Merge remote branch 'qmp/for-anthony' into staging
[qemu.git] / block / qcow2-cluster.c
blobb0402087cfa91cb2d38f8f20b97c29686653df94
1 /*
2 * Block driver for the QCOW version 2 format
4 * Copyright (c) 2004-2006 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
25 #include <zlib.h>
27 #include "qemu-common.h"
28 #include "block_int.h"
29 #include "block/qcow2.h"
31 int qcow2_grow_l1_table(BlockDriverState *bs, int min_size, bool exact_size)
33 BDRVQcowState *s = bs->opaque;
34 int new_l1_size, new_l1_size2, ret, i;
35 uint64_t *new_l1_table;
36 int64_t new_l1_table_offset;
37 uint8_t data[12];
39 if (min_size <= s->l1_size)
40 return 0;
42 if (exact_size) {
43 new_l1_size = min_size;
44 } else {
45 /* Bump size up to reduce the number of times we have to grow */
46 new_l1_size = s->l1_size;
47 if (new_l1_size == 0) {
48 new_l1_size = 1;
50 while (min_size > new_l1_size) {
51 new_l1_size = (new_l1_size * 3 + 1) / 2;
55 #ifdef DEBUG_ALLOC2
56 printf("grow l1_table from %d to %d\n", s->l1_size, new_l1_size);
57 #endif
59 new_l1_size2 = sizeof(uint64_t) * new_l1_size;
60 new_l1_table = qemu_mallocz(align_offset(new_l1_size2, 512));
61 memcpy(new_l1_table, s->l1_table, s->l1_size * sizeof(uint64_t));
63 /* write new table (align to cluster) */
64 BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ALLOC_TABLE);
65 new_l1_table_offset = qcow2_alloc_clusters(bs, new_l1_size2);
66 if (new_l1_table_offset < 0) {
67 qemu_free(new_l1_table);
68 return new_l1_table_offset;
70 bdrv_flush(bs->file);
72 BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_WRITE_TABLE);
73 for(i = 0; i < s->l1_size; i++)
74 new_l1_table[i] = cpu_to_be64(new_l1_table[i]);
75 ret = bdrv_pwrite_sync(bs->file, new_l1_table_offset, new_l1_table, new_l1_size2);
76 if (ret < 0)
77 goto fail;
78 for(i = 0; i < s->l1_size; i++)
79 new_l1_table[i] = be64_to_cpu(new_l1_table[i]);
81 /* set new table */
82 BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ACTIVATE_TABLE);
83 cpu_to_be32w((uint32_t*)data, new_l1_size);
84 cpu_to_be64w((uint64_t*)(data + 4), new_l1_table_offset);
85 ret = bdrv_pwrite_sync(bs->file, offsetof(QCowHeader, l1_size), data,sizeof(data));
86 if (ret < 0) {
87 goto fail;
89 qemu_free(s->l1_table);
90 qcow2_free_clusters(bs, s->l1_table_offset, s->l1_size * sizeof(uint64_t));
91 s->l1_table_offset = new_l1_table_offset;
92 s->l1_table = new_l1_table;
93 s->l1_size = new_l1_size;
94 return 0;
95 fail:
96 qemu_free(new_l1_table);
97 qcow2_free_clusters(bs, new_l1_table_offset, new_l1_size2);
98 return ret;
101 void qcow2_l2_cache_reset(BlockDriverState *bs)
103 BDRVQcowState *s = bs->opaque;
105 memset(s->l2_cache, 0, s->l2_size * L2_CACHE_SIZE * sizeof(uint64_t));
106 memset(s->l2_cache_offsets, 0, L2_CACHE_SIZE * sizeof(uint64_t));
107 memset(s->l2_cache_counts, 0, L2_CACHE_SIZE * sizeof(uint32_t));
110 static inline int l2_cache_new_entry(BlockDriverState *bs)
112 BDRVQcowState *s = bs->opaque;
113 uint32_t min_count;
114 int min_index, i;
116 /* find a new entry in the least used one */
117 min_index = 0;
118 min_count = 0xffffffff;
119 for(i = 0; i < L2_CACHE_SIZE; i++) {
120 if (s->l2_cache_counts[i] < min_count) {
121 min_count = s->l2_cache_counts[i];
122 min_index = i;
125 return min_index;
129 * seek_l2_table
131 * seek l2_offset in the l2_cache table
132 * if not found, return NULL,
133 * if found,
134 * increments the l2 cache hit count of the entry,
135 * if counter overflow, divide by two all counters
136 * return the pointer to the l2 cache entry
140 static uint64_t *seek_l2_table(BDRVQcowState *s, uint64_t l2_offset)
142 int i, j;
144 for(i = 0; i < L2_CACHE_SIZE; i++) {
145 if (l2_offset == s->l2_cache_offsets[i]) {
146 /* increment the hit count */
147 if (++s->l2_cache_counts[i] == 0xffffffff) {
148 for(j = 0; j < L2_CACHE_SIZE; j++) {
149 s->l2_cache_counts[j] >>= 1;
152 return s->l2_cache + (i << s->l2_bits);
155 return NULL;
159 * l2_load
161 * Loads a L2 table into memory. If the table is in the cache, the cache
162 * is used; otherwise the L2 table is loaded from the image file.
164 * Returns a pointer to the L2 table on success, or NULL if the read from
165 * the image file failed.
168 static int l2_load(BlockDriverState *bs, uint64_t l2_offset,
169 uint64_t **l2_table)
171 BDRVQcowState *s = bs->opaque;
172 int min_index;
173 int ret;
175 /* seek if the table for the given offset is in the cache */
177 *l2_table = seek_l2_table(s, l2_offset);
178 if (*l2_table != NULL) {
179 return 0;
182 /* not found: load a new entry in the least used one */
184 min_index = l2_cache_new_entry(bs);
185 *l2_table = s->l2_cache + (min_index << s->l2_bits);
187 BLKDBG_EVENT(bs->file, BLKDBG_L2_LOAD);
188 ret = bdrv_pread(bs->file, l2_offset, *l2_table,
189 s->l2_size * sizeof(uint64_t));
190 if (ret < 0) {
191 qcow2_l2_cache_reset(bs);
192 return ret;
195 s->l2_cache_offsets[min_index] = l2_offset;
196 s->l2_cache_counts[min_index] = 1;
198 return 0;
202 * Writes one sector of the L1 table to the disk (can't update single entries
203 * and we really don't want bdrv_pread to perform a read-modify-write)
205 #define L1_ENTRIES_PER_SECTOR (512 / 8)
206 static int write_l1_entry(BlockDriverState *bs, int l1_index)
208 BDRVQcowState *s = bs->opaque;
209 uint64_t buf[L1_ENTRIES_PER_SECTOR];
210 int l1_start_index;
211 int i, ret;
213 l1_start_index = l1_index & ~(L1_ENTRIES_PER_SECTOR - 1);
214 for (i = 0; i < L1_ENTRIES_PER_SECTOR; i++) {
215 buf[i] = cpu_to_be64(s->l1_table[l1_start_index + i]);
218 BLKDBG_EVENT(bs->file, BLKDBG_L1_UPDATE);
219 ret = bdrv_pwrite_sync(bs->file, s->l1_table_offset + 8 * l1_start_index,
220 buf, sizeof(buf));
221 if (ret < 0) {
222 return ret;
225 return 0;
229 * l2_allocate
231 * Allocate a new l2 entry in the file. If l1_index points to an already
232 * used entry in the L2 table (i.e. we are doing a copy on write for the L2
233 * table) copy the contents of the old L2 table into the newly allocated one.
234 * Otherwise the new table is initialized with zeros.
238 static int l2_allocate(BlockDriverState *bs, int l1_index, uint64_t **table)
240 BDRVQcowState *s = bs->opaque;
241 int min_index;
242 uint64_t old_l2_offset;
243 uint64_t *l2_table;
244 int64_t l2_offset;
245 int ret;
247 old_l2_offset = s->l1_table[l1_index];
249 /* allocate a new l2 entry */
251 l2_offset = qcow2_alloc_clusters(bs, s->l2_size * sizeof(uint64_t));
252 if (l2_offset < 0) {
253 return l2_offset;
255 bdrv_flush(bs->file);
257 /* allocate a new entry in the l2 cache */
259 min_index = l2_cache_new_entry(bs);
260 l2_table = s->l2_cache + (min_index << s->l2_bits);
262 if (old_l2_offset == 0) {
263 /* if there was no old l2 table, clear the new table */
264 memset(l2_table, 0, s->l2_size * sizeof(uint64_t));
265 } else {
266 /* if there was an old l2 table, read it from the disk */
267 BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_COW_READ);
268 ret = bdrv_pread(bs->file, old_l2_offset, l2_table,
269 s->l2_size * sizeof(uint64_t));
270 if (ret < 0) {
271 goto fail;
274 /* write the l2 table to the file */
275 BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_WRITE);
276 ret = bdrv_pwrite_sync(bs->file, l2_offset, l2_table,
277 s->l2_size * sizeof(uint64_t));
278 if (ret < 0) {
279 goto fail;
282 /* update the L1 entry */
283 s->l1_table[l1_index] = l2_offset | QCOW_OFLAG_COPIED;
284 ret = write_l1_entry(bs, l1_index);
285 if (ret < 0) {
286 goto fail;
289 /* update the l2 cache entry */
291 s->l2_cache_offsets[min_index] = l2_offset;
292 s->l2_cache_counts[min_index] = 1;
294 *table = l2_table;
295 return 0;
297 fail:
298 s->l1_table[l1_index] = old_l2_offset;
299 qcow2_l2_cache_reset(bs);
300 return ret;
303 static int count_contiguous_clusters(uint64_t nb_clusters, int cluster_size,
304 uint64_t *l2_table, uint64_t start, uint64_t mask)
306 int i;
307 uint64_t offset = be64_to_cpu(l2_table[0]) & ~mask;
309 if (!offset)
310 return 0;
312 for (i = start; i < start + nb_clusters; i++)
313 if (offset + (uint64_t) i * cluster_size != (be64_to_cpu(l2_table[i]) & ~mask))
314 break;
316 return (i - start);
319 static int count_contiguous_free_clusters(uint64_t nb_clusters, uint64_t *l2_table)
321 int i = 0;
323 while(nb_clusters-- && l2_table[i] == 0)
324 i++;
326 return i;
329 /* The crypt function is compatible with the linux cryptoloop
330 algorithm for < 4 GB images. NOTE: out_buf == in_buf is
331 supported */
332 void qcow2_encrypt_sectors(BDRVQcowState *s, int64_t sector_num,
333 uint8_t *out_buf, const uint8_t *in_buf,
334 int nb_sectors, int enc,
335 const AES_KEY *key)
337 union {
338 uint64_t ll[2];
339 uint8_t b[16];
340 } ivec;
341 int i;
343 for(i = 0; i < nb_sectors; i++) {
344 ivec.ll[0] = cpu_to_le64(sector_num);
345 ivec.ll[1] = 0;
346 AES_cbc_encrypt(in_buf, out_buf, 512, key,
347 ivec.b, enc);
348 sector_num++;
349 in_buf += 512;
350 out_buf += 512;
355 static int qcow_read(BlockDriverState *bs, int64_t sector_num,
356 uint8_t *buf, int nb_sectors)
358 BDRVQcowState *s = bs->opaque;
359 int ret, index_in_cluster, n, n1;
360 uint64_t cluster_offset;
361 struct iovec iov;
362 QEMUIOVector qiov;
364 while (nb_sectors > 0) {
365 n = nb_sectors;
367 ret = qcow2_get_cluster_offset(bs, sector_num << 9, &n,
368 &cluster_offset);
369 if (ret < 0) {
370 return ret;
373 index_in_cluster = sector_num & (s->cluster_sectors - 1);
374 if (!cluster_offset) {
375 if (bs->backing_hd) {
376 /* read from the base image */
377 iov.iov_base = buf;
378 iov.iov_len = n * 512;
379 qemu_iovec_init_external(&qiov, &iov, 1);
381 n1 = qcow2_backing_read1(bs->backing_hd, &qiov, sector_num, n);
382 if (n1 > 0) {
383 BLKDBG_EVENT(bs->file, BLKDBG_READ_BACKING);
384 ret = bdrv_read(bs->backing_hd, sector_num, buf, n1);
385 if (ret < 0)
386 return -1;
388 } else {
389 memset(buf, 0, 512 * n);
391 } else if (cluster_offset & QCOW_OFLAG_COMPRESSED) {
392 if (qcow2_decompress_cluster(bs, cluster_offset) < 0)
393 return -1;
394 memcpy(buf, s->cluster_cache + index_in_cluster * 512, 512 * n);
395 } else {
396 BLKDBG_EVENT(bs->file, BLKDBG_READ);
397 ret = bdrv_pread(bs->file, cluster_offset + index_in_cluster * 512, buf, n * 512);
398 if (ret != n * 512)
399 return -1;
400 if (s->crypt_method) {
401 qcow2_encrypt_sectors(s, sector_num, buf, buf, n, 0,
402 &s->aes_decrypt_key);
405 nb_sectors -= n;
406 sector_num += n;
407 buf += n * 512;
409 return 0;
412 static int copy_sectors(BlockDriverState *bs, uint64_t start_sect,
413 uint64_t cluster_offset, int n_start, int n_end)
415 BDRVQcowState *s = bs->opaque;
416 int n, ret;
418 n = n_end - n_start;
419 if (n <= 0)
420 return 0;
421 BLKDBG_EVENT(bs->file, BLKDBG_COW_READ);
422 ret = qcow_read(bs, start_sect + n_start, s->cluster_data, n);
423 if (ret < 0)
424 return ret;
425 if (s->crypt_method) {
426 qcow2_encrypt_sectors(s, start_sect + n_start,
427 s->cluster_data,
428 s->cluster_data, n, 1,
429 &s->aes_encrypt_key);
431 BLKDBG_EVENT(bs->file, BLKDBG_COW_WRITE);
432 ret = bdrv_write(bs->file, (cluster_offset >> 9) + n_start,
433 s->cluster_data, n);
434 if (ret < 0)
435 return ret;
436 return 0;
441 * get_cluster_offset
443 * For a given offset of the disk image, find the cluster offset in
444 * qcow2 file. The offset is stored in *cluster_offset.
446 * on entry, *num is the number of contiguous clusters we'd like to
447 * access following offset.
449 * on exit, *num is the number of contiguous clusters we can read.
451 * Return 0, if the offset is found
452 * Return -errno, otherwise.
456 int qcow2_get_cluster_offset(BlockDriverState *bs, uint64_t offset,
457 int *num, uint64_t *cluster_offset)
459 BDRVQcowState *s = bs->opaque;
460 unsigned int l1_index, l2_index;
461 uint64_t l2_offset, *l2_table;
462 int l1_bits, c;
463 unsigned int index_in_cluster, nb_clusters;
464 uint64_t nb_available, nb_needed;
465 int ret;
467 index_in_cluster = (offset >> 9) & (s->cluster_sectors - 1);
468 nb_needed = *num + index_in_cluster;
470 l1_bits = s->l2_bits + s->cluster_bits;
472 /* compute how many bytes there are between the offset and
473 * the end of the l1 entry
476 nb_available = (1ULL << l1_bits) - (offset & ((1ULL << l1_bits) - 1));
478 /* compute the number of available sectors */
480 nb_available = (nb_available >> 9) + index_in_cluster;
482 if (nb_needed > nb_available) {
483 nb_needed = nb_available;
486 *cluster_offset = 0;
488 /* seek the the l2 offset in the l1 table */
490 l1_index = offset >> l1_bits;
491 if (l1_index >= s->l1_size)
492 goto out;
494 l2_offset = s->l1_table[l1_index];
496 /* seek the l2 table of the given l2 offset */
498 if (!l2_offset)
499 goto out;
501 /* load the l2 table in memory */
503 l2_offset &= ~QCOW_OFLAG_COPIED;
504 ret = l2_load(bs, l2_offset, &l2_table);
505 if (ret < 0) {
506 return ret;
509 /* find the cluster offset for the given disk offset */
511 l2_index = (offset >> s->cluster_bits) & (s->l2_size - 1);
512 *cluster_offset = be64_to_cpu(l2_table[l2_index]);
513 nb_clusters = size_to_clusters(s, nb_needed << 9);
515 if (!*cluster_offset) {
516 /* how many empty clusters ? */
517 c = count_contiguous_free_clusters(nb_clusters, &l2_table[l2_index]);
518 } else {
519 /* how many allocated clusters ? */
520 c = count_contiguous_clusters(nb_clusters, s->cluster_size,
521 &l2_table[l2_index], 0, QCOW_OFLAG_COPIED);
524 nb_available = (c * s->cluster_sectors);
525 out:
526 if (nb_available > nb_needed)
527 nb_available = nb_needed;
529 *num = nb_available - index_in_cluster;
531 *cluster_offset &=~QCOW_OFLAG_COPIED;
532 return 0;
536 * get_cluster_table
538 * for a given disk offset, load (and allocate if needed)
539 * the l2 table.
541 * the l2 table offset in the qcow2 file and the cluster index
542 * in the l2 table are given to the caller.
544 * Returns 0 on success, -errno in failure case
546 static int get_cluster_table(BlockDriverState *bs, uint64_t offset,
547 uint64_t **new_l2_table,
548 uint64_t *new_l2_offset,
549 int *new_l2_index)
551 BDRVQcowState *s = bs->opaque;
552 unsigned int l1_index, l2_index;
553 uint64_t l2_offset;
554 uint64_t *l2_table = NULL;
555 int ret;
557 /* seek the the l2 offset in the l1 table */
559 l1_index = offset >> (s->l2_bits + s->cluster_bits);
560 if (l1_index >= s->l1_size) {
561 ret = qcow2_grow_l1_table(bs, l1_index + 1, false);
562 if (ret < 0) {
563 return ret;
566 l2_offset = s->l1_table[l1_index];
568 /* seek the l2 table of the given l2 offset */
570 if (l2_offset & QCOW_OFLAG_COPIED) {
571 /* load the l2 table in memory */
572 l2_offset &= ~QCOW_OFLAG_COPIED;
573 ret = l2_load(bs, l2_offset, &l2_table);
574 if (ret < 0) {
575 return ret;
577 } else {
578 if (l2_offset)
579 qcow2_free_clusters(bs, l2_offset, s->l2_size * sizeof(uint64_t));
580 ret = l2_allocate(bs, l1_index, &l2_table);
581 if (ret < 0) {
582 return ret;
584 l2_offset = s->l1_table[l1_index] & ~QCOW_OFLAG_COPIED;
587 /* find the cluster offset for the given disk offset */
589 l2_index = (offset >> s->cluster_bits) & (s->l2_size - 1);
591 *new_l2_table = l2_table;
592 *new_l2_offset = l2_offset;
593 *new_l2_index = l2_index;
595 return 0;
599 * alloc_compressed_cluster_offset
601 * For a given offset of the disk image, return cluster offset in
602 * qcow2 file.
604 * If the offset is not found, allocate a new compressed cluster.
606 * Return the cluster offset if successful,
607 * Return 0, otherwise.
611 uint64_t qcow2_alloc_compressed_cluster_offset(BlockDriverState *bs,
612 uint64_t offset,
613 int compressed_size)
615 BDRVQcowState *s = bs->opaque;
616 int l2_index, ret;
617 uint64_t l2_offset, *l2_table;
618 int64_t cluster_offset;
619 int nb_csectors;
621 ret = get_cluster_table(bs, offset, &l2_table, &l2_offset, &l2_index);
622 if (ret < 0) {
623 return 0;
626 cluster_offset = be64_to_cpu(l2_table[l2_index]);
627 if (cluster_offset & QCOW_OFLAG_COPIED)
628 return cluster_offset & ~QCOW_OFLAG_COPIED;
630 if (cluster_offset)
631 qcow2_free_any_clusters(bs, cluster_offset, 1);
633 cluster_offset = qcow2_alloc_bytes(bs, compressed_size);
634 if (cluster_offset < 0) {
635 return 0;
638 nb_csectors = ((cluster_offset + compressed_size - 1) >> 9) -
639 (cluster_offset >> 9);
641 cluster_offset |= QCOW_OFLAG_COMPRESSED |
642 ((uint64_t)nb_csectors << s->csize_shift);
644 /* update L2 table */
646 /* compressed clusters never have the copied flag */
648 BLKDBG_EVENT(bs->file, BLKDBG_L2_UPDATE_COMPRESSED);
649 l2_table[l2_index] = cpu_to_be64(cluster_offset);
650 if (bdrv_pwrite_sync(bs->file,
651 l2_offset + l2_index * sizeof(uint64_t),
652 l2_table + l2_index,
653 sizeof(uint64_t)) < 0)
654 return 0;
656 return cluster_offset;
660 * Write L2 table updates to disk, writing whole sectors to avoid a
661 * read-modify-write in bdrv_pwrite
663 #define L2_ENTRIES_PER_SECTOR (512 / 8)
664 static int write_l2_entries(BlockDriverState *bs, uint64_t *l2_table,
665 uint64_t l2_offset, int l2_index, int num)
667 int l2_start_index = l2_index & ~(L1_ENTRIES_PER_SECTOR - 1);
668 int start_offset = (8 * l2_index) & ~511;
669 int end_offset = (8 * (l2_index + num) + 511) & ~511;
670 size_t len = end_offset - start_offset;
671 int ret;
673 BLKDBG_EVENT(bs->file, BLKDBG_L2_UPDATE);
674 ret = bdrv_pwrite(bs->file, l2_offset + start_offset,
675 &l2_table[l2_start_index], len);
676 if (ret < 0) {
677 return ret;
680 return 0;
683 int qcow2_alloc_cluster_link_l2(BlockDriverState *bs, QCowL2Meta *m)
685 BDRVQcowState *s = bs->opaque;
686 int i, j = 0, l2_index, ret;
687 uint64_t *old_cluster, start_sect, l2_offset, *l2_table;
688 uint64_t cluster_offset = m->cluster_offset;
690 if (m->nb_clusters == 0)
691 return 0;
693 old_cluster = qemu_malloc(m->nb_clusters * sizeof(uint64_t));
695 /* copy content of unmodified sectors */
696 start_sect = (m->offset & ~(s->cluster_size - 1)) >> 9;
697 if (m->n_start) {
698 ret = copy_sectors(bs, start_sect, cluster_offset, 0, m->n_start);
699 if (ret < 0)
700 goto err;
703 if (m->nb_available & (s->cluster_sectors - 1)) {
704 uint64_t end = m->nb_available & ~(uint64_t)(s->cluster_sectors - 1);
705 ret = copy_sectors(bs, start_sect + end, cluster_offset + (end << 9),
706 m->nb_available - end, s->cluster_sectors);
707 if (ret < 0)
708 goto err;
711 /* update L2 table */
712 ret = get_cluster_table(bs, m->offset, &l2_table, &l2_offset, &l2_index);
713 if (ret < 0) {
714 goto err;
717 for (i = 0; i < m->nb_clusters; i++) {
718 /* if two concurrent writes happen to the same unallocated cluster
719 * each write allocates separate cluster and writes data concurrently.
720 * The first one to complete updates l2 table with pointer to its
721 * cluster the second one has to do RMW (which is done above by
722 * copy_sectors()), update l2 table with its cluster pointer and free
723 * old cluster. This is what this loop does */
724 if(l2_table[l2_index + i] != 0)
725 old_cluster[j++] = l2_table[l2_index + i];
727 l2_table[l2_index + i] = cpu_to_be64((cluster_offset +
728 (i << s->cluster_bits)) | QCOW_OFLAG_COPIED);
732 * Before we update the L2 table to actually point to the new cluster, we
733 * need to be sure that the refcounts have been increased and COW was
734 * handled.
736 bdrv_flush(bs->file);
738 ret = write_l2_entries(bs, l2_table, l2_offset, l2_index, m->nb_clusters);
739 if (ret < 0) {
740 qcow2_l2_cache_reset(bs);
741 goto err;
745 * If this was a COW, we need to decrease the refcount of the old cluster.
746 * Also flush bs->file to get the right order for L2 and refcount update.
748 if (j != 0) {
749 bdrv_flush(bs->file);
750 for (i = 0; i < j; i++) {
751 qcow2_free_any_clusters(bs,
752 be64_to_cpu(old_cluster[i]) & ~QCOW_OFLAG_COPIED, 1);
756 ret = 0;
757 err:
758 qemu_free(old_cluster);
759 return ret;
763 * alloc_cluster_offset
765 * For a given offset of the disk image, return cluster offset in qcow2 file.
766 * If the offset is not found, allocate a new cluster.
768 * If the cluster was already allocated, m->nb_clusters is set to 0,
769 * m->depends_on is set to NULL and the other fields in m are meaningless.
771 * If the cluster is newly allocated, m->nb_clusters is set to the number of
772 * contiguous clusters that have been allocated. This may be 0 if the request
773 * conflict with another write request in flight; in this case, m->depends_on
774 * is set and the remaining fields of m are meaningless.
776 * If m->nb_clusters is non-zero, the other fields of m are valid and contain
777 * information about the first allocated cluster.
779 * Return 0 on success and -errno in error cases
781 int qcow2_alloc_cluster_offset(BlockDriverState *bs, uint64_t offset,
782 int n_start, int n_end, int *num, QCowL2Meta *m)
784 BDRVQcowState *s = bs->opaque;
785 int l2_index, ret;
786 uint64_t l2_offset, *l2_table;
787 int64_t cluster_offset;
788 unsigned int nb_clusters, i = 0;
789 QCowL2Meta *old_alloc;
791 ret = get_cluster_table(bs, offset, &l2_table, &l2_offset, &l2_index);
792 if (ret < 0) {
793 return ret;
796 nb_clusters = size_to_clusters(s, n_end << 9);
798 nb_clusters = MIN(nb_clusters, s->l2_size - l2_index);
800 cluster_offset = be64_to_cpu(l2_table[l2_index]);
802 /* We keep all QCOW_OFLAG_COPIED clusters */
804 if (cluster_offset & QCOW_OFLAG_COPIED) {
805 nb_clusters = count_contiguous_clusters(nb_clusters, s->cluster_size,
806 &l2_table[l2_index], 0, 0);
808 cluster_offset &= ~QCOW_OFLAG_COPIED;
809 m->nb_clusters = 0;
810 m->depends_on = NULL;
812 goto out;
815 /* for the moment, multiple compressed clusters are not managed */
817 if (cluster_offset & QCOW_OFLAG_COMPRESSED)
818 nb_clusters = 1;
820 /* how many available clusters ? */
822 while (i < nb_clusters) {
823 i += count_contiguous_clusters(nb_clusters - i, s->cluster_size,
824 &l2_table[l2_index], i, 0);
825 if ((i >= nb_clusters) || be64_to_cpu(l2_table[l2_index + i])) {
826 break;
829 i += count_contiguous_free_clusters(nb_clusters - i,
830 &l2_table[l2_index + i]);
831 if (i >= nb_clusters) {
832 break;
835 cluster_offset = be64_to_cpu(l2_table[l2_index + i]);
837 if ((cluster_offset & QCOW_OFLAG_COPIED) ||
838 (cluster_offset & QCOW_OFLAG_COMPRESSED))
839 break;
841 assert(i <= nb_clusters);
842 nb_clusters = i;
845 * Check if there already is an AIO write request in flight which allocates
846 * the same cluster. In this case we need to wait until the previous
847 * request has completed and updated the L2 table accordingly.
849 QLIST_FOREACH(old_alloc, &s->cluster_allocs, next_in_flight) {
851 uint64_t end_offset = offset + nb_clusters * s->cluster_size;
852 uint64_t old_offset = old_alloc->offset;
853 uint64_t old_end_offset = old_alloc->offset +
854 old_alloc->nb_clusters * s->cluster_size;
856 if (end_offset < old_offset || offset > old_end_offset) {
857 /* No intersection */
858 } else {
859 if (offset < old_offset) {
860 /* Stop at the start of a running allocation */
861 nb_clusters = (old_offset - offset) >> s->cluster_bits;
862 } else {
863 nb_clusters = 0;
866 if (nb_clusters == 0) {
867 /* Set dependency and wait for a callback */
868 m->depends_on = old_alloc;
869 m->nb_clusters = 0;
870 *num = 0;
871 return 0;
876 if (!nb_clusters) {
877 abort();
880 QLIST_INSERT_HEAD(&s->cluster_allocs, m, next_in_flight);
882 /* allocate a new cluster */
884 cluster_offset = qcow2_alloc_clusters(bs, nb_clusters * s->cluster_size);
885 if (cluster_offset < 0) {
886 QLIST_REMOVE(m, next_in_flight);
887 return cluster_offset;
890 /* save info needed for meta data update */
891 m->offset = offset;
892 m->n_start = n_start;
893 m->nb_clusters = nb_clusters;
895 out:
896 m->nb_available = MIN(nb_clusters << (s->cluster_bits - 9), n_end);
897 m->cluster_offset = cluster_offset;
899 *num = m->nb_available - n_start;
901 return 0;
904 static int decompress_buffer(uint8_t *out_buf, int out_buf_size,
905 const uint8_t *buf, int buf_size)
907 z_stream strm1, *strm = &strm1;
908 int ret, out_len;
910 memset(strm, 0, sizeof(*strm));
912 strm->next_in = (uint8_t *)buf;
913 strm->avail_in = buf_size;
914 strm->next_out = out_buf;
915 strm->avail_out = out_buf_size;
917 ret = inflateInit2(strm, -12);
918 if (ret != Z_OK)
919 return -1;
920 ret = inflate(strm, Z_FINISH);
921 out_len = strm->next_out - out_buf;
922 if ((ret != Z_STREAM_END && ret != Z_BUF_ERROR) ||
923 out_len != out_buf_size) {
924 inflateEnd(strm);
925 return -1;
927 inflateEnd(strm);
928 return 0;
931 int qcow2_decompress_cluster(BlockDriverState *bs, uint64_t cluster_offset)
933 BDRVQcowState *s = bs->opaque;
934 int ret, csize, nb_csectors, sector_offset;
935 uint64_t coffset;
937 coffset = cluster_offset & s->cluster_offset_mask;
938 if (s->cluster_cache_offset != coffset) {
939 nb_csectors = ((cluster_offset >> s->csize_shift) & s->csize_mask) + 1;
940 sector_offset = coffset & 511;
941 csize = nb_csectors * 512 - sector_offset;
942 BLKDBG_EVENT(bs->file, BLKDBG_READ_COMPRESSED);
943 ret = bdrv_read(bs->file, coffset >> 9, s->cluster_data, nb_csectors);
944 if (ret < 0) {
945 return -1;
947 if (decompress_buffer(s->cluster_cache, s->cluster_size,
948 s->cluster_data + sector_offset, csize) < 0) {
949 return -1;
951 s->cluster_cache_offset = coffset;
953 return 0;