xics: Minor fixes for XICSFabric interface
[qemu/ar7.git] / target / arm / helper-a64.c
blobbca80bdc38b680b651f97e99f0304f446c8d0fd1
1 /*
2 * AArch64 specific helpers
4 * Copyright (c) 2013 Alexander Graf <agraf@suse.de>
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #include "qemu/osdep.h"
21 #include "cpu.h"
22 #include "exec/gdbstub.h"
23 #include "exec/helper-proto.h"
24 #include "qemu/host-utils.h"
25 #include "qemu/log.h"
26 #include "qemu/main-loop.h"
27 #include "qemu/bitops.h"
28 #include "internals.h"
29 #include "qemu/crc32c.h"
30 #include "exec/exec-all.h"
31 #include "exec/cpu_ldst.h"
32 #include "qemu/int128.h"
33 #include "qemu/atomic128.h"
34 #include "tcg.h"
35 #include "fpu/softfloat.h"
36 #include <zlib.h> /* For crc32 */
38 /* C2.4.7 Multiply and divide */
39 /* special cases for 0 and LLONG_MIN are mandated by the standard */
40 uint64_t HELPER(udiv64)(uint64_t num, uint64_t den)
42 if (den == 0) {
43 return 0;
45 return num / den;
48 int64_t HELPER(sdiv64)(int64_t num, int64_t den)
50 if (den == 0) {
51 return 0;
53 if (num == LLONG_MIN && den == -1) {
54 return LLONG_MIN;
56 return num / den;
59 uint64_t HELPER(rbit64)(uint64_t x)
61 return revbit64(x);
64 void HELPER(msr_i_spsel)(CPUARMState *env, uint32_t imm)
66 update_spsel(env, imm);
69 static void daif_check(CPUARMState *env, uint32_t op,
70 uint32_t imm, uintptr_t ra)
72 /* DAIF update to PSTATE. This is OK from EL0 only if UMA is set. */
73 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UMA)) {
74 raise_exception_ra(env, EXCP_UDEF,
75 syn_aa64_sysregtrap(0, extract32(op, 0, 3),
76 extract32(op, 3, 3), 4,
77 imm, 0x1f, 0),
78 exception_target_el(env), ra);
82 void HELPER(msr_i_daifset)(CPUARMState *env, uint32_t imm)
84 daif_check(env, 0x1e, imm, GETPC());
85 env->daif |= (imm << 6) & PSTATE_DAIF;
88 void HELPER(msr_i_daifclear)(CPUARMState *env, uint32_t imm)
90 daif_check(env, 0x1f, imm, GETPC());
91 env->daif &= ~((imm << 6) & PSTATE_DAIF);
94 /* Convert a softfloat float_relation_ (as returned by
95 * the float*_compare functions) to the correct ARM
96 * NZCV flag state.
98 static inline uint32_t float_rel_to_flags(int res)
100 uint64_t flags;
101 switch (res) {
102 case float_relation_equal:
103 flags = PSTATE_Z | PSTATE_C;
104 break;
105 case float_relation_less:
106 flags = PSTATE_N;
107 break;
108 case float_relation_greater:
109 flags = PSTATE_C;
110 break;
111 case float_relation_unordered:
112 default:
113 flags = PSTATE_C | PSTATE_V;
114 break;
116 return flags;
119 uint64_t HELPER(vfp_cmph_a64)(uint32_t x, uint32_t y, void *fp_status)
121 return float_rel_to_flags(float16_compare_quiet(x, y, fp_status));
124 uint64_t HELPER(vfp_cmpeh_a64)(uint32_t x, uint32_t y, void *fp_status)
126 return float_rel_to_flags(float16_compare(x, y, fp_status));
129 uint64_t HELPER(vfp_cmps_a64)(float32 x, float32 y, void *fp_status)
131 return float_rel_to_flags(float32_compare_quiet(x, y, fp_status));
134 uint64_t HELPER(vfp_cmpes_a64)(float32 x, float32 y, void *fp_status)
136 return float_rel_to_flags(float32_compare(x, y, fp_status));
139 uint64_t HELPER(vfp_cmpd_a64)(float64 x, float64 y, void *fp_status)
141 return float_rel_to_flags(float64_compare_quiet(x, y, fp_status));
144 uint64_t HELPER(vfp_cmped_a64)(float64 x, float64 y, void *fp_status)
146 return float_rel_to_flags(float64_compare(x, y, fp_status));
149 float32 HELPER(vfp_mulxs)(float32 a, float32 b, void *fpstp)
151 float_status *fpst = fpstp;
153 a = float32_squash_input_denormal(a, fpst);
154 b = float32_squash_input_denormal(b, fpst);
156 if ((float32_is_zero(a) && float32_is_infinity(b)) ||
157 (float32_is_infinity(a) && float32_is_zero(b))) {
158 /* 2.0 with the sign bit set to sign(A) XOR sign(B) */
159 return make_float32((1U << 30) |
160 ((float32_val(a) ^ float32_val(b)) & (1U << 31)));
162 return float32_mul(a, b, fpst);
165 float64 HELPER(vfp_mulxd)(float64 a, float64 b, void *fpstp)
167 float_status *fpst = fpstp;
169 a = float64_squash_input_denormal(a, fpst);
170 b = float64_squash_input_denormal(b, fpst);
172 if ((float64_is_zero(a) && float64_is_infinity(b)) ||
173 (float64_is_infinity(a) && float64_is_zero(b))) {
174 /* 2.0 with the sign bit set to sign(A) XOR sign(B) */
175 return make_float64((1ULL << 62) |
176 ((float64_val(a) ^ float64_val(b)) & (1ULL << 63)));
178 return float64_mul(a, b, fpst);
181 uint64_t HELPER(simd_tbl)(CPUARMState *env, uint64_t result, uint64_t indices,
182 uint32_t rn, uint32_t numregs)
184 /* Helper function for SIMD TBL and TBX. We have to do the table
185 * lookup part for the 64 bits worth of indices we're passed in.
186 * result is the initial results vector (either zeroes for TBL
187 * or some guest values for TBX), rn the register number where
188 * the table starts, and numregs the number of registers in the table.
189 * We return the results of the lookups.
191 int shift;
193 for (shift = 0; shift < 64; shift += 8) {
194 int index = extract64(indices, shift, 8);
195 if (index < 16 * numregs) {
196 /* Convert index (a byte offset into the virtual table
197 * which is a series of 128-bit vectors concatenated)
198 * into the correct register element plus a bit offset
199 * into that element, bearing in mind that the table
200 * can wrap around from V31 to V0.
202 int elt = (rn * 2 + (index >> 3)) % 64;
203 int bitidx = (index & 7) * 8;
204 uint64_t *q = aa64_vfp_qreg(env, elt >> 1);
205 uint64_t val = extract64(q[elt & 1], bitidx, 8);
207 result = deposit64(result, shift, 8, val);
210 return result;
213 /* 64bit/double versions of the neon float compare functions */
214 uint64_t HELPER(neon_ceq_f64)(float64 a, float64 b, void *fpstp)
216 float_status *fpst = fpstp;
217 return -float64_eq_quiet(a, b, fpst);
220 uint64_t HELPER(neon_cge_f64)(float64 a, float64 b, void *fpstp)
222 float_status *fpst = fpstp;
223 return -float64_le(b, a, fpst);
226 uint64_t HELPER(neon_cgt_f64)(float64 a, float64 b, void *fpstp)
228 float_status *fpst = fpstp;
229 return -float64_lt(b, a, fpst);
232 /* Reciprocal step and sqrt step. Note that unlike the A32/T32
233 * versions, these do a fully fused multiply-add or
234 * multiply-add-and-halve.
236 #define float16_two make_float16(0x4000)
237 #define float16_three make_float16(0x4200)
238 #define float16_one_point_five make_float16(0x3e00)
240 #define float32_two make_float32(0x40000000)
241 #define float32_three make_float32(0x40400000)
242 #define float32_one_point_five make_float32(0x3fc00000)
244 #define float64_two make_float64(0x4000000000000000ULL)
245 #define float64_three make_float64(0x4008000000000000ULL)
246 #define float64_one_point_five make_float64(0x3FF8000000000000ULL)
248 uint32_t HELPER(recpsf_f16)(uint32_t a, uint32_t b, void *fpstp)
250 float_status *fpst = fpstp;
252 a = float16_squash_input_denormal(a, fpst);
253 b = float16_squash_input_denormal(b, fpst);
255 a = float16_chs(a);
256 if ((float16_is_infinity(a) && float16_is_zero(b)) ||
257 (float16_is_infinity(b) && float16_is_zero(a))) {
258 return float16_two;
260 return float16_muladd(a, b, float16_two, 0, fpst);
263 float32 HELPER(recpsf_f32)(float32 a, float32 b, void *fpstp)
265 float_status *fpst = fpstp;
267 a = float32_squash_input_denormal(a, fpst);
268 b = float32_squash_input_denormal(b, fpst);
270 a = float32_chs(a);
271 if ((float32_is_infinity(a) && float32_is_zero(b)) ||
272 (float32_is_infinity(b) && float32_is_zero(a))) {
273 return float32_two;
275 return float32_muladd(a, b, float32_two, 0, fpst);
278 float64 HELPER(recpsf_f64)(float64 a, float64 b, void *fpstp)
280 float_status *fpst = fpstp;
282 a = float64_squash_input_denormal(a, fpst);
283 b = float64_squash_input_denormal(b, fpst);
285 a = float64_chs(a);
286 if ((float64_is_infinity(a) && float64_is_zero(b)) ||
287 (float64_is_infinity(b) && float64_is_zero(a))) {
288 return float64_two;
290 return float64_muladd(a, b, float64_two, 0, fpst);
293 uint32_t HELPER(rsqrtsf_f16)(uint32_t a, uint32_t b, void *fpstp)
295 float_status *fpst = fpstp;
297 a = float16_squash_input_denormal(a, fpst);
298 b = float16_squash_input_denormal(b, fpst);
300 a = float16_chs(a);
301 if ((float16_is_infinity(a) && float16_is_zero(b)) ||
302 (float16_is_infinity(b) && float16_is_zero(a))) {
303 return float16_one_point_five;
305 return float16_muladd(a, b, float16_three, float_muladd_halve_result, fpst);
308 float32 HELPER(rsqrtsf_f32)(float32 a, float32 b, void *fpstp)
310 float_status *fpst = fpstp;
312 a = float32_squash_input_denormal(a, fpst);
313 b = float32_squash_input_denormal(b, fpst);
315 a = float32_chs(a);
316 if ((float32_is_infinity(a) && float32_is_zero(b)) ||
317 (float32_is_infinity(b) && float32_is_zero(a))) {
318 return float32_one_point_five;
320 return float32_muladd(a, b, float32_three, float_muladd_halve_result, fpst);
323 float64 HELPER(rsqrtsf_f64)(float64 a, float64 b, void *fpstp)
325 float_status *fpst = fpstp;
327 a = float64_squash_input_denormal(a, fpst);
328 b = float64_squash_input_denormal(b, fpst);
330 a = float64_chs(a);
331 if ((float64_is_infinity(a) && float64_is_zero(b)) ||
332 (float64_is_infinity(b) && float64_is_zero(a))) {
333 return float64_one_point_five;
335 return float64_muladd(a, b, float64_three, float_muladd_halve_result, fpst);
338 /* Pairwise long add: add pairs of adjacent elements into
339 * double-width elements in the result (eg _s8 is an 8x8->16 op)
341 uint64_t HELPER(neon_addlp_s8)(uint64_t a)
343 uint64_t nsignmask = 0x0080008000800080ULL;
344 uint64_t wsignmask = 0x8000800080008000ULL;
345 uint64_t elementmask = 0x00ff00ff00ff00ffULL;
346 uint64_t tmp1, tmp2;
347 uint64_t res, signres;
349 /* Extract odd elements, sign extend each to a 16 bit field */
350 tmp1 = a & elementmask;
351 tmp1 ^= nsignmask;
352 tmp1 |= wsignmask;
353 tmp1 = (tmp1 - nsignmask) ^ wsignmask;
354 /* Ditto for the even elements */
355 tmp2 = (a >> 8) & elementmask;
356 tmp2 ^= nsignmask;
357 tmp2 |= wsignmask;
358 tmp2 = (tmp2 - nsignmask) ^ wsignmask;
360 /* calculate the result by summing bits 0..14, 16..22, etc,
361 * and then adjusting the sign bits 15, 23, etc manually.
362 * This ensures the addition can't overflow the 16 bit field.
364 signres = (tmp1 ^ tmp2) & wsignmask;
365 res = (tmp1 & ~wsignmask) + (tmp2 & ~wsignmask);
366 res ^= signres;
368 return res;
371 uint64_t HELPER(neon_addlp_u8)(uint64_t a)
373 uint64_t tmp;
375 tmp = a & 0x00ff00ff00ff00ffULL;
376 tmp += (a >> 8) & 0x00ff00ff00ff00ffULL;
377 return tmp;
380 uint64_t HELPER(neon_addlp_s16)(uint64_t a)
382 int32_t reslo, reshi;
384 reslo = (int32_t)(int16_t)a + (int32_t)(int16_t)(a >> 16);
385 reshi = (int32_t)(int16_t)(a >> 32) + (int32_t)(int16_t)(a >> 48);
387 return (uint32_t)reslo | (((uint64_t)reshi) << 32);
390 uint64_t HELPER(neon_addlp_u16)(uint64_t a)
392 uint64_t tmp;
394 tmp = a & 0x0000ffff0000ffffULL;
395 tmp += (a >> 16) & 0x0000ffff0000ffffULL;
396 return tmp;
399 /* Floating-point reciprocal exponent - see FPRecpX in ARM ARM */
400 uint32_t HELPER(frecpx_f16)(uint32_t a, void *fpstp)
402 float_status *fpst = fpstp;
403 uint16_t val16, sbit;
404 int16_t exp;
406 if (float16_is_any_nan(a)) {
407 float16 nan = a;
408 if (float16_is_signaling_nan(a, fpst)) {
409 float_raise(float_flag_invalid, fpst);
410 nan = float16_silence_nan(a, fpst);
412 if (fpst->default_nan_mode) {
413 nan = float16_default_nan(fpst);
415 return nan;
418 a = float16_squash_input_denormal(a, fpst);
420 val16 = float16_val(a);
421 sbit = 0x8000 & val16;
422 exp = extract32(val16, 10, 5);
424 if (exp == 0) {
425 return make_float16(deposit32(sbit, 10, 5, 0x1e));
426 } else {
427 return make_float16(deposit32(sbit, 10, 5, ~exp));
431 float32 HELPER(frecpx_f32)(float32 a, void *fpstp)
433 float_status *fpst = fpstp;
434 uint32_t val32, sbit;
435 int32_t exp;
437 if (float32_is_any_nan(a)) {
438 float32 nan = a;
439 if (float32_is_signaling_nan(a, fpst)) {
440 float_raise(float_flag_invalid, fpst);
441 nan = float32_silence_nan(a, fpst);
443 if (fpst->default_nan_mode) {
444 nan = float32_default_nan(fpst);
446 return nan;
449 a = float32_squash_input_denormal(a, fpst);
451 val32 = float32_val(a);
452 sbit = 0x80000000ULL & val32;
453 exp = extract32(val32, 23, 8);
455 if (exp == 0) {
456 return make_float32(sbit | (0xfe << 23));
457 } else {
458 return make_float32(sbit | (~exp & 0xff) << 23);
462 float64 HELPER(frecpx_f64)(float64 a, void *fpstp)
464 float_status *fpst = fpstp;
465 uint64_t val64, sbit;
466 int64_t exp;
468 if (float64_is_any_nan(a)) {
469 float64 nan = a;
470 if (float64_is_signaling_nan(a, fpst)) {
471 float_raise(float_flag_invalid, fpst);
472 nan = float64_silence_nan(a, fpst);
474 if (fpst->default_nan_mode) {
475 nan = float64_default_nan(fpst);
477 return nan;
480 a = float64_squash_input_denormal(a, fpst);
482 val64 = float64_val(a);
483 sbit = 0x8000000000000000ULL & val64;
484 exp = extract64(float64_val(a), 52, 11);
486 if (exp == 0) {
487 return make_float64(sbit | (0x7feULL << 52));
488 } else {
489 return make_float64(sbit | (~exp & 0x7ffULL) << 52);
493 float32 HELPER(fcvtx_f64_to_f32)(float64 a, CPUARMState *env)
495 /* Von Neumann rounding is implemented by using round-to-zero
496 * and then setting the LSB of the result if Inexact was raised.
498 float32 r;
499 float_status *fpst = &env->vfp.fp_status;
500 float_status tstat = *fpst;
501 int exflags;
503 set_float_rounding_mode(float_round_to_zero, &tstat);
504 set_float_exception_flags(0, &tstat);
505 r = float64_to_float32(a, &tstat);
506 exflags = get_float_exception_flags(&tstat);
507 if (exflags & float_flag_inexact) {
508 r = make_float32(float32_val(r) | 1);
510 exflags |= get_float_exception_flags(fpst);
511 set_float_exception_flags(exflags, fpst);
512 return r;
515 /* 64-bit versions of the CRC helpers. Note that although the operation
516 * (and the prototypes of crc32c() and crc32() mean that only the bottom
517 * 32 bits of the accumulator and result are used, we pass and return
518 * uint64_t for convenience of the generated code. Unlike the 32-bit
519 * instruction set versions, val may genuinely have 64 bits of data in it.
520 * The upper bytes of val (above the number specified by 'bytes') must have
521 * been zeroed out by the caller.
523 uint64_t HELPER(crc32_64)(uint64_t acc, uint64_t val, uint32_t bytes)
525 uint8_t buf[8];
527 stq_le_p(buf, val);
529 /* zlib crc32 converts the accumulator and output to one's complement. */
530 return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff;
533 uint64_t HELPER(crc32c_64)(uint64_t acc, uint64_t val, uint32_t bytes)
535 uint8_t buf[8];
537 stq_le_p(buf, val);
539 /* Linux crc32c converts the output to one's complement. */
540 return crc32c(acc, buf, bytes) ^ 0xffffffff;
543 uint64_t HELPER(paired_cmpxchg64_le)(CPUARMState *env, uint64_t addr,
544 uint64_t new_lo, uint64_t new_hi)
546 Int128 cmpv = int128_make128(env->exclusive_val, env->exclusive_high);
547 Int128 newv = int128_make128(new_lo, new_hi);
548 Int128 oldv;
549 uintptr_t ra = GETPC();
550 uint64_t o0, o1;
551 bool success;
553 #ifdef CONFIG_USER_ONLY
554 /* ??? Enforce alignment. */
555 uint64_t *haddr = g2h(addr);
557 set_helper_retaddr(ra);
558 o0 = ldq_le_p(haddr + 0);
559 o1 = ldq_le_p(haddr + 1);
560 oldv = int128_make128(o0, o1);
562 success = int128_eq(oldv, cmpv);
563 if (success) {
564 stq_le_p(haddr + 0, int128_getlo(newv));
565 stq_le_p(haddr + 1, int128_gethi(newv));
567 clear_helper_retaddr();
568 #else
569 int mem_idx = cpu_mmu_index(env, false);
570 TCGMemOpIdx oi0 = make_memop_idx(MO_LEQ | MO_ALIGN_16, mem_idx);
571 TCGMemOpIdx oi1 = make_memop_idx(MO_LEQ, mem_idx);
573 o0 = helper_le_ldq_mmu(env, addr + 0, oi0, ra);
574 o1 = helper_le_ldq_mmu(env, addr + 8, oi1, ra);
575 oldv = int128_make128(o0, o1);
577 success = int128_eq(oldv, cmpv);
578 if (success) {
579 helper_le_stq_mmu(env, addr + 0, int128_getlo(newv), oi1, ra);
580 helper_le_stq_mmu(env, addr + 8, int128_gethi(newv), oi1, ra);
582 #endif
584 return !success;
587 uint64_t HELPER(paired_cmpxchg64_le_parallel)(CPUARMState *env, uint64_t addr,
588 uint64_t new_lo, uint64_t new_hi)
590 Int128 oldv, cmpv, newv;
591 uintptr_t ra = GETPC();
592 bool success;
593 int mem_idx;
594 TCGMemOpIdx oi;
596 assert(HAVE_CMPXCHG128);
598 mem_idx = cpu_mmu_index(env, false);
599 oi = make_memop_idx(MO_LEQ | MO_ALIGN_16, mem_idx);
601 cmpv = int128_make128(env->exclusive_val, env->exclusive_high);
602 newv = int128_make128(new_lo, new_hi);
603 oldv = helper_atomic_cmpxchgo_le_mmu(env, addr, cmpv, newv, oi, ra);
605 success = int128_eq(oldv, cmpv);
606 return !success;
609 uint64_t HELPER(paired_cmpxchg64_be)(CPUARMState *env, uint64_t addr,
610 uint64_t new_lo, uint64_t new_hi)
613 * High and low need to be switched here because this is not actually a
614 * 128bit store but two doublewords stored consecutively
616 Int128 cmpv = int128_make128(env->exclusive_high, env->exclusive_val);
617 Int128 newv = int128_make128(new_hi, new_lo);
618 Int128 oldv;
619 uintptr_t ra = GETPC();
620 uint64_t o0, o1;
621 bool success;
623 #ifdef CONFIG_USER_ONLY
624 /* ??? Enforce alignment. */
625 uint64_t *haddr = g2h(addr);
627 set_helper_retaddr(ra);
628 o1 = ldq_be_p(haddr + 0);
629 o0 = ldq_be_p(haddr + 1);
630 oldv = int128_make128(o0, o1);
632 success = int128_eq(oldv, cmpv);
633 if (success) {
634 stq_be_p(haddr + 0, int128_gethi(newv));
635 stq_be_p(haddr + 1, int128_getlo(newv));
637 clear_helper_retaddr();
638 #else
639 int mem_idx = cpu_mmu_index(env, false);
640 TCGMemOpIdx oi0 = make_memop_idx(MO_BEQ | MO_ALIGN_16, mem_idx);
641 TCGMemOpIdx oi1 = make_memop_idx(MO_BEQ, mem_idx);
643 o1 = helper_be_ldq_mmu(env, addr + 0, oi0, ra);
644 o0 = helper_be_ldq_mmu(env, addr + 8, oi1, ra);
645 oldv = int128_make128(o0, o1);
647 success = int128_eq(oldv, cmpv);
648 if (success) {
649 helper_be_stq_mmu(env, addr + 0, int128_gethi(newv), oi1, ra);
650 helper_be_stq_mmu(env, addr + 8, int128_getlo(newv), oi1, ra);
652 #endif
654 return !success;
657 uint64_t HELPER(paired_cmpxchg64_be_parallel)(CPUARMState *env, uint64_t addr,
658 uint64_t new_lo, uint64_t new_hi)
660 Int128 oldv, cmpv, newv;
661 uintptr_t ra = GETPC();
662 bool success;
663 int mem_idx;
664 TCGMemOpIdx oi;
666 assert(HAVE_CMPXCHG128);
668 mem_idx = cpu_mmu_index(env, false);
669 oi = make_memop_idx(MO_BEQ | MO_ALIGN_16, mem_idx);
672 * High and low need to be switched here because this is not actually a
673 * 128bit store but two doublewords stored consecutively
675 cmpv = int128_make128(env->exclusive_high, env->exclusive_val);
676 newv = int128_make128(new_hi, new_lo);
677 oldv = helper_atomic_cmpxchgo_be_mmu(env, addr, cmpv, newv, oi, ra);
679 success = int128_eq(oldv, cmpv);
680 return !success;
683 /* Writes back the old data into Rs. */
684 void HELPER(casp_le_parallel)(CPUARMState *env, uint32_t rs, uint64_t addr,
685 uint64_t new_lo, uint64_t new_hi)
687 Int128 oldv, cmpv, newv;
688 uintptr_t ra = GETPC();
689 int mem_idx;
690 TCGMemOpIdx oi;
692 assert(HAVE_CMPXCHG128);
694 mem_idx = cpu_mmu_index(env, false);
695 oi = make_memop_idx(MO_LEQ | MO_ALIGN_16, mem_idx);
697 cmpv = int128_make128(env->xregs[rs], env->xregs[rs + 1]);
698 newv = int128_make128(new_lo, new_hi);
699 oldv = helper_atomic_cmpxchgo_le_mmu(env, addr, cmpv, newv, oi, ra);
701 env->xregs[rs] = int128_getlo(oldv);
702 env->xregs[rs + 1] = int128_gethi(oldv);
705 void HELPER(casp_be_parallel)(CPUARMState *env, uint32_t rs, uint64_t addr,
706 uint64_t new_hi, uint64_t new_lo)
708 Int128 oldv, cmpv, newv;
709 uintptr_t ra = GETPC();
710 int mem_idx;
711 TCGMemOpIdx oi;
713 assert(HAVE_CMPXCHG128);
715 mem_idx = cpu_mmu_index(env, false);
716 oi = make_memop_idx(MO_LEQ | MO_ALIGN_16, mem_idx);
718 cmpv = int128_make128(env->xregs[rs + 1], env->xregs[rs]);
719 newv = int128_make128(new_lo, new_hi);
720 oldv = helper_atomic_cmpxchgo_be_mmu(env, addr, cmpv, newv, oi, ra);
722 env->xregs[rs + 1] = int128_getlo(oldv);
723 env->xregs[rs] = int128_gethi(oldv);
727 * AdvSIMD half-precision
730 #define ADVSIMD_HELPER(name, suffix) HELPER(glue(glue(advsimd_, name), suffix))
732 #define ADVSIMD_HALFOP(name) \
733 uint32_t ADVSIMD_HELPER(name, h)(uint32_t a, uint32_t b, void *fpstp) \
735 float_status *fpst = fpstp; \
736 return float16_ ## name(a, b, fpst); \
739 ADVSIMD_HALFOP(add)
740 ADVSIMD_HALFOP(sub)
741 ADVSIMD_HALFOP(mul)
742 ADVSIMD_HALFOP(div)
743 ADVSIMD_HALFOP(min)
744 ADVSIMD_HALFOP(max)
745 ADVSIMD_HALFOP(minnum)
746 ADVSIMD_HALFOP(maxnum)
748 #define ADVSIMD_TWOHALFOP(name) \
749 uint32_t ADVSIMD_HELPER(name, 2h)(uint32_t two_a, uint32_t two_b, void *fpstp) \
751 float16 a1, a2, b1, b2; \
752 uint32_t r1, r2; \
753 float_status *fpst = fpstp; \
754 a1 = extract32(two_a, 0, 16); \
755 a2 = extract32(two_a, 16, 16); \
756 b1 = extract32(two_b, 0, 16); \
757 b2 = extract32(two_b, 16, 16); \
758 r1 = float16_ ## name(a1, b1, fpst); \
759 r2 = float16_ ## name(a2, b2, fpst); \
760 return deposit32(r1, 16, 16, r2); \
763 ADVSIMD_TWOHALFOP(add)
764 ADVSIMD_TWOHALFOP(sub)
765 ADVSIMD_TWOHALFOP(mul)
766 ADVSIMD_TWOHALFOP(div)
767 ADVSIMD_TWOHALFOP(min)
768 ADVSIMD_TWOHALFOP(max)
769 ADVSIMD_TWOHALFOP(minnum)
770 ADVSIMD_TWOHALFOP(maxnum)
772 /* Data processing - scalar floating-point and advanced SIMD */
773 static float16 float16_mulx(float16 a, float16 b, void *fpstp)
775 float_status *fpst = fpstp;
777 a = float16_squash_input_denormal(a, fpst);
778 b = float16_squash_input_denormal(b, fpst);
780 if ((float16_is_zero(a) && float16_is_infinity(b)) ||
781 (float16_is_infinity(a) && float16_is_zero(b))) {
782 /* 2.0 with the sign bit set to sign(A) XOR sign(B) */
783 return make_float16((1U << 14) |
784 ((float16_val(a) ^ float16_val(b)) & (1U << 15)));
786 return float16_mul(a, b, fpst);
789 ADVSIMD_HALFOP(mulx)
790 ADVSIMD_TWOHALFOP(mulx)
792 /* fused multiply-accumulate */
793 uint32_t HELPER(advsimd_muladdh)(uint32_t a, uint32_t b, uint32_t c,
794 void *fpstp)
796 float_status *fpst = fpstp;
797 return float16_muladd(a, b, c, 0, fpst);
800 uint32_t HELPER(advsimd_muladd2h)(uint32_t two_a, uint32_t two_b,
801 uint32_t two_c, void *fpstp)
803 float_status *fpst = fpstp;
804 float16 a1, a2, b1, b2, c1, c2;
805 uint32_t r1, r2;
806 a1 = extract32(two_a, 0, 16);
807 a2 = extract32(two_a, 16, 16);
808 b1 = extract32(two_b, 0, 16);
809 b2 = extract32(two_b, 16, 16);
810 c1 = extract32(two_c, 0, 16);
811 c2 = extract32(two_c, 16, 16);
812 r1 = float16_muladd(a1, b1, c1, 0, fpst);
813 r2 = float16_muladd(a2, b2, c2, 0, fpst);
814 return deposit32(r1, 16, 16, r2);
818 * Floating point comparisons produce an integer result. Softfloat
819 * routines return float_relation types which we convert to the 0/-1
820 * Neon requires.
823 #define ADVSIMD_CMPRES(test) (test) ? 0xffff : 0
825 uint32_t HELPER(advsimd_ceq_f16)(uint32_t a, uint32_t b, void *fpstp)
827 float_status *fpst = fpstp;
828 int compare = float16_compare_quiet(a, b, fpst);
829 return ADVSIMD_CMPRES(compare == float_relation_equal);
832 uint32_t HELPER(advsimd_cge_f16)(uint32_t a, uint32_t b, void *fpstp)
834 float_status *fpst = fpstp;
835 int compare = float16_compare(a, b, fpst);
836 return ADVSIMD_CMPRES(compare == float_relation_greater ||
837 compare == float_relation_equal);
840 uint32_t HELPER(advsimd_cgt_f16)(uint32_t a, uint32_t b, void *fpstp)
842 float_status *fpst = fpstp;
843 int compare = float16_compare(a, b, fpst);
844 return ADVSIMD_CMPRES(compare == float_relation_greater);
847 uint32_t HELPER(advsimd_acge_f16)(uint32_t a, uint32_t b, void *fpstp)
849 float_status *fpst = fpstp;
850 float16 f0 = float16_abs(a);
851 float16 f1 = float16_abs(b);
852 int compare = float16_compare(f0, f1, fpst);
853 return ADVSIMD_CMPRES(compare == float_relation_greater ||
854 compare == float_relation_equal);
857 uint32_t HELPER(advsimd_acgt_f16)(uint32_t a, uint32_t b, void *fpstp)
859 float_status *fpst = fpstp;
860 float16 f0 = float16_abs(a);
861 float16 f1 = float16_abs(b);
862 int compare = float16_compare(f0, f1, fpst);
863 return ADVSIMD_CMPRES(compare == float_relation_greater);
866 /* round to integral */
867 uint32_t HELPER(advsimd_rinth_exact)(uint32_t x, void *fp_status)
869 return float16_round_to_int(x, fp_status);
872 uint32_t HELPER(advsimd_rinth)(uint32_t x, void *fp_status)
874 int old_flags = get_float_exception_flags(fp_status), new_flags;
875 float16 ret;
877 ret = float16_round_to_int(x, fp_status);
879 /* Suppress any inexact exceptions the conversion produced */
880 if (!(old_flags & float_flag_inexact)) {
881 new_flags = get_float_exception_flags(fp_status);
882 set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
885 return ret;
889 * Half-precision floating point conversion functions
891 * There are a multitude of conversion functions with various
892 * different rounding modes. This is dealt with by the calling code
893 * setting the mode appropriately before calling the helper.
896 uint32_t HELPER(advsimd_f16tosinth)(uint32_t a, void *fpstp)
898 float_status *fpst = fpstp;
900 /* Invalid if we are passed a NaN */
901 if (float16_is_any_nan(a)) {
902 float_raise(float_flag_invalid, fpst);
903 return 0;
905 return float16_to_int16(a, fpst);
908 uint32_t HELPER(advsimd_f16touinth)(uint32_t a, void *fpstp)
910 float_status *fpst = fpstp;
912 /* Invalid if we are passed a NaN */
913 if (float16_is_any_nan(a)) {
914 float_raise(float_flag_invalid, fpst);
915 return 0;
917 return float16_to_uint16(a, fpst);
920 static int el_from_spsr(uint32_t spsr)
922 /* Return the exception level that this SPSR is requesting a return to,
923 * or -1 if it is invalid (an illegal return)
925 if (spsr & PSTATE_nRW) {
926 switch (spsr & CPSR_M) {
927 case ARM_CPU_MODE_USR:
928 return 0;
929 case ARM_CPU_MODE_HYP:
930 return 2;
931 case ARM_CPU_MODE_FIQ:
932 case ARM_CPU_MODE_IRQ:
933 case ARM_CPU_MODE_SVC:
934 case ARM_CPU_MODE_ABT:
935 case ARM_CPU_MODE_UND:
936 case ARM_CPU_MODE_SYS:
937 return 1;
938 case ARM_CPU_MODE_MON:
939 /* Returning to Mon from AArch64 is never possible,
940 * so this is an illegal return.
942 default:
943 return -1;
945 } else {
946 if (extract32(spsr, 1, 1)) {
947 /* Return with reserved M[1] bit set */
948 return -1;
950 if (extract32(spsr, 0, 4) == 1) {
951 /* return to EL0 with M[0] bit set */
952 return -1;
954 return extract32(spsr, 2, 2);
958 void HELPER(exception_return)(CPUARMState *env, uint64_t new_pc)
960 int cur_el = arm_current_el(env);
961 unsigned int spsr_idx = aarch64_banked_spsr_index(cur_el);
962 uint32_t spsr = env->banked_spsr[spsr_idx];
963 int new_el;
964 bool return_to_aa64 = (spsr & PSTATE_nRW) == 0;
966 aarch64_save_sp(env, cur_el);
968 arm_clear_exclusive(env);
970 /* We must squash the PSTATE.SS bit to zero unless both of the
971 * following hold:
972 * 1. debug exceptions are currently disabled
973 * 2. singlestep will be active in the EL we return to
974 * We check 1 here and 2 after we've done the pstate/cpsr write() to
975 * transition to the EL we're going to.
977 if (arm_generate_debug_exceptions(env)) {
978 spsr &= ~PSTATE_SS;
981 new_el = el_from_spsr(spsr);
982 if (new_el == -1) {
983 goto illegal_return;
985 if (new_el > cur_el
986 || (new_el == 2 && !arm_feature(env, ARM_FEATURE_EL2))) {
987 /* Disallow return to an EL which is unimplemented or higher
988 * than the current one.
990 goto illegal_return;
993 if (new_el != 0 && arm_el_is_aa64(env, new_el) != return_to_aa64) {
994 /* Return to an EL which is configured for a different register width */
995 goto illegal_return;
998 if (new_el == 2 && arm_is_secure_below_el3(env)) {
999 /* Return to the non-existent secure-EL2 */
1000 goto illegal_return;
1003 if (new_el == 1 && (arm_hcr_el2_eff(env) & HCR_TGE)) {
1004 goto illegal_return;
1007 qemu_mutex_lock_iothread();
1008 arm_call_pre_el_change_hook(env_archcpu(env));
1009 qemu_mutex_unlock_iothread();
1011 if (!return_to_aa64) {
1012 env->aarch64 = 0;
1013 /* We do a raw CPSR write because aarch64_sync_64_to_32()
1014 * will sort the register banks out for us, and we've already
1015 * caught all the bad-mode cases in el_from_spsr().
1017 cpsr_write(env, spsr, ~0, CPSRWriteRaw);
1018 if (!arm_singlestep_active(env)) {
1019 env->uncached_cpsr &= ~PSTATE_SS;
1021 aarch64_sync_64_to_32(env);
1023 if (spsr & CPSR_T) {
1024 env->regs[15] = new_pc & ~0x1;
1025 } else {
1026 env->regs[15] = new_pc & ~0x3;
1028 qemu_log_mask(CPU_LOG_INT, "Exception return from AArch64 EL%d to "
1029 "AArch32 EL%d PC 0x%" PRIx32 "\n",
1030 cur_el, new_el, env->regs[15]);
1031 } else {
1032 env->aarch64 = 1;
1033 pstate_write(env, spsr);
1034 if (!arm_singlestep_active(env)) {
1035 env->pstate &= ~PSTATE_SS;
1037 aarch64_restore_sp(env, new_el);
1038 env->pc = new_pc;
1039 qemu_log_mask(CPU_LOG_INT, "Exception return from AArch64 EL%d to "
1040 "AArch64 EL%d PC 0x%" PRIx64 "\n",
1041 cur_el, new_el, env->pc);
1044 * Note that cur_el can never be 0. If new_el is 0, then
1045 * el0_a64 is return_to_aa64, else el0_a64 is ignored.
1047 aarch64_sve_change_el(env, cur_el, new_el, return_to_aa64);
1049 qemu_mutex_lock_iothread();
1050 arm_call_el_change_hook(env_archcpu(env));
1051 qemu_mutex_unlock_iothread();
1053 return;
1055 illegal_return:
1056 /* Illegal return events of various kinds have architecturally
1057 * mandated behaviour:
1058 * restore NZCV and DAIF from SPSR_ELx
1059 * set PSTATE.IL
1060 * restore PC from ELR_ELx
1061 * no change to exception level, execution state or stack pointer
1063 env->pstate |= PSTATE_IL;
1064 env->pc = new_pc;
1065 spsr &= PSTATE_NZCV | PSTATE_DAIF;
1066 spsr |= pstate_read(env) & ~(PSTATE_NZCV | PSTATE_DAIF);
1067 pstate_write(env, spsr);
1068 if (!arm_singlestep_active(env)) {
1069 env->pstate &= ~PSTATE_SS;
1071 qemu_log_mask(LOG_GUEST_ERROR, "Illegal exception return at EL%d: "
1072 "resuming execution at 0x%" PRIx64 "\n", cur_el, env->pc);
1076 * Square Root and Reciprocal square root
1079 uint32_t HELPER(sqrt_f16)(uint32_t a, void *fpstp)
1081 float_status *s = fpstp;
1083 return float16_sqrt(a, s);