mode(env)) {
1285 return;
1289 * In the spec pseudocode ExceptionReturn() is called directly
1290 * from BXWritePC() and gets the full target PC value including
1291 * bit zero. In QEMU's implementation we treat it as a normal
1292 * jump-to-register (which is then caught later on), and so split
1293 * the target value up between env->regs[15] and env->thumb in
1294 * gen_bx(). Reconstitute it.
1296 excret = env->regs[15];
1297 if (env->thumb) {
1298 excret |= 1;
1301 qemu_log_mask(CPU_LOG_INT, "Exception return: magic PC %" PRIx32
1302 " previous exception %d\n",
1303 excret, env->v7m.exception);
1305 if ((excret & R_V7M_EXCRET_RES1_MASK) != R_V7M_EXCRET_RES1_MASK) {
1306 qemu_log_mask(LOG_GUEST_ERROR, "M profile: zero high bits in exception "
1307 "exit PC value 0x%" PRIx32 " are UNPREDICTABLE\n",
1308 excret);
1311 ftype = excret & R_V7M_EXCRET_FTYPE_MASK;
1313 if (!arm_feature(env, ARM_FEATURE_VFP) && !ftype) {
1314 qemu_log_mask(LOG_GUEST_ERROR, "M profile: zero FTYPE in exception "
1315 "exit PC value 0x%" PRIx32 " is UNPREDICTABLE "
1316 "if FPU not present\n",
1317 excret);
1318 ftype = true;
1321 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1323 * EXC_RETURN.ES validation check (R_SMFL). We must do this before
1324 * we pick which FAULTMASK to clear.
1326 if (!env->v7m.secure &&
1327 ((excret & R_V7M_EXCRET_ES_MASK) ||
1328 !(excret & R_V7M_EXCRET_DCRS_MASK))) {
1329 sfault = 1;
1330 /* For all other purposes, treat ES as 0 (R_HXSR) */
1331 excret &= ~R_V7M_EXCRET_ES_MASK;
1333 exc_secure = excret & R_V7M_EXCRET_ES_MASK;
1336 if (env->v7m.exception != ARMV7M_EXCP_NMI) {
1338 * Auto-clear FAULTMASK on return from other than NMI.
1339 * If the security extension is implemented then this only
1340 * happens if the raw execution priority is >= 0; the
1341 * value of the ES bit in the exception return value indicates
1342 * which security state's faultmask to clear. (v8M ARM ARM R_KBNF.)
1344 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1345 if (armv7m_nvic_raw_execution_priority(env->nvic) >= 0) {
1346 env->v7m.faultmask[exc_secure] = 0;
1348 } else {
1349 env->v7m.faultmask[M_REG_NS] = 0;
1353 switch (armv7m_nvic_complete_irq(env->nvic, env->v7m.exception,
1354 exc_secure)) {
1355 case -1:
1356 /* attempt to exit an exception that isn't active */
1357 ufault = true;
1358 break;
1359 case 0:
1360 /* still an irq active now */
1361 break;
1362 case 1:
1364 * We returned to base exception level, no nesting.
1365 * (In the pseudocode this is written using "NestedActivation != 1"
1366 * where we have 'rettobase == false'.)
1368 rettobase = true;
1369 break;
1370 default:
1371 g_assert_not_reached();
1374 return_to_handler = !(excret & R_V7M_EXCRET_MODE_MASK);
1375 return_to_sp_process = excret & R_V7M_EXCRET_SPSEL_MASK;
1376 return_to_secure = arm_feature(env, ARM_FEATURE_M_SECURITY) &&
1377 (excret & R_V7M_EXCRET_S_MASK);
1379 if (arm_feature(env, ARM_FEATURE_V8)) {
1380 if (!arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1382 * UNPREDICTABLE if S == 1 or DCRS == 0 or ES == 1 (R_XLCP);
1383 * we choose to take the UsageFault.
1385 if ((excret & R_V7M_EXCRET_S_MASK) ||
1386 (excret & R_V7M_EXCRET_ES_MASK) ||
1387 !(excret & R_V7M_EXCRET_DCRS_MASK)) {
1388 ufault = true;
1391 if (excret & R_V7M_EXCRET_RES0_MASK) {
1392 ufault = true;
1394 } else {
1395 /* For v7M we only recognize certain combinations of the low bits */
1396 switch (excret & 0xf) {
1397 case 1: /* Return to Handler */
1398 break;
1399 case 13: /* Return to Thread using Process stack */
1400 case 9: /* Return to Thread using Main stack */
1402 * We only need to check NONBASETHRDENA for v7M, because in
1403 * v8M this bit does not exist (it is RES1).
1405 if (!rettobase &&
1406 !(env->v7m.ccr[env->v7m.secure] &
1407 R_V7M_CCR_NONBASETHRDENA_MASK)) {
1408 ufault = true;
1410 break;
1411 default:
1412 ufault = true;
1417 * Set CONTROL.SPSEL from excret.SPSEL. Since we're still in
1418 * Handler mode (and will be until we write the new XPSR.Interrupt
1419 * field) this does not switch around the current stack pointer.
1420 * We must do this before we do any kind of tailchaining, including
1421 * for the derived exceptions on integrity check failures, or we will
1422 * give the guest an incorrect EXCRET.SPSEL value on exception entry.
1424 write_v7m_control_spsel_for_secstate(env, return_to_sp_process, exc_secure);
1427 * Clear scratch FP values left in caller saved registers; this
1428 * must happen before any kind of tail chaining.
1430 if ((env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_CLRONRET_MASK) &&
1431 (env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK)) {
1432 if (env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_LSPACT_MASK) {
1433 env->v7m.sfsr |= R_V7M_SFSR_LSERR_MASK;
1434 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
1435 qemu_log_mask(CPU_LOG_INT, "...taking SecureFault on existing "
1436 "stackframe: error during lazy state deactivation\n");
1437 v7m_exception_taken(cpu, excret, true, false);
1438 return;
1439 } else {
1440 /* Clear s0..s15 and FPSCR */
1441 int i;
1443 for (i = 0; i < 16; i += 2) {
1444 *aa32_vfp_dreg(env, i / 2) = 0;
1446 vfp_set_fpscr(env, 0);
1450 if (sfault) {
1451 env->v7m.sfsr |= R_V7M_SFSR_INVER_MASK;
1452 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
1453 qemu_log_mask(CPU_LOG_INT, "...taking SecureFault on existing "
1454 "stackframe: failed EXC_RETURN.ES validity check\n");
1455 v7m_exception_taken(cpu, excret, true, false);
1456 return;
1459 if (ufault) {
1461 * Bad exception return: instead of popping the exception
1462 * stack, directly take a usage fault on the current stack.
1464 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK;
1465 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure);
1466 qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on existing "
1467 "stackframe: failed exception return integrity check\n");
1468 v7m_exception_taken(cpu, excret, true, false);
1469 return;
1473 * Tailchaining: if there is currently a pending exception that
1474 * is high enough priority to preempt execution at the level we're
1475 * about to return to, then just directly take that exception now,
1476 * avoiding an unstack-and-then-stack. Note that now we have
1477 * deactivated the previous exception by calling armv7m_nvic_complete_irq()
1478 * our current execution priority is already the execution priority we are
1479 * returning to -- none of the state we would unstack or set based on
1480 * the EXCRET value affects it.
1482 if (armv7m_nvic_can_take_pending_exception(env->nvic)) {
1483 qemu_log_mask(CPU_LOG_INT, "...tailchaining to pending exception\n");
1484 v7m_exception_taken(cpu, excret, true, false);
1485 return;
1488 switch_v7m_security_state(env, return_to_secure);
1492 * The stack pointer we should be reading the exception frame from
1493 * depends on bits in the magic exception return type value (and
1494 * for v8M isn't necessarily the stack pointer we will eventually
1495 * end up resuming execution with). Get a pointer to the location
1496 * in the CPU state struct where the SP we need is currently being
1497 * stored; we will use and modify it in place.
1498 * We use this limited C variable scope so we don't accidentally
1499 * use 'frame_sp_p' after we do something that makes it invalid.
1501 uint32_t *frame_sp_p = get_v7m_sp_ptr(env,
1502 return_to_secure,
1503 !return_to_handler,
1504 return_to_sp_process);
1505 uint32_t frameptr = *frame_sp_p;
1506 bool pop_ok = true;
1507 ARMMMUIdx mmu_idx;
1508 bool return_to_priv = return_to_handler ||
1509 !(env->v7m.control[return_to_secure] & R_V7M_CONTROL_NPRIV_MASK);
1511 mmu_idx = arm_v7m_mmu_idx_for_secstate_and_priv(env, return_to_secure,
1512 return_to_priv);
1514 if (!QEMU_IS_ALIGNED(frameptr, 8) &&
1515 arm_feature(env, ARM_FEATURE_V8)) {
1516 qemu_log_mask(LOG_GUEST_ERROR,
1517 "M profile exception return with non-8-aligned SP "
1518 "for destination state is UNPREDICTABLE\n");
1521 /* Do we need to pop callee-saved registers? */
1522 if (return_to_secure &&
1523 ((excret & R_V7M_EXCRET_ES_MASK) == 0 ||
1524 (excret & R_V7M_EXCRET_DCRS_MASK) == 0)) {
1525 uint32_t actual_sig;
1527 pop_ok = v7m_stack_read(cpu, &actual_sig, frameptr, mmu_idx);
1529 if (pop_ok && v7m_integrity_sig(env, excret) != actual_sig) {
1530 /* Take a SecureFault on the current stack */
1531 env->v7m.sfsr |= R_V7M_SFSR_INVIS_MASK;
1532 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
1533 qemu_log_mask(CPU_LOG_INT, "...taking SecureFault on existing "
1534 "stackframe: failed exception return integrity "
1535 "signature check\n");
1536 v7m_exception_taken(cpu, excret, true, false);
1537 return;
1540 pop_ok = pop_ok &&
1541 v7m_stack_read(cpu, &env->regs[4], frameptr + 0x8, mmu_idx) &&
1542 v7m_stack_read(cpu, &env->regs[5], frameptr + 0xc, mmu_idx) &&
1543 v7m_stack_read(cpu, &env->regs[6], frameptr + 0x10, mmu_idx) &&
1544 v7m_stack_read(cpu, &env->regs[7], frameptr + 0x14, mmu_idx) &&
1545 v7m_stack_read(cpu, &env->regs[8], frameptr + 0x18, mmu_idx) &&
1546 v7m_stack_read(cpu, &env->regs[9], frameptr + 0x1c, mmu_idx) &&
1547 v7m_stack_read(cpu, &env->regs[10], frameptr + 0x20, mmu_idx) &&
1548 v7m_stack_read(cpu, &env->regs[11], frameptr + 0x24, mmu_idx);
1550 frameptr += 0x28;
1553 /* Pop registers */
1554 pop_ok = pop_ok &&
1555 v7m_stack_read(cpu, &env->regs[0], frameptr, mmu_idx) &&
1556 v7m_stack_read(cpu, &env->regs[1], frameptr + 0x4, mmu_idx) &&
1557 v7m_stack_read(cpu, &env->regs[2], frameptr + 0x8, mmu_idx) &&
1558 v7m_stack_read(cpu, &env->regs[3], frameptr + 0xc, mmu_idx) &&
1559 v7m_stack_read(cpu, &env->regs[12], frameptr + 0x10, mmu_idx) &&
1560 v7m_stack_read(cpu, &env->regs[14], frameptr + 0x14, mmu_idx) &&
1561 v7m_stack_read(cpu, &env->regs[15], frameptr + 0x18, mmu_idx) &&
1562 v7m_stack_read(cpu, &xpsr, frameptr + 0x1c, mmu_idx);
1564 if (!pop_ok) {
1566 * v7m_stack_read() pended a fault, so take it (as a tail
1567 * chained exception on the same stack frame)
1569 qemu_log_mask(CPU_LOG_INT, "...derived exception on unstacking\n");
1570 v7m_exception_taken(cpu, excret, true, false);
1571 return;
1575 * Returning from an exception with a PC with bit 0 set is defined
1576 * behaviour on v8M (bit 0 is ignored), but for v7M it was specified
1577 * to be UNPREDICTABLE. In practice actual v7M hardware seems to ignore
1578 * the lsbit, and there are several RTOSes out there which incorrectly
1579 * assume the r15 in the stack frame should be a Thumb-style "lsbit
1580 * indicates ARM/Thumb" value, so ignore the bit on v7M as well, but
1581 * complain about the badly behaved guest.
1583 if (env->regs[15] & 1) {
1584 env->regs[15] &= ~1U;
1585 if (!arm_feature(env, ARM_FEATURE_V8)) {
1586 qemu_log_mask(LOG_GUEST_ERROR,
1587 "M profile return from interrupt with misaligned "
1588 "PC is UNPREDICTABLE on v7M\n");
1592 if (arm_feature(env, ARM_FEATURE_V8)) {
1594 * For v8M we have to check whether the xPSR exception field
1595 * matches the EXCRET value for return to handler/thread
1596 * before we commit to changing the SP and xPSR.
1598 bool will_be_handler = (xpsr & XPSR_EXCP) != 0;
1599 if (return_to_handler != will_be_handler) {
1601 * Take an INVPC UsageFault on the current stack.
1602 * By this point we will have switched to the security state
1603 * for the background state, so this UsageFault will target
1604 * that state.
1606 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE,
1607 env->v7m.secure);
1608 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK;
1609 qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on existing "
1610 "stackframe: failed exception return integrity "
1611 "check\n");
1612 v7m_exception_taken(cpu, excret, true, false);
1613 return;
1617 if (!ftype) {
1618 /* FP present and we need to handle it */
1619 if (!return_to_secure &&
1620 (env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_LSPACT_MASK)) {
1621 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
1622 env->v7m.sfsr |= R_V7M_SFSR_LSERR_MASK;
1623 qemu_log_mask(CPU_LOG_INT,
1624 "...taking SecureFault on existing stackframe: "
1625 "Secure LSPACT set but exception return is "
1626 "not to secure state\n");
1627 v7m_exception_taken(cpu, excret, true, false);
1628 return;
1631 restore_s16_s31 = return_to_secure &&
1632 (env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_TS_MASK);
1634 if (env->v7m.fpccr[return_to_secure] & R_V7M_FPCCR_LSPACT_MASK) {
1635 /* State in FPU is still valid, just clear LSPACT */
1636 env->v7m.fpccr[return_to_secure] &= ~R_V7M_FPCCR_LSPACT_MASK;
1637 } else {
1638 int i;
1639 uint32_t fpscr;
1640 bool cpacr_pass, nsacr_pass;
1642 cpacr_pass = v7m_cpacr_pass(env, return_to_secure,
1643 return_to_priv);
1644 nsacr_pass = return_to_secure ||
1645 extract32(env->v7m.nsacr, 10, 1);
1647 if (!cpacr_pass) {
1648 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE,
1649 return_to_secure);
1650 env->v7m.cfsr[return_to_secure] |= R_V7M_CFSR_NOCP_MASK;
1651 qemu_log_mask(CPU_LOG_INT,
1652 "...taking UsageFault on existing "
1653 "stackframe: CPACR.CP10 prevents unstacking "
1654 "FP regs\n");
1655 v7m_exception_taken(cpu, excret, true, false);
1656 return;
1657 } else if (!nsacr_pass) {
1658 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, true);
1659 env->v7m.cfsr[M_REG_S] |= R_V7M_CFSR_INVPC_MASK;
1660 qemu_log_mask(CPU_LOG_INT,
1661 "...taking Secure UsageFault on existing "
1662 "stackframe: NSACR.CP10 prevents unstacking "
1663 "FP regs\n");
1664 v7m_exception_taken(cpu, excret, true, false);
1665 return;
1668 for (i = 0; i < (restore_s16_s31 ? 32 : 16); i += 2) {
1669 uint32_t slo, shi;
1670 uint64_t dn;
1671 uint32_t faddr = frameptr + 0x20 + 4 * i;
1673 if (i >= 16) {
1674 faddr += 8; /* Skip the slot for the FPSCR */
1677 pop_ok = pop_ok &&
1678 v7m_stack_read(cpu, &slo, faddr, mmu_idx) &&
1679 v7m_stack_read(cpu, &shi, faddr + 4, mmu_idx);
1681 if (!pop_ok) {
1682 break;
1685 dn = (uint64_t)shi << 32 | slo;
1686 *aa32_vfp_dreg(env, i / 2) = dn;
1688 pop_ok = pop_ok &&
1689 v7m_stack_read(cpu, &fpscr, frameptr + 0x60, mmu_idx);
1690 if (pop_ok) {
1691 vfp_set_fpscr(env, fpscr);
1693 if (!pop_ok) {
1695 * These regs are 0 if security extension present;
1696 * otherwise merely UNKNOWN. We zero always.
1698 for (i = 0; i < (restore_s16_s31 ? 32 : 16); i += 2) {
1699 *aa32_vfp_dreg(env, i / 2) = 0;
1701 vfp_set_fpscr(env, 0);
1705 env->v7m.control[M_REG_S] = FIELD_DP32(env->v7m.control[M_REG_S],
1706 V7M_CONTROL, FPCA, !ftype);
1708 /* Commit to consuming the stack frame */
1709 frameptr += 0x20;
1710 if (!ftype) {
1711 frameptr += 0x48;
1712 if (restore_s16_s31) {
1713 frameptr += 0x40;
1717 * Undo stack alignment (the SPREALIGN bit indicates that the original
1718 * pre-exception SP was not 8-aligned and we added a padding word to
1719 * align it, so we undo this by ORing in the bit that increases it
1720 * from the current 8-aligned value to the 8-unaligned value. (Adding 4
1721 * would work too but a logical OR is how the pseudocode specifies it.)
1723 if (xpsr & XPSR_SPREALIGN) {
1724 frameptr |= 4;
1726 *frame_sp_p = frameptr;
1729 xpsr_mask = ~(XPSR_SPREALIGN | XPSR_SFPA);
1730 if (!arm_feature(env, ARM_FEATURE_THUMB_DSP)) {
1731 xpsr_mask &= ~XPSR_GE;
1733 /* This xpsr_write() will invalidate frame_sp_p as it may switch stack */
1734 xpsr_write(env, xpsr, xpsr_mask);
1736 if (env->v7m.secure) {
1737 bool sfpa = xpsr & XPSR_SFPA;
1739 env->v7m.control[M_REG_S] = FIELD_DP32(env->v7m.control[M_REG_S],
1740 V7M_CONTROL, SFPA, sfpa);
1744 * The restored xPSR exception field will be zero if we're
1745 * resuming in Thread mode. If that doesn't match what the
1746 * exception return excret specified then this is a UsageFault.
1747 * v7M requires we make this check here; v8M did it earlier.
1749 if (return_to_handler != arm_v7m_is_handler_mode(env)) {
1751 * Take an INVPC UsageFault by pushing the stack again;
1752 * we know we're v7M so this is never a Secure UsageFault.
1754 bool ignore_stackfaults;
1756 assert(!arm_feature(env, ARM_FEATURE_V8));
1757 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, false);
1758 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK;
1759 ignore_stackfaults = v7m_push_stack(cpu);
1760 qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on new stackframe: "
1761 "failed exception return integrity check\n");
1762 v7m_exception_taken(cpu, excret, false, ignore_stackfaults);
1763 return;
1766 /* Otherwise, we have a successful exception exit. */
1767 arm_clear_exclusive(env);
1768 qemu_log_mask(CPU_LOG_INT, "...successful exception return\n");
1771 static bool do_v7m_function_return(ARMCPU *cpu)
1774 * v8M security extensions magic function return.
1775 * We may either:
1776 * (1) throw an exception (longjump)
1777 * (2) return true if we successfully handled the function return
1778 * (3) return false if we failed a consistency check and have
1779 * pended a UsageFault that needs to be taken now
1781 * At this point the magic return value is split between env->regs[15]
1782 * and env->thumb. We don't bother to reconstitute it because we don't
1783 * need it (all values are handled the same way).
1785 CPUARMState *env = &cpu->env;
1786 uint32_t newpc, newpsr, newpsr_exc;
1788 qemu_log_mask(CPU_LOG_INT, "...really v7M secure function return\n");
1791 bool threadmode, spsel;
1792 TCGMemOpIdx oi;
1793 ARMMMUIdx mmu_idx;
1794 uint32_t *frame_sp_p;
1795 uint32_t frameptr;
1797 /* Pull the return address and IPSR from the Secure stack */
1798 threadmode = !arm_v7m_is_handler_mode(env);
1799 spsel = env->v7m.control[M_REG_S] & R_V7M_CONTROL_SPSEL_MASK;
1801 frame_sp_p = get_v7m_sp_ptr(env, true, threadmode, spsel);
1802 frameptr = *frame_sp_p;
1805 * These loads may throw an exception (for MPU faults). We want to
1806 * do them as secure, so work out what MMU index that is.
1808 mmu_idx = arm_v7m_mmu_idx_for_secstate(env, true);
1809 oi = make_memop_idx(MO_LE, arm_to_core_mmu_idx(mmu_idx));
1810 newpc = helper_le_ldul_mmu(env, frameptr, oi, 0);
1811 newpsr = helper_le_ldul_mmu(env, frameptr + 4, oi, 0);
1813 /* Consistency checks on new IPSR */
1814 newpsr_exc = newpsr & XPSR_EXCP;
1815 if (!((env->v7m.exception == 0 && newpsr_exc == 0) ||
1816 (env->v7m.exception == 1 && newpsr_exc != 0))) {
1817 /* Pend the fault and tell our caller to take it */
1818 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK;
1819 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE,
1820 env->v7m.secure);
1821 qemu_log_mask(CPU_LOG_INT,
1822 "...taking INVPC UsageFault: "
1823 "IPSR consistency check failed\n");
1824 return false;
1827 *frame_sp_p = frameptr + 8;
1830 /* This invalidates frame_sp_p */
1831 switch_v7m_security_state(env, true);
1832 env->v7m.exception = newpsr_exc;
1833 env->v7m.control[M_REG_S] &= ~R_V7M_CONTROL_SFPA_MASK;
1834 if (newpsr & XPSR_SFPA) {
1835 env->v7m.control[M_REG_S] |= R_V7M_CONTROL_SFPA_MASK;
1837 xpsr_write(env, 0, XPSR_IT);
1838 env->thumb = newpc & 1;
1839 env->regs[15] = newpc & ~1;
1841 qemu_log_mask(CPU_LOG_INT, "...function return successful\n");
1842 return true;
1845 static bool v7m_read_half_insn(ARMCPU *cpu, ARMMMUIdx mmu_idx,
1846 uint32_t addr, uint16_t *insn)
1849 * Load a 16-bit portion of a v7M instruction, returning true on success,
1850 * or false on failure (in which case we will have pended the appropriate
1851 * exception).
1852 * We need to do the instruction fetch's MPU and SAU checks
1853 * like this because there is no MMU index that would allow
1854 * doing the load with a single function call. Instead we must
1855 * first check that the security attributes permit the load
1856 * and that they don't mismatch on the two halves of the instruction,
1857 * and then we do the load as a secure load (ie using the security
1858 * attributes of the address, not the CPU, as architecturally required).
1860 CPUState *cs = CPU(cpu);
1861 CPUARMState *env = &cpu->env;
1862 V8M_SAttributes sattrs = {};
1863 MemTxAttrs attrs = {};
1864 ARMMMUFaultInfo fi = {};
1865 MemTxResult txres;
1866 target_ulong page_size;
1867 hwaddr physaddr;
1868 int prot;
1870 v8m_security_lookup(env, addr, MMU_INST_FETCH, mmu_idx, &sattrs);
1871 if (!sattrs.nsc || sattrs.ns) {
1873 * This must be the second half of the insn, and it straddles a
1874 * region boundary with the second half not being S&NSC.
1876 env->v7m.sfsr |= R_V7M_SFSR_INVEP_MASK;
1877 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
1878 qemu_log_mask(CPU_LOG_INT,
1879 "...really SecureFault with SFSR.INVEP\n");
1880 return false;
1882 if (get_phys_addr(env, addr, MMU_INST_FETCH, mmu_idx,
1883 &physaddr, &attrs, &prot, &page_size, &fi, NULL)) {
1884 /* the MPU lookup failed */
1885 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_IACCVIOL_MASK;
1886 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM, env->v7m.secure);
1887 qemu_log_mask(CPU_LOG_INT, "...really MemManage with CFSR.IACCVIOL\n");
1888 return false;
1890 *insn = address_space_lduw_le(arm_addressspace(cs, attrs), physaddr,
1891 attrs, &txres);
1892 if (txres != MEMTX_OK) {
1893 env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_IBUSERR_MASK;
1894 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_BUS, false);
1895 qemu_log_mask(CPU_LOG_INT, "...really BusFault with CFSR.IBUSERR\n");
1896 return false;
1898 return true;
1901 static bool v7m_handle_execute_nsc(ARMCPU *cpu)
1904 * Check whether this attempt to execute code in a Secure & NS-Callable
1905 * memory region is for an SG instruction; if so, then emulate the
1906 * effect of the SG instruction and return true. Otherwise pend
1907 * the correct kind of exception and return false.
1909 CPUARMState *env = &cpu->env;
1910 ARMMMUIdx mmu_idx;
1911 uint16_t insn;
1914 * We should never get here unless get_phys_addr_pmsav8() caused
1915 * an exception for NS executing in S&NSC memory.
1917 assert(!env->v7m.secure);
1918 assert(arm_feature(env, ARM_FEATURE_M_SECURITY));
1920 /* We want to do the MPU lookup as secure; work out what mmu_idx that is */
1921 mmu_idx = arm_v7m_mmu_idx_for_secstate(env, true);
1923 if (!v7m_read_half_insn(cpu, mmu_idx, env->regs[15], &insn)) {
1924 return false;
1927 if (!env->thumb) {
1928 goto gen_invep;
1931 if (insn != 0xe97f) {
1933 * Not an SG instruction first half (we choose the IMPDEF
1934 * early-SG-check option).
1936 goto gen_invep;
1939 if (!v7m_read_half_insn(cpu, mmu_idx, env->regs[15] + 2, &insn)) {
1940 return false;
1943 if (insn != 0xe97f) {
1945 * Not an SG instruction second half (yes, both halves of the SG
1946 * insn have the same hex value)
1948 goto gen_invep;
1952 * OK, we have confirmed that we really have an SG instruction.
1953 * We know we're NS in S memory so don't need to repeat those checks.
1955 qemu_log_mask(CPU_LOG_INT, "...really an SG instruction at 0x%08" PRIx32
1956 ", executing it\n", env->regs[15]);
1957 env->regs[14] &= ~1;
1958 env->v7m.control[M_REG_S] &= ~R_V7M_CONTROL_SFPA_MASK;
1959 switch_v7m_security_state(env, true);
1960 xpsr_write(env, 0, XPSR_IT);
1961 env->regs[15] += 4;
1962 return true;
1964 gen_invep:
1965 env->v7m.sfsr |= R_V7M_SFSR_INVEP_MASK;
1966 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
1967 qemu_log_mask(CPU_LOG_INT,
1968 "...really SecureFault with SFSR.INVEP\n");
1969 return false;
1972 void arm_v7m_cpu_do_interrupt(CPUState *cs)
1974 ARMCPU *cpu = ARM_CPU(cs);
1975 CPUARMState *env = &cpu->env;
1976 uint32_t lr;
1977 bool ignore_stackfaults;
1979 arm_log_exception(cs->exception_index);
1982 * For exceptions we just mark as pending on the NVIC, and let that
1983 * handle it.
1985 switch (cs->exception_index) {
1986 case EXCP_UDEF:
1987 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure);
1988 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_UNDEFINSTR_MASK;
1989 break;
1990 case EXCP_NOCP:
1993 * NOCP might be directed to something other than the current
1994 * security state if this fault is because of NSACR; we indicate
1995 * the target security state using exception.target_el.
1997 int target_secstate;
1999 if (env->exception.target_el == 3) {
2000 target_secstate = M_REG_S;
2001 } else {
2002 target_secstate = env->v7m.secure;
2004 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, target_secstate);
2005 env->v7m.cfsr[target_secstate] |= R_V7M_CFSR_NOCP_MASK;
2006 break;
2008 case EXCP_INVSTATE:
2009 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure);
2010 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVSTATE_MASK;
2011 break;
2012 case EXCP_STKOF:
2013 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure);
2014 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_STKOF_MASK;
2015 break;
2016 case EXCP_LSERR:
2017 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
2018 env->v7m.sfsr |= R_V7M_SFSR_LSERR_MASK;
2019 break;
2020 case EXCP_UNALIGNED:
2021 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure);
2022 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_UNALIGNED_MASK;
2023 break;
2024 case EXCP_SWI:
2025 /* The PC already points to the next instruction. */
2026 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SVC, env->v7m.secure);
2027 break;
2028 case EXCP_PREFETCH_ABORT:
2029 case EXCP_DATA_ABORT:
2031 * Note that for M profile we don't have a guest facing FSR, but
2032 * the env->exception.fsr will be populated by the code that
2033 * raises the fault, in the A profile short-descriptor format.
2035 switch (env->exception.fsr & 0xf) {
2036 case M_FAKE_FSR_NSC_EXEC:
2038 * Exception generated when we try to execute code at an address
2039 * which is marked as Secure & Non-Secure Callable and the CPU
2040 * is in the Non-Secure state. The only instruction which can
2041 * be executed like this is SG (and that only if both halves of
2042 * the SG instruction have the same security attributes.)
2043 * Everything else must generate an INVEP SecureFault, so we
2044 * emulate the SG instruction here.
2046 if (v7m_handle_execute_nsc(cpu)) {
2047 return;
2049 break;
2050 case M_FAKE_FSR_SFAULT:
2052 * Various flavours of SecureFault for attempts to execute or
2053 * access data in the wrong security state.
2055 switch (cs->exception_index) {
2056 case EXCP_PREFETCH_ABORT:
2057 if (env->v7m.secure) {
2058 env->v7m.sfsr |= R_V7M_SFSR_INVTRAN_MASK;
2059 qemu_log_mask(CPU_LOG_INT,
2060 "...really SecureFault with SFSR.INVTRAN\n");
2061 } else {
2062 env->v7m.sfsr |= R_V7M_SFSR_INVEP_MASK;
2063 qemu_log_mask(CPU_LOG_INT,
2064 "...really SecureFault with SFSR.INVEP\n");
2066 break;
2067 case EXCP_DATA_ABORT:
2068 /* This must be an NS access to S memory */
2069 env->v7m.sfsr |= R_V7M_SFSR_AUVIOL_MASK;
2070 qemu_log_mask(CPU_LOG_INT,
2071 "...really SecureFault with SFSR.AUVIOL\n");
2072 break;
2074 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
2075 break;
2076 case 0x8: /* External Abort */
2077 switch (cs->exception_index) {
2078 case EXCP_PREFETCH_ABORT:
2079 env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_IBUSERR_MASK;
2080 qemu_log_mask(CPU_LOG_INT, "...with CFSR.IBUSERR\n");
2081 break;
2082 case EXCP_DATA_ABORT:
2083 env->v7m.cfsr[M_REG_NS] |=
2084 (R_V7M_CFSR_PRECISERR_MASK | R_V7M_CFSR_BFARVALID_MASK);
2085 env->v7m.bfar = env->exception.vaddress;
2086 qemu_log_mask(CPU_LOG_INT,
2087 "...with CFSR.PRECISERR and BFAR 0x%x\n",
2088 env->v7m.bfar);
2089 break;
2091 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_BUS, false);
2092 break;
2093 default:
2095 * All other FSR values are either MPU faults or "can't happen
2096 * for M profile" cases.
2098 switch (cs->exception_index) {
2099 case EXCP_PREFETCH_ABORT:
2100 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_IACCVIOL_MASK;
2101 qemu_log_mask(CPU_LOG_INT, "...with CFSR.IACCVIOL\n");
2102 break;
2103 case EXCP_DATA_ABORT:
2104 env->v7m.cfsr[env->v7m.secure] |=
2105 (R_V7M_CFSR_DACCVIOL_MASK | R_V7M_CFSR_MMARVALID_MASK);
2106 env->v7m.mmfar[env->v7m.secure] = env->exception.vaddress;
2107 qemu_log_mask(CPU_LOG_INT,
2108 "...with CFSR.DACCVIOL and MMFAR 0x%x\n",
2109 env->v7m.mmfar[env->v7m.secure]);
2110 break;
2112 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM,
2113 env->v7m.secure);
2114 break;
2116 break;
2117 case EXCP_SEMIHOST:
2118 qemu_log_mask(CPU_LOG_INT,
2119 "...handling as semihosting call 0x%x\n",
2120 env->regs[0]);
2121 env->regs[0] = do_arm_semihosting(env);
2122 return;
2123 case EXCP_BKPT:
2124 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_DEBUG, false);
2125 break;
2126 case EXCP_IRQ:
2127 break;
2128 case EXCP_EXCEPTION_EXIT:
2129 if (env->regs[15] < EXC_RETURN_MIN_MAGIC) {
2130 /* Must be v8M security extension function return */
2131 assert(env->regs[15] >= FNC_RETURN_MIN_MAGIC);
2132 assert(arm_feature(env, ARM_FEATURE_M_SECURITY));
2133 if (do_v7m_function_return(cpu)) {
2134 return;
2136 } else {
2137 do_v7m_exception_exit(cpu);
2138 return;
2140 break;
2141 case EXCP_LAZYFP:
2143 * We already pended the specific exception in the NVIC in the
2144 * v7m_preserve_fp_state() helper function.
2146 break;
2147 default:
2148 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
2149 return; /* Never happens. Keep compiler happy. */
2152 if (arm_feature(env, ARM_FEATURE_V8)) {
2153 lr = R_V7M_EXCRET_RES1_MASK |
2154 R_V7M_EXCRET_DCRS_MASK;
2156 * The S bit indicates whether we should return to Secure
2157 * or NonSecure (ie our current state).
2158 * The ES bit indicates whether we're taking this exception
2159 * to Secure or NonSecure (ie our target state). We set it
2160 * later, in v7m_exception_taken().
2161 * The SPSEL bit is also set in v7m_exception_taken() for v8M.
2162 * This corresponds to the ARM ARM pseudocode for v8M setting
2163 * some LR bits in PushStack() and some in ExceptionTaken();
2164 * the distinction matters for the tailchain cases where we
2165 * can take an exception without pushing the stack.
2167 if (env->v7m.secure) {
2168 lr |= R_V7M_EXCRET_S_MASK;
2170 if (!(env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK)) {
2171 lr |= R_V7M_EXCRET_FTYPE_MASK;
2173 } else {
2174 lr = R_V7M_EXCRET_RES1_MASK |
2175 R_V7M_EXCRET_S_MASK |
2176 R_V7M_EXCRET_DCRS_MASK |
2177 R_V7M_EXCRET_FTYPE_MASK |
2178 R_V7M_EXCRET_ES_MASK;
2179 if (env->v7m.control[M_REG_NS] & R_V7M_CONTROL_SPSEL_MASK) {
2180 lr |= R_V7M_EXCRET_SPSEL_MASK;
2183 if (!arm_v7m_is_handler_mode(env)) {
2184 lr |= R_V7M_EXCRET_MODE_MASK;
2187 ignore_stackfaults = v7m_push_stack(cpu);
2188 v7m_exception_taken(cpu, lr, false, ignore_stackfaults);
2191 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
2193 uint32_t mask;
2194 unsigned el = arm_current_el(env);
2196 /* First handle registers which unprivileged can read */
2198 switch (reg) {
2199 case 0 ... 7: /* xPSR sub-fields */
2200 mask = 0;
2201 if ((reg & 1) && el) {
2202 mask |= XPSR_EXCP; /* IPSR (unpriv. reads as zero) */
2204 if (!(reg & 4)) {
2205 mask |= XPSR_NZCV | XPSR_Q; /* APSR */
2206 if (arm_feature(env, ARM_FEATURE_THUMB_DSP)) {
2207 mask |= XPSR_GE;
2210 /* EPSR reads as zero */
2211 return xpsr_read(env) & mask;
2212 break;
2213 case 20: /* CONTROL */
2215 uint32_t value = env->v7m.control[env->v7m.secure];
2216 if (!env->v7m.secure) {
2217 /* SFPA is RAZ/WI from NS; FPCA is stored in the M_REG_S bank */
2218 value |= env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK;
2220 return value;
2222 case 0x94: /* CONTROL_NS */
2224 * We have to handle this here because unprivileged Secure code
2225 * can read the NS CONTROL register.
2227 if (!env->v7m.secure) {
2228 return 0;
2230 return env->v7m.control[M_REG_NS] |
2231 (env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK);
2234 if (el == 0) {
2235 return 0; /* unprivileged reads others as zero */
2238 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
2239 switch (reg) {
2240 case 0x88: /* MSP_NS */
2241 if (!env->v7m.secure) {
2242 return 0;
2244 return env->v7m.other_ss_msp;
2245 case 0x89: /* PSP_NS */
2246 if (!env->v7m.secure) {
2247 return 0;
2249 return env->v7m.other_ss_psp;
2250 case 0x8a: /* MSPLIM_NS */
2251 if (!env->v7m.secure) {
2252 return 0;
2254 return env->v7m.msplim[M_REG_NS];
2255 case 0x8b: /* PSPLIM_NS */
2256 if (!env->v7m.secure) {
2257 return 0;
2259 return env->v7m.psplim[M_REG_NS];
2260 case 0x90: /* PRIMASK_NS */
2261 if (!env->v7m.secure) {
2262 return 0;
2264 return env->v7m.primask[M_REG_NS];
2265 case 0x91: /* BASEPRI_NS */
2266 if (!env->v7m.secure) {
2267 return 0;
2269 return env->v7m.basepri[M_REG_NS];
2270 case 0x93: /* FAULTMASK_NS */
2271 if (!env->v7m.secure) {
2272 return 0;
2274 return env->v7m.faultmask[M_REG_NS];
2275 case 0x98: /* SP_NS */
2278 * This gives the non-secure SP selected based on whether we're
2279 * currently in handler mode or not, using the NS CONTROL.SPSEL.
2281 bool spsel = env->v7m.control[M_REG_NS] & R_V7M_CONTROL_SPSEL_MASK;
2283 if (!env->v7m.secure) {
2284 return 0;
2286 if (!arm_v7m_is_handler_mode(env) && spsel) {
2287 return env->v7m.other_ss_psp;
2288 } else {
2289 return env->v7m.other_ss_msp;
2292 default:
2293 break;
2297 switch (reg) {
2298 case 8: /* MSP */
2299 return v7m_using_psp(env) ? env->v7m.other_sp : env->regs[13];
2300 case 9: /* PSP */
2301 return v7m_using_psp(env) ? env->regs[13] : env->v7m.other_sp;
2302 case 10: /* MSPLIM */
2303 if (!arm_feature(env, ARM_FEATURE_V8)) {
2304 goto bad_reg;
2306 return env->v7m.msplim[env->v7m.secure];
2307 case 11: /* PSPLIM */
2308 if (!arm_feature(env, ARM_FEATURE_V8)) {
2309 goto bad_reg;
2311 return env->v7m.psplim[env->v7m.secure];
2312 case 16: /* PRIMASK */
2313 return env->v7m.primask[env->v7m.secure];
2314 case 17: /* BASEPRI */
2315 case 18: /* BASEPRI_MAX */
2316 return env->v7m.basepri[env->v7m.secure];
2317 case 19: /* FAULTMASK */
2318 return env->v7m.faultmask[env->v7m.secure];
2319 default:
2320 bad_reg:
2321 qemu_log_mask(LOG_GUEST_ERROR, "Attempt to read unknown special"
2322 " register %d\n", reg);
2323 return 0;
2327 void HELPER(v7m_msr)(CPUARMState *env, uint32_t maskreg, uint32_t val)
2330 * We're passed bits [11..0] of the instruction; extract
2331 * SYSm and the mask bits.
2332 * Invalid combinations of SYSm and mask are UNPREDICTABLE;
2333 * we choose to treat them as if the mask bits were valid.
2334 * NB that the pseudocode 'mask' variable is bits [11..10],
2335 * whereas ours is [11..8].
2337 uint32_t mask = extract32(maskreg, 8, 4);
2338 uint32_t reg = extract32(maskreg, 0, 8);
2339 int cur_el = arm_current_el(env);
2341 if (cur_el == 0 && reg > 7 && reg != 20) {
2343 * only xPSR sub-fields and CONTROL.SFPA may be written by
2344 * unprivileged code
2346 return;
2349 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
2350 switch (reg) {
2351 case 0x88: /* MSP_NS */
2352 if (!env->v7m.secure) {
2353 return;
2355 env->v7m.other_ss_msp = val;
2356 return;
2357 case 0x89: /* PSP_NS */
2358 if (!env->v7m.secure) {
2359 return;
2361 env->v7m.other_ss_psp = val;
2362 return;
2363 case 0x8a: /* MSPLIM_NS */
2364 if (!env->v7m.secure) {
2365 return;
2367 env->v7m.msplim[M_REG_NS] = val & ~7;
2368 return;
2369 case 0x8b: /* PSPLIM_NS */
2370 if (!env->v7m.secure) {
2371 return;
2373 env->v7m.psplim[M_REG_NS] = val & ~7;
2374 return;
2375 case 0x90: /* PRIMASK_NS */
2376 if (!env->v7m.secure) {
2377 return;
2379 env->v7m.primask[M_REG_NS] = val & 1;
2380 return;
2381 case 0x91: /* BASEPRI_NS */
2382 if (!env->v7m.secure || !arm_feature(env, ARM_FEATURE_M_MAIN)) {
2383 return;
2385 env->v7m.basepri[M_REG_NS] = val & 0xff;
2386 return;
2387 case 0x93: /* FAULTMASK_NS */
2388 if (!env->v7m.secure || !arm_feature(env, ARM_FEATURE_M_MAIN)) {
2389 return;
2391 env->v7m.faultmask[M_REG_NS] = val & 1;
2392 return;
2393 case 0x94: /* CONTROL_NS */
2394 if (!env->v7m.secure) {
2395 return;
2397 write_v7m_control_spsel_for_secstate(env,
2398 val & R_V7M_CONTROL_SPSEL_MASK,
2399 M_REG_NS);
2400 if (arm_feature(env, ARM_FEATURE_M_MAIN)) {
2401 env->v7m.control[M_REG_NS] &= ~R_V7M_CONTROL_NPRIV_MASK;
2402 env->v7m.control[M_REG_NS] |= val & R_V7M_CONTROL_NPRIV_MASK;
2405 * SFPA is RAZ/WI from NS. FPCA is RO if NSACR.CP10 == 0,
2406 * RES0 if the FPU is not present, and is stored in the S bank
2408 if (arm_feature(env, ARM_FEATURE_VFP) &&
2409 extract32(env->v7m.nsacr, 10, 1)) {
2410 env->v7m.control[M_REG_S] &= ~R_V7M_CONTROL_FPCA_MASK;
2411 env->v7m.control[M_REG_S] |= val & R_V7M_CONTROL_FPCA_MASK;
2413 return;
2414 case 0x98: /* SP_NS */
2417 * This gives the non-secure SP selected based on whether we're
2418 * currently in handler mode or not, using the NS CONTROL.SPSEL.
2420 bool spsel = env->v7m.control[M_REG_NS] & R_V7M_CONTROL_SPSEL_MASK;
2421 bool is_psp = !arm_v7m_is_handler_mode(env) && spsel;
2422 uint32_t limit;
2424 if (!env->v7m.secure) {
2425 return;
2428 limit = is_psp ? env->v7m.psplim[false] : env->v7m.msplim[false];
2430 if (val < limit) {
2431 CPUState *cs = env_cpu(env);
2433 cpu_restore_state(cs, GETPC(), true);
2434 raise_exception(env, EXCP_STKOF, 0, 1);
2437 if (is_psp) {
2438 env->v7m.other_ss_psp = val;
2439 } else {
2440 env->v7m.other_ss_msp = val;
2442 return;
2444 default:
2445 break;
2449 switch (reg) {
2450 case 0 ... 7: /* xPSR sub-fields */
2451 /* only APSR is actually writable */
2452 if (!(reg & 4)) {
2453 uint32_t apsrmask = 0;
2455 if (mask & 8) {
2456 apsrmask |= XPSR_NZCV | XPSR_Q;
2458 if ((mask & 4) && arm_feature(env, ARM_FEATURE_THUMB_DSP)) {
2459 apsrmask |= XPSR_GE;
2461 xpsr_write(env, val, apsrmask);
2463 break;
2464 case 8: /* MSP */
2465 if (v7m_using_psp(env)) {
2466 env->v7m.other_sp = val;
2467 } else {
2468 env->regs[13] = val;
2470 break;
2471 case 9: /* PSP */
2472 if (v7m_using_psp(env)) {
2473 env->regs[13] = val;
2474 } else {
2475 env->v7m.other_sp = val;
2477 break;
2478 case 10: /* MSPLIM */
2479 if (!arm_feature(env, ARM_FEATURE_V8)) {
2480 goto bad_reg;
2482 env->v7m.msplim[env->v7m.secure] = val & ~7;
2483 break;
2484 case 11: /* PSPLIM */
2485 if (!arm_feature(env, ARM_FEATURE_V8)) {
2486 goto bad_reg;
2488 env->v7m.psplim[env->v7m.secure] = val & ~7;
2489 break;
2490 case 16: /* PRIMASK */
2491 env->v7m.primask[env->v7m.secure] = val & 1;
2492 break;
2493 case 17: /* BASEPRI */
2494 if (!arm_feature(env, ARM_FEATURE_M_MAIN)) {
2495 goto bad_reg;
2497 env->v7m.basepri[env->v7m.secure] = val & 0xff;
2498 break;
2499 case 18: /* BASEPRI_MAX */
2500 if (!arm_feature(env, ARM_FEATURE_M_MAIN)) {
2501 goto bad_reg;
2503 val &= 0xff;
2504 if (val != 0 && (val < env->v7m.basepri[env->v7m.secure]
2505 || env->v7m.basepri[env->v7m.secure] == 0)) {
2506 env->v7m.basepri[env->v7m.secure] = val;
2508 break;
2509 case 19: /* FAULTMASK */
2510 if (!arm_feature(env, ARM_FEATURE_M_MAIN)) {
2511 goto bad_reg;
2513 env->v7m.faultmask[env->v7m.secure] = val & 1;
2514 break;
2515 case 20: /* CONTROL */
2517 * Writing to the SPSEL bit only has an effect if we are in
2518 * thread mode; other bits can be updated by any privileged code.
2519 * write_v7m_control_spsel() deals with updating the SPSEL bit in
2520 * env->v7m.control, so we only need update the others.
2521 * For v7M, we must just ignore explicit writes to SPSEL in handler
2522 * mode; for v8M the write is permitted but will have no effect.
2523 * All these bits are writes-ignored from non-privileged code,
2524 * except for SFPA.
2526 if (cur_el > 0 && (arm_feature(env, ARM_FEATURE_V8) ||
2527 !arm_v7m_is_handler_mode(env))) {
2528 write_v7m_control_spsel(env, (val & R_V7M_CONTROL_SPSEL_MASK) != 0);
2530 if (cur_el > 0 && arm_feature(env, ARM_FEATURE_M_MAIN)) {
2531 env->v7m.control[env->v7m.secure] &= ~R_V7M_CONTROL_NPRIV_MASK;
2532 env->v7m.control[env->v7m.secure] |= val & R_V7M_CONTROL_NPRIV_MASK;
2534 if (arm_feature(env, ARM_FEATURE_VFP)) {
2536 * SFPA is RAZ/WI from NS or if no FPU.
2537 * FPCA is RO if NSACR.CP10 == 0, RES0 if the FPU is not present.
2538 * Both are stored in the S bank.
2540 if (env->v7m.secure) {
2541 env->v7m.control[M_REG_S] &= ~R_V7M_CONTROL_SFPA_MASK;
2542 env->v7m.control[M_REG_S] |= val & R_V7M_CONTROL_SFPA_MASK;
2544 if (cur_el > 0 &&
2545 (env->v7m.secure || !arm_feature(env, ARM_FEATURE_M_SECURITY) ||
2546 extract32(env->v7m.nsacr, 10, 1))) {
2547 env->v7m.control[M_REG_S] &= ~R_V7M_CONTROL_FPCA_MASK;
2548 env->v7m.control[M_REG_S] |= val & R_V7M_CONTROL_FPCA_MASK;
2551 break;
2552 default:
2553 bad_reg:
2554 qemu_log_mask(LOG_GUEST_ERROR, "Attempt to write unknown special"
2555 " register %d\n", reg);
2556 return;
2560 uint32_t HELPER(v7m_tt)(CPUARMState *env, uint32_t addr, uint32_t op)
2562 /* Implement the TT instruction. op is bits [7:6] of the insn. */
2563 bool forceunpriv = op & 1;
2564 bool alt = op & 2;
2565 V8M_SAttributes sattrs = {};
2566 uint32_t tt_resp;
2567 bool r, rw, nsr, nsrw, mrvalid;
2568 int prot;
2569 ARMMMUFaultInfo fi = {};
2570 MemTxAttrs attrs = {};
2571 hwaddr phys_addr;
2572 ARMMMUIdx mmu_idx;
2573 uint32_t mregion;
2574 bool targetpriv;
2575 bool targetsec = env->v7m.secure;
2576 bool is_subpage;
2579 * Work out what the security state and privilege level we're
2580 * interested in is...
2582 if (alt) {
2583 targetsec = !targetsec;
2586 if (forceunpriv) {
2587 targetpriv = false;
2588 } else {
2589 targetpriv = arm_v7m_is_handler_mode(env) ||
2590 !(env->v7m.control[targetsec] & R_V7M_CONTROL_NPRIV_MASK);
2593 /* ...and then figure out which MMU index this is */
2594 mmu_idx = arm_v7m_mmu_idx_for_secstate_and_priv(env, targetsec, targetpriv);
2597 * We know that the MPU and SAU don't care about the access type
2598 * for our purposes beyond that we don't want to claim to be
2599 * an insn fetch, so we arbitrarily call this a read.
2603 * MPU region info only available for privileged or if
2604 * inspecting the other MPU state.
2606 if (arm_current_el(env) != 0 || alt) {
2607 /* We can ignore the return value as prot is always set */
2608 pmsav8_mpu_lookup(env, addr, MMU_DATA_LOAD, mmu_idx,
2609 &phys_addr, &attrs, &prot, &is_subpage,
2610 &fi, &mregion);
2611 if (mregion == -1) {
2612 mrvalid = false;
2613 mregion = 0;
2614 } else {
2615 mrvalid = true;
2617 r = prot & PAGE_READ;
2618 rw = prot & PAGE_WRITE;
2619 } else {
2620 r = false;
2621 rw = false;
2622 mrvalid = false;
2623 mregion = 0;
2626 if (env->v7m.secure) {
2627 v8m_security_lookup(env, addr, MMU_DATA_LOAD, mmu_idx, &sattrs);
2628 nsr = sattrs.ns && r;
2629 nsrw = sattrs.ns && rw;
2630 } else {
2631 sattrs.ns = true;
2632 nsr = false;
2633 nsrw = false;
2636 tt_resp = (sattrs.iregion << 24) |
2637 (sattrs.irvalid << 23) |
2638 ((!sattrs.ns) << 22) |
2639 (nsrw << 21) |
2640 (nsr << 20) |
2641 (rw << 19) |
2642 (r << 18) |
2643 (sattrs.srvalid << 17) |
2644 (mrvalid << 16) |
2645 (sattrs.sregion << 8) |
2646 mregion;
2648 return tt_resp;
2651 #endif /* !CONFIG_USER_ONLY */
2653 ARMMMUIdx arm_v7m_mmu_idx_all(CPUARMState *env,
2654 bool secstate, bool priv, bool negpri)
2656 ARMMMUIdx mmu_idx = ARM_MMU_IDX_M;
2658 if (priv) {
2659 mmu_idx |= ARM_MMU_IDX_M_PRIV;
2662 if (negpri) {
2663 mmu_idx |= ARM_MMU_IDX_M_NEGPRI;
2666 if (secstate) {
2667 mmu_idx |= ARM_MMU_IDX_M_S;
2670 return mmu_idx;
2673 ARMMMUIdx arm_v7m_mmu_idx_for_secstate_and_priv(CPUARMState *env,
2674 bool secstate, bool priv)
2676 bool negpri = armv7m_nvic_neg_prio_requested(env->nvic, secstate);
2678 return arm_v7m_mmu_idx_all(env, secstate, priv, negpri);
2681 /* Return the MMU index for a v7M CPU in the specified security state */
2682 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate)
2684 bool priv = arm_current_el(env) != 0;
2686 return arm_v7m_mmu_idx_for_secstate_and_priv(env, secstate, priv);