xics: Minor fixes for XICSFabric interface
[qemu/ar7.git] / target / arm / arm-powerctl.c
blobf77a950db67276513977af686aa948a1f5a604fe
1 /*
2 * QEMU support -- ARM Power Control specific functions.
4 * Copyright (c) 2016 Jean-Christophe Dubois
6 * This work is licensed under the terms of the GNU GPL, version 2 or later.
7 * See the COPYING file in the top-level directory.
9 */
11 #include "qemu/osdep.h"
12 #include "cpu.h"
13 #include "cpu-qom.h"
14 #include "internals.h"
15 #include "arm-powerctl.h"
16 #include "qemu/log.h"
17 #include "qemu/main-loop.h"
19 #ifndef DEBUG_ARM_POWERCTL
20 #define DEBUG_ARM_POWERCTL 0
21 #endif
23 #define DPRINTF(fmt, args...) \
24 do { \
25 if (DEBUG_ARM_POWERCTL) { \
26 fprintf(stderr, "[ARM]%s: " fmt , __func__, ##args); \
27 } \
28 } while (0)
30 CPUState *arm_get_cpu_by_id(uint64_t id)
32 CPUState *cpu;
34 DPRINTF("cpu %" PRId64 "\n", id);
36 CPU_FOREACH(cpu) {
37 ARMCPU *armcpu = ARM_CPU(cpu);
39 if (armcpu->mp_affinity == id) {
40 return cpu;
44 qemu_log_mask(LOG_GUEST_ERROR,
45 "[ARM]%s: Requesting unknown CPU %" PRId64 "\n",
46 __func__, id);
48 return NULL;
51 struct CpuOnInfo {
52 uint64_t entry;
53 uint64_t context_id;
54 uint32_t target_el;
55 bool target_aa64;
59 static void arm_set_cpu_on_async_work(CPUState *target_cpu_state,
60 run_on_cpu_data data)
62 ARMCPU *target_cpu = ARM_CPU(target_cpu_state);
63 struct CpuOnInfo *info = (struct CpuOnInfo *) data.host_ptr;
65 /* Initialize the cpu we are turning on */
66 cpu_reset(target_cpu_state);
67 target_cpu_state->halted = 0;
69 if (info->target_aa64) {
70 if ((info->target_el < 3) && arm_feature(&target_cpu->env,
71 ARM_FEATURE_EL3)) {
73 * As target mode is AArch64, we need to set lower
74 * exception level (the requested level 2) to AArch64
76 target_cpu->env.cp15.scr_el3 |= SCR_RW;
79 if ((info->target_el < 2) && arm_feature(&target_cpu->env,
80 ARM_FEATURE_EL2)) {
82 * As target mode is AArch64, we need to set lower
83 * exception level (the requested level 1) to AArch64
85 target_cpu->env.cp15.hcr_el2 |= HCR_RW;
88 target_cpu->env.pstate = aarch64_pstate_mode(info->target_el, true);
89 } else {
90 /* We are requested to boot in AArch32 mode */
91 static const uint32_t mode_for_el[] = { 0,
92 ARM_CPU_MODE_SVC,
93 ARM_CPU_MODE_HYP,
94 ARM_CPU_MODE_SVC };
96 cpsr_write(&target_cpu->env, mode_for_el[info->target_el], CPSR_M,
97 CPSRWriteRaw);
100 if (info->target_el == 3) {
101 /* Processor is in secure mode */
102 target_cpu->env.cp15.scr_el3 &= ~SCR_NS;
103 } else {
104 /* Processor is not in secure mode */
105 target_cpu->env.cp15.scr_el3 |= SCR_NS;
108 * If QEMU is providing the equivalent of EL3 firmware, then we need
109 * to make sure a CPU targeting EL2 comes out of reset with a
110 * functional HVC insn.
112 if (arm_feature(&target_cpu->env, ARM_FEATURE_EL3)
113 && info->target_el == 2) {
114 target_cpu->env.cp15.scr_el3 |= SCR_HCE;
118 /* We check if the started CPU is now at the correct level */
119 assert(info->target_el == arm_current_el(&target_cpu->env));
121 if (info->target_aa64) {
122 target_cpu->env.xregs[0] = info->context_id;
123 } else {
124 target_cpu->env.regs[0] = info->context_id;
127 /* Start the new CPU at the requested address */
128 cpu_set_pc(target_cpu_state, info->entry);
130 g_free(info);
132 /* Finally set the power status */
133 assert(qemu_mutex_iothread_locked());
134 target_cpu->power_state = PSCI_ON;
137 int arm_set_cpu_on(uint64_t cpuid, uint64_t entry, uint64_t context_id,
138 uint32_t target_el, bool target_aa64)
140 CPUState *target_cpu_state;
141 ARMCPU *target_cpu;
142 struct CpuOnInfo *info;
144 assert(qemu_mutex_iothread_locked());
146 DPRINTF("cpu %" PRId64 " (EL %d, %s) @ 0x%" PRIx64 " with R0 = 0x%" PRIx64
147 "\n", cpuid, target_el, target_aa64 ? "aarch64" : "aarch32", entry,
148 context_id);
150 /* requested EL level need to be in the 1 to 3 range */
151 assert((target_el > 0) && (target_el < 4));
153 if (target_aa64 && (entry & 3)) {
155 * if we are booting in AArch64 mode then "entry" needs to be 4 bytes
156 * aligned.
158 return QEMU_ARM_POWERCTL_INVALID_PARAM;
161 /* Retrieve the cpu we are powering up */
162 target_cpu_state = arm_get_cpu_by_id(cpuid);
163 if (!target_cpu_state) {
164 /* The cpu was not found */
165 return QEMU_ARM_POWERCTL_INVALID_PARAM;
168 target_cpu = ARM_CPU(target_cpu_state);
169 if (target_cpu->power_state == PSCI_ON) {
170 qemu_log_mask(LOG_GUEST_ERROR,
171 "[ARM]%s: CPU %" PRId64 " is already on\n",
172 __func__, cpuid);
173 return QEMU_ARM_POWERCTL_ALREADY_ON;
177 * The newly brought CPU is requested to enter the exception level
178 * "target_el" and be in the requested mode (AArch64 or AArch32).
181 if (((target_el == 3) && !arm_feature(&target_cpu->env, ARM_FEATURE_EL3)) ||
182 ((target_el == 2) && !arm_feature(&target_cpu->env, ARM_FEATURE_EL2))) {
184 * The CPU does not support requested level
186 return QEMU_ARM_POWERCTL_INVALID_PARAM;
189 if (!target_aa64 && arm_feature(&target_cpu->env, ARM_FEATURE_AARCH64)) {
191 * For now we don't support booting an AArch64 CPU in AArch32 mode
192 * TODO: We should add this support later
194 qemu_log_mask(LOG_UNIMP,
195 "[ARM]%s: Starting AArch64 CPU %" PRId64
196 " in AArch32 mode is not supported yet\n",
197 __func__, cpuid);
198 return QEMU_ARM_POWERCTL_INVALID_PARAM;
202 * If another CPU has powered the target on we are in the state
203 * ON_PENDING and additional attempts to power on the CPU should
204 * fail (see 6.6 Implementation CPU_ON/CPU_OFF races in the PSCI
205 * spec)
207 if (target_cpu->power_state == PSCI_ON_PENDING) {
208 qemu_log_mask(LOG_GUEST_ERROR,
209 "[ARM]%s: CPU %" PRId64 " is already powering on\n",
210 __func__, cpuid);
211 return QEMU_ARM_POWERCTL_ON_PENDING;
214 /* To avoid racing with a CPU we are just kicking off we do the
215 * final bit of preparation for the work in the target CPUs
216 * context.
218 info = g_new(struct CpuOnInfo, 1);
219 info->entry = entry;
220 info->context_id = context_id;
221 info->target_el = target_el;
222 info->target_aa64 = target_aa64;
224 async_run_on_cpu(target_cpu_state, arm_set_cpu_on_async_work,
225 RUN_ON_CPU_HOST_PTR(info));
227 /* We are good to go */
228 return QEMU_ARM_POWERCTL_RET_SUCCESS;
231 static void arm_set_cpu_on_and_reset_async_work(CPUState *target_cpu_state,
232 run_on_cpu_data data)
234 ARMCPU *target_cpu = ARM_CPU(target_cpu_state);
236 /* Initialize the cpu we are turning on */
237 cpu_reset(target_cpu_state);
238 target_cpu_state->halted = 0;
240 /* Finally set the power status */
241 assert(qemu_mutex_iothread_locked());
242 target_cpu->power_state = PSCI_ON;
245 int arm_set_cpu_on_and_reset(uint64_t cpuid)
247 CPUState *target_cpu_state;
248 ARMCPU *target_cpu;
250 assert(qemu_mutex_iothread_locked());
252 /* Retrieve the cpu we are powering up */
253 target_cpu_state = arm_get_cpu_by_id(cpuid);
254 if (!target_cpu_state) {
255 /* The cpu was not found */
256 return QEMU_ARM_POWERCTL_INVALID_PARAM;
259 target_cpu = ARM_CPU(target_cpu_state);
260 if (target_cpu->power_state == PSCI_ON) {
261 qemu_log_mask(LOG_GUEST_ERROR,
262 "[ARM]%s: CPU %" PRId64 " is already on\n",
263 __func__, cpuid);
264 return QEMU_ARM_POWERCTL_ALREADY_ON;
268 * If another CPU has powered the target on we are in the state
269 * ON_PENDING and additional attempts to power on the CPU should
270 * fail (see 6.6 Implementation CPU_ON/CPU_OFF races in the PSCI
271 * spec)
273 if (target_cpu->power_state == PSCI_ON_PENDING) {
274 qemu_log_mask(LOG_GUEST_ERROR,
275 "[ARM]%s: CPU %" PRId64 " is already powering on\n",
276 __func__, cpuid);
277 return QEMU_ARM_POWERCTL_ON_PENDING;
280 async_run_on_cpu(target_cpu_state, arm_set_cpu_on_and_reset_async_work,
281 RUN_ON_CPU_NULL);
283 /* We are good to go */
284 return QEMU_ARM_POWERCTL_RET_SUCCESS;
287 static void arm_set_cpu_off_async_work(CPUState *target_cpu_state,
288 run_on_cpu_data data)
290 ARMCPU *target_cpu = ARM_CPU(target_cpu_state);
292 assert(qemu_mutex_iothread_locked());
293 target_cpu->power_state = PSCI_OFF;
294 target_cpu_state->halted = 1;
295 target_cpu_state->exception_index = EXCP_HLT;
298 int arm_set_cpu_off(uint64_t cpuid)
300 CPUState *target_cpu_state;
301 ARMCPU *target_cpu;
303 assert(qemu_mutex_iothread_locked());
305 DPRINTF("cpu %" PRId64 "\n", cpuid);
307 /* change to the cpu we are powering up */
308 target_cpu_state = arm_get_cpu_by_id(cpuid);
309 if (!target_cpu_state) {
310 return QEMU_ARM_POWERCTL_INVALID_PARAM;
312 target_cpu = ARM_CPU(target_cpu_state);
313 if (target_cpu->power_state == PSCI_OFF) {
314 qemu_log_mask(LOG_GUEST_ERROR,
315 "[ARM]%s: CPU %" PRId64 " is already off\n",
316 __func__, cpuid);
317 return QEMU_ARM_POWERCTL_IS_OFF;
320 /* Queue work to run under the target vCPUs context */
321 async_run_on_cpu(target_cpu_state, arm_set_cpu_off_async_work,
322 RUN_ON_CPU_NULL);
324 return QEMU_ARM_POWERCTL_RET_SUCCESS;
327 static void arm_reset_cpu_async_work(CPUState *target_cpu_state,
328 run_on_cpu_data data)
330 /* Reset the cpu */
331 cpu_reset(target_cpu_state);
334 int arm_reset_cpu(uint64_t cpuid)
336 CPUState *target_cpu_state;
337 ARMCPU *target_cpu;
339 assert(qemu_mutex_iothread_locked());
341 DPRINTF("cpu %" PRId64 "\n", cpuid);
343 /* change to the cpu we are resetting */
344 target_cpu_state = arm_get_cpu_by_id(cpuid);
345 if (!target_cpu_state) {
346 return QEMU_ARM_POWERCTL_INVALID_PARAM;
348 target_cpu = ARM_CPU(target_cpu_state);
350 if (target_cpu->power_state == PSCI_OFF) {
351 qemu_log_mask(LOG_GUEST_ERROR,
352 "[ARM]%s: CPU %" PRId64 " is off\n",
353 __func__, cpuid);
354 return QEMU_ARM_POWERCTL_IS_OFF;
357 /* Queue work to run under the target vCPUs context */
358 async_run_on_cpu(target_cpu_state, arm_reset_cpu_async_work,
359 RUN_ON_CPU_NULL);
361 return QEMU_ARM_POWERCTL_RET_SUCCESS;