2 * Block driver for the QCOW version 2 format
4 * Copyright (c) 2004-2006 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
25 #include "qemu/osdep.h"
28 #include "qapi/error.h"
30 #include "qemu/bswap.h"
31 #include "qemu/memalign.h"
34 int qcow2_shrink_l1_table(BlockDriverState
*bs
, uint64_t exact_size
)
36 BDRVQcow2State
*s
= bs
->opaque
;
37 int new_l1_size
, i
, ret
;
39 if (exact_size
>= s
->l1_size
) {
43 new_l1_size
= exact_size
;
46 fprintf(stderr
, "shrink l1_table from %d to %d\n", s
->l1_size
, new_l1_size
);
49 BLKDBG_EVENT(bs
->file
, BLKDBG_L1_SHRINK_WRITE_TABLE
);
50 ret
= bdrv_pwrite_zeroes(bs
->file
, s
->l1_table_offset
+
51 new_l1_size
* L1E_SIZE
,
52 (s
->l1_size
- new_l1_size
) * L1E_SIZE
, 0);
57 ret
= bdrv_flush(bs
->file
->bs
);
62 BLKDBG_EVENT(bs
->file
, BLKDBG_L1_SHRINK_FREE_L2_CLUSTERS
);
63 for (i
= s
->l1_size
- 1; i
> new_l1_size
- 1; i
--) {
64 if ((s
->l1_table
[i
] & L1E_OFFSET_MASK
) == 0) {
67 qcow2_free_clusters(bs
, s
->l1_table
[i
] & L1E_OFFSET_MASK
,
68 s
->cluster_size
, QCOW2_DISCARD_ALWAYS
);
75 * If the write in the l1_table failed the image may contain a partially
76 * overwritten l1_table. In this case it would be better to clear the
77 * l1_table in memory to avoid possible image corruption.
79 memset(s
->l1_table
+ new_l1_size
, 0,
80 (s
->l1_size
- new_l1_size
) * L1E_SIZE
);
84 int qcow2_grow_l1_table(BlockDriverState
*bs
, uint64_t min_size
,
87 BDRVQcow2State
*s
= bs
->opaque
;
88 int new_l1_size2
, ret
, i
;
89 uint64_t *new_l1_table
;
90 int64_t old_l1_table_offset
, old_l1_size
;
91 int64_t new_l1_table_offset
, new_l1_size
;
94 if (min_size
<= s
->l1_size
)
97 /* Do a sanity check on min_size before trying to calculate new_l1_size
98 * (this prevents overflows during the while loop for the calculation of
100 if (min_size
> INT_MAX
/ L1E_SIZE
) {
105 new_l1_size
= min_size
;
107 /* Bump size up to reduce the number of times we have to grow */
108 new_l1_size
= s
->l1_size
;
109 if (new_l1_size
== 0) {
112 while (min_size
> new_l1_size
) {
113 new_l1_size
= DIV_ROUND_UP(new_l1_size
* 3, 2);
117 QEMU_BUILD_BUG_ON(QCOW_MAX_L1_SIZE
> INT_MAX
);
118 if (new_l1_size
> QCOW_MAX_L1_SIZE
/ L1E_SIZE
) {
123 fprintf(stderr
, "grow l1_table from %d to %" PRId64
"\n",
124 s
->l1_size
, new_l1_size
);
127 new_l1_size2
= L1E_SIZE
* new_l1_size
;
128 new_l1_table
= qemu_try_blockalign(bs
->file
->bs
, new_l1_size2
);
129 if (new_l1_table
== NULL
) {
132 memset(new_l1_table
, 0, new_l1_size2
);
135 memcpy(new_l1_table
, s
->l1_table
, s
->l1_size
* L1E_SIZE
);
138 /* write new table (align to cluster) */
139 BLKDBG_EVENT(bs
->file
, BLKDBG_L1_GROW_ALLOC_TABLE
);
140 new_l1_table_offset
= qcow2_alloc_clusters(bs
, new_l1_size2
);
141 if (new_l1_table_offset
< 0) {
142 qemu_vfree(new_l1_table
);
143 return new_l1_table_offset
;
146 ret
= qcow2_cache_flush(bs
, s
->refcount_block_cache
);
151 /* the L1 position has not yet been updated, so these clusters must
152 * indeed be completely free */
153 ret
= qcow2_pre_write_overlap_check(bs
, 0, new_l1_table_offset
,
154 new_l1_size2
, false);
159 BLKDBG_EVENT(bs
->file
, BLKDBG_L1_GROW_WRITE_TABLE
);
160 for(i
= 0; i
< s
->l1_size
; i
++)
161 new_l1_table
[i
] = cpu_to_be64(new_l1_table
[i
]);
162 ret
= bdrv_pwrite_sync(bs
->file
, new_l1_table_offset
,
163 new_l1_table
, new_l1_size2
);
166 for(i
= 0; i
< s
->l1_size
; i
++)
167 new_l1_table
[i
] = be64_to_cpu(new_l1_table
[i
]);
170 BLKDBG_EVENT(bs
->file
, BLKDBG_L1_GROW_ACTIVATE_TABLE
);
171 stl_be_p(data
, new_l1_size
);
172 stq_be_p(data
+ 4, new_l1_table_offset
);
173 ret
= bdrv_pwrite_sync(bs
->file
, offsetof(QCowHeader
, l1_size
),
178 qemu_vfree(s
->l1_table
);
179 old_l1_table_offset
= s
->l1_table_offset
;
180 s
->l1_table_offset
= new_l1_table_offset
;
181 s
->l1_table
= new_l1_table
;
182 old_l1_size
= s
->l1_size
;
183 s
->l1_size
= new_l1_size
;
184 qcow2_free_clusters(bs
, old_l1_table_offset
, old_l1_size
* L1E_SIZE
,
185 QCOW2_DISCARD_OTHER
);
188 qemu_vfree(new_l1_table
);
189 qcow2_free_clusters(bs
, new_l1_table_offset
, new_l1_size2
,
190 QCOW2_DISCARD_OTHER
);
197 * @bs: The BlockDriverState
198 * @offset: A guest offset, used to calculate what slice of the L2
200 * @l2_offset: Offset to the L2 table in the image file.
201 * @l2_slice: Location to store the pointer to the L2 slice.
203 * Loads a L2 slice into memory (L2 slices are the parts of L2 tables
204 * that are loaded by the qcow2 cache). If the slice is in the cache,
205 * the cache is used; otherwise the L2 slice is loaded from the image
208 static int l2_load(BlockDriverState
*bs
, uint64_t offset
,
209 uint64_t l2_offset
, uint64_t **l2_slice
)
211 BDRVQcow2State
*s
= bs
->opaque
;
212 int start_of_slice
= l2_entry_size(s
) *
213 (offset_to_l2_index(s
, offset
) - offset_to_l2_slice_index(s
, offset
));
215 return qcow2_cache_get(bs
, s
->l2_table_cache
, l2_offset
+ start_of_slice
,
220 * Writes an L1 entry to disk (note that depending on the alignment
221 * requirements this function may write more that just one entry in
222 * order to prevent bdrv_pwrite from performing a read-modify-write)
224 int qcow2_write_l1_entry(BlockDriverState
*bs
, int l1_index
)
226 BDRVQcow2State
*s
= bs
->opaque
;
229 int bufsize
= MAX(L1E_SIZE
,
230 MIN(bs
->file
->bs
->bl
.request_alignment
, s
->cluster_size
));
231 int nentries
= bufsize
/ L1E_SIZE
;
232 g_autofree
uint64_t *buf
= g_try_new0(uint64_t, nentries
);
238 l1_start_index
= QEMU_ALIGN_DOWN(l1_index
, nentries
);
239 for (i
= 0; i
< MIN(nentries
, s
->l1_size
- l1_start_index
); i
++) {
240 buf
[i
] = cpu_to_be64(s
->l1_table
[l1_start_index
+ i
]);
243 ret
= qcow2_pre_write_overlap_check(bs
, QCOW2_OL_ACTIVE_L1
,
244 s
->l1_table_offset
+ L1E_SIZE
* l1_start_index
, bufsize
, false);
249 BLKDBG_EVENT(bs
->file
, BLKDBG_L1_UPDATE
);
250 ret
= bdrv_pwrite_sync(bs
->file
,
251 s
->l1_table_offset
+ L1E_SIZE
* l1_start_index
,
263 * Allocate a new l2 entry in the file. If l1_index points to an already
264 * used entry in the L2 table (i.e. we are doing a copy on write for the L2
265 * table) copy the contents of the old L2 table into the newly allocated one.
266 * Otherwise the new table is initialized with zeros.
270 static int l2_allocate(BlockDriverState
*bs
, int l1_index
)
272 BDRVQcow2State
*s
= bs
->opaque
;
273 uint64_t old_l2_offset
;
274 uint64_t *l2_slice
= NULL
;
275 unsigned slice
, slice_size2
, n_slices
;
279 old_l2_offset
= s
->l1_table
[l1_index
];
281 trace_qcow2_l2_allocate(bs
, l1_index
);
283 /* allocate a new l2 entry */
285 l2_offset
= qcow2_alloc_clusters(bs
, s
->l2_size
* l2_entry_size(s
));
291 /* The offset must fit in the offset field of the L1 table entry */
292 assert((l2_offset
& L1E_OFFSET_MASK
) == l2_offset
);
294 /* If we're allocating the table at offset 0 then something is wrong */
295 if (l2_offset
== 0) {
296 qcow2_signal_corruption(bs
, true, -1, -1, "Preventing invalid "
297 "allocation of L2 table at offset 0");
302 ret
= qcow2_cache_flush(bs
, s
->refcount_block_cache
);
307 /* allocate a new entry in the l2 cache */
309 slice_size2
= s
->l2_slice_size
* l2_entry_size(s
);
310 n_slices
= s
->cluster_size
/ slice_size2
;
312 trace_qcow2_l2_allocate_get_empty(bs
, l1_index
);
313 for (slice
= 0; slice
< n_slices
; slice
++) {
314 ret
= qcow2_cache_get_empty(bs
, s
->l2_table_cache
,
315 l2_offset
+ slice
* slice_size2
,
316 (void **) &l2_slice
);
321 if ((old_l2_offset
& L1E_OFFSET_MASK
) == 0) {
322 /* if there was no old l2 table, clear the new slice */
323 memset(l2_slice
, 0, slice_size2
);
326 uint64_t old_l2_slice_offset
=
327 (old_l2_offset
& L1E_OFFSET_MASK
) + slice
* slice_size2
;
329 /* if there was an old l2 table, read a slice from the disk */
330 BLKDBG_EVENT(bs
->file
, BLKDBG_L2_ALLOC_COW_READ
);
331 ret
= qcow2_cache_get(bs
, s
->l2_table_cache
, old_l2_slice_offset
,
332 (void **) &old_slice
);
337 memcpy(l2_slice
, old_slice
, slice_size2
);
339 qcow2_cache_put(s
->l2_table_cache
, (void **) &old_slice
);
342 /* write the l2 slice to the file */
343 BLKDBG_EVENT(bs
->file
, BLKDBG_L2_ALLOC_WRITE
);
345 trace_qcow2_l2_allocate_write_l2(bs
, l1_index
);
346 qcow2_cache_entry_mark_dirty(s
->l2_table_cache
, l2_slice
);
347 qcow2_cache_put(s
->l2_table_cache
, (void **) &l2_slice
);
350 ret
= qcow2_cache_flush(bs
, s
->l2_table_cache
);
355 /* update the L1 entry */
356 trace_qcow2_l2_allocate_write_l1(bs
, l1_index
);
357 s
->l1_table
[l1_index
] = l2_offset
| QCOW_OFLAG_COPIED
;
358 ret
= qcow2_write_l1_entry(bs
, l1_index
);
363 trace_qcow2_l2_allocate_done(bs
, l1_index
, 0);
367 trace_qcow2_l2_allocate_done(bs
, l1_index
, ret
);
368 if (l2_slice
!= NULL
) {
369 qcow2_cache_put(s
->l2_table_cache
, (void **) &l2_slice
);
371 s
->l1_table
[l1_index
] = old_l2_offset
;
373 qcow2_free_clusters(bs
, l2_offset
, s
->l2_size
* l2_entry_size(s
),
374 QCOW2_DISCARD_ALWAYS
);
380 * For a given L2 entry, count the number of contiguous subclusters of
381 * the same type starting from @sc_from. Compressed clusters are
382 * treated as if they were divided into subclusters of size
383 * s->subcluster_size.
385 * Return the number of contiguous subclusters and set @type to the
388 * If the L2 entry is invalid return -errno and set @type to
389 * QCOW2_SUBCLUSTER_INVALID.
391 static int qcow2_get_subcluster_range_type(BlockDriverState
*bs
,
395 QCow2SubclusterType
*type
)
397 BDRVQcow2State
*s
= bs
->opaque
;
400 *type
= qcow2_get_subcluster_type(bs
, l2_entry
, l2_bitmap
, sc_from
);
402 if (*type
== QCOW2_SUBCLUSTER_INVALID
) {
404 } else if (!has_subclusters(s
) || *type
== QCOW2_SUBCLUSTER_COMPRESSED
) {
405 return s
->subclusters_per_cluster
- sc_from
;
409 case QCOW2_SUBCLUSTER_NORMAL
:
410 val
= l2_bitmap
| QCOW_OFLAG_SUB_ALLOC_RANGE(0, sc_from
);
411 return cto32(val
) - sc_from
;
413 case QCOW2_SUBCLUSTER_ZERO_PLAIN
:
414 case QCOW2_SUBCLUSTER_ZERO_ALLOC
:
415 val
= (l2_bitmap
| QCOW_OFLAG_SUB_ZERO_RANGE(0, sc_from
)) >> 32;
416 return cto32(val
) - sc_from
;
418 case QCOW2_SUBCLUSTER_UNALLOCATED_PLAIN
:
419 case QCOW2_SUBCLUSTER_UNALLOCATED_ALLOC
:
420 val
= ((l2_bitmap
>> 32) | l2_bitmap
)
421 & ~QCOW_OFLAG_SUB_ALLOC_RANGE(0, sc_from
);
422 return ctz32(val
) - sc_from
;
425 g_assert_not_reached();
430 * Return the number of contiguous subclusters of the exact same type
431 * in a given L2 slice, starting from cluster @l2_index, subcluster
432 * @sc_index. Allocated subclusters are required to be contiguous in
434 * At most @nb_clusters are checked (note that this means clusters,
436 * Compressed clusters are always processed one by one but for the
437 * purpose of this count they are treated as if they were divided into
438 * subclusters of size s->subcluster_size.
439 * On failure return -errno and update @l2_index to point to the
442 static int count_contiguous_subclusters(BlockDriverState
*bs
, int nb_clusters
,
443 unsigned sc_index
, uint64_t *l2_slice
,
446 BDRVQcow2State
*s
= bs
->opaque
;
448 bool check_offset
= false;
449 uint64_t expected_offset
= 0;
450 QCow2SubclusterType expected_type
= QCOW2_SUBCLUSTER_NORMAL
, type
;
452 assert(*l2_index
+ nb_clusters
<= s
->l2_slice_size
);
454 for (i
= 0; i
< nb_clusters
; i
++) {
455 unsigned first_sc
= (i
== 0) ? sc_index
: 0;
456 uint64_t l2_entry
= get_l2_entry(s
, l2_slice
, *l2_index
+ i
);
457 uint64_t l2_bitmap
= get_l2_bitmap(s
, l2_slice
, *l2_index
+ i
);
458 int ret
= qcow2_get_subcluster_range_type(bs
, l2_entry
, l2_bitmap
,
461 *l2_index
+= i
; /* Point to the invalid entry */
465 if (type
== QCOW2_SUBCLUSTER_COMPRESSED
) {
466 /* Compressed clusters are always processed one by one */
469 expected_type
= type
;
470 expected_offset
= l2_entry
& L2E_OFFSET_MASK
;
471 check_offset
= (type
== QCOW2_SUBCLUSTER_NORMAL
||
472 type
== QCOW2_SUBCLUSTER_ZERO_ALLOC
||
473 type
== QCOW2_SUBCLUSTER_UNALLOCATED_ALLOC
);
474 } else if (type
!= expected_type
) {
476 } else if (check_offset
) {
477 expected_offset
+= s
->cluster_size
;
478 if (expected_offset
!= (l2_entry
& L2E_OFFSET_MASK
)) {
483 /* Stop if there are type changes before the end of the cluster */
484 if (first_sc
+ ret
< s
->subclusters_per_cluster
) {
492 static int coroutine_fn
do_perform_cow_read(BlockDriverState
*bs
,
493 uint64_t src_cluster_offset
,
494 unsigned offset_in_cluster
,
499 if (qiov
->size
== 0) {
503 BLKDBG_EVENT(bs
->file
, BLKDBG_COW_READ
);
510 * We never deal with requests that don't satisfy
511 * bdrv_check_qiov_request(), and aligning requests to clusters never
512 * breaks this condition. So, do some assertions before calling
513 * bs->drv->bdrv_co_preadv_part() which has int64_t arguments.
515 assert(src_cluster_offset
<= INT64_MAX
);
516 assert(src_cluster_offset
+ offset_in_cluster
<= INT64_MAX
);
517 /* Cast qiov->size to uint64_t to silence a compiler warning on -m32 */
518 assert((uint64_t)qiov
->size
<= INT64_MAX
);
519 bdrv_check_qiov_request(src_cluster_offset
+ offset_in_cluster
, qiov
->size
,
520 qiov
, 0, &error_abort
);
522 * Call .bdrv_co_readv() directly instead of using the public block-layer
523 * interface. This avoids double I/O throttling and request tracking,
524 * which can lead to deadlock when block layer copy-on-read is enabled.
526 ret
= bs
->drv
->bdrv_co_preadv_part(bs
,
527 src_cluster_offset
+ offset_in_cluster
,
528 qiov
->size
, qiov
, 0, 0);
536 static int coroutine_fn
do_perform_cow_write(BlockDriverState
*bs
,
537 uint64_t cluster_offset
,
538 unsigned offset_in_cluster
,
541 BDRVQcow2State
*s
= bs
->opaque
;
544 if (qiov
->size
== 0) {
548 ret
= qcow2_pre_write_overlap_check(bs
, 0,
549 cluster_offset
+ offset_in_cluster
, qiov
->size
, true);
554 BLKDBG_EVENT(bs
->file
, BLKDBG_COW_WRITE
);
555 ret
= bdrv_co_pwritev(s
->data_file
, cluster_offset
+ offset_in_cluster
,
556 qiov
->size
, qiov
, 0);
568 * For a given offset of the virtual disk find the equivalent host
569 * offset in the qcow2 file and store it in *host_offset. Neither
570 * offset needs to be aligned to a cluster boundary.
572 * If the cluster is unallocated then *host_offset will be 0.
573 * If the cluster is compressed then *host_offset will contain the l2 entry.
575 * On entry, *bytes is the maximum number of contiguous bytes starting at
576 * offset that we are interested in.
578 * On exit, *bytes is the number of bytes starting at offset that have the same
579 * subcluster type and (if applicable) are stored contiguously in the image
580 * file. The subcluster type is stored in *subcluster_type.
581 * Compressed clusters are always processed one by one.
583 * Returns 0 on success, -errno in error cases.
585 int qcow2_get_host_offset(BlockDriverState
*bs
, uint64_t offset
,
586 unsigned int *bytes
, uint64_t *host_offset
,
587 QCow2SubclusterType
*subcluster_type
)
589 BDRVQcow2State
*s
= bs
->opaque
;
590 unsigned int l2_index
, sc_index
;
591 uint64_t l1_index
, l2_offset
, *l2_slice
, l2_entry
, l2_bitmap
;
593 unsigned int offset_in_cluster
;
594 uint64_t bytes_available
, bytes_needed
, nb_clusters
;
595 QCow2SubclusterType type
;
598 offset_in_cluster
= offset_into_cluster(s
, offset
);
599 bytes_needed
= (uint64_t) *bytes
+ offset_in_cluster
;
601 /* compute how many bytes there are between the start of the cluster
602 * containing offset and the end of the l2 slice that contains
603 * the entry pointing to it */
605 ((uint64_t) (s
->l2_slice_size
- offset_to_l2_slice_index(s
, offset
)))
608 if (bytes_needed
> bytes_available
) {
609 bytes_needed
= bytes_available
;
614 /* seek to the l2 offset in the l1 table */
616 l1_index
= offset_to_l1_index(s
, offset
);
617 if (l1_index
>= s
->l1_size
) {
618 type
= QCOW2_SUBCLUSTER_UNALLOCATED_PLAIN
;
622 l2_offset
= s
->l1_table
[l1_index
] & L1E_OFFSET_MASK
;
624 type
= QCOW2_SUBCLUSTER_UNALLOCATED_PLAIN
;
628 if (offset_into_cluster(s
, l2_offset
)) {
629 qcow2_signal_corruption(bs
, true, -1, -1, "L2 table offset %#" PRIx64
630 " unaligned (L1 index: %#" PRIx64
")",
631 l2_offset
, l1_index
);
635 /* load the l2 slice in memory */
637 ret
= l2_load(bs
, offset
, l2_offset
, &l2_slice
);
642 /* find the cluster offset for the given disk offset */
644 l2_index
= offset_to_l2_slice_index(s
, offset
);
645 sc_index
= offset_to_sc_index(s
, offset
);
646 l2_entry
= get_l2_entry(s
, l2_slice
, l2_index
);
647 l2_bitmap
= get_l2_bitmap(s
, l2_slice
, l2_index
);
649 nb_clusters
= size_to_clusters(s
, bytes_needed
);
650 /* bytes_needed <= *bytes + offset_in_cluster, both of which are unsigned
651 * integers; the minimum cluster size is 512, so this assertion is always
653 assert(nb_clusters
<= INT_MAX
);
655 type
= qcow2_get_subcluster_type(bs
, l2_entry
, l2_bitmap
, sc_index
);
656 if (s
->qcow_version
< 3 && (type
== QCOW2_SUBCLUSTER_ZERO_PLAIN
||
657 type
== QCOW2_SUBCLUSTER_ZERO_ALLOC
)) {
658 qcow2_signal_corruption(bs
, true, -1, -1, "Zero cluster entry found"
659 " in pre-v3 image (L2 offset: %#" PRIx64
660 ", L2 index: %#x)", l2_offset
, l2_index
);
665 case QCOW2_SUBCLUSTER_INVALID
:
666 break; /* This is handled by count_contiguous_subclusters() below */
667 case QCOW2_SUBCLUSTER_COMPRESSED
:
668 if (has_data_file(bs
)) {
669 qcow2_signal_corruption(bs
, true, -1, -1, "Compressed cluster "
670 "entry found in image with external data "
671 "file (L2 offset: %#" PRIx64
", L2 index: "
672 "%#x)", l2_offset
, l2_index
);
676 *host_offset
= l2_entry
;
678 case QCOW2_SUBCLUSTER_ZERO_PLAIN
:
679 case QCOW2_SUBCLUSTER_UNALLOCATED_PLAIN
:
681 case QCOW2_SUBCLUSTER_ZERO_ALLOC
:
682 case QCOW2_SUBCLUSTER_NORMAL
:
683 case QCOW2_SUBCLUSTER_UNALLOCATED_ALLOC
: {
684 uint64_t host_cluster_offset
= l2_entry
& L2E_OFFSET_MASK
;
685 *host_offset
= host_cluster_offset
+ offset_in_cluster
;
686 if (offset_into_cluster(s
, host_cluster_offset
)) {
687 qcow2_signal_corruption(bs
, true, -1, -1,
688 "Cluster allocation offset %#"
689 PRIx64
" unaligned (L2 offset: %#" PRIx64
690 ", L2 index: %#x)", host_cluster_offset
,
691 l2_offset
, l2_index
);
695 if (has_data_file(bs
) && *host_offset
!= offset
) {
696 qcow2_signal_corruption(bs
, true, -1, -1,
697 "External data file host cluster offset %#"
698 PRIx64
" does not match guest cluster "
700 ", L2 index: %#x)", host_cluster_offset
,
701 offset
- offset_in_cluster
, l2_index
);
711 sc
= count_contiguous_subclusters(bs
, nb_clusters
, sc_index
,
712 l2_slice
, &l2_index
);
714 qcow2_signal_corruption(bs
, true, -1, -1, "Invalid cluster entry found "
715 " (L2 offset: %#" PRIx64
", L2 index: %#x)",
716 l2_offset
, l2_index
);
720 qcow2_cache_put(s
->l2_table_cache
, (void **) &l2_slice
);
722 bytes_available
= ((int64_t)sc
+ sc_index
) << s
->subcluster_bits
;
725 if (bytes_available
> bytes_needed
) {
726 bytes_available
= bytes_needed
;
729 /* bytes_available <= bytes_needed <= *bytes + offset_in_cluster;
730 * subtracting offset_in_cluster will therefore definitely yield something
731 * not exceeding UINT_MAX */
732 assert(bytes_available
- offset_in_cluster
<= UINT_MAX
);
733 *bytes
= bytes_available
- offset_in_cluster
;
735 *subcluster_type
= type
;
740 qcow2_cache_put(s
->l2_table_cache
, (void **)&l2_slice
);
747 * for a given disk offset, load (and allocate if needed)
748 * the appropriate slice of its l2 table.
750 * the cluster index in the l2 slice is given to the caller.
752 * Returns 0 on success, -errno in failure case
754 static int get_cluster_table(BlockDriverState
*bs
, uint64_t offset
,
755 uint64_t **new_l2_slice
,
758 BDRVQcow2State
*s
= bs
->opaque
;
759 unsigned int l2_index
;
760 uint64_t l1_index
, l2_offset
;
761 uint64_t *l2_slice
= NULL
;
764 /* seek to the l2 offset in the l1 table */
766 l1_index
= offset_to_l1_index(s
, offset
);
767 if (l1_index
>= s
->l1_size
) {
768 ret
= qcow2_grow_l1_table(bs
, l1_index
+ 1, false);
774 assert(l1_index
< s
->l1_size
);
775 l2_offset
= s
->l1_table
[l1_index
] & L1E_OFFSET_MASK
;
776 if (offset_into_cluster(s
, l2_offset
)) {
777 qcow2_signal_corruption(bs
, true, -1, -1, "L2 table offset %#" PRIx64
778 " unaligned (L1 index: %#" PRIx64
")",
779 l2_offset
, l1_index
);
783 if (!(s
->l1_table
[l1_index
] & QCOW_OFLAG_COPIED
)) {
784 /* First allocate a new L2 table (and do COW if needed) */
785 ret
= l2_allocate(bs
, l1_index
);
790 /* Then decrease the refcount of the old table */
792 qcow2_free_clusters(bs
, l2_offset
, s
->l2_size
* l2_entry_size(s
),
793 QCOW2_DISCARD_OTHER
);
796 /* Get the offset of the newly-allocated l2 table */
797 l2_offset
= s
->l1_table
[l1_index
] & L1E_OFFSET_MASK
;
798 assert(offset_into_cluster(s
, l2_offset
) == 0);
801 /* load the l2 slice in memory */
802 ret
= l2_load(bs
, offset
, l2_offset
, &l2_slice
);
807 /* find the cluster offset for the given disk offset */
809 l2_index
= offset_to_l2_slice_index(s
, offset
);
811 *new_l2_slice
= l2_slice
;
812 *new_l2_index
= l2_index
;
818 * alloc_compressed_cluster_offset
820 * For a given offset on the virtual disk, allocate a new compressed cluster
821 * and put the host offset of the cluster into *host_offset. If a cluster is
822 * already allocated at the offset, return an error.
824 * Return 0 on success and -errno in error cases
826 int qcow2_alloc_compressed_cluster_offset(BlockDriverState
*bs
,
829 uint64_t *host_offset
)
831 BDRVQcow2State
*s
= bs
->opaque
;
834 int64_t cluster_offset
;
837 if (has_data_file(bs
)) {
841 ret
= get_cluster_table(bs
, offset
, &l2_slice
, &l2_index
);
846 /* Compression can't overwrite anything. Fail if the cluster was already
848 cluster_offset
= get_l2_entry(s
, l2_slice
, l2_index
);
849 if (cluster_offset
& L2E_OFFSET_MASK
) {
850 qcow2_cache_put(s
->l2_table_cache
, (void **) &l2_slice
);
854 cluster_offset
= qcow2_alloc_bytes(bs
, compressed_size
);
855 if (cluster_offset
< 0) {
856 qcow2_cache_put(s
->l2_table_cache
, (void **) &l2_slice
);
857 return cluster_offset
;
861 (cluster_offset
+ compressed_size
- 1) / QCOW2_COMPRESSED_SECTOR_SIZE
-
862 (cluster_offset
/ QCOW2_COMPRESSED_SECTOR_SIZE
);
864 /* The offset and size must fit in their fields of the L2 table entry */
865 assert((cluster_offset
& s
->cluster_offset_mask
) == cluster_offset
);
866 assert((nb_csectors
& s
->csize_mask
) == nb_csectors
);
868 cluster_offset
|= QCOW_OFLAG_COMPRESSED
|
869 ((uint64_t)nb_csectors
<< s
->csize_shift
);
871 /* update L2 table */
873 /* compressed clusters never have the copied flag */
875 BLKDBG_EVENT(bs
->file
, BLKDBG_L2_UPDATE_COMPRESSED
);
876 qcow2_cache_entry_mark_dirty(s
->l2_table_cache
, l2_slice
);
877 set_l2_entry(s
, l2_slice
, l2_index
, cluster_offset
);
878 if (has_subclusters(s
)) {
879 set_l2_bitmap(s
, l2_slice
, l2_index
, 0);
881 qcow2_cache_put(s
->l2_table_cache
, (void **) &l2_slice
);
883 *host_offset
= cluster_offset
& s
->cluster_offset_mask
;
887 static int perform_cow(BlockDriverState
*bs
, QCowL2Meta
*m
)
889 BDRVQcow2State
*s
= bs
->opaque
;
890 Qcow2COWRegion
*start
= &m
->cow_start
;
891 Qcow2COWRegion
*end
= &m
->cow_end
;
892 unsigned buffer_size
;
893 unsigned data_bytes
= end
->offset
- (start
->offset
+ start
->nb_bytes
);
895 uint8_t *start_buffer
, *end_buffer
;
899 assert(start
->nb_bytes
<= UINT_MAX
- end
->nb_bytes
);
900 assert(start
->nb_bytes
+ end
->nb_bytes
<= UINT_MAX
- data_bytes
);
901 assert(start
->offset
+ start
->nb_bytes
<= end
->offset
);
903 if ((start
->nb_bytes
== 0 && end
->nb_bytes
== 0) || m
->skip_cow
) {
907 /* If we have to read both the start and end COW regions and the
908 * middle region is not too large then perform just one read
910 merge_reads
= start
->nb_bytes
&& end
->nb_bytes
&& data_bytes
<= 16384;
912 buffer_size
= start
->nb_bytes
+ data_bytes
+ end
->nb_bytes
;
914 /* If we have to do two reads, add some padding in the middle
915 * if necessary to make sure that the end region is optimally
917 size_t align
= bdrv_opt_mem_align(bs
);
918 assert(align
> 0 && align
<= UINT_MAX
);
919 assert(QEMU_ALIGN_UP(start
->nb_bytes
, align
) <=
920 UINT_MAX
- end
->nb_bytes
);
921 buffer_size
= QEMU_ALIGN_UP(start
->nb_bytes
, align
) + end
->nb_bytes
;
924 /* Reserve a buffer large enough to store all the data that we're
926 start_buffer
= qemu_try_blockalign(bs
, buffer_size
);
927 if (start_buffer
== NULL
) {
930 /* The part of the buffer where the end region is located */
931 end_buffer
= start_buffer
+ buffer_size
- end
->nb_bytes
;
933 qemu_iovec_init(&qiov
, 2 + (m
->data_qiov
?
934 qemu_iovec_subvec_niov(m
->data_qiov
,
939 qemu_co_mutex_unlock(&s
->lock
);
940 /* First we read the existing data from both COW regions. We
941 * either read the whole region in one go, or the start and end
942 * regions separately. */
944 qemu_iovec_add(&qiov
, start_buffer
, buffer_size
);
945 ret
= do_perform_cow_read(bs
, m
->offset
, start
->offset
, &qiov
);
947 qemu_iovec_add(&qiov
, start_buffer
, start
->nb_bytes
);
948 ret
= do_perform_cow_read(bs
, m
->offset
, start
->offset
, &qiov
);
953 qemu_iovec_reset(&qiov
);
954 qemu_iovec_add(&qiov
, end_buffer
, end
->nb_bytes
);
955 ret
= do_perform_cow_read(bs
, m
->offset
, end
->offset
, &qiov
);
961 /* Encrypt the data if necessary before writing it */
963 ret
= qcow2_co_encrypt(bs
,
964 m
->alloc_offset
+ start
->offset
,
965 m
->offset
+ start
->offset
,
966 start_buffer
, start
->nb_bytes
);
971 ret
= qcow2_co_encrypt(bs
,
972 m
->alloc_offset
+ end
->offset
,
973 m
->offset
+ end
->offset
,
974 end_buffer
, end
->nb_bytes
);
980 /* And now we can write everything. If we have the guest data we
981 * can write everything in one single operation */
983 qemu_iovec_reset(&qiov
);
984 if (start
->nb_bytes
) {
985 qemu_iovec_add(&qiov
, start_buffer
, start
->nb_bytes
);
987 qemu_iovec_concat(&qiov
, m
->data_qiov
, m
->data_qiov_offset
, data_bytes
);
989 qemu_iovec_add(&qiov
, end_buffer
, end
->nb_bytes
);
991 /* NOTE: we have a write_aio blkdebug event here followed by
992 * a cow_write one in do_perform_cow_write(), but there's only
993 * one single I/O operation */
994 BLKDBG_EVENT(bs
->file
, BLKDBG_WRITE_AIO
);
995 ret
= do_perform_cow_write(bs
, m
->alloc_offset
, start
->offset
, &qiov
);
997 /* If there's no guest data then write both COW regions separately */
998 qemu_iovec_reset(&qiov
);
999 qemu_iovec_add(&qiov
, start_buffer
, start
->nb_bytes
);
1000 ret
= do_perform_cow_write(bs
, m
->alloc_offset
, start
->offset
, &qiov
);
1005 qemu_iovec_reset(&qiov
);
1006 qemu_iovec_add(&qiov
, end_buffer
, end
->nb_bytes
);
1007 ret
= do_perform_cow_write(bs
, m
->alloc_offset
, end
->offset
, &qiov
);
1011 qemu_co_mutex_lock(&s
->lock
);
1014 * Before we update the L2 table to actually point to the new cluster, we
1015 * need to be sure that the refcounts have been increased and COW was
1019 qcow2_cache_depends_on_flush(s
->l2_table_cache
);
1022 qemu_vfree(start_buffer
);
1023 qemu_iovec_destroy(&qiov
);
1027 int qcow2_alloc_cluster_link_l2(BlockDriverState
*bs
, QCowL2Meta
*m
)
1029 BDRVQcow2State
*s
= bs
->opaque
;
1030 int i
, j
= 0, l2_index
, ret
;
1031 uint64_t *old_cluster
, *l2_slice
;
1032 uint64_t cluster_offset
= m
->alloc_offset
;
1034 trace_qcow2_cluster_link_l2(qemu_coroutine_self(), m
->nb_clusters
);
1035 assert(m
->nb_clusters
> 0);
1037 old_cluster
= g_try_new(uint64_t, m
->nb_clusters
);
1038 if (old_cluster
== NULL
) {
1043 /* copy content of unmodified sectors */
1044 ret
= perform_cow(bs
, m
);
1049 /* Update L2 table. */
1050 if (s
->use_lazy_refcounts
) {
1051 qcow2_mark_dirty(bs
);
1053 if (qcow2_need_accurate_refcounts(s
)) {
1054 qcow2_cache_set_dependency(bs
, s
->l2_table_cache
,
1055 s
->refcount_block_cache
);
1058 ret
= get_cluster_table(bs
, m
->offset
, &l2_slice
, &l2_index
);
1062 qcow2_cache_entry_mark_dirty(s
->l2_table_cache
, l2_slice
);
1064 assert(l2_index
+ m
->nb_clusters
<= s
->l2_slice_size
);
1065 assert(m
->cow_end
.offset
+ m
->cow_end
.nb_bytes
<=
1066 m
->nb_clusters
<< s
->cluster_bits
);
1067 for (i
= 0; i
< m
->nb_clusters
; i
++) {
1068 uint64_t offset
= cluster_offset
+ ((uint64_t)i
<< s
->cluster_bits
);
1069 /* if two concurrent writes happen to the same unallocated cluster
1070 * each write allocates separate cluster and writes data concurrently.
1071 * The first one to complete updates l2 table with pointer to its
1072 * cluster the second one has to do RMW (which is done above by
1073 * perform_cow()), update l2 table with its cluster pointer and free
1074 * old cluster. This is what this loop does */
1075 if (get_l2_entry(s
, l2_slice
, l2_index
+ i
) != 0) {
1076 old_cluster
[j
++] = get_l2_entry(s
, l2_slice
, l2_index
+ i
);
1079 /* The offset must fit in the offset field of the L2 table entry */
1080 assert((offset
& L2E_OFFSET_MASK
) == offset
);
1082 set_l2_entry(s
, l2_slice
, l2_index
+ i
, offset
| QCOW_OFLAG_COPIED
);
1084 /* Update bitmap with the subclusters that were just written */
1085 if (has_subclusters(s
) && !m
->prealloc
) {
1086 uint64_t l2_bitmap
= get_l2_bitmap(s
, l2_slice
, l2_index
+ i
);
1087 unsigned written_from
= m
->cow_start
.offset
;
1088 unsigned written_to
= m
->cow_end
.offset
+ m
->cow_end
.nb_bytes
;
1089 int first_sc
, last_sc
;
1090 /* Narrow written_from and written_to down to the current cluster */
1091 written_from
= MAX(written_from
, i
<< s
->cluster_bits
);
1092 written_to
= MIN(written_to
, (i
+ 1) << s
->cluster_bits
);
1093 assert(written_from
< written_to
);
1094 first_sc
= offset_to_sc_index(s
, written_from
);
1095 last_sc
= offset_to_sc_index(s
, written_to
- 1);
1096 l2_bitmap
|= QCOW_OFLAG_SUB_ALLOC_RANGE(first_sc
, last_sc
+ 1);
1097 l2_bitmap
&= ~QCOW_OFLAG_SUB_ZERO_RANGE(first_sc
, last_sc
+ 1);
1098 set_l2_bitmap(s
, l2_slice
, l2_index
+ i
, l2_bitmap
);
1103 qcow2_cache_put(s
->l2_table_cache
, (void **) &l2_slice
);
1106 * If this was a COW, we need to decrease the refcount of the old cluster.
1108 * Don't discard clusters that reach a refcount of 0 (e.g. compressed
1109 * clusters), the next write will reuse them anyway.
1111 if (!m
->keep_old_clusters
&& j
!= 0) {
1112 for (i
= 0; i
< j
; i
++) {
1113 qcow2_free_any_cluster(bs
, old_cluster
[i
], QCOW2_DISCARD_NEVER
);
1119 g_free(old_cluster
);
1124 * Frees the allocated clusters because the request failed and they won't
1125 * actually be linked.
1127 void qcow2_alloc_cluster_abort(BlockDriverState
*bs
, QCowL2Meta
*m
)
1129 BDRVQcow2State
*s
= bs
->opaque
;
1130 if (!has_data_file(bs
) && !m
->keep_old_clusters
) {
1131 qcow2_free_clusters(bs
, m
->alloc_offset
,
1132 m
->nb_clusters
<< s
->cluster_bits
,
1133 QCOW2_DISCARD_NEVER
);
1138 * For a given write request, create a new QCowL2Meta structure, add
1139 * it to @m and the BDRVQcow2State.cluster_allocs list. If the write
1140 * request does not need copy-on-write or changes to the L2 metadata
1141 * then this function does nothing.
1143 * @host_cluster_offset points to the beginning of the first cluster.
1145 * @guest_offset and @bytes indicate the offset and length of the
1148 * @l2_slice contains the L2 entries of all clusters involved in this
1151 * If @keep_old is true it means that the clusters were already
1152 * allocated and will be overwritten. If false then the clusters are
1153 * new and we have to decrease the reference count of the old ones.
1155 * Returns 0 on success, -errno on failure.
1157 static int calculate_l2_meta(BlockDriverState
*bs
, uint64_t host_cluster_offset
,
1158 uint64_t guest_offset
, unsigned bytes
,
1159 uint64_t *l2_slice
, QCowL2Meta
**m
, bool keep_old
)
1161 BDRVQcow2State
*s
= bs
->opaque
;
1162 int sc_index
, l2_index
= offset_to_l2_slice_index(s
, guest_offset
);
1163 uint64_t l2_entry
, l2_bitmap
;
1164 unsigned cow_start_from
, cow_end_to
;
1165 unsigned cow_start_to
= offset_into_cluster(s
, guest_offset
);
1166 unsigned cow_end_from
= cow_start_to
+ bytes
;
1167 unsigned nb_clusters
= size_to_clusters(s
, cow_end_from
);
1168 QCowL2Meta
*old_m
= *m
;
1169 QCow2SubclusterType type
;
1171 bool skip_cow
= keep_old
;
1173 assert(nb_clusters
<= s
->l2_slice_size
- l2_index
);
1175 /* Check the type of all affected subclusters */
1176 for (i
= 0; i
< nb_clusters
; i
++) {
1177 l2_entry
= get_l2_entry(s
, l2_slice
, l2_index
+ i
);
1178 l2_bitmap
= get_l2_bitmap(s
, l2_slice
, l2_index
+ i
);
1180 unsigned write_from
= MAX(cow_start_to
, i
<< s
->cluster_bits
);
1181 unsigned write_to
= MIN(cow_end_from
, (i
+ 1) << s
->cluster_bits
);
1182 int first_sc
= offset_to_sc_index(s
, write_from
);
1183 int last_sc
= offset_to_sc_index(s
, write_to
- 1);
1184 int cnt
= qcow2_get_subcluster_range_type(bs
, l2_entry
, l2_bitmap
,
1186 /* Is any of the subclusters of type != QCOW2_SUBCLUSTER_NORMAL ? */
1187 if (type
!= QCOW2_SUBCLUSTER_NORMAL
|| first_sc
+ cnt
<= last_sc
) {
1191 /* If we can't skip the cow we can still look for invalid entries */
1192 type
= qcow2_get_subcluster_type(bs
, l2_entry
, l2_bitmap
, 0);
1194 if (type
== QCOW2_SUBCLUSTER_INVALID
) {
1195 int l1_index
= offset_to_l1_index(s
, guest_offset
);
1196 uint64_t l2_offset
= s
->l1_table
[l1_index
] & L1E_OFFSET_MASK
;
1197 qcow2_signal_corruption(bs
, true, -1, -1, "Invalid cluster "
1198 "entry found (L2 offset: %#" PRIx64
1200 l2_offset
, l2_index
+ i
);
1209 /* Get the L2 entry of the first cluster */
1210 l2_entry
= get_l2_entry(s
, l2_slice
, l2_index
);
1211 l2_bitmap
= get_l2_bitmap(s
, l2_slice
, l2_index
);
1212 sc_index
= offset_to_sc_index(s
, guest_offset
);
1213 type
= qcow2_get_subcluster_type(bs
, l2_entry
, l2_bitmap
, sc_index
);
1217 case QCOW2_SUBCLUSTER_COMPRESSED
:
1220 case QCOW2_SUBCLUSTER_NORMAL
:
1221 case QCOW2_SUBCLUSTER_ZERO_ALLOC
:
1222 case QCOW2_SUBCLUSTER_UNALLOCATED_ALLOC
:
1223 if (has_subclusters(s
)) {
1224 /* Skip all leading zero and unallocated subclusters */
1225 uint32_t alloc_bitmap
= l2_bitmap
& QCOW_L2_BITMAP_ALL_ALLOC
;
1227 MIN(sc_index
, ctz32(alloc_bitmap
)) << s
->subcluster_bits
;
1232 case QCOW2_SUBCLUSTER_ZERO_PLAIN
:
1233 case QCOW2_SUBCLUSTER_UNALLOCATED_PLAIN
:
1234 cow_start_from
= sc_index
<< s
->subcluster_bits
;
1237 g_assert_not_reached();
1241 case QCOW2_SUBCLUSTER_NORMAL
:
1242 cow_start_from
= cow_start_to
;
1244 case QCOW2_SUBCLUSTER_ZERO_ALLOC
:
1245 case QCOW2_SUBCLUSTER_UNALLOCATED_ALLOC
:
1246 cow_start_from
= sc_index
<< s
->subcluster_bits
;
1249 g_assert_not_reached();
1253 /* Get the L2 entry of the last cluster */
1254 l2_index
+= nb_clusters
- 1;
1255 l2_entry
= get_l2_entry(s
, l2_slice
, l2_index
);
1256 l2_bitmap
= get_l2_bitmap(s
, l2_slice
, l2_index
);
1257 sc_index
= offset_to_sc_index(s
, guest_offset
+ bytes
- 1);
1258 type
= qcow2_get_subcluster_type(bs
, l2_entry
, l2_bitmap
, sc_index
);
1262 case QCOW2_SUBCLUSTER_COMPRESSED
:
1263 cow_end_to
= ROUND_UP(cow_end_from
, s
->cluster_size
);
1265 case QCOW2_SUBCLUSTER_NORMAL
:
1266 case QCOW2_SUBCLUSTER_ZERO_ALLOC
:
1267 case QCOW2_SUBCLUSTER_UNALLOCATED_ALLOC
:
1268 cow_end_to
= ROUND_UP(cow_end_from
, s
->cluster_size
);
1269 if (has_subclusters(s
)) {
1270 /* Skip all trailing zero and unallocated subclusters */
1271 uint32_t alloc_bitmap
= l2_bitmap
& QCOW_L2_BITMAP_ALL_ALLOC
;
1273 MIN(s
->subclusters_per_cluster
- sc_index
- 1,
1274 clz32(alloc_bitmap
)) << s
->subcluster_bits
;
1277 case QCOW2_SUBCLUSTER_ZERO_PLAIN
:
1278 case QCOW2_SUBCLUSTER_UNALLOCATED_PLAIN
:
1279 cow_end_to
= ROUND_UP(cow_end_from
, s
->subcluster_size
);
1282 g_assert_not_reached();
1286 case QCOW2_SUBCLUSTER_NORMAL
:
1287 cow_end_to
= cow_end_from
;
1289 case QCOW2_SUBCLUSTER_ZERO_ALLOC
:
1290 case QCOW2_SUBCLUSTER_UNALLOCATED_ALLOC
:
1291 cow_end_to
= ROUND_UP(cow_end_from
, s
->subcluster_size
);
1294 g_assert_not_reached();
1298 *m
= g_malloc0(sizeof(**m
));
1299 **m
= (QCowL2Meta
) {
1302 .alloc_offset
= host_cluster_offset
,
1303 .offset
= start_of_cluster(s
, guest_offset
),
1304 .nb_clusters
= nb_clusters
,
1306 .keep_old_clusters
= keep_old
,
1309 .offset
= cow_start_from
,
1310 .nb_bytes
= cow_start_to
- cow_start_from
,
1313 .offset
= cow_end_from
,
1314 .nb_bytes
= cow_end_to
- cow_end_from
,
1318 qemu_co_queue_init(&(*m
)->dependent_requests
);
1319 QLIST_INSERT_HEAD(&s
->cluster_allocs
, *m
, next_in_flight
);
1325 * Returns true if writing to the cluster pointed to by @l2_entry
1326 * requires a new allocation (that is, if the cluster is unallocated
1327 * or has refcount > 1 and therefore cannot be written in-place).
1329 static bool cluster_needs_new_alloc(BlockDriverState
*bs
, uint64_t l2_entry
)
1331 switch (qcow2_get_cluster_type(bs
, l2_entry
)) {
1332 case QCOW2_CLUSTER_NORMAL
:
1333 case QCOW2_CLUSTER_ZERO_ALLOC
:
1334 if (l2_entry
& QCOW_OFLAG_COPIED
) {
1338 case QCOW2_CLUSTER_UNALLOCATED
:
1339 case QCOW2_CLUSTER_COMPRESSED
:
1340 case QCOW2_CLUSTER_ZERO_PLAIN
:
1348 * Returns the number of contiguous clusters that can be written to
1349 * using one single write request, starting from @l2_index.
1350 * At most @nb_clusters are checked.
1352 * If @new_alloc is true this counts clusters that are either
1353 * unallocated, or allocated but with refcount > 1 (so they need to be
1354 * newly allocated and COWed).
1356 * If @new_alloc is false this counts clusters that are already
1357 * allocated and can be overwritten in-place (this includes clusters
1358 * of type QCOW2_CLUSTER_ZERO_ALLOC).
1360 static int count_single_write_clusters(BlockDriverState
*bs
, int nb_clusters
,
1361 uint64_t *l2_slice
, int l2_index
,
1364 BDRVQcow2State
*s
= bs
->opaque
;
1365 uint64_t l2_entry
= get_l2_entry(s
, l2_slice
, l2_index
);
1366 uint64_t expected_offset
= l2_entry
& L2E_OFFSET_MASK
;
1369 for (i
= 0; i
< nb_clusters
; i
++) {
1370 l2_entry
= get_l2_entry(s
, l2_slice
, l2_index
+ i
);
1371 if (cluster_needs_new_alloc(bs
, l2_entry
) != new_alloc
) {
1375 if (expected_offset
!= (l2_entry
& L2E_OFFSET_MASK
)) {
1378 expected_offset
+= s
->cluster_size
;
1382 assert(i
<= nb_clusters
);
1387 * Check if there already is an AIO write request in flight which allocates
1388 * the same cluster. In this case we need to wait until the previous
1389 * request has completed and updated the L2 table accordingly.
1392 * 0 if there was no dependency. *cur_bytes indicates the number of
1393 * bytes from guest_offset that can be read before the next
1394 * dependency must be processed (or the request is complete)
1396 * -EAGAIN if we had to wait for another request, previously gathered
1397 * information on cluster allocation may be invalid now. The caller
1398 * must start over anyway, so consider *cur_bytes undefined.
1400 static int handle_dependencies(BlockDriverState
*bs
, uint64_t guest_offset
,
1401 uint64_t *cur_bytes
, QCowL2Meta
**m
)
1403 BDRVQcow2State
*s
= bs
->opaque
;
1404 QCowL2Meta
*old_alloc
;
1405 uint64_t bytes
= *cur_bytes
;
1407 QLIST_FOREACH(old_alloc
, &s
->cluster_allocs
, next_in_flight
) {
1409 uint64_t start
= guest_offset
;
1410 uint64_t end
= start
+ bytes
;
1411 uint64_t old_start
= start_of_cluster(s
, l2meta_cow_start(old_alloc
));
1412 uint64_t old_end
= ROUND_UP(l2meta_cow_end(old_alloc
), s
->cluster_size
);
1414 if (end
<= old_start
|| start
>= old_end
) {
1415 /* No intersection */
1419 if (old_alloc
->keep_old_clusters
&&
1420 (end
<= l2meta_cow_start(old_alloc
) ||
1421 start
>= l2meta_cow_end(old_alloc
)))
1424 * Clusters intersect but COW areas don't. And cluster itself is
1425 * already allocated. So, there is no actual conflict.
1432 if (start
< old_start
) {
1433 /* Stop at the start of a running allocation */
1434 bytes
= old_start
- start
;
1440 * Stop if an l2meta already exists. After yielding, it wouldn't
1441 * be valid any more, so we'd have to clean up the old L2Metas
1442 * and deal with requests depending on them before starting to
1443 * gather new ones. Not worth the trouble.
1445 if (bytes
== 0 && *m
) {
1452 * Wait for the dependency to complete. We need to recheck
1453 * the free/allocated clusters when we continue.
1455 qemu_co_queue_wait(&old_alloc
->dependent_requests
, &s
->lock
);
1460 /* Make sure that existing clusters and new allocations are only used up to
1461 * the next dependency if we shortened the request above */
1468 * Checks how many already allocated clusters that don't require a new
1469 * allocation there are at the given guest_offset (up to *bytes).
1470 * If *host_offset is not INV_OFFSET, only physically contiguous clusters
1471 * beginning at this host offset are counted.
1473 * Note that guest_offset may not be cluster aligned. In this case, the
1474 * returned *host_offset points to exact byte referenced by guest_offset and
1475 * therefore isn't cluster aligned as well.
1478 * 0: if no allocated clusters are available at the given offset.
1479 * *bytes is normally unchanged. It is set to 0 if the cluster
1480 * is allocated and can be overwritten in-place but doesn't have
1481 * the right physical offset.
1483 * 1: if allocated clusters that can be overwritten in place are
1484 * available at the requested offset. *bytes may have decreased
1485 * and describes the length of the area that can be written to.
1487 * -errno: in error cases
1489 static int handle_copied(BlockDriverState
*bs
, uint64_t guest_offset
,
1490 uint64_t *host_offset
, uint64_t *bytes
, QCowL2Meta
**m
)
1492 BDRVQcow2State
*s
= bs
->opaque
;
1494 uint64_t l2_entry
, cluster_offset
;
1496 uint64_t nb_clusters
;
1497 unsigned int keep_clusters
;
1500 trace_qcow2_handle_copied(qemu_coroutine_self(), guest_offset
, *host_offset
,
1503 assert(*host_offset
== INV_OFFSET
|| offset_into_cluster(s
, guest_offset
)
1504 == offset_into_cluster(s
, *host_offset
));
1507 * Calculate the number of clusters to look for. We stop at L2 slice
1508 * boundaries to keep things simple.
1511 size_to_clusters(s
, offset_into_cluster(s
, guest_offset
) + *bytes
);
1513 l2_index
= offset_to_l2_slice_index(s
, guest_offset
);
1514 nb_clusters
= MIN(nb_clusters
, s
->l2_slice_size
- l2_index
);
1515 /* Limit total byte count to BDRV_REQUEST_MAX_BYTES */
1516 nb_clusters
= MIN(nb_clusters
, BDRV_REQUEST_MAX_BYTES
>> s
->cluster_bits
);
1518 /* Find L2 entry for the first involved cluster */
1519 ret
= get_cluster_table(bs
, guest_offset
, &l2_slice
, &l2_index
);
1524 l2_entry
= get_l2_entry(s
, l2_slice
, l2_index
);
1525 cluster_offset
= l2_entry
& L2E_OFFSET_MASK
;
1527 if (!cluster_needs_new_alloc(bs
, l2_entry
)) {
1528 if (offset_into_cluster(s
, cluster_offset
)) {
1529 qcow2_signal_corruption(bs
, true, -1, -1, "%s cluster offset "
1530 "%#" PRIx64
" unaligned (guest offset: %#"
1531 PRIx64
")", l2_entry
& QCOW_OFLAG_ZERO
?
1532 "Preallocated zero" : "Data",
1533 cluster_offset
, guest_offset
);
1538 /* If a specific host_offset is required, check it */
1539 if (*host_offset
!= INV_OFFSET
&& cluster_offset
!= *host_offset
) {
1545 /* We keep all QCOW_OFLAG_COPIED clusters */
1546 keep_clusters
= count_single_write_clusters(bs
, nb_clusters
, l2_slice
,
1548 assert(keep_clusters
<= nb_clusters
);
1550 *bytes
= MIN(*bytes
,
1551 keep_clusters
* s
->cluster_size
1552 - offset_into_cluster(s
, guest_offset
));
1553 assert(*bytes
!= 0);
1555 ret
= calculate_l2_meta(bs
, cluster_offset
, guest_offset
,
1556 *bytes
, l2_slice
, m
, true);
1568 qcow2_cache_put(s
->l2_table_cache
, (void **) &l2_slice
);
1570 /* Only return a host offset if we actually made progress. Otherwise we
1571 * would make requirements for handle_alloc() that it can't fulfill */
1573 *host_offset
= cluster_offset
+ offset_into_cluster(s
, guest_offset
);
1580 * Allocates new clusters for the given guest_offset.
1582 * At most *nb_clusters are allocated, and on return *nb_clusters is updated to
1583 * contain the number of clusters that have been allocated and are contiguous
1584 * in the image file.
1586 * If *host_offset is not INV_OFFSET, it specifies the offset in the image file
1587 * at which the new clusters must start. *nb_clusters can be 0 on return in
1588 * this case if the cluster at host_offset is already in use. If *host_offset
1589 * is INV_OFFSET, the clusters can be allocated anywhere in the image file.
1591 * *host_offset is updated to contain the offset into the image file at which
1592 * the first allocated cluster starts.
1594 * Return 0 on success and -errno in error cases. -EAGAIN means that the
1595 * function has been waiting for another request and the allocation must be
1596 * restarted, but the whole request should not be failed.
1598 static int do_alloc_cluster_offset(BlockDriverState
*bs
, uint64_t guest_offset
,
1599 uint64_t *host_offset
, uint64_t *nb_clusters
)
1601 BDRVQcow2State
*s
= bs
->opaque
;
1603 trace_qcow2_do_alloc_clusters_offset(qemu_coroutine_self(), guest_offset
,
1604 *host_offset
, *nb_clusters
);
1606 if (has_data_file(bs
)) {
1607 assert(*host_offset
== INV_OFFSET
||
1608 *host_offset
== start_of_cluster(s
, guest_offset
));
1609 *host_offset
= start_of_cluster(s
, guest_offset
);
1613 /* Allocate new clusters */
1614 trace_qcow2_cluster_alloc_phys(qemu_coroutine_self());
1615 if (*host_offset
== INV_OFFSET
) {
1616 int64_t cluster_offset
=
1617 qcow2_alloc_clusters(bs
, *nb_clusters
* s
->cluster_size
);
1618 if (cluster_offset
< 0) {
1619 return cluster_offset
;
1621 *host_offset
= cluster_offset
;
1624 int64_t ret
= qcow2_alloc_clusters_at(bs
, *host_offset
, *nb_clusters
);
1634 * Allocates new clusters for an area that is either still unallocated or
1635 * cannot be overwritten in-place. If *host_offset is not INV_OFFSET,
1636 * clusters are only allocated if the new allocation can match the specified
1639 * Note that guest_offset may not be cluster aligned. In this case, the
1640 * returned *host_offset points to exact byte referenced by guest_offset and
1641 * therefore isn't cluster aligned as well.
1644 * 0: if no clusters could be allocated. *bytes is set to 0,
1645 * *host_offset is left unchanged.
1647 * 1: if new clusters were allocated. *bytes may be decreased if the
1648 * new allocation doesn't cover all of the requested area.
1649 * *host_offset is updated to contain the host offset of the first
1650 * newly allocated cluster.
1652 * -errno: in error cases
1654 static int handle_alloc(BlockDriverState
*bs
, uint64_t guest_offset
,
1655 uint64_t *host_offset
, uint64_t *bytes
, QCowL2Meta
**m
)
1657 BDRVQcow2State
*s
= bs
->opaque
;
1660 uint64_t nb_clusters
;
1663 uint64_t alloc_cluster_offset
;
1665 trace_qcow2_handle_alloc(qemu_coroutine_self(), guest_offset
, *host_offset
,
1670 * Calculate the number of clusters to look for. We stop at L2 slice
1671 * boundaries to keep things simple.
1674 size_to_clusters(s
, offset_into_cluster(s
, guest_offset
) + *bytes
);
1676 l2_index
= offset_to_l2_slice_index(s
, guest_offset
);
1677 nb_clusters
= MIN(nb_clusters
, s
->l2_slice_size
- l2_index
);
1678 /* Limit total allocation byte count to BDRV_REQUEST_MAX_BYTES */
1679 nb_clusters
= MIN(nb_clusters
, BDRV_REQUEST_MAX_BYTES
>> s
->cluster_bits
);
1681 /* Find L2 entry for the first involved cluster */
1682 ret
= get_cluster_table(bs
, guest_offset
, &l2_slice
, &l2_index
);
1687 nb_clusters
= count_single_write_clusters(bs
, nb_clusters
,
1688 l2_slice
, l2_index
, true);
1690 /* This function is only called when there were no non-COW clusters, so if
1691 * we can't find any unallocated or COW clusters either, something is
1692 * wrong with our code. */
1693 assert(nb_clusters
> 0);
1695 /* Allocate at a given offset in the image file */
1696 alloc_cluster_offset
= *host_offset
== INV_OFFSET
? INV_OFFSET
:
1697 start_of_cluster(s
, *host_offset
);
1698 ret
= do_alloc_cluster_offset(bs
, guest_offset
, &alloc_cluster_offset
,
1704 /* Can't extend contiguous allocation */
1705 if (nb_clusters
== 0) {
1711 assert(alloc_cluster_offset
!= INV_OFFSET
);
1714 * Save info needed for meta data update.
1716 * requested_bytes: Number of bytes from the start of the first
1717 * newly allocated cluster to the end of the (possibly shortened
1718 * before) write request.
1720 * avail_bytes: Number of bytes from the start of the first
1721 * newly allocated to the end of the last newly allocated cluster.
1723 * nb_bytes: The number of bytes from the start of the first
1724 * newly allocated cluster to the end of the area that the write
1725 * request actually writes to (excluding COW at the end)
1727 uint64_t requested_bytes
= *bytes
+ offset_into_cluster(s
, guest_offset
);
1728 int avail_bytes
= nb_clusters
<< s
->cluster_bits
;
1729 int nb_bytes
= MIN(requested_bytes
, avail_bytes
);
1731 *host_offset
= alloc_cluster_offset
+ offset_into_cluster(s
, guest_offset
);
1732 *bytes
= MIN(*bytes
, nb_bytes
- offset_into_cluster(s
, guest_offset
));
1733 assert(*bytes
!= 0);
1735 ret
= calculate_l2_meta(bs
, alloc_cluster_offset
, guest_offset
, *bytes
,
1736 l2_slice
, m
, false);
1744 qcow2_cache_put(s
->l2_table_cache
, (void **) &l2_slice
);
1749 * For a given area on the virtual disk defined by @offset and @bytes,
1750 * find the corresponding area on the qcow2 image, allocating new
1751 * clusters (or subclusters) if necessary. The result can span a
1752 * combination of allocated and previously unallocated clusters.
1754 * Note that offset may not be cluster aligned. In this case, the returned
1755 * *host_offset points to exact byte referenced by offset and therefore
1756 * isn't cluster aligned as well.
1758 * On return, @host_offset is set to the beginning of the requested
1759 * area. This area is guaranteed to be contiguous on the qcow2 file
1760 * but it can be smaller than initially requested. In this case @bytes
1761 * is updated with the actual size.
1763 * If any clusters or subclusters were allocated then @m contains a
1764 * list with the information of all the affected regions. Note that
1765 * this can happen regardless of whether this function succeeds or
1766 * not. The caller is responsible for updating the L2 metadata of the
1767 * allocated clusters (on success) or freeing them (on failure), and
1768 * for clearing the contents of @m afterwards in both cases.
1770 * If the request conflicts with another write request in flight, the coroutine
1771 * is queued and will be reentered when the dependency has completed.
1773 * Return 0 on success and -errno in error cases
1775 int qcow2_alloc_host_offset(BlockDriverState
*bs
, uint64_t offset
,
1776 unsigned int *bytes
, uint64_t *host_offset
,
1779 BDRVQcow2State
*s
= bs
->opaque
;
1780 uint64_t start
, remaining
;
1781 uint64_t cluster_offset
;
1785 trace_qcow2_alloc_clusters_offset(qemu_coroutine_self(), offset
, *bytes
);
1790 cluster_offset
= INV_OFFSET
;
1791 *host_offset
= INV_OFFSET
;
1797 if (*host_offset
== INV_OFFSET
&& cluster_offset
!= INV_OFFSET
) {
1798 *host_offset
= cluster_offset
;
1801 assert(remaining
>= cur_bytes
);
1804 remaining
-= cur_bytes
;
1806 if (cluster_offset
!= INV_OFFSET
) {
1807 cluster_offset
+= cur_bytes
;
1810 if (remaining
== 0) {
1814 cur_bytes
= remaining
;
1817 * Now start gathering as many contiguous clusters as possible:
1819 * 1. Check for overlaps with in-flight allocations
1821 * a) Overlap not in the first cluster -> shorten this request and
1822 * let the caller handle the rest in its next loop iteration.
1824 * b) Real overlaps of two requests. Yield and restart the search
1825 * for contiguous clusters (the situation could have changed
1826 * while we were sleeping)
1828 * c) TODO: Request starts in the same cluster as the in-flight
1829 * allocation ends. Shorten the COW of the in-fight allocation,
1830 * set cluster_offset to write to the same cluster and set up
1831 * the right synchronisation between the in-flight request and
1834 ret
= handle_dependencies(bs
, start
, &cur_bytes
, m
);
1835 if (ret
== -EAGAIN
) {
1836 /* Currently handle_dependencies() doesn't yield if we already had
1837 * an allocation. If it did, we would have to clean up the L2Meta
1838 * structs before starting over. */
1841 } else if (ret
< 0) {
1843 } else if (cur_bytes
== 0) {
1846 /* handle_dependencies() may have decreased cur_bytes (shortened
1847 * the allocations below) so that the next dependency is processed
1848 * correctly during the next loop iteration. */
1852 * 2. Count contiguous COPIED clusters.
1854 ret
= handle_copied(bs
, start
, &cluster_offset
, &cur_bytes
, m
);
1859 } else if (cur_bytes
== 0) {
1864 * 3. If the request still hasn't completed, allocate new clusters,
1865 * considering any cluster_offset of steps 1c or 2.
1867 ret
= handle_alloc(bs
, start
, &cluster_offset
, &cur_bytes
, m
);
1873 assert(cur_bytes
== 0);
1878 *bytes
-= remaining
;
1880 assert(*host_offset
!= INV_OFFSET
);
1881 assert(offset_into_cluster(s
, *host_offset
) ==
1882 offset_into_cluster(s
, offset
));
1888 * This discards as many clusters of nb_clusters as possible at once (i.e.
1889 * all clusters in the same L2 slice) and returns the number of discarded
1892 static int discard_in_l2_slice(BlockDriverState
*bs
, uint64_t offset
,
1893 uint64_t nb_clusters
,
1894 enum qcow2_discard_type type
, bool full_discard
)
1896 BDRVQcow2State
*s
= bs
->opaque
;
1902 ret
= get_cluster_table(bs
, offset
, &l2_slice
, &l2_index
);
1907 /* Limit nb_clusters to one L2 slice */
1908 nb_clusters
= MIN(nb_clusters
, s
->l2_slice_size
- l2_index
);
1909 assert(nb_clusters
<= INT_MAX
);
1911 for (i
= 0; i
< nb_clusters
; i
++) {
1912 uint64_t old_l2_entry
= get_l2_entry(s
, l2_slice
, l2_index
+ i
);
1913 uint64_t old_l2_bitmap
= get_l2_bitmap(s
, l2_slice
, l2_index
+ i
);
1914 uint64_t new_l2_entry
= old_l2_entry
;
1915 uint64_t new_l2_bitmap
= old_l2_bitmap
;
1916 QCow2ClusterType cluster_type
=
1917 qcow2_get_cluster_type(bs
, old_l2_entry
);
1920 * If full_discard is true, the cluster should not read back as zeroes,
1921 * but rather fall through to the backing file.
1923 * If full_discard is false, make sure that a discarded area reads back
1924 * as zeroes for v3 images (we cannot do it for v2 without actually
1925 * writing a zero-filled buffer). We can skip the operation if the
1926 * cluster is already marked as zero, or if it's unallocated and we
1927 * don't have a backing file.
1929 * TODO We might want to use bdrv_block_status(bs) here, but we're
1930 * holding s->lock, so that doesn't work today.
1933 new_l2_entry
= new_l2_bitmap
= 0;
1934 } else if (bs
->backing
|| qcow2_cluster_is_allocated(cluster_type
)) {
1935 if (has_subclusters(s
)) {
1937 new_l2_bitmap
= QCOW_L2_BITMAP_ALL_ZEROES
;
1939 new_l2_entry
= s
->qcow_version
>= 3 ? QCOW_OFLAG_ZERO
: 0;
1943 if (old_l2_entry
== new_l2_entry
&& old_l2_bitmap
== new_l2_bitmap
) {
1947 /* First remove L2 entries */
1948 qcow2_cache_entry_mark_dirty(s
->l2_table_cache
, l2_slice
);
1949 set_l2_entry(s
, l2_slice
, l2_index
+ i
, new_l2_entry
);
1950 if (has_subclusters(s
)) {
1951 set_l2_bitmap(s
, l2_slice
, l2_index
+ i
, new_l2_bitmap
);
1953 /* Then decrease the refcount */
1954 qcow2_free_any_cluster(bs
, old_l2_entry
, type
);
1957 qcow2_cache_put(s
->l2_table_cache
, (void **) &l2_slice
);
1962 int qcow2_cluster_discard(BlockDriverState
*bs
, uint64_t offset
,
1963 uint64_t bytes
, enum qcow2_discard_type type
,
1966 BDRVQcow2State
*s
= bs
->opaque
;
1967 uint64_t end_offset
= offset
+ bytes
;
1968 uint64_t nb_clusters
;
1972 /* Caller must pass aligned values, except at image end */
1973 assert(QEMU_IS_ALIGNED(offset
, s
->cluster_size
));
1974 assert(QEMU_IS_ALIGNED(end_offset
, s
->cluster_size
) ||
1975 end_offset
== bs
->total_sectors
<< BDRV_SECTOR_BITS
);
1977 nb_clusters
= size_to_clusters(s
, bytes
);
1979 s
->cache_discards
= true;
1981 /* Each L2 slice is handled by its own loop iteration */
1982 while (nb_clusters
> 0) {
1983 cleared
= discard_in_l2_slice(bs
, offset
, nb_clusters
, type
,
1990 nb_clusters
-= cleared
;
1991 offset
+= (cleared
* s
->cluster_size
);
1996 s
->cache_discards
= false;
1997 qcow2_process_discards(bs
, ret
);
2003 * This zeroes as many clusters of nb_clusters as possible at once (i.e.
2004 * all clusters in the same L2 slice) and returns the number of zeroed
2007 static int zero_in_l2_slice(BlockDriverState
*bs
, uint64_t offset
,
2008 uint64_t nb_clusters
, int flags
)
2010 BDRVQcow2State
*s
= bs
->opaque
;
2016 ret
= get_cluster_table(bs
, offset
, &l2_slice
, &l2_index
);
2021 /* Limit nb_clusters to one L2 slice */
2022 nb_clusters
= MIN(nb_clusters
, s
->l2_slice_size
- l2_index
);
2023 assert(nb_clusters
<= INT_MAX
);
2025 for (i
= 0; i
< nb_clusters
; i
++) {
2026 uint64_t old_l2_entry
= get_l2_entry(s
, l2_slice
, l2_index
+ i
);
2027 uint64_t old_l2_bitmap
= get_l2_bitmap(s
, l2_slice
, l2_index
+ i
);
2028 QCow2ClusterType type
= qcow2_get_cluster_type(bs
, old_l2_entry
);
2029 bool unmap
= (type
== QCOW2_CLUSTER_COMPRESSED
) ||
2030 ((flags
& BDRV_REQ_MAY_UNMAP
) && qcow2_cluster_is_allocated(type
));
2031 uint64_t new_l2_entry
= unmap
? 0 : old_l2_entry
;
2032 uint64_t new_l2_bitmap
= old_l2_bitmap
;
2034 if (has_subclusters(s
)) {
2035 new_l2_bitmap
= QCOW_L2_BITMAP_ALL_ZEROES
;
2037 new_l2_entry
|= QCOW_OFLAG_ZERO
;
2040 if (old_l2_entry
== new_l2_entry
&& old_l2_bitmap
== new_l2_bitmap
) {
2044 /* First update L2 entries */
2045 qcow2_cache_entry_mark_dirty(s
->l2_table_cache
, l2_slice
);
2046 set_l2_entry(s
, l2_slice
, l2_index
+ i
, new_l2_entry
);
2047 if (has_subclusters(s
)) {
2048 set_l2_bitmap(s
, l2_slice
, l2_index
+ i
, new_l2_bitmap
);
2051 /* Then decrease the refcount */
2053 qcow2_free_any_cluster(bs
, old_l2_entry
, QCOW2_DISCARD_REQUEST
);
2057 qcow2_cache_put(s
->l2_table_cache
, (void **) &l2_slice
);
2062 static int zero_l2_subclusters(BlockDriverState
*bs
, uint64_t offset
,
2063 unsigned nb_subclusters
)
2065 BDRVQcow2State
*s
= bs
->opaque
;
2067 uint64_t old_l2_bitmap
, l2_bitmap
;
2068 int l2_index
, ret
, sc
= offset_to_sc_index(s
, offset
);
2070 /* For full clusters use zero_in_l2_slice() instead */
2071 assert(nb_subclusters
> 0 && nb_subclusters
< s
->subclusters_per_cluster
);
2072 assert(sc
+ nb_subclusters
<= s
->subclusters_per_cluster
);
2073 assert(offset_into_subcluster(s
, offset
) == 0);
2075 ret
= get_cluster_table(bs
, offset
, &l2_slice
, &l2_index
);
2080 switch (qcow2_get_cluster_type(bs
, get_l2_entry(s
, l2_slice
, l2_index
))) {
2081 case QCOW2_CLUSTER_COMPRESSED
:
2082 ret
= -ENOTSUP
; /* We cannot partially zeroize compressed clusters */
2084 case QCOW2_CLUSTER_NORMAL
:
2085 case QCOW2_CLUSTER_UNALLOCATED
:
2088 g_assert_not_reached();
2091 old_l2_bitmap
= l2_bitmap
= get_l2_bitmap(s
, l2_slice
, l2_index
);
2093 l2_bitmap
|= QCOW_OFLAG_SUB_ZERO_RANGE(sc
, sc
+ nb_subclusters
);
2094 l2_bitmap
&= ~QCOW_OFLAG_SUB_ALLOC_RANGE(sc
, sc
+ nb_subclusters
);
2096 if (old_l2_bitmap
!= l2_bitmap
) {
2097 set_l2_bitmap(s
, l2_slice
, l2_index
, l2_bitmap
);
2098 qcow2_cache_entry_mark_dirty(s
->l2_table_cache
, l2_slice
);
2103 qcow2_cache_put(s
->l2_table_cache
, (void **) &l2_slice
);
2108 int qcow2_subcluster_zeroize(BlockDriverState
*bs
, uint64_t offset
,
2109 uint64_t bytes
, int flags
)
2111 BDRVQcow2State
*s
= bs
->opaque
;
2112 uint64_t end_offset
= offset
+ bytes
;
2113 uint64_t nb_clusters
;
2114 unsigned head
, tail
;
2118 /* If we have to stay in sync with an external data file, zero out
2119 * s->data_file first. */
2120 if (data_file_is_raw(bs
)) {
2121 assert(has_data_file(bs
));
2122 ret
= bdrv_co_pwrite_zeroes(s
->data_file
, offset
, bytes
, flags
);
2128 /* Caller must pass aligned values, except at image end */
2129 assert(offset_into_subcluster(s
, offset
) == 0);
2130 assert(offset_into_subcluster(s
, end_offset
) == 0 ||
2131 end_offset
>= bs
->total_sectors
<< BDRV_SECTOR_BITS
);
2134 * The zero flag is only supported by version 3 and newer. However, if we
2135 * have no backing file, we can resort to discard in version 2.
2137 if (s
->qcow_version
< 3) {
2139 return qcow2_cluster_discard(bs
, offset
, bytes
,
2140 QCOW2_DISCARD_REQUEST
, false);
2145 head
= MIN(end_offset
, ROUND_UP(offset
, s
->cluster_size
)) - offset
;
2148 tail
= (end_offset
>= bs
->total_sectors
<< BDRV_SECTOR_BITS
) ? 0 :
2149 end_offset
- MAX(offset
, start_of_cluster(s
, end_offset
));
2152 s
->cache_discards
= true;
2155 ret
= zero_l2_subclusters(bs
, offset
- head
,
2156 size_to_subclusters(s
, head
));
2162 /* Each L2 slice is handled by its own loop iteration */
2163 nb_clusters
= size_to_clusters(s
, end_offset
- offset
);
2165 while (nb_clusters
> 0) {
2166 cleared
= zero_in_l2_slice(bs
, offset
, nb_clusters
, flags
);
2172 nb_clusters
-= cleared
;
2173 offset
+= (cleared
* s
->cluster_size
);
2177 ret
= zero_l2_subclusters(bs
, end_offset
, size_to_subclusters(s
, tail
));
2185 s
->cache_discards
= false;
2186 qcow2_process_discards(bs
, ret
);
2192 * Expands all zero clusters in a specific L1 table (or deallocates them, for
2193 * non-backed non-pre-allocated zero clusters).
2195 * l1_entries and *visited_l1_entries are used to keep track of progress for
2196 * status_cb(). l1_entries contains the total number of L1 entries and
2197 * *visited_l1_entries counts all visited L1 entries.
2199 static int expand_zero_clusters_in_l1(BlockDriverState
*bs
, uint64_t *l1_table
,
2200 int l1_size
, int64_t *visited_l1_entries
,
2202 BlockDriverAmendStatusCB
*status_cb
,
2205 BDRVQcow2State
*s
= bs
->opaque
;
2206 bool is_active_l1
= (l1_table
== s
->l1_table
);
2207 uint64_t *l2_slice
= NULL
;
2208 unsigned slice
, slice_size2
, n_slices
;
2212 /* qcow2_downgrade() is not allowed in images with subclusters */
2213 assert(!has_subclusters(s
));
2215 slice_size2
= s
->l2_slice_size
* l2_entry_size(s
);
2216 n_slices
= s
->cluster_size
/ slice_size2
;
2218 if (!is_active_l1
) {
2219 /* inactive L2 tables require a buffer to be stored in when loading
2221 l2_slice
= qemu_try_blockalign(bs
->file
->bs
, slice_size2
);
2222 if (l2_slice
== NULL
) {
2227 for (i
= 0; i
< l1_size
; i
++) {
2228 uint64_t l2_offset
= l1_table
[i
] & L1E_OFFSET_MASK
;
2229 uint64_t l2_refcount
;
2233 (*visited_l1_entries
)++;
2235 status_cb(bs
, *visited_l1_entries
, l1_entries
, cb_opaque
);
2240 if (offset_into_cluster(s
, l2_offset
)) {
2241 qcow2_signal_corruption(bs
, true, -1, -1, "L2 table offset %#"
2242 PRIx64
" unaligned (L1 index: %#x)",
2248 ret
= qcow2_get_refcount(bs
, l2_offset
>> s
->cluster_bits
,
2254 for (slice
= 0; slice
< n_slices
; slice
++) {
2255 uint64_t slice_offset
= l2_offset
+ slice
* slice_size2
;
2256 bool l2_dirty
= false;
2258 /* get active L2 tables from cache */
2259 ret
= qcow2_cache_get(bs
, s
->l2_table_cache
, slice_offset
,
2260 (void **)&l2_slice
);
2262 /* load inactive L2 tables from disk */
2263 ret
= bdrv_pread(bs
->file
, slice_offset
, l2_slice
, slice_size2
);
2269 for (j
= 0; j
< s
->l2_slice_size
; j
++) {
2270 uint64_t l2_entry
= get_l2_entry(s
, l2_slice
, j
);
2271 int64_t offset
= l2_entry
& L2E_OFFSET_MASK
;
2272 QCow2ClusterType cluster_type
=
2273 qcow2_get_cluster_type(bs
, l2_entry
);
2275 if (cluster_type
!= QCOW2_CLUSTER_ZERO_PLAIN
&&
2276 cluster_type
!= QCOW2_CLUSTER_ZERO_ALLOC
) {
2280 if (cluster_type
== QCOW2_CLUSTER_ZERO_PLAIN
) {
2283 * not backed; therefore we can simply deallocate the
2284 * cluster. No need to call set_l2_bitmap(), this
2285 * function doesn't support images with subclusters.
2287 set_l2_entry(s
, l2_slice
, j
, 0);
2292 offset
= qcow2_alloc_clusters(bs
, s
->cluster_size
);
2298 /* The offset must fit in the offset field */
2299 assert((offset
& L2E_OFFSET_MASK
) == offset
);
2301 if (l2_refcount
> 1) {
2302 /* For shared L2 tables, set the refcount accordingly
2303 * (it is already 1 and needs to be l2_refcount) */
2304 ret
= qcow2_update_cluster_refcount(
2305 bs
, offset
>> s
->cluster_bits
,
2306 refcount_diff(1, l2_refcount
), false,
2307 QCOW2_DISCARD_OTHER
);
2309 qcow2_free_clusters(bs
, offset
, s
->cluster_size
,
2310 QCOW2_DISCARD_OTHER
);
2316 if (offset_into_cluster(s
, offset
)) {
2317 int l2_index
= slice
* s
->l2_slice_size
+ j
;
2318 qcow2_signal_corruption(
2320 "Cluster allocation offset "
2321 "%#" PRIx64
" unaligned (L2 offset: %#"
2322 PRIx64
", L2 index: %#x)", offset
,
2323 l2_offset
, l2_index
);
2324 if (cluster_type
== QCOW2_CLUSTER_ZERO_PLAIN
) {
2325 qcow2_free_clusters(bs
, offset
, s
->cluster_size
,
2326 QCOW2_DISCARD_ALWAYS
);
2332 ret
= qcow2_pre_write_overlap_check(bs
, 0, offset
,
2333 s
->cluster_size
, true);
2335 if (cluster_type
== QCOW2_CLUSTER_ZERO_PLAIN
) {
2336 qcow2_free_clusters(bs
, offset
, s
->cluster_size
,
2337 QCOW2_DISCARD_ALWAYS
);
2342 ret
= bdrv_pwrite_zeroes(s
->data_file
, offset
,
2343 s
->cluster_size
, 0);
2345 if (cluster_type
== QCOW2_CLUSTER_ZERO_PLAIN
) {
2346 qcow2_free_clusters(bs
, offset
, s
->cluster_size
,
2347 QCOW2_DISCARD_ALWAYS
);
2352 if (l2_refcount
== 1) {
2353 set_l2_entry(s
, l2_slice
, j
, offset
| QCOW_OFLAG_COPIED
);
2355 set_l2_entry(s
, l2_slice
, j
, offset
);
2358 * No need to call set_l2_bitmap() after set_l2_entry() because
2359 * this function doesn't support images with subclusters.
2366 qcow2_cache_entry_mark_dirty(s
->l2_table_cache
, l2_slice
);
2367 qcow2_cache_depends_on_flush(s
->l2_table_cache
);
2369 qcow2_cache_put(s
->l2_table_cache
, (void **) &l2_slice
);
2372 ret
= qcow2_pre_write_overlap_check(
2373 bs
, QCOW2_OL_INACTIVE_L2
| QCOW2_OL_ACTIVE_L2
,
2374 slice_offset
, slice_size2
, false);
2379 ret
= bdrv_pwrite(bs
->file
, slice_offset
,
2380 l2_slice
, slice_size2
);
2388 (*visited_l1_entries
)++;
2390 status_cb(bs
, *visited_l1_entries
, l1_entries
, cb_opaque
);
2398 if (!is_active_l1
) {
2399 qemu_vfree(l2_slice
);
2401 qcow2_cache_put(s
->l2_table_cache
, (void **) &l2_slice
);
2408 * For backed images, expands all zero clusters on the image. For non-backed
2409 * images, deallocates all non-pre-allocated zero clusters (and claims the
2410 * allocation for pre-allocated ones). This is important for downgrading to a
2411 * qcow2 version which doesn't yet support metadata zero clusters.
2413 int qcow2_expand_zero_clusters(BlockDriverState
*bs
,
2414 BlockDriverAmendStatusCB
*status_cb
,
2417 BDRVQcow2State
*s
= bs
->opaque
;
2418 uint64_t *l1_table
= NULL
;
2419 int64_t l1_entries
= 0, visited_l1_entries
= 0;
2424 l1_entries
= s
->l1_size
;
2425 for (i
= 0; i
< s
->nb_snapshots
; i
++) {
2426 l1_entries
+= s
->snapshots
[i
].l1_size
;
2430 ret
= expand_zero_clusters_in_l1(bs
, s
->l1_table
, s
->l1_size
,
2431 &visited_l1_entries
, l1_entries
,
2432 status_cb
, cb_opaque
);
2437 /* Inactive L1 tables may point to active L2 tables - therefore it is
2438 * necessary to flush the L2 table cache before trying to access the L2
2439 * tables pointed to by inactive L1 entries (else we might try to expand
2440 * zero clusters that have already been expanded); furthermore, it is also
2441 * necessary to empty the L2 table cache, since it may contain tables which
2442 * are now going to be modified directly on disk, bypassing the cache.
2443 * qcow2_cache_empty() does both for us. */
2444 ret
= qcow2_cache_empty(bs
, s
->l2_table_cache
);
2449 for (i
= 0; i
< s
->nb_snapshots
; i
++) {
2451 uint64_t *new_l1_table
;
2452 Error
*local_err
= NULL
;
2454 ret
= qcow2_validate_table(bs
, s
->snapshots
[i
].l1_table_offset
,
2455 s
->snapshots
[i
].l1_size
, L1E_SIZE
,
2456 QCOW_MAX_L1_SIZE
, "Snapshot L1 table",
2459 error_report_err(local_err
);
2463 l1_size2
= s
->snapshots
[i
].l1_size
* L1E_SIZE
;
2464 new_l1_table
= g_try_realloc(l1_table
, l1_size2
);
2466 if (!new_l1_table
) {
2471 l1_table
= new_l1_table
;
2473 ret
= bdrv_pread(bs
->file
, s
->snapshots
[i
].l1_table_offset
,
2474 l1_table
, l1_size2
);
2479 for (j
= 0; j
< s
->snapshots
[i
].l1_size
; j
++) {
2480 be64_to_cpus(&l1_table
[j
]);
2483 ret
= expand_zero_clusters_in_l1(bs
, l1_table
, s
->snapshots
[i
].l1_size
,
2484 &visited_l1_entries
, l1_entries
,
2485 status_cb
, cb_opaque
);
2498 void qcow2_parse_compressed_l2_entry(BlockDriverState
*bs
, uint64_t l2_entry
,
2499 uint64_t *coffset
, int *csize
)
2501 BDRVQcow2State
*s
= bs
->opaque
;
2504 assert(qcow2_get_cluster_type(bs
, l2_entry
) == QCOW2_CLUSTER_COMPRESSED
);
2506 *coffset
= l2_entry
& s
->cluster_offset_mask
;
2508 nb_csectors
= ((l2_entry
>> s
->csize_shift
) & s
->csize_mask
) + 1;
2509 *csize
= nb_csectors
* QCOW2_COMPRESSED_SECTOR_SIZE
-
2510 (*coffset
& (QCOW2_COMPRESSED_SECTOR_SIZE
- 1));