pci: Add INTERFACE_CONVENTIONAL_PCI_DEVICE to Conventional PCI devices
[qemu.git] / hw / net / e1000e_core.c
blob43a8d89955a5921ae1fcf03ae23091ca88e9fe1e
1 /*
2 * Core code for QEMU e1000e emulation
4 * Software developer's manuals:
5 * http://www.intel.com/content/dam/doc/datasheet/82574l-gbe-controller-datasheet.pdf
7 * Copyright (c) 2015 Ravello Systems LTD (http://ravellosystems.com)
8 * Developed by Daynix Computing LTD (http://www.daynix.com)
10 * Authors:
11 * Dmitry Fleytman <dmitry@daynix.com>
12 * Leonid Bloch <leonid@daynix.com>
13 * Yan Vugenfirer <yan@daynix.com>
15 * Based on work done by:
16 * Nir Peleg, Tutis Systems Ltd. for Qumranet Inc.
17 * Copyright (c) 2008 Qumranet
18 * Based on work done by:
19 * Copyright (c) 2007 Dan Aloni
20 * Copyright (c) 2004 Antony T Curtis
22 * This library is free software; you can redistribute it and/or
23 * modify it under the terms of the GNU Lesser General Public
24 * License as published by the Free Software Foundation; either
25 * version 2 of the License, or (at your option) any later version.
27 * This library is distributed in the hope that it will be useful,
28 * but WITHOUT ANY WARRANTY; without even the implied warranty of
29 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
30 * Lesser General Public License for more details.
32 * You should have received a copy of the GNU Lesser General Public
33 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
36 #include "qemu/osdep.h"
37 #include "sysemu/sysemu.h"
38 #include "net/net.h"
39 #include "net/tap.h"
40 #include "hw/pci/msi.h"
41 #include "hw/pci/msix.h"
43 #include "net_tx_pkt.h"
44 #include "net_rx_pkt.h"
46 #include "e1000x_common.h"
47 #include "e1000e_core.h"
49 #include "trace.h"
51 #define E1000E_MIN_XITR (500) /* No more then 7813 interrupts per
52 second according to spec 10.2.4.2 */
53 #define E1000E_MAX_TX_FRAGS (64)
55 static inline void
56 e1000e_set_interrupt_cause(E1000ECore *core, uint32_t val);
58 static inline void
59 e1000e_process_ts_option(E1000ECore *core, struct e1000_tx_desc *dp)
61 if (le32_to_cpu(dp->upper.data) & E1000_TXD_EXTCMD_TSTAMP) {
62 trace_e1000e_wrn_no_ts_support();
66 static inline void
67 e1000e_process_snap_option(E1000ECore *core, uint32_t cmd_and_length)
69 if (cmd_and_length & E1000_TXD_CMD_SNAP) {
70 trace_e1000e_wrn_no_snap_support();
74 static inline void
75 e1000e_raise_legacy_irq(E1000ECore *core)
77 trace_e1000e_irq_legacy_notify(true);
78 e1000x_inc_reg_if_not_full(core->mac, IAC);
79 pci_set_irq(core->owner, 1);
82 static inline void
83 e1000e_lower_legacy_irq(E1000ECore *core)
85 trace_e1000e_irq_legacy_notify(false);
86 pci_set_irq(core->owner, 0);
89 static inline void
90 e1000e_intrmgr_rearm_timer(E1000IntrDelayTimer *timer)
92 int64_t delay_ns = (int64_t) timer->core->mac[timer->delay_reg] *
93 timer->delay_resolution_ns;
95 trace_e1000e_irq_rearm_timer(timer->delay_reg << 2, delay_ns);
97 timer_mod(timer->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + delay_ns);
99 timer->running = true;
102 static void
103 e1000e_intmgr_timer_resume(E1000IntrDelayTimer *timer)
105 if (timer->running) {
106 e1000e_intrmgr_rearm_timer(timer);
110 static void
111 e1000e_intmgr_timer_pause(E1000IntrDelayTimer *timer)
113 if (timer->running) {
114 timer_del(timer->timer);
118 static inline void
119 e1000e_intrmgr_stop_timer(E1000IntrDelayTimer *timer)
121 if (timer->running) {
122 timer_del(timer->timer);
123 timer->running = false;
127 static inline void
128 e1000e_intrmgr_fire_delayed_interrupts(E1000ECore *core)
130 trace_e1000e_irq_fire_delayed_interrupts();
131 e1000e_set_interrupt_cause(core, 0);
134 static void
135 e1000e_intrmgr_on_timer(void *opaque)
137 E1000IntrDelayTimer *timer = opaque;
139 trace_e1000e_irq_throttling_timer(timer->delay_reg << 2);
141 timer->running = false;
142 e1000e_intrmgr_fire_delayed_interrupts(timer->core);
145 static void
146 e1000e_intrmgr_on_throttling_timer(void *opaque)
148 E1000IntrDelayTimer *timer = opaque;
150 assert(!msix_enabled(timer->core->owner));
152 timer->running = false;
154 if (!timer->core->itr_intr_pending) {
155 trace_e1000e_irq_throttling_no_pending_interrupts();
156 return;
159 if (msi_enabled(timer->core->owner)) {
160 trace_e1000e_irq_msi_notify_postponed();
161 e1000e_set_interrupt_cause(timer->core, 0);
162 } else {
163 trace_e1000e_irq_legacy_notify_postponed();
164 e1000e_set_interrupt_cause(timer->core, 0);
168 static void
169 e1000e_intrmgr_on_msix_throttling_timer(void *opaque)
171 E1000IntrDelayTimer *timer = opaque;
172 int idx = timer - &timer->core->eitr[0];
174 assert(msix_enabled(timer->core->owner));
176 timer->running = false;
178 if (!timer->core->eitr_intr_pending[idx]) {
179 trace_e1000e_irq_throttling_no_pending_vec(idx);
180 return;
183 trace_e1000e_irq_msix_notify_postponed_vec(idx);
184 msix_notify(timer->core->owner, idx);
187 static void
188 e1000e_intrmgr_initialize_all_timers(E1000ECore *core, bool create)
190 int i;
192 core->radv.delay_reg = RADV;
193 core->rdtr.delay_reg = RDTR;
194 core->raid.delay_reg = RAID;
195 core->tadv.delay_reg = TADV;
196 core->tidv.delay_reg = TIDV;
198 core->radv.delay_resolution_ns = E1000_INTR_DELAY_NS_RES;
199 core->rdtr.delay_resolution_ns = E1000_INTR_DELAY_NS_RES;
200 core->raid.delay_resolution_ns = E1000_INTR_DELAY_NS_RES;
201 core->tadv.delay_resolution_ns = E1000_INTR_DELAY_NS_RES;
202 core->tidv.delay_resolution_ns = E1000_INTR_DELAY_NS_RES;
204 core->radv.core = core;
205 core->rdtr.core = core;
206 core->raid.core = core;
207 core->tadv.core = core;
208 core->tidv.core = core;
210 core->itr.core = core;
211 core->itr.delay_reg = ITR;
212 core->itr.delay_resolution_ns = E1000_INTR_THROTTLING_NS_RES;
214 for (i = 0; i < E1000E_MSIX_VEC_NUM; i++) {
215 core->eitr[i].core = core;
216 core->eitr[i].delay_reg = EITR + i;
217 core->eitr[i].delay_resolution_ns = E1000_INTR_THROTTLING_NS_RES;
220 if (!create) {
221 return;
224 core->radv.timer =
225 timer_new_ns(QEMU_CLOCK_VIRTUAL, e1000e_intrmgr_on_timer, &core->radv);
226 core->rdtr.timer =
227 timer_new_ns(QEMU_CLOCK_VIRTUAL, e1000e_intrmgr_on_timer, &core->rdtr);
228 core->raid.timer =
229 timer_new_ns(QEMU_CLOCK_VIRTUAL, e1000e_intrmgr_on_timer, &core->raid);
231 core->tadv.timer =
232 timer_new_ns(QEMU_CLOCK_VIRTUAL, e1000e_intrmgr_on_timer, &core->tadv);
233 core->tidv.timer =
234 timer_new_ns(QEMU_CLOCK_VIRTUAL, e1000e_intrmgr_on_timer, &core->tidv);
236 core->itr.timer = timer_new_ns(QEMU_CLOCK_VIRTUAL,
237 e1000e_intrmgr_on_throttling_timer,
238 &core->itr);
240 for (i = 0; i < E1000E_MSIX_VEC_NUM; i++) {
241 core->eitr[i].timer =
242 timer_new_ns(QEMU_CLOCK_VIRTUAL,
243 e1000e_intrmgr_on_msix_throttling_timer,
244 &core->eitr[i]);
248 static inline void
249 e1000e_intrmgr_stop_delay_timers(E1000ECore *core)
251 e1000e_intrmgr_stop_timer(&core->radv);
252 e1000e_intrmgr_stop_timer(&core->rdtr);
253 e1000e_intrmgr_stop_timer(&core->raid);
254 e1000e_intrmgr_stop_timer(&core->tidv);
255 e1000e_intrmgr_stop_timer(&core->tadv);
258 static bool
259 e1000e_intrmgr_delay_rx_causes(E1000ECore *core, uint32_t *causes)
261 uint32_t delayable_causes;
262 uint32_t rdtr = core->mac[RDTR];
263 uint32_t radv = core->mac[RADV];
264 uint32_t raid = core->mac[RAID];
266 if (msix_enabled(core->owner)) {
267 return false;
270 delayable_causes = E1000_ICR_RXQ0 |
271 E1000_ICR_RXQ1 |
272 E1000_ICR_RXT0;
274 if (!(core->mac[RFCTL] & E1000_RFCTL_ACK_DIS)) {
275 delayable_causes |= E1000_ICR_ACK;
278 /* Clean up all causes that may be delayed */
279 core->delayed_causes |= *causes & delayable_causes;
280 *causes &= ~delayable_causes;
282 /* Check if delayed RX interrupts disabled by client
283 or if there are causes that cannot be delayed */
284 if ((rdtr == 0) || (*causes != 0)) {
285 return false;
288 /* Check if delayed RX ACK interrupts disabled by client
289 and there is an ACK packet received */
290 if ((raid == 0) && (core->delayed_causes & E1000_ICR_ACK)) {
291 return false;
294 /* All causes delayed */
295 e1000e_intrmgr_rearm_timer(&core->rdtr);
297 if (!core->radv.running && (radv != 0)) {
298 e1000e_intrmgr_rearm_timer(&core->radv);
301 if (!core->raid.running && (core->delayed_causes & E1000_ICR_ACK)) {
302 e1000e_intrmgr_rearm_timer(&core->raid);
305 return true;
308 static bool
309 e1000e_intrmgr_delay_tx_causes(E1000ECore *core, uint32_t *causes)
311 static const uint32_t delayable_causes = E1000_ICR_TXQ0 |
312 E1000_ICR_TXQ1 |
313 E1000_ICR_TXQE |
314 E1000_ICR_TXDW;
316 if (msix_enabled(core->owner)) {
317 return false;
320 /* Clean up all causes that may be delayed */
321 core->delayed_causes |= *causes & delayable_causes;
322 *causes &= ~delayable_causes;
324 /* If there are causes that cannot be delayed */
325 if (*causes != 0) {
326 return false;
329 /* All causes delayed */
330 e1000e_intrmgr_rearm_timer(&core->tidv);
332 if (!core->tadv.running && (core->mac[TADV] != 0)) {
333 e1000e_intrmgr_rearm_timer(&core->tadv);
336 return true;
339 static uint32_t
340 e1000e_intmgr_collect_delayed_causes(E1000ECore *core)
342 uint32_t res;
344 if (msix_enabled(core->owner)) {
345 assert(core->delayed_causes == 0);
346 return 0;
349 res = core->delayed_causes;
350 core->delayed_causes = 0;
352 e1000e_intrmgr_stop_delay_timers(core);
354 return res;
357 static void
358 e1000e_intrmgr_fire_all_timers(E1000ECore *core)
360 int i;
361 uint32_t val = e1000e_intmgr_collect_delayed_causes(core);
363 trace_e1000e_irq_adding_delayed_causes(val, core->mac[ICR]);
364 core->mac[ICR] |= val;
366 if (core->itr.running) {
367 timer_del(core->itr.timer);
368 e1000e_intrmgr_on_throttling_timer(&core->itr);
371 for (i = 0; i < E1000E_MSIX_VEC_NUM; i++) {
372 if (core->eitr[i].running) {
373 timer_del(core->eitr[i].timer);
374 e1000e_intrmgr_on_msix_throttling_timer(&core->eitr[i]);
379 static void
380 e1000e_intrmgr_resume(E1000ECore *core)
382 int i;
384 e1000e_intmgr_timer_resume(&core->radv);
385 e1000e_intmgr_timer_resume(&core->rdtr);
386 e1000e_intmgr_timer_resume(&core->raid);
387 e1000e_intmgr_timer_resume(&core->tidv);
388 e1000e_intmgr_timer_resume(&core->tadv);
390 e1000e_intmgr_timer_resume(&core->itr);
392 for (i = 0; i < E1000E_MSIX_VEC_NUM; i++) {
393 e1000e_intmgr_timer_resume(&core->eitr[i]);
397 static void
398 e1000e_intrmgr_pause(E1000ECore *core)
400 int i;
402 e1000e_intmgr_timer_pause(&core->radv);
403 e1000e_intmgr_timer_pause(&core->rdtr);
404 e1000e_intmgr_timer_pause(&core->raid);
405 e1000e_intmgr_timer_pause(&core->tidv);
406 e1000e_intmgr_timer_pause(&core->tadv);
408 e1000e_intmgr_timer_pause(&core->itr);
410 for (i = 0; i < E1000E_MSIX_VEC_NUM; i++) {
411 e1000e_intmgr_timer_pause(&core->eitr[i]);
415 static void
416 e1000e_intrmgr_reset(E1000ECore *core)
418 int i;
420 core->delayed_causes = 0;
422 e1000e_intrmgr_stop_delay_timers(core);
424 e1000e_intrmgr_stop_timer(&core->itr);
426 for (i = 0; i < E1000E_MSIX_VEC_NUM; i++) {
427 e1000e_intrmgr_stop_timer(&core->eitr[i]);
431 static void
432 e1000e_intrmgr_pci_unint(E1000ECore *core)
434 int i;
436 timer_del(core->radv.timer);
437 timer_free(core->radv.timer);
438 timer_del(core->rdtr.timer);
439 timer_free(core->rdtr.timer);
440 timer_del(core->raid.timer);
441 timer_free(core->raid.timer);
443 timer_del(core->tadv.timer);
444 timer_free(core->tadv.timer);
445 timer_del(core->tidv.timer);
446 timer_free(core->tidv.timer);
448 timer_del(core->itr.timer);
449 timer_free(core->itr.timer);
451 for (i = 0; i < E1000E_MSIX_VEC_NUM; i++) {
452 timer_del(core->eitr[i].timer);
453 timer_free(core->eitr[i].timer);
457 static void
458 e1000e_intrmgr_pci_realize(E1000ECore *core)
460 e1000e_intrmgr_initialize_all_timers(core, true);
463 static inline bool
464 e1000e_rx_csum_enabled(E1000ECore *core)
466 return (core->mac[RXCSUM] & E1000_RXCSUM_PCSD) ? false : true;
469 static inline bool
470 e1000e_rx_use_legacy_descriptor(E1000ECore *core)
472 return (core->mac[RFCTL] & E1000_RFCTL_EXTEN) ? false : true;
475 static inline bool
476 e1000e_rx_use_ps_descriptor(E1000ECore *core)
478 return !e1000e_rx_use_legacy_descriptor(core) &&
479 (core->mac[RCTL] & E1000_RCTL_DTYP_PS);
482 static inline bool
483 e1000e_rss_enabled(E1000ECore *core)
485 return E1000_MRQC_ENABLED(core->mac[MRQC]) &&
486 !e1000e_rx_csum_enabled(core) &&
487 !e1000e_rx_use_legacy_descriptor(core);
490 typedef struct E1000E_RSSInfo_st {
491 bool enabled;
492 uint32_t hash;
493 uint32_t queue;
494 uint32_t type;
495 } E1000E_RSSInfo;
497 static uint32_t
498 e1000e_rss_get_hash_type(E1000ECore *core, struct NetRxPkt *pkt)
500 bool isip4, isip6, isudp, istcp;
502 assert(e1000e_rss_enabled(core));
504 net_rx_pkt_get_protocols(pkt, &isip4, &isip6, &isudp, &istcp);
506 if (isip4) {
507 bool fragment = net_rx_pkt_get_ip4_info(pkt)->fragment;
509 trace_e1000e_rx_rss_ip4(fragment, istcp, core->mac[MRQC],
510 E1000_MRQC_EN_TCPIPV4(core->mac[MRQC]),
511 E1000_MRQC_EN_IPV4(core->mac[MRQC]));
513 if (!fragment && istcp && E1000_MRQC_EN_TCPIPV4(core->mac[MRQC])) {
514 return E1000_MRQ_RSS_TYPE_IPV4TCP;
517 if (E1000_MRQC_EN_IPV4(core->mac[MRQC])) {
518 return E1000_MRQ_RSS_TYPE_IPV4;
520 } else if (isip6) {
521 eth_ip6_hdr_info *ip6info = net_rx_pkt_get_ip6_info(pkt);
523 bool ex_dis = core->mac[RFCTL] & E1000_RFCTL_IPV6_EX_DIS;
524 bool new_ex_dis = core->mac[RFCTL] & E1000_RFCTL_NEW_IPV6_EXT_DIS;
527 * Following two traces must not be combined because resulting
528 * event will have 11 arguments totally and some trace backends
529 * (at least "ust") have limitation of maximum 10 arguments per
530 * event. Events with more arguments fail to compile for
531 * backends like these.
533 trace_e1000e_rx_rss_ip6_rfctl(core->mac[RFCTL]);
534 trace_e1000e_rx_rss_ip6(ex_dis, new_ex_dis, istcp,
535 ip6info->has_ext_hdrs,
536 ip6info->rss_ex_dst_valid,
537 ip6info->rss_ex_src_valid,
538 core->mac[MRQC],
539 E1000_MRQC_EN_TCPIPV6(core->mac[MRQC]),
540 E1000_MRQC_EN_IPV6EX(core->mac[MRQC]),
541 E1000_MRQC_EN_IPV6(core->mac[MRQC]));
543 if ((!ex_dis || !ip6info->has_ext_hdrs) &&
544 (!new_ex_dis || !(ip6info->rss_ex_dst_valid ||
545 ip6info->rss_ex_src_valid))) {
547 if (istcp && !ip6info->fragment &&
548 E1000_MRQC_EN_TCPIPV6(core->mac[MRQC])) {
549 return E1000_MRQ_RSS_TYPE_IPV6TCP;
552 if (E1000_MRQC_EN_IPV6EX(core->mac[MRQC])) {
553 return E1000_MRQ_RSS_TYPE_IPV6EX;
558 if (E1000_MRQC_EN_IPV6(core->mac[MRQC])) {
559 return E1000_MRQ_RSS_TYPE_IPV6;
564 return E1000_MRQ_RSS_TYPE_NONE;
567 static uint32_t
568 e1000e_rss_calc_hash(E1000ECore *core,
569 struct NetRxPkt *pkt,
570 E1000E_RSSInfo *info)
572 NetRxPktRssType type;
574 assert(e1000e_rss_enabled(core));
576 switch (info->type) {
577 case E1000_MRQ_RSS_TYPE_IPV4:
578 type = NetPktRssIpV4;
579 break;
580 case E1000_MRQ_RSS_TYPE_IPV4TCP:
581 type = NetPktRssIpV4Tcp;
582 break;
583 case E1000_MRQ_RSS_TYPE_IPV6TCP:
584 type = NetPktRssIpV6Tcp;
585 break;
586 case E1000_MRQ_RSS_TYPE_IPV6:
587 type = NetPktRssIpV6;
588 break;
589 case E1000_MRQ_RSS_TYPE_IPV6EX:
590 type = NetPktRssIpV6Ex;
591 break;
592 default:
593 assert(false);
594 return 0;
597 return net_rx_pkt_calc_rss_hash(pkt, type, (uint8_t *) &core->mac[RSSRK]);
600 static void
601 e1000e_rss_parse_packet(E1000ECore *core,
602 struct NetRxPkt *pkt,
603 E1000E_RSSInfo *info)
605 trace_e1000e_rx_rss_started();
607 if (!e1000e_rss_enabled(core)) {
608 info->enabled = false;
609 info->hash = 0;
610 info->queue = 0;
611 info->type = 0;
612 trace_e1000e_rx_rss_disabled();
613 return;
616 info->enabled = true;
618 info->type = e1000e_rss_get_hash_type(core, pkt);
620 trace_e1000e_rx_rss_type(info->type);
622 if (info->type == E1000_MRQ_RSS_TYPE_NONE) {
623 info->hash = 0;
624 info->queue = 0;
625 return;
628 info->hash = e1000e_rss_calc_hash(core, pkt, info);
629 info->queue = E1000_RSS_QUEUE(&core->mac[RETA], info->hash);
632 static void
633 e1000e_setup_tx_offloads(E1000ECore *core, struct e1000e_tx *tx)
635 if (tx->props.tse && tx->props.cptse) {
636 net_tx_pkt_build_vheader(tx->tx_pkt, true, true, tx->props.mss);
637 net_tx_pkt_update_ip_checksums(tx->tx_pkt);
638 e1000x_inc_reg_if_not_full(core->mac, TSCTC);
639 return;
642 if (tx->props.sum_needed & E1000_TXD_POPTS_TXSM) {
643 net_tx_pkt_build_vheader(tx->tx_pkt, false, true, 0);
646 if (tx->props.sum_needed & E1000_TXD_POPTS_IXSM) {
647 net_tx_pkt_update_ip_hdr_checksum(tx->tx_pkt);
651 static bool
652 e1000e_tx_pkt_send(E1000ECore *core, struct e1000e_tx *tx, int queue_index)
654 int target_queue = MIN(core->max_queue_num, queue_index);
655 NetClientState *queue = qemu_get_subqueue(core->owner_nic, target_queue);
657 e1000e_setup_tx_offloads(core, tx);
659 net_tx_pkt_dump(tx->tx_pkt);
661 if ((core->phy[0][PHY_CTRL] & MII_CR_LOOPBACK) ||
662 ((core->mac[RCTL] & E1000_RCTL_LBM_MAC) == E1000_RCTL_LBM_MAC)) {
663 return net_tx_pkt_send_loopback(tx->tx_pkt, queue);
664 } else {
665 return net_tx_pkt_send(tx->tx_pkt, queue);
669 static void
670 e1000e_on_tx_done_update_stats(E1000ECore *core, struct NetTxPkt *tx_pkt)
672 static const int PTCregs[6] = { PTC64, PTC127, PTC255, PTC511,
673 PTC1023, PTC1522 };
675 size_t tot_len = net_tx_pkt_get_total_len(tx_pkt);
677 e1000x_increase_size_stats(core->mac, PTCregs, tot_len);
678 e1000x_inc_reg_if_not_full(core->mac, TPT);
679 e1000x_grow_8reg_if_not_full(core->mac, TOTL, tot_len);
681 switch (net_tx_pkt_get_packet_type(tx_pkt)) {
682 case ETH_PKT_BCAST:
683 e1000x_inc_reg_if_not_full(core->mac, BPTC);
684 break;
685 case ETH_PKT_MCAST:
686 e1000x_inc_reg_if_not_full(core->mac, MPTC);
687 break;
688 case ETH_PKT_UCAST:
689 break;
690 default:
691 g_assert_not_reached();
694 core->mac[GPTC] = core->mac[TPT];
695 core->mac[GOTCL] = core->mac[TOTL];
696 core->mac[GOTCH] = core->mac[TOTH];
699 static void
700 e1000e_process_tx_desc(E1000ECore *core,
701 struct e1000e_tx *tx,
702 struct e1000_tx_desc *dp,
703 int queue_index)
705 uint32_t txd_lower = le32_to_cpu(dp->lower.data);
706 uint32_t dtype = txd_lower & (E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D);
707 unsigned int split_size = txd_lower & 0xffff;
708 uint64_t addr;
709 struct e1000_context_desc *xp = (struct e1000_context_desc *)dp;
710 bool eop = txd_lower & E1000_TXD_CMD_EOP;
712 if (dtype == E1000_TXD_CMD_DEXT) { /* context descriptor */
713 e1000x_read_tx_ctx_descr(xp, &tx->props);
714 e1000e_process_snap_option(core, le32_to_cpu(xp->cmd_and_length));
715 return;
716 } else if (dtype == (E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D)) {
717 /* data descriptor */
718 tx->props.sum_needed = le32_to_cpu(dp->upper.data) >> 8;
719 tx->props.cptse = (txd_lower & E1000_TXD_CMD_TSE) ? 1 : 0;
720 e1000e_process_ts_option(core, dp);
721 } else {
722 /* legacy descriptor */
723 e1000e_process_ts_option(core, dp);
724 tx->props.cptse = 0;
727 addr = le64_to_cpu(dp->buffer_addr);
729 if (!tx->skip_cp) {
730 if (!net_tx_pkt_add_raw_fragment(tx->tx_pkt, addr, split_size)) {
731 tx->skip_cp = true;
735 if (eop) {
736 if (!tx->skip_cp && net_tx_pkt_parse(tx->tx_pkt)) {
737 if (e1000x_vlan_enabled(core->mac) &&
738 e1000x_is_vlan_txd(txd_lower)) {
739 net_tx_pkt_setup_vlan_header_ex(tx->tx_pkt,
740 le16_to_cpu(dp->upper.fields.special), core->vet);
742 if (e1000e_tx_pkt_send(core, tx, queue_index)) {
743 e1000e_on_tx_done_update_stats(core, tx->tx_pkt);
747 tx->skip_cp = false;
748 net_tx_pkt_reset(tx->tx_pkt);
750 tx->props.sum_needed = 0;
751 tx->props.cptse = 0;
755 static inline uint32_t
756 e1000e_tx_wb_interrupt_cause(E1000ECore *core, int queue_idx)
758 if (!msix_enabled(core->owner)) {
759 return E1000_ICR_TXDW;
762 return (queue_idx == 0) ? E1000_ICR_TXQ0 : E1000_ICR_TXQ1;
765 static inline uint32_t
766 e1000e_rx_wb_interrupt_cause(E1000ECore *core, int queue_idx,
767 bool min_threshold_hit)
769 if (!msix_enabled(core->owner)) {
770 return E1000_ICS_RXT0 | (min_threshold_hit ? E1000_ICS_RXDMT0 : 0);
773 return (queue_idx == 0) ? E1000_ICR_RXQ0 : E1000_ICR_RXQ1;
776 static uint32_t
777 e1000e_txdesc_writeback(E1000ECore *core, dma_addr_t base,
778 struct e1000_tx_desc *dp, bool *ide, int queue_idx)
780 uint32_t txd_upper, txd_lower = le32_to_cpu(dp->lower.data);
782 if (!(txd_lower & E1000_TXD_CMD_RS) &&
783 !(core->mac[IVAR] & E1000_IVAR_TX_INT_EVERY_WB)) {
784 return 0;
787 *ide = (txd_lower & E1000_TXD_CMD_IDE) ? true : false;
789 txd_upper = le32_to_cpu(dp->upper.data) | E1000_TXD_STAT_DD;
791 dp->upper.data = cpu_to_le32(txd_upper);
792 pci_dma_write(core->owner, base + ((char *)&dp->upper - (char *)dp),
793 &dp->upper, sizeof(dp->upper));
794 return e1000e_tx_wb_interrupt_cause(core, queue_idx);
797 typedef struct E1000E_RingInfo_st {
798 int dbah;
799 int dbal;
800 int dlen;
801 int dh;
802 int dt;
803 int idx;
804 } E1000E_RingInfo;
806 static inline bool
807 e1000e_ring_empty(E1000ECore *core, const E1000E_RingInfo *r)
809 return core->mac[r->dh] == core->mac[r->dt] ||
810 core->mac[r->dt] >= core->mac[r->dlen] / E1000_RING_DESC_LEN;
813 static inline uint64_t
814 e1000e_ring_base(E1000ECore *core, const E1000E_RingInfo *r)
816 uint64_t bah = core->mac[r->dbah];
817 uint64_t bal = core->mac[r->dbal];
819 return (bah << 32) + bal;
822 static inline uint64_t
823 e1000e_ring_head_descr(E1000ECore *core, const E1000E_RingInfo *r)
825 return e1000e_ring_base(core, r) + E1000_RING_DESC_LEN * core->mac[r->dh];
828 static inline void
829 e1000e_ring_advance(E1000ECore *core, const E1000E_RingInfo *r, uint32_t count)
831 core->mac[r->dh] += count;
833 if (core->mac[r->dh] * E1000_RING_DESC_LEN >= core->mac[r->dlen]) {
834 core->mac[r->dh] = 0;
838 static inline uint32_t
839 e1000e_ring_free_descr_num(E1000ECore *core, const E1000E_RingInfo *r)
841 trace_e1000e_ring_free_space(r->idx, core->mac[r->dlen],
842 core->mac[r->dh], core->mac[r->dt]);
844 if (core->mac[r->dh] <= core->mac[r->dt]) {
845 return core->mac[r->dt] - core->mac[r->dh];
848 if (core->mac[r->dh] > core->mac[r->dt]) {
849 return core->mac[r->dlen] / E1000_RING_DESC_LEN +
850 core->mac[r->dt] - core->mac[r->dh];
853 g_assert_not_reached();
854 return 0;
857 static inline bool
858 e1000e_ring_enabled(E1000ECore *core, const E1000E_RingInfo *r)
860 return core->mac[r->dlen] > 0;
863 static inline uint32_t
864 e1000e_ring_len(E1000ECore *core, const E1000E_RingInfo *r)
866 return core->mac[r->dlen];
869 typedef struct E1000E_TxRing_st {
870 const E1000E_RingInfo *i;
871 struct e1000e_tx *tx;
872 } E1000E_TxRing;
874 static inline int
875 e1000e_mq_queue_idx(int base_reg_idx, int reg_idx)
877 return (reg_idx - base_reg_idx) / (0x100 >> 2);
880 static inline void
881 e1000e_tx_ring_init(E1000ECore *core, E1000E_TxRing *txr, int idx)
883 static const E1000E_RingInfo i[E1000E_NUM_QUEUES] = {
884 { TDBAH, TDBAL, TDLEN, TDH, TDT, 0 },
885 { TDBAH1, TDBAL1, TDLEN1, TDH1, TDT1, 1 }
888 assert(idx < ARRAY_SIZE(i));
890 txr->i = &i[idx];
891 txr->tx = &core->tx[idx];
894 typedef struct E1000E_RxRing_st {
895 const E1000E_RingInfo *i;
896 } E1000E_RxRing;
898 static inline void
899 e1000e_rx_ring_init(E1000ECore *core, E1000E_RxRing *rxr, int idx)
901 static const E1000E_RingInfo i[E1000E_NUM_QUEUES] = {
902 { RDBAH0, RDBAL0, RDLEN0, RDH0, RDT0, 0 },
903 { RDBAH1, RDBAL1, RDLEN1, RDH1, RDT1, 1 }
906 assert(idx < ARRAY_SIZE(i));
908 rxr->i = &i[idx];
911 static void
912 e1000e_start_xmit(E1000ECore *core, const E1000E_TxRing *txr)
914 dma_addr_t base;
915 struct e1000_tx_desc desc;
916 bool ide = false;
917 const E1000E_RingInfo *txi = txr->i;
918 uint32_t cause = E1000_ICS_TXQE;
920 if (!(core->mac[TCTL] & E1000_TCTL_EN)) {
921 trace_e1000e_tx_disabled();
922 return;
925 while (!e1000e_ring_empty(core, txi)) {
926 base = e1000e_ring_head_descr(core, txi);
928 pci_dma_read(core->owner, base, &desc, sizeof(desc));
930 trace_e1000e_tx_descr((void *)(intptr_t)desc.buffer_addr,
931 desc.lower.data, desc.upper.data);
933 e1000e_process_tx_desc(core, txr->tx, &desc, txi->idx);
934 cause |= e1000e_txdesc_writeback(core, base, &desc, &ide, txi->idx);
936 e1000e_ring_advance(core, txi, 1);
939 if (!ide || !e1000e_intrmgr_delay_tx_causes(core, &cause)) {
940 e1000e_set_interrupt_cause(core, cause);
944 static bool
945 e1000e_has_rxbufs(E1000ECore *core, const E1000E_RingInfo *r,
946 size_t total_size)
948 uint32_t bufs = e1000e_ring_free_descr_num(core, r);
950 trace_e1000e_rx_has_buffers(r->idx, bufs, total_size,
951 core->rx_desc_buf_size);
953 return total_size <= bufs / (core->rx_desc_len / E1000_MIN_RX_DESC_LEN) *
954 core->rx_desc_buf_size;
957 void
958 e1000e_start_recv(E1000ECore *core)
960 int i;
962 trace_e1000e_rx_start_recv();
964 for (i = 0; i <= core->max_queue_num; i++) {
965 qemu_flush_queued_packets(qemu_get_subqueue(core->owner_nic, i));
970 e1000e_can_receive(E1000ECore *core)
972 int i;
974 if (!e1000x_rx_ready(core->owner, core->mac)) {
975 return false;
978 for (i = 0; i < E1000E_NUM_QUEUES; i++) {
979 E1000E_RxRing rxr;
981 e1000e_rx_ring_init(core, &rxr, i);
982 if (e1000e_ring_enabled(core, rxr.i) &&
983 e1000e_has_rxbufs(core, rxr.i, 1)) {
984 trace_e1000e_rx_can_recv();
985 return true;
989 trace_e1000e_rx_can_recv_rings_full();
990 return false;
993 ssize_t
994 e1000e_receive(E1000ECore *core, const uint8_t *buf, size_t size)
996 const struct iovec iov = {
997 .iov_base = (uint8_t *)buf,
998 .iov_len = size
1001 return e1000e_receive_iov(core, &iov, 1);
1004 static inline bool
1005 e1000e_rx_l3_cso_enabled(E1000ECore *core)
1007 return !!(core->mac[RXCSUM] & E1000_RXCSUM_IPOFLD);
1010 static inline bool
1011 e1000e_rx_l4_cso_enabled(E1000ECore *core)
1013 return !!(core->mac[RXCSUM] & E1000_RXCSUM_TUOFLD);
1016 static bool
1017 e1000e_receive_filter(E1000ECore *core, const uint8_t *buf, int size)
1019 uint32_t rctl = core->mac[RCTL];
1021 if (e1000x_is_vlan_packet(buf, core->vet) &&
1022 e1000x_vlan_rx_filter_enabled(core->mac)) {
1023 uint16_t vid = lduw_be_p(buf + 14);
1024 uint32_t vfta = ldl_le_p((uint32_t *)(core->mac + VFTA) +
1025 ((vid >> 5) & 0x7f));
1026 if ((vfta & (1 << (vid & 0x1f))) == 0) {
1027 trace_e1000e_rx_flt_vlan_mismatch(vid);
1028 return false;
1029 } else {
1030 trace_e1000e_rx_flt_vlan_match(vid);
1034 switch (net_rx_pkt_get_packet_type(core->rx_pkt)) {
1035 case ETH_PKT_UCAST:
1036 if (rctl & E1000_RCTL_UPE) {
1037 return true; /* promiscuous ucast */
1039 break;
1041 case ETH_PKT_BCAST:
1042 if (rctl & E1000_RCTL_BAM) {
1043 return true; /* broadcast enabled */
1045 break;
1047 case ETH_PKT_MCAST:
1048 if (rctl & E1000_RCTL_MPE) {
1049 return true; /* promiscuous mcast */
1051 break;
1053 default:
1054 g_assert_not_reached();
1057 return e1000x_rx_group_filter(core->mac, buf);
1060 static inline void
1061 e1000e_read_lgcy_rx_descr(E1000ECore *core, uint8_t *desc, hwaddr *buff_addr)
1063 struct e1000_rx_desc *d = (struct e1000_rx_desc *) desc;
1064 *buff_addr = le64_to_cpu(d->buffer_addr);
1067 static inline void
1068 e1000e_read_ext_rx_descr(E1000ECore *core, uint8_t *desc, hwaddr *buff_addr)
1070 union e1000_rx_desc_extended *d = (union e1000_rx_desc_extended *) desc;
1071 *buff_addr = le64_to_cpu(d->read.buffer_addr);
1074 static inline void
1075 e1000e_read_ps_rx_descr(E1000ECore *core, uint8_t *desc,
1076 hwaddr (*buff_addr)[MAX_PS_BUFFERS])
1078 int i;
1079 union e1000_rx_desc_packet_split *d =
1080 (union e1000_rx_desc_packet_split *) desc;
1082 for (i = 0; i < MAX_PS_BUFFERS; i++) {
1083 (*buff_addr)[i] = le64_to_cpu(d->read.buffer_addr[i]);
1086 trace_e1000e_rx_desc_ps_read((*buff_addr)[0], (*buff_addr)[1],
1087 (*buff_addr)[2], (*buff_addr)[3]);
1090 static inline void
1091 e1000e_read_rx_descr(E1000ECore *core, uint8_t *desc,
1092 hwaddr (*buff_addr)[MAX_PS_BUFFERS])
1094 if (e1000e_rx_use_legacy_descriptor(core)) {
1095 e1000e_read_lgcy_rx_descr(core, desc, &(*buff_addr)[0]);
1096 (*buff_addr)[1] = (*buff_addr)[2] = (*buff_addr)[3] = 0;
1097 } else {
1098 if (core->mac[RCTL] & E1000_RCTL_DTYP_PS) {
1099 e1000e_read_ps_rx_descr(core, desc, buff_addr);
1100 } else {
1101 e1000e_read_ext_rx_descr(core, desc, &(*buff_addr)[0]);
1102 (*buff_addr)[1] = (*buff_addr)[2] = (*buff_addr)[3] = 0;
1107 static void
1108 e1000e_verify_csum_in_sw(E1000ECore *core,
1109 struct NetRxPkt *pkt,
1110 uint32_t *status_flags,
1111 bool istcp, bool isudp)
1113 bool csum_valid;
1114 uint32_t csum_error;
1116 if (e1000e_rx_l3_cso_enabled(core)) {
1117 if (!net_rx_pkt_validate_l3_csum(pkt, &csum_valid)) {
1118 trace_e1000e_rx_metadata_l3_csum_validation_failed();
1119 } else {
1120 csum_error = csum_valid ? 0 : E1000_RXDEXT_STATERR_IPE;
1121 *status_flags |= E1000_RXD_STAT_IPCS | csum_error;
1123 } else {
1124 trace_e1000e_rx_metadata_l3_cso_disabled();
1127 if (!e1000e_rx_l4_cso_enabled(core)) {
1128 trace_e1000e_rx_metadata_l4_cso_disabled();
1129 return;
1132 if (!net_rx_pkt_validate_l4_csum(pkt, &csum_valid)) {
1133 trace_e1000e_rx_metadata_l4_csum_validation_failed();
1134 return;
1137 csum_error = csum_valid ? 0 : E1000_RXDEXT_STATERR_TCPE;
1139 if (istcp) {
1140 *status_flags |= E1000_RXD_STAT_TCPCS |
1141 csum_error;
1142 } else if (isudp) {
1143 *status_flags |= E1000_RXD_STAT_TCPCS |
1144 E1000_RXD_STAT_UDPCS |
1145 csum_error;
1149 static inline bool
1150 e1000e_is_tcp_ack(E1000ECore *core, struct NetRxPkt *rx_pkt)
1152 if (!net_rx_pkt_is_tcp_ack(rx_pkt)) {
1153 return false;
1156 if (core->mac[RFCTL] & E1000_RFCTL_ACK_DATA_DIS) {
1157 return !net_rx_pkt_has_tcp_data(rx_pkt);
1160 return true;
1163 static void
1164 e1000e_build_rx_metadata(E1000ECore *core,
1165 struct NetRxPkt *pkt,
1166 bool is_eop,
1167 const E1000E_RSSInfo *rss_info,
1168 uint32_t *rss, uint32_t *mrq,
1169 uint32_t *status_flags,
1170 uint16_t *ip_id,
1171 uint16_t *vlan_tag)
1173 struct virtio_net_hdr *vhdr;
1174 bool isip4, isip6, istcp, isudp;
1175 uint32_t pkt_type;
1177 *status_flags = E1000_RXD_STAT_DD;
1179 /* No additional metadata needed for non-EOP descriptors */
1180 if (!is_eop) {
1181 goto func_exit;
1184 *status_flags |= E1000_RXD_STAT_EOP;
1186 net_rx_pkt_get_protocols(pkt, &isip4, &isip6, &isudp, &istcp);
1187 trace_e1000e_rx_metadata_protocols(isip4, isip6, isudp, istcp);
1189 /* VLAN state */
1190 if (net_rx_pkt_is_vlan_stripped(pkt)) {
1191 *status_flags |= E1000_RXD_STAT_VP;
1192 *vlan_tag = cpu_to_le16(net_rx_pkt_get_vlan_tag(pkt));
1193 trace_e1000e_rx_metadata_vlan(*vlan_tag);
1196 /* Packet parsing results */
1197 if ((core->mac[RXCSUM] & E1000_RXCSUM_PCSD) != 0) {
1198 if (rss_info->enabled) {
1199 *rss = cpu_to_le32(rss_info->hash);
1200 *mrq = cpu_to_le32(rss_info->type | (rss_info->queue << 8));
1201 trace_e1000e_rx_metadata_rss(*rss, *mrq);
1203 } else if (isip4) {
1204 *status_flags |= E1000_RXD_STAT_IPIDV;
1205 *ip_id = cpu_to_le16(net_rx_pkt_get_ip_id(pkt));
1206 trace_e1000e_rx_metadata_ip_id(*ip_id);
1209 if (istcp && e1000e_is_tcp_ack(core, pkt)) {
1210 *status_flags |= E1000_RXD_STAT_ACK;
1211 trace_e1000e_rx_metadata_ack();
1214 if (isip6 && (core->mac[RFCTL] & E1000_RFCTL_IPV6_DIS)) {
1215 trace_e1000e_rx_metadata_ipv6_filtering_disabled();
1216 pkt_type = E1000_RXD_PKT_MAC;
1217 } else if (istcp || isudp) {
1218 pkt_type = isip4 ? E1000_RXD_PKT_IP4_XDP : E1000_RXD_PKT_IP6_XDP;
1219 } else if (isip4 || isip6) {
1220 pkt_type = isip4 ? E1000_RXD_PKT_IP4 : E1000_RXD_PKT_IP6;
1221 } else {
1222 pkt_type = E1000_RXD_PKT_MAC;
1225 *status_flags |= E1000_RXD_PKT_TYPE(pkt_type);
1226 trace_e1000e_rx_metadata_pkt_type(pkt_type);
1228 /* RX CSO information */
1229 if (isip6 && (core->mac[RFCTL] & E1000_RFCTL_IPV6_XSUM_DIS)) {
1230 trace_e1000e_rx_metadata_ipv6_sum_disabled();
1231 goto func_exit;
1234 if (!net_rx_pkt_has_virt_hdr(pkt)) {
1235 trace_e1000e_rx_metadata_no_virthdr();
1236 e1000e_verify_csum_in_sw(core, pkt, status_flags, istcp, isudp);
1237 goto func_exit;
1240 vhdr = net_rx_pkt_get_vhdr(pkt);
1242 if (!(vhdr->flags & VIRTIO_NET_HDR_F_DATA_VALID) &&
1243 !(vhdr->flags & VIRTIO_NET_HDR_F_NEEDS_CSUM)) {
1244 trace_e1000e_rx_metadata_virthdr_no_csum_info();
1245 e1000e_verify_csum_in_sw(core, pkt, status_flags, istcp, isudp);
1246 goto func_exit;
1249 if (e1000e_rx_l3_cso_enabled(core)) {
1250 *status_flags |= isip4 ? E1000_RXD_STAT_IPCS : 0;
1251 } else {
1252 trace_e1000e_rx_metadata_l3_cso_disabled();
1255 if (e1000e_rx_l4_cso_enabled(core)) {
1256 if (istcp) {
1257 *status_flags |= E1000_RXD_STAT_TCPCS;
1258 } else if (isudp) {
1259 *status_flags |= E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS;
1261 } else {
1262 trace_e1000e_rx_metadata_l4_cso_disabled();
1265 trace_e1000e_rx_metadata_status_flags(*status_flags);
1267 func_exit:
1268 *status_flags = cpu_to_le32(*status_flags);
1271 static inline void
1272 e1000e_write_lgcy_rx_descr(E1000ECore *core, uint8_t *desc,
1273 struct NetRxPkt *pkt,
1274 const E1000E_RSSInfo *rss_info,
1275 uint16_t length)
1277 uint32_t status_flags, rss, mrq;
1278 uint16_t ip_id;
1280 struct e1000_rx_desc *d = (struct e1000_rx_desc *) desc;
1282 assert(!rss_info->enabled);
1284 d->length = cpu_to_le16(length);
1285 d->csum = 0;
1287 e1000e_build_rx_metadata(core, pkt, pkt != NULL,
1288 rss_info,
1289 &rss, &mrq,
1290 &status_flags, &ip_id,
1291 &d->special);
1292 d->errors = (uint8_t) (le32_to_cpu(status_flags) >> 24);
1293 d->status = (uint8_t) le32_to_cpu(status_flags);
1294 d->special = 0;
1297 static inline void
1298 e1000e_write_ext_rx_descr(E1000ECore *core, uint8_t *desc,
1299 struct NetRxPkt *pkt,
1300 const E1000E_RSSInfo *rss_info,
1301 uint16_t length)
1303 union e1000_rx_desc_extended *d = (union e1000_rx_desc_extended *) desc;
1305 memset(&d->wb, 0, sizeof(d->wb));
1307 d->wb.upper.length = cpu_to_le16(length);
1309 e1000e_build_rx_metadata(core, pkt, pkt != NULL,
1310 rss_info,
1311 &d->wb.lower.hi_dword.rss,
1312 &d->wb.lower.mrq,
1313 &d->wb.upper.status_error,
1314 &d->wb.lower.hi_dword.csum_ip.ip_id,
1315 &d->wb.upper.vlan);
1318 static inline void
1319 e1000e_write_ps_rx_descr(E1000ECore *core, uint8_t *desc,
1320 struct NetRxPkt *pkt,
1321 const E1000E_RSSInfo *rss_info,
1322 size_t ps_hdr_len,
1323 uint16_t(*written)[MAX_PS_BUFFERS])
1325 int i;
1326 union e1000_rx_desc_packet_split *d =
1327 (union e1000_rx_desc_packet_split *) desc;
1329 memset(&d->wb, 0, sizeof(d->wb));
1331 d->wb.middle.length0 = cpu_to_le16((*written)[0]);
1333 for (i = 0; i < PS_PAGE_BUFFERS; i++) {
1334 d->wb.upper.length[i] = cpu_to_le16((*written)[i + 1]);
1337 e1000e_build_rx_metadata(core, pkt, pkt != NULL,
1338 rss_info,
1339 &d->wb.lower.hi_dword.rss,
1340 &d->wb.lower.mrq,
1341 &d->wb.middle.status_error,
1342 &d->wb.lower.hi_dword.csum_ip.ip_id,
1343 &d->wb.middle.vlan);
1345 d->wb.upper.header_status =
1346 cpu_to_le16(ps_hdr_len | (ps_hdr_len ? E1000_RXDPS_HDRSTAT_HDRSP : 0));
1348 trace_e1000e_rx_desc_ps_write((*written)[0], (*written)[1],
1349 (*written)[2], (*written)[3]);
1352 static inline void
1353 e1000e_write_rx_descr(E1000ECore *core, uint8_t *desc,
1354 struct NetRxPkt *pkt, const E1000E_RSSInfo *rss_info,
1355 size_t ps_hdr_len, uint16_t(*written)[MAX_PS_BUFFERS])
1357 if (e1000e_rx_use_legacy_descriptor(core)) {
1358 assert(ps_hdr_len == 0);
1359 e1000e_write_lgcy_rx_descr(core, desc, pkt, rss_info, (*written)[0]);
1360 } else {
1361 if (core->mac[RCTL] & E1000_RCTL_DTYP_PS) {
1362 e1000e_write_ps_rx_descr(core, desc, pkt, rss_info,
1363 ps_hdr_len, written);
1364 } else {
1365 assert(ps_hdr_len == 0);
1366 e1000e_write_ext_rx_descr(core, desc, pkt, rss_info,
1367 (*written)[0]);
1372 typedef struct e1000e_ba_state_st {
1373 uint16_t written[MAX_PS_BUFFERS];
1374 uint8_t cur_idx;
1375 } e1000e_ba_state;
1377 static inline void
1378 e1000e_write_hdr_to_rx_buffers(E1000ECore *core,
1379 hwaddr (*ba)[MAX_PS_BUFFERS],
1380 e1000e_ba_state *bastate,
1381 const char *data,
1382 dma_addr_t data_len)
1384 assert(data_len <= core->rxbuf_sizes[0] - bastate->written[0]);
1386 pci_dma_write(core->owner, (*ba)[0] + bastate->written[0], data, data_len);
1387 bastate->written[0] += data_len;
1389 bastate->cur_idx = 1;
1392 static void
1393 e1000e_write_to_rx_buffers(E1000ECore *core,
1394 hwaddr (*ba)[MAX_PS_BUFFERS],
1395 e1000e_ba_state *bastate,
1396 const char *data,
1397 dma_addr_t data_len)
1399 while (data_len > 0) {
1400 uint32_t cur_buf_len = core->rxbuf_sizes[bastate->cur_idx];
1401 uint32_t cur_buf_bytes_left = cur_buf_len -
1402 bastate->written[bastate->cur_idx];
1403 uint32_t bytes_to_write = MIN(data_len, cur_buf_bytes_left);
1405 trace_e1000e_rx_desc_buff_write(bastate->cur_idx,
1406 (*ba)[bastate->cur_idx],
1407 bastate->written[bastate->cur_idx],
1408 data,
1409 bytes_to_write);
1411 pci_dma_write(core->owner,
1412 (*ba)[bastate->cur_idx] + bastate->written[bastate->cur_idx],
1413 data, bytes_to_write);
1415 bastate->written[bastate->cur_idx] += bytes_to_write;
1416 data += bytes_to_write;
1417 data_len -= bytes_to_write;
1419 if (bastate->written[bastate->cur_idx] == cur_buf_len) {
1420 bastate->cur_idx++;
1423 assert(bastate->cur_idx < MAX_PS_BUFFERS);
1427 static void
1428 e1000e_update_rx_stats(E1000ECore *core,
1429 size_t data_size,
1430 size_t data_fcs_size)
1432 e1000x_update_rx_total_stats(core->mac, data_size, data_fcs_size);
1434 switch (net_rx_pkt_get_packet_type(core->rx_pkt)) {
1435 case ETH_PKT_BCAST:
1436 e1000x_inc_reg_if_not_full(core->mac, BPRC);
1437 break;
1439 case ETH_PKT_MCAST:
1440 e1000x_inc_reg_if_not_full(core->mac, MPRC);
1441 break;
1443 default:
1444 break;
1448 static inline bool
1449 e1000e_rx_descr_threshold_hit(E1000ECore *core, const E1000E_RingInfo *rxi)
1451 return e1000e_ring_free_descr_num(core, rxi) ==
1452 e1000e_ring_len(core, rxi) >> core->rxbuf_min_shift;
1455 static bool
1456 e1000e_do_ps(E1000ECore *core, struct NetRxPkt *pkt, size_t *hdr_len)
1458 bool isip4, isip6, isudp, istcp;
1459 bool fragment;
1461 if (!e1000e_rx_use_ps_descriptor(core)) {
1462 return false;
1465 net_rx_pkt_get_protocols(pkt, &isip4, &isip6, &isudp, &istcp);
1467 if (isip4) {
1468 fragment = net_rx_pkt_get_ip4_info(pkt)->fragment;
1469 } else if (isip6) {
1470 fragment = net_rx_pkt_get_ip6_info(pkt)->fragment;
1471 } else {
1472 return false;
1475 if (fragment && (core->mac[RFCTL] & E1000_RFCTL_IPFRSP_DIS)) {
1476 return false;
1479 if (!fragment && (isudp || istcp)) {
1480 *hdr_len = net_rx_pkt_get_l5_hdr_offset(pkt);
1481 } else {
1482 *hdr_len = net_rx_pkt_get_l4_hdr_offset(pkt);
1485 if ((*hdr_len > core->rxbuf_sizes[0]) ||
1486 (*hdr_len > net_rx_pkt_get_total_len(pkt))) {
1487 return false;
1490 return true;
1493 static void
1494 e1000e_write_packet_to_guest(E1000ECore *core, struct NetRxPkt *pkt,
1495 const E1000E_RxRing *rxr,
1496 const E1000E_RSSInfo *rss_info)
1498 PCIDevice *d = core->owner;
1499 dma_addr_t base;
1500 uint8_t desc[E1000_MAX_RX_DESC_LEN];
1501 size_t desc_size;
1502 size_t desc_offset = 0;
1503 size_t iov_ofs = 0;
1505 struct iovec *iov = net_rx_pkt_get_iovec(pkt);
1506 size_t size = net_rx_pkt_get_total_len(pkt);
1507 size_t total_size = size + e1000x_fcs_len(core->mac);
1508 const E1000E_RingInfo *rxi;
1509 size_t ps_hdr_len = 0;
1510 bool do_ps = e1000e_do_ps(core, pkt, &ps_hdr_len);
1511 bool is_first = true;
1513 rxi = rxr->i;
1515 do {
1516 hwaddr ba[MAX_PS_BUFFERS];
1517 e1000e_ba_state bastate = { { 0 } };
1518 bool is_last = false;
1520 desc_size = total_size - desc_offset;
1522 if (desc_size > core->rx_desc_buf_size) {
1523 desc_size = core->rx_desc_buf_size;
1526 if (e1000e_ring_empty(core, rxi)) {
1527 return;
1530 base = e1000e_ring_head_descr(core, rxi);
1532 pci_dma_read(d, base, &desc, core->rx_desc_len);
1534 trace_e1000e_rx_descr(rxi->idx, base, core->rx_desc_len);
1536 e1000e_read_rx_descr(core, desc, &ba);
1538 if (ba[0]) {
1539 if (desc_offset < size) {
1540 static const uint32_t fcs_pad;
1541 size_t iov_copy;
1542 size_t copy_size = size - desc_offset;
1543 if (copy_size > core->rx_desc_buf_size) {
1544 copy_size = core->rx_desc_buf_size;
1547 /* For PS mode copy the packet header first */
1548 if (do_ps) {
1549 if (is_first) {
1550 size_t ps_hdr_copied = 0;
1551 do {
1552 iov_copy = MIN(ps_hdr_len - ps_hdr_copied,
1553 iov->iov_len - iov_ofs);
1555 e1000e_write_hdr_to_rx_buffers(core, &ba, &bastate,
1556 iov->iov_base, iov_copy);
1558 copy_size -= iov_copy;
1559 ps_hdr_copied += iov_copy;
1561 iov_ofs += iov_copy;
1562 if (iov_ofs == iov->iov_len) {
1563 iov++;
1564 iov_ofs = 0;
1566 } while (ps_hdr_copied < ps_hdr_len);
1568 is_first = false;
1569 } else {
1570 /* Leave buffer 0 of each descriptor except first */
1571 /* empty as per spec 7.1.5.1 */
1572 e1000e_write_hdr_to_rx_buffers(core, &ba, &bastate,
1573 NULL, 0);
1577 /* Copy packet payload */
1578 while (copy_size) {
1579 iov_copy = MIN(copy_size, iov->iov_len - iov_ofs);
1581 e1000e_write_to_rx_buffers(core, &ba, &bastate,
1582 iov->iov_base + iov_ofs, iov_copy);
1584 copy_size -= iov_copy;
1585 iov_ofs += iov_copy;
1586 if (iov_ofs == iov->iov_len) {
1587 iov++;
1588 iov_ofs = 0;
1592 if (desc_offset + desc_size >= total_size) {
1593 /* Simulate FCS checksum presence in the last descriptor */
1594 e1000e_write_to_rx_buffers(core, &ba, &bastate,
1595 (const char *) &fcs_pad, e1000x_fcs_len(core->mac));
1598 desc_offset += desc_size;
1599 if (desc_offset >= total_size) {
1600 is_last = true;
1602 } else { /* as per intel docs; skip descriptors with null buf addr */
1603 trace_e1000e_rx_null_descriptor();
1606 e1000e_write_rx_descr(core, desc, is_last ? core->rx_pkt : NULL,
1607 rss_info, do_ps ? ps_hdr_len : 0, &bastate.written);
1608 pci_dma_write(d, base, &desc, core->rx_desc_len);
1610 e1000e_ring_advance(core, rxi,
1611 core->rx_desc_len / E1000_MIN_RX_DESC_LEN);
1613 } while (desc_offset < total_size);
1615 e1000e_update_rx_stats(core, size, total_size);
1618 static inline void
1619 e1000e_rx_fix_l4_csum(E1000ECore *core, struct NetRxPkt *pkt)
1621 if (net_rx_pkt_has_virt_hdr(pkt)) {
1622 struct virtio_net_hdr *vhdr = net_rx_pkt_get_vhdr(pkt);
1624 if (vhdr->flags & VIRTIO_NET_HDR_F_NEEDS_CSUM) {
1625 net_rx_pkt_fix_l4_csum(pkt);
1630 ssize_t
1631 e1000e_receive_iov(E1000ECore *core, const struct iovec *iov, int iovcnt)
1633 static const int maximum_ethernet_hdr_len = (14 + 4);
1634 /* Min. octets in an ethernet frame sans FCS */
1635 static const int min_buf_size = 60;
1637 uint32_t n = 0;
1638 uint8_t min_buf[min_buf_size];
1639 struct iovec min_iov;
1640 uint8_t *filter_buf;
1641 size_t size, orig_size;
1642 size_t iov_ofs = 0;
1643 E1000E_RxRing rxr;
1644 E1000E_RSSInfo rss_info;
1645 size_t total_size;
1646 ssize_t retval;
1647 bool rdmts_hit;
1649 trace_e1000e_rx_receive_iov(iovcnt);
1651 if (!e1000x_hw_rx_enabled(core->mac)) {
1652 return -1;
1655 /* Pull virtio header in */
1656 if (core->has_vnet) {
1657 net_rx_pkt_set_vhdr_iovec(core->rx_pkt, iov, iovcnt);
1658 iov_ofs = sizeof(struct virtio_net_hdr);
1661 filter_buf = iov->iov_base + iov_ofs;
1662 orig_size = iov_size(iov, iovcnt);
1663 size = orig_size - iov_ofs;
1665 /* Pad to minimum Ethernet frame length */
1666 if (size < sizeof(min_buf)) {
1667 iov_to_buf(iov, iovcnt, iov_ofs, min_buf, size);
1668 memset(&min_buf[size], 0, sizeof(min_buf) - size);
1669 e1000x_inc_reg_if_not_full(core->mac, RUC);
1670 min_iov.iov_base = filter_buf = min_buf;
1671 min_iov.iov_len = size = sizeof(min_buf);
1672 iovcnt = 1;
1673 iov = &min_iov;
1674 iov_ofs = 0;
1675 } else if (iov->iov_len < maximum_ethernet_hdr_len) {
1676 /* This is very unlikely, but may happen. */
1677 iov_to_buf(iov, iovcnt, iov_ofs, min_buf, maximum_ethernet_hdr_len);
1678 filter_buf = min_buf;
1681 /* Discard oversized packets if !LPE and !SBP. */
1682 if (e1000x_is_oversized(core->mac, size)) {
1683 return orig_size;
1686 net_rx_pkt_set_packet_type(core->rx_pkt,
1687 get_eth_packet_type(PKT_GET_ETH_HDR(filter_buf)));
1689 if (!e1000e_receive_filter(core, filter_buf, size)) {
1690 trace_e1000e_rx_flt_dropped();
1691 return orig_size;
1694 net_rx_pkt_attach_iovec_ex(core->rx_pkt, iov, iovcnt, iov_ofs,
1695 e1000x_vlan_enabled(core->mac), core->vet);
1697 e1000e_rss_parse_packet(core, core->rx_pkt, &rss_info);
1698 e1000e_rx_ring_init(core, &rxr, rss_info.queue);
1700 trace_e1000e_rx_rss_dispatched_to_queue(rxr.i->idx);
1702 total_size = net_rx_pkt_get_total_len(core->rx_pkt) +
1703 e1000x_fcs_len(core->mac);
1705 if (e1000e_has_rxbufs(core, rxr.i, total_size)) {
1706 e1000e_rx_fix_l4_csum(core, core->rx_pkt);
1708 e1000e_write_packet_to_guest(core, core->rx_pkt, &rxr, &rss_info);
1710 retval = orig_size;
1712 /* Perform small receive detection (RSRPD) */
1713 if (total_size < core->mac[RSRPD]) {
1714 n |= E1000_ICS_SRPD;
1717 /* Perform ACK receive detection */
1718 if (!(core->mac[RFCTL] & E1000_RFCTL_ACK_DIS) &&
1719 (e1000e_is_tcp_ack(core, core->rx_pkt))) {
1720 n |= E1000_ICS_ACK;
1723 /* Check if receive descriptor minimum threshold hit */
1724 rdmts_hit = e1000e_rx_descr_threshold_hit(core, rxr.i);
1725 n |= e1000e_rx_wb_interrupt_cause(core, rxr.i->idx, rdmts_hit);
1727 trace_e1000e_rx_written_to_guest(n);
1728 } else {
1729 n |= E1000_ICS_RXO;
1730 retval = 0;
1732 trace_e1000e_rx_not_written_to_guest(n);
1735 if (!e1000e_intrmgr_delay_rx_causes(core, &n)) {
1736 trace_e1000e_rx_interrupt_set(n);
1737 e1000e_set_interrupt_cause(core, n);
1738 } else {
1739 trace_e1000e_rx_interrupt_delayed(n);
1742 return retval;
1745 static inline bool
1746 e1000e_have_autoneg(E1000ECore *core)
1748 return core->phy[0][PHY_CTRL] & MII_CR_AUTO_NEG_EN;
1751 static void e1000e_update_flowctl_status(E1000ECore *core)
1753 if (e1000e_have_autoneg(core) &&
1754 core->phy[0][PHY_STATUS] & MII_SR_AUTONEG_COMPLETE) {
1755 trace_e1000e_link_autoneg_flowctl(true);
1756 core->mac[CTRL] |= E1000_CTRL_TFCE | E1000_CTRL_RFCE;
1757 } else {
1758 trace_e1000e_link_autoneg_flowctl(false);
1762 static inline void
1763 e1000e_link_down(E1000ECore *core)
1765 e1000x_update_regs_on_link_down(core->mac, core->phy[0]);
1766 e1000e_update_flowctl_status(core);
1769 static inline void
1770 e1000e_set_phy_ctrl(E1000ECore *core, int index, uint16_t val)
1772 /* bits 0-5 reserved; MII_CR_[RESTART_AUTO_NEG,RESET] are self clearing */
1773 core->phy[0][PHY_CTRL] = val & ~(0x3f |
1774 MII_CR_RESET |
1775 MII_CR_RESTART_AUTO_NEG);
1777 if ((val & MII_CR_RESTART_AUTO_NEG) &&
1778 e1000e_have_autoneg(core)) {
1779 e1000x_restart_autoneg(core->mac, core->phy[0], core->autoneg_timer);
1783 static void
1784 e1000e_set_phy_oem_bits(E1000ECore *core, int index, uint16_t val)
1786 core->phy[0][PHY_OEM_BITS] = val & ~BIT(10);
1788 if (val & BIT(10)) {
1789 e1000x_restart_autoneg(core->mac, core->phy[0], core->autoneg_timer);
1793 static void
1794 e1000e_set_phy_page(E1000ECore *core, int index, uint16_t val)
1796 core->phy[0][PHY_PAGE] = val & PHY_PAGE_RW_MASK;
1799 void
1800 e1000e_core_set_link_status(E1000ECore *core)
1802 NetClientState *nc = qemu_get_queue(core->owner_nic);
1803 uint32_t old_status = core->mac[STATUS];
1805 trace_e1000e_link_status_changed(nc->link_down ? false : true);
1807 if (nc->link_down) {
1808 e1000x_update_regs_on_link_down(core->mac, core->phy[0]);
1809 } else {
1810 if (e1000e_have_autoneg(core) &&
1811 !(core->phy[0][PHY_STATUS] & MII_SR_AUTONEG_COMPLETE)) {
1812 e1000x_restart_autoneg(core->mac, core->phy[0],
1813 core->autoneg_timer);
1814 } else {
1815 e1000x_update_regs_on_link_up(core->mac, core->phy[0]);
1816 e1000e_start_recv(core);
1820 if (core->mac[STATUS] != old_status) {
1821 e1000e_set_interrupt_cause(core, E1000_ICR_LSC);
1825 static void
1826 e1000e_set_ctrl(E1000ECore *core, int index, uint32_t val)
1828 trace_e1000e_core_ctrl_write(index, val);
1830 /* RST is self clearing */
1831 core->mac[CTRL] = val & ~E1000_CTRL_RST;
1832 core->mac[CTRL_DUP] = core->mac[CTRL];
1834 trace_e1000e_link_set_params(
1835 !!(val & E1000_CTRL_ASDE),
1836 (val & E1000_CTRL_SPD_SEL) >> E1000_CTRL_SPD_SHIFT,
1837 !!(val & E1000_CTRL_FRCSPD),
1838 !!(val & E1000_CTRL_FRCDPX),
1839 !!(val & E1000_CTRL_RFCE),
1840 !!(val & E1000_CTRL_TFCE));
1842 if (val & E1000_CTRL_RST) {
1843 trace_e1000e_core_ctrl_sw_reset();
1844 e1000x_reset_mac_addr(core->owner_nic, core->mac, core->permanent_mac);
1847 if (val & E1000_CTRL_PHY_RST) {
1848 trace_e1000e_core_ctrl_phy_reset();
1849 core->mac[STATUS] |= E1000_STATUS_PHYRA;
1853 static void
1854 e1000e_set_rfctl(E1000ECore *core, int index, uint32_t val)
1856 trace_e1000e_rx_set_rfctl(val);
1858 if (!(val & E1000_RFCTL_ISCSI_DIS)) {
1859 trace_e1000e_wrn_iscsi_filtering_not_supported();
1862 if (!(val & E1000_RFCTL_NFSW_DIS)) {
1863 trace_e1000e_wrn_nfsw_filtering_not_supported();
1866 if (!(val & E1000_RFCTL_NFSR_DIS)) {
1867 trace_e1000e_wrn_nfsr_filtering_not_supported();
1870 core->mac[RFCTL] = val;
1873 static void
1874 e1000e_calc_per_desc_buf_size(E1000ECore *core)
1876 int i;
1877 core->rx_desc_buf_size = 0;
1879 for (i = 0; i < ARRAY_SIZE(core->rxbuf_sizes); i++) {
1880 core->rx_desc_buf_size += core->rxbuf_sizes[i];
1884 static void
1885 e1000e_parse_rxbufsize(E1000ECore *core)
1887 uint32_t rctl = core->mac[RCTL];
1889 memset(core->rxbuf_sizes, 0, sizeof(core->rxbuf_sizes));
1891 if (rctl & E1000_RCTL_DTYP_MASK) {
1892 uint32_t bsize;
1894 bsize = core->mac[PSRCTL] & E1000_PSRCTL_BSIZE0_MASK;
1895 core->rxbuf_sizes[0] = (bsize >> E1000_PSRCTL_BSIZE0_SHIFT) * 128;
1897 bsize = core->mac[PSRCTL] & E1000_PSRCTL_BSIZE1_MASK;
1898 core->rxbuf_sizes[1] = (bsize >> E1000_PSRCTL_BSIZE1_SHIFT) * 1024;
1900 bsize = core->mac[PSRCTL] & E1000_PSRCTL_BSIZE2_MASK;
1901 core->rxbuf_sizes[2] = (bsize >> E1000_PSRCTL_BSIZE2_SHIFT) * 1024;
1903 bsize = core->mac[PSRCTL] & E1000_PSRCTL_BSIZE3_MASK;
1904 core->rxbuf_sizes[3] = (bsize >> E1000_PSRCTL_BSIZE3_SHIFT) * 1024;
1905 } else if (rctl & E1000_RCTL_FLXBUF_MASK) {
1906 int flxbuf = rctl & E1000_RCTL_FLXBUF_MASK;
1907 core->rxbuf_sizes[0] = (flxbuf >> E1000_RCTL_FLXBUF_SHIFT) * 1024;
1908 } else {
1909 core->rxbuf_sizes[0] = e1000x_rxbufsize(rctl);
1912 trace_e1000e_rx_desc_buff_sizes(core->rxbuf_sizes[0], core->rxbuf_sizes[1],
1913 core->rxbuf_sizes[2], core->rxbuf_sizes[3]);
1915 e1000e_calc_per_desc_buf_size(core);
1918 static void
1919 e1000e_calc_rxdesclen(E1000ECore *core)
1921 if (e1000e_rx_use_legacy_descriptor(core)) {
1922 core->rx_desc_len = sizeof(struct e1000_rx_desc);
1923 } else {
1924 if (core->mac[RCTL] & E1000_RCTL_DTYP_PS) {
1925 core->rx_desc_len = sizeof(union e1000_rx_desc_packet_split);
1926 } else {
1927 core->rx_desc_len = sizeof(union e1000_rx_desc_extended);
1930 trace_e1000e_rx_desc_len(core->rx_desc_len);
1933 static void
1934 e1000e_set_rx_control(E1000ECore *core, int index, uint32_t val)
1936 core->mac[RCTL] = val;
1937 trace_e1000e_rx_set_rctl(core->mac[RCTL]);
1939 if (val & E1000_RCTL_EN) {
1940 e1000e_parse_rxbufsize(core);
1941 e1000e_calc_rxdesclen(core);
1942 core->rxbuf_min_shift = ((val / E1000_RCTL_RDMTS_QUAT) & 3) + 1 +
1943 E1000_RING_DESC_LEN_SHIFT;
1945 e1000e_start_recv(core);
1949 static
1950 void(*e1000e_phyreg_writeops[E1000E_PHY_PAGES][E1000E_PHY_PAGE_SIZE])
1951 (E1000ECore *, int, uint16_t) = {
1952 [0] = {
1953 [PHY_CTRL] = e1000e_set_phy_ctrl,
1954 [PHY_PAGE] = e1000e_set_phy_page,
1955 [PHY_OEM_BITS] = e1000e_set_phy_oem_bits
1959 static inline void
1960 e1000e_clear_ims_bits(E1000ECore *core, uint32_t bits)
1962 trace_e1000e_irq_clear_ims(bits, core->mac[IMS], core->mac[IMS] & ~bits);
1963 core->mac[IMS] &= ~bits;
1966 static inline bool
1967 e1000e_postpone_interrupt(bool *interrupt_pending,
1968 E1000IntrDelayTimer *timer)
1970 if (timer->running) {
1971 trace_e1000e_irq_postponed_by_xitr(timer->delay_reg << 2);
1973 *interrupt_pending = true;
1974 return true;
1977 if (timer->core->mac[timer->delay_reg] != 0) {
1978 e1000e_intrmgr_rearm_timer(timer);
1981 return false;
1984 static inline bool
1985 e1000e_itr_should_postpone(E1000ECore *core)
1987 return e1000e_postpone_interrupt(&core->itr_intr_pending, &core->itr);
1990 static inline bool
1991 e1000e_eitr_should_postpone(E1000ECore *core, int idx)
1993 return e1000e_postpone_interrupt(&core->eitr_intr_pending[idx],
1994 &core->eitr[idx]);
1997 static void
1998 e1000e_msix_notify_one(E1000ECore *core, uint32_t cause, uint32_t int_cfg)
2000 uint32_t effective_eiac;
2002 if (E1000_IVAR_ENTRY_VALID(int_cfg)) {
2003 uint32_t vec = E1000_IVAR_ENTRY_VEC(int_cfg);
2004 if (vec < E1000E_MSIX_VEC_NUM) {
2005 if (!e1000e_eitr_should_postpone(core, vec)) {
2006 trace_e1000e_irq_msix_notify_vec(vec);
2007 msix_notify(core->owner, vec);
2009 } else {
2010 trace_e1000e_wrn_msix_vec_wrong(cause, int_cfg);
2012 } else {
2013 trace_e1000e_wrn_msix_invalid(cause, int_cfg);
2016 if (core->mac[CTRL_EXT] & E1000_CTRL_EXT_EIAME) {
2017 trace_e1000e_irq_iam_clear_eiame(core->mac[IAM], cause);
2018 core->mac[IAM] &= ~cause;
2021 trace_e1000e_irq_icr_clear_eiac(core->mac[ICR], core->mac[EIAC]);
2023 effective_eiac = core->mac[EIAC] & cause;
2025 if (effective_eiac == E1000_ICR_OTHER) {
2026 effective_eiac |= E1000_ICR_OTHER_CAUSES;
2029 core->mac[ICR] &= ~effective_eiac;
2031 if (!(core->mac[CTRL_EXT] & E1000_CTRL_EXT_IAME)) {
2032 core->mac[IMS] &= ~effective_eiac;
2036 static void
2037 e1000e_msix_notify(E1000ECore *core, uint32_t causes)
2039 if (causes & E1000_ICR_RXQ0) {
2040 e1000e_msix_notify_one(core, E1000_ICR_RXQ0,
2041 E1000_IVAR_RXQ0(core->mac[IVAR]));
2044 if (causes & E1000_ICR_RXQ1) {
2045 e1000e_msix_notify_one(core, E1000_ICR_RXQ1,
2046 E1000_IVAR_RXQ1(core->mac[IVAR]));
2049 if (causes & E1000_ICR_TXQ0) {
2050 e1000e_msix_notify_one(core, E1000_ICR_TXQ0,
2051 E1000_IVAR_TXQ0(core->mac[IVAR]));
2054 if (causes & E1000_ICR_TXQ1) {
2055 e1000e_msix_notify_one(core, E1000_ICR_TXQ1,
2056 E1000_IVAR_TXQ1(core->mac[IVAR]));
2059 if (causes & E1000_ICR_OTHER) {
2060 e1000e_msix_notify_one(core, E1000_ICR_OTHER,
2061 E1000_IVAR_OTHER(core->mac[IVAR]));
2065 static void
2066 e1000e_msix_clear_one(E1000ECore *core, uint32_t cause, uint32_t int_cfg)
2068 if (E1000_IVAR_ENTRY_VALID(int_cfg)) {
2069 uint32_t vec = E1000_IVAR_ENTRY_VEC(int_cfg);
2070 if (vec < E1000E_MSIX_VEC_NUM) {
2071 trace_e1000e_irq_msix_pending_clearing(cause, int_cfg, vec);
2072 msix_clr_pending(core->owner, vec);
2073 } else {
2074 trace_e1000e_wrn_msix_vec_wrong(cause, int_cfg);
2076 } else {
2077 trace_e1000e_wrn_msix_invalid(cause, int_cfg);
2081 static void
2082 e1000e_msix_clear(E1000ECore *core, uint32_t causes)
2084 if (causes & E1000_ICR_RXQ0) {
2085 e1000e_msix_clear_one(core, E1000_ICR_RXQ0,
2086 E1000_IVAR_RXQ0(core->mac[IVAR]));
2089 if (causes & E1000_ICR_RXQ1) {
2090 e1000e_msix_clear_one(core, E1000_ICR_RXQ1,
2091 E1000_IVAR_RXQ1(core->mac[IVAR]));
2094 if (causes & E1000_ICR_TXQ0) {
2095 e1000e_msix_clear_one(core, E1000_ICR_TXQ0,
2096 E1000_IVAR_TXQ0(core->mac[IVAR]));
2099 if (causes & E1000_ICR_TXQ1) {
2100 e1000e_msix_clear_one(core, E1000_ICR_TXQ1,
2101 E1000_IVAR_TXQ1(core->mac[IVAR]));
2104 if (causes & E1000_ICR_OTHER) {
2105 e1000e_msix_clear_one(core, E1000_ICR_OTHER,
2106 E1000_IVAR_OTHER(core->mac[IVAR]));
2110 static inline void
2111 e1000e_fix_icr_asserted(E1000ECore *core)
2113 core->mac[ICR] &= ~E1000_ICR_ASSERTED;
2114 if (core->mac[ICR]) {
2115 core->mac[ICR] |= E1000_ICR_ASSERTED;
2118 trace_e1000e_irq_fix_icr_asserted(core->mac[ICR]);
2121 static void
2122 e1000e_send_msi(E1000ECore *core, bool msix)
2124 uint32_t causes = core->mac[ICR] & core->mac[IMS] & ~E1000_ICR_ASSERTED;
2126 if (msix) {
2127 e1000e_msix_notify(core, causes);
2128 } else {
2129 if (!e1000e_itr_should_postpone(core)) {
2130 trace_e1000e_irq_msi_notify(causes);
2131 msi_notify(core->owner, 0);
2136 static void
2137 e1000e_update_interrupt_state(E1000ECore *core)
2139 bool interrupts_pending;
2140 bool is_msix = msix_enabled(core->owner);
2142 /* Set ICR[OTHER] for MSI-X */
2143 if (is_msix) {
2144 if (core->mac[ICR] & E1000_ICR_OTHER_CAUSES) {
2145 core->mac[ICR] |= E1000_ICR_OTHER;
2146 trace_e1000e_irq_add_msi_other(core->mac[ICR]);
2150 e1000e_fix_icr_asserted(core);
2153 * Make sure ICR and ICS registers have the same value.
2154 * The spec says that the ICS register is write-only. However in practice,
2155 * on real hardware ICS is readable, and for reads it has the same value as
2156 * ICR (except that ICS does not have the clear on read behaviour of ICR).
2158 * The VxWorks PRO/1000 driver uses this behaviour.
2160 core->mac[ICS] = core->mac[ICR];
2162 interrupts_pending = (core->mac[IMS] & core->mac[ICR]) ? true : false;
2164 trace_e1000e_irq_pending_interrupts(core->mac[ICR] & core->mac[IMS],
2165 core->mac[ICR], core->mac[IMS]);
2167 if (is_msix || msi_enabled(core->owner)) {
2168 if (interrupts_pending) {
2169 e1000e_send_msi(core, is_msix);
2171 } else {
2172 if (interrupts_pending) {
2173 if (!e1000e_itr_should_postpone(core)) {
2174 e1000e_raise_legacy_irq(core);
2176 } else {
2177 e1000e_lower_legacy_irq(core);
2182 static void
2183 e1000e_set_interrupt_cause(E1000ECore *core, uint32_t val)
2185 trace_e1000e_irq_set_cause_entry(val, core->mac[ICR]);
2187 val |= e1000e_intmgr_collect_delayed_causes(core);
2188 core->mac[ICR] |= val;
2190 trace_e1000e_irq_set_cause_exit(val, core->mac[ICR]);
2192 e1000e_update_interrupt_state(core);
2195 static inline void
2196 e1000e_autoneg_timer(void *opaque)
2198 E1000ECore *core = opaque;
2199 if (!qemu_get_queue(core->owner_nic)->link_down) {
2200 e1000x_update_regs_on_autoneg_done(core->mac, core->phy[0]);
2201 e1000e_start_recv(core);
2203 e1000e_update_flowctl_status(core);
2204 /* signal link status change to the guest */
2205 e1000e_set_interrupt_cause(core, E1000_ICR_LSC);
2209 static inline uint16_t
2210 e1000e_get_reg_index_with_offset(const uint16_t *mac_reg_access, hwaddr addr)
2212 uint16_t index = (addr & 0x1ffff) >> 2;
2213 return index + (mac_reg_access[index] & 0xfffe);
2216 static const char e1000e_phy_regcap[E1000E_PHY_PAGES][0x20] = {
2217 [0] = {
2218 [PHY_CTRL] = PHY_ANYPAGE | PHY_RW,
2219 [PHY_STATUS] = PHY_ANYPAGE | PHY_R,
2220 [PHY_ID1] = PHY_ANYPAGE | PHY_R,
2221 [PHY_ID2] = PHY_ANYPAGE | PHY_R,
2222 [PHY_AUTONEG_ADV] = PHY_ANYPAGE | PHY_RW,
2223 [PHY_LP_ABILITY] = PHY_ANYPAGE | PHY_R,
2224 [PHY_AUTONEG_EXP] = PHY_ANYPAGE | PHY_R,
2225 [PHY_NEXT_PAGE_TX] = PHY_ANYPAGE | PHY_RW,
2226 [PHY_LP_NEXT_PAGE] = PHY_ANYPAGE | PHY_R,
2227 [PHY_1000T_CTRL] = PHY_ANYPAGE | PHY_RW,
2228 [PHY_1000T_STATUS] = PHY_ANYPAGE | PHY_R,
2229 [PHY_EXT_STATUS] = PHY_ANYPAGE | PHY_R,
2230 [PHY_PAGE] = PHY_ANYPAGE | PHY_RW,
2232 [PHY_COPPER_CTRL1] = PHY_RW,
2233 [PHY_COPPER_STAT1] = PHY_R,
2234 [PHY_COPPER_CTRL3] = PHY_RW,
2235 [PHY_RX_ERR_CNTR] = PHY_R,
2236 [PHY_OEM_BITS] = PHY_RW,
2237 [PHY_BIAS_1] = PHY_RW,
2238 [PHY_BIAS_2] = PHY_RW,
2239 [PHY_COPPER_INT_ENABLE] = PHY_RW,
2240 [PHY_COPPER_STAT2] = PHY_R,
2241 [PHY_COPPER_CTRL2] = PHY_RW
2243 [2] = {
2244 [PHY_MAC_CTRL1] = PHY_RW,
2245 [PHY_MAC_INT_ENABLE] = PHY_RW,
2246 [PHY_MAC_STAT] = PHY_R,
2247 [PHY_MAC_CTRL2] = PHY_RW
2249 [3] = {
2250 [PHY_LED_03_FUNC_CTRL1] = PHY_RW,
2251 [PHY_LED_03_POL_CTRL] = PHY_RW,
2252 [PHY_LED_TIMER_CTRL] = PHY_RW,
2253 [PHY_LED_45_CTRL] = PHY_RW
2255 [5] = {
2256 [PHY_1000T_SKEW] = PHY_R,
2257 [PHY_1000T_SWAP] = PHY_R
2259 [6] = {
2260 [PHY_CRC_COUNTERS] = PHY_R
2264 static bool
2265 e1000e_phy_reg_check_cap(E1000ECore *core, uint32_t addr,
2266 char cap, uint8_t *page)
2268 *page =
2269 (e1000e_phy_regcap[0][addr] & PHY_ANYPAGE) ? 0
2270 : core->phy[0][PHY_PAGE];
2272 if (*page >= E1000E_PHY_PAGES) {
2273 return false;
2276 return e1000e_phy_regcap[*page][addr] & cap;
2279 static void
2280 e1000e_phy_reg_write(E1000ECore *core, uint8_t page,
2281 uint32_t addr, uint16_t data)
2283 assert(page < E1000E_PHY_PAGES);
2284 assert(addr < E1000E_PHY_PAGE_SIZE);
2286 if (e1000e_phyreg_writeops[page][addr]) {
2287 e1000e_phyreg_writeops[page][addr](core, addr, data);
2288 } else {
2289 core->phy[page][addr] = data;
2293 static void
2294 e1000e_set_mdic(E1000ECore *core, int index, uint32_t val)
2296 uint32_t data = val & E1000_MDIC_DATA_MASK;
2297 uint32_t addr = ((val & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT);
2298 uint8_t page;
2300 if ((val & E1000_MDIC_PHY_MASK) >> E1000_MDIC_PHY_SHIFT != 1) { /* phy # */
2301 val = core->mac[MDIC] | E1000_MDIC_ERROR;
2302 } else if (val & E1000_MDIC_OP_READ) {
2303 if (!e1000e_phy_reg_check_cap(core, addr, PHY_R, &page)) {
2304 trace_e1000e_core_mdic_read_unhandled(page, addr);
2305 val |= E1000_MDIC_ERROR;
2306 } else {
2307 val = (val ^ data) | core->phy[page][addr];
2308 trace_e1000e_core_mdic_read(page, addr, val);
2310 } else if (val & E1000_MDIC_OP_WRITE) {
2311 if (!e1000e_phy_reg_check_cap(core, addr, PHY_W, &page)) {
2312 trace_e1000e_core_mdic_write_unhandled(page, addr);
2313 val |= E1000_MDIC_ERROR;
2314 } else {
2315 trace_e1000e_core_mdic_write(page, addr, data);
2316 e1000e_phy_reg_write(core, page, addr, data);
2319 core->mac[MDIC] = val | E1000_MDIC_READY;
2321 if (val & E1000_MDIC_INT_EN) {
2322 e1000e_set_interrupt_cause(core, E1000_ICR_MDAC);
2326 static void
2327 e1000e_set_rdt(E1000ECore *core, int index, uint32_t val)
2329 core->mac[index] = val & 0xffff;
2330 trace_e1000e_rx_set_rdt(e1000e_mq_queue_idx(RDT0, index), val);
2331 e1000e_start_recv(core);
2334 static void
2335 e1000e_set_status(E1000ECore *core, int index, uint32_t val)
2337 if ((val & E1000_STATUS_PHYRA) == 0) {
2338 core->mac[index] &= ~E1000_STATUS_PHYRA;
2342 static void
2343 e1000e_set_ctrlext(E1000ECore *core, int index, uint32_t val)
2345 trace_e1000e_link_set_ext_params(!!(val & E1000_CTRL_EXT_ASDCHK),
2346 !!(val & E1000_CTRL_EXT_SPD_BYPS));
2348 /* Zero self-clearing bits */
2349 val &= ~(E1000_CTRL_EXT_ASDCHK | E1000_CTRL_EXT_EE_RST);
2350 core->mac[CTRL_EXT] = val;
2353 static void
2354 e1000e_set_pbaclr(E1000ECore *core, int index, uint32_t val)
2356 int i;
2358 core->mac[PBACLR] = val & E1000_PBACLR_VALID_MASK;
2360 if (!msix_enabled(core->owner)) {
2361 return;
2364 for (i = 0; i < E1000E_MSIX_VEC_NUM; i++) {
2365 if (core->mac[PBACLR] & BIT(i)) {
2366 msix_clr_pending(core->owner, i);
2371 static void
2372 e1000e_set_fcrth(E1000ECore *core, int index, uint32_t val)
2374 core->mac[FCRTH] = val & 0xFFF8;
2377 static void
2378 e1000e_set_fcrtl(E1000ECore *core, int index, uint32_t val)
2380 core->mac[FCRTL] = val & 0x8000FFF8;
2383 static inline void
2384 e1000e_set_16bit(E1000ECore *core, int index, uint32_t val)
2386 core->mac[index] = val & 0xffff;
2389 static void
2390 e1000e_set_12bit(E1000ECore *core, int index, uint32_t val)
2392 core->mac[index] = val & 0xfff;
2395 static void
2396 e1000e_set_vet(E1000ECore *core, int index, uint32_t val)
2398 core->mac[VET] = val & 0xffff;
2399 core->vet = le16_to_cpu(core->mac[VET]);
2400 trace_e1000e_vlan_vet(core->vet);
2403 static void
2404 e1000e_set_dlen(E1000ECore *core, int index, uint32_t val)
2406 core->mac[index] = val & E1000_XDLEN_MASK;
2409 static void
2410 e1000e_set_dbal(E1000ECore *core, int index, uint32_t val)
2412 core->mac[index] = val & E1000_XDBAL_MASK;
2415 static void
2416 e1000e_set_tctl(E1000ECore *core, int index, uint32_t val)
2418 E1000E_TxRing txr;
2419 core->mac[index] = val;
2421 if (core->mac[TARC0] & E1000_TARC_ENABLE) {
2422 e1000e_tx_ring_init(core, &txr, 0);
2423 e1000e_start_xmit(core, &txr);
2426 if (core->mac[TARC1] & E1000_TARC_ENABLE) {
2427 e1000e_tx_ring_init(core, &txr, 1);
2428 e1000e_start_xmit(core, &txr);
2432 static void
2433 e1000e_set_tdt(E1000ECore *core, int index, uint32_t val)
2435 E1000E_TxRing txr;
2436 int qidx = e1000e_mq_queue_idx(TDT, index);
2437 uint32_t tarc_reg = (qidx == 0) ? TARC0 : TARC1;
2439 core->mac[index] = val & 0xffff;
2441 if (core->mac[tarc_reg] & E1000_TARC_ENABLE) {
2442 e1000e_tx_ring_init(core, &txr, qidx);
2443 e1000e_start_xmit(core, &txr);
2447 static void
2448 e1000e_set_ics(E1000ECore *core, int index, uint32_t val)
2450 trace_e1000e_irq_write_ics(val);
2451 e1000e_set_interrupt_cause(core, val);
2454 static void
2455 e1000e_set_icr(E1000ECore *core, int index, uint32_t val)
2457 uint32_t icr = 0;
2458 if ((core->mac[ICR] & E1000_ICR_ASSERTED) &&
2459 (core->mac[CTRL_EXT] & E1000_CTRL_EXT_IAME)) {
2460 trace_e1000e_irq_icr_process_iame();
2461 e1000e_clear_ims_bits(core, core->mac[IAM]);
2464 icr = core->mac[ICR] & ~val;
2465 /* Windows driver expects that the "receive overrun" bit and other
2466 * ones to be cleared when the "Other" bit (#24) is cleared.
2468 icr = (val & E1000_ICR_OTHER) ? (icr & ~E1000_ICR_OTHER_CAUSES) : icr;
2469 trace_e1000e_irq_icr_write(val, core->mac[ICR], icr);
2470 core->mac[ICR] = icr;
2471 e1000e_update_interrupt_state(core);
2474 static void
2475 e1000e_set_imc(E1000ECore *core, int index, uint32_t val)
2477 trace_e1000e_irq_ims_clear_set_imc(val);
2478 e1000e_clear_ims_bits(core, val);
2479 e1000e_update_interrupt_state(core);
2482 static void
2483 e1000e_set_ims(E1000ECore *core, int index, uint32_t val)
2485 static const uint32_t ims_ext_mask =
2486 E1000_IMS_RXQ0 | E1000_IMS_RXQ1 |
2487 E1000_IMS_TXQ0 | E1000_IMS_TXQ1 |
2488 E1000_IMS_OTHER;
2490 static const uint32_t ims_valid_mask =
2491 E1000_IMS_TXDW | E1000_IMS_TXQE | E1000_IMS_LSC |
2492 E1000_IMS_RXDMT0 | E1000_IMS_RXO | E1000_IMS_RXT0 |
2493 E1000_IMS_MDAC | E1000_IMS_TXD_LOW | E1000_IMS_SRPD |
2494 E1000_IMS_ACK | E1000_IMS_MNG | E1000_IMS_RXQ0 |
2495 E1000_IMS_RXQ1 | E1000_IMS_TXQ0 | E1000_IMS_TXQ1 |
2496 E1000_IMS_OTHER;
2498 uint32_t valid_val = val & ims_valid_mask;
2500 trace_e1000e_irq_set_ims(val, core->mac[IMS], core->mac[IMS] | valid_val);
2501 core->mac[IMS] |= valid_val;
2503 if ((valid_val & ims_ext_mask) &&
2504 (core->mac[CTRL_EXT] & E1000_CTRL_EXT_PBA_CLR) &&
2505 msix_enabled(core->owner)) {
2506 e1000e_msix_clear(core, valid_val);
2509 if ((valid_val == ims_valid_mask) &&
2510 (core->mac[CTRL_EXT] & E1000_CTRL_EXT_INT_TIMERS_CLEAR_ENA)) {
2511 trace_e1000e_irq_fire_all_timers(val);
2512 e1000e_intrmgr_fire_all_timers(core);
2515 e1000e_update_interrupt_state(core);
2518 static void
2519 e1000e_set_rdtr(E1000ECore *core, int index, uint32_t val)
2521 e1000e_set_16bit(core, index, val);
2523 if ((val & E1000_RDTR_FPD) && (core->rdtr.running)) {
2524 trace_e1000e_irq_rdtr_fpd_running();
2525 e1000e_intrmgr_fire_delayed_interrupts(core);
2526 } else {
2527 trace_e1000e_irq_rdtr_fpd_not_running();
2531 static void
2532 e1000e_set_tidv(E1000ECore *core, int index, uint32_t val)
2534 e1000e_set_16bit(core, index, val);
2536 if ((val & E1000_TIDV_FPD) && (core->tidv.running)) {
2537 trace_e1000e_irq_tidv_fpd_running();
2538 e1000e_intrmgr_fire_delayed_interrupts(core);
2539 } else {
2540 trace_e1000e_irq_tidv_fpd_not_running();
2544 static uint32_t
2545 e1000e_mac_readreg(E1000ECore *core, int index)
2547 return core->mac[index];
2550 static uint32_t
2551 e1000e_mac_ics_read(E1000ECore *core, int index)
2553 trace_e1000e_irq_read_ics(core->mac[ICS]);
2554 return core->mac[ICS];
2557 static uint32_t
2558 e1000e_mac_ims_read(E1000ECore *core, int index)
2560 trace_e1000e_irq_read_ims(core->mac[IMS]);
2561 return core->mac[IMS];
2564 #define E1000E_LOW_BITS_READ_FUNC(num) \
2565 static uint32_t \
2566 e1000e_mac_low##num##_read(E1000ECore *core, int index) \
2568 return core->mac[index] & (BIT(num) - 1); \
2571 #define E1000E_LOW_BITS_READ(num) \
2572 e1000e_mac_low##num##_read
2574 E1000E_LOW_BITS_READ_FUNC(4);
2575 E1000E_LOW_BITS_READ_FUNC(6);
2576 E1000E_LOW_BITS_READ_FUNC(11);
2577 E1000E_LOW_BITS_READ_FUNC(13);
2578 E1000E_LOW_BITS_READ_FUNC(16);
2580 static uint32_t
2581 e1000e_mac_swsm_read(E1000ECore *core, int index)
2583 uint32_t val = core->mac[SWSM];
2584 core->mac[SWSM] = val | 1;
2585 return val;
2588 static uint32_t
2589 e1000e_mac_itr_read(E1000ECore *core, int index)
2591 return core->itr_guest_value;
2594 static uint32_t
2595 e1000e_mac_eitr_read(E1000ECore *core, int index)
2597 return core->eitr_guest_value[index - EITR];
2600 static uint32_t
2601 e1000e_mac_icr_read(E1000ECore *core, int index)
2603 uint32_t ret = core->mac[ICR];
2604 trace_e1000e_irq_icr_read_entry(ret);
2606 if (core->mac[IMS] == 0) {
2607 trace_e1000e_irq_icr_clear_zero_ims();
2608 core->mac[ICR] = 0;
2611 if ((core->mac[ICR] & E1000_ICR_ASSERTED) &&
2612 (core->mac[CTRL_EXT] & E1000_CTRL_EXT_IAME)) {
2613 trace_e1000e_irq_icr_clear_iame();
2614 core->mac[ICR] = 0;
2615 trace_e1000e_irq_icr_process_iame();
2616 e1000e_clear_ims_bits(core, core->mac[IAM]);
2619 trace_e1000e_irq_icr_read_exit(core->mac[ICR]);
2620 e1000e_update_interrupt_state(core);
2621 return ret;
2624 static uint32_t
2625 e1000e_mac_read_clr4(E1000ECore *core, int index)
2627 uint32_t ret = core->mac[index];
2629 core->mac[index] = 0;
2630 return ret;
2633 static uint32_t
2634 e1000e_mac_read_clr8(E1000ECore *core, int index)
2636 uint32_t ret = core->mac[index];
2638 core->mac[index] = 0;
2639 core->mac[index - 1] = 0;
2640 return ret;
2643 static uint32_t
2644 e1000e_get_ctrl(E1000ECore *core, int index)
2646 uint32_t val = core->mac[CTRL];
2648 trace_e1000e_link_read_params(
2649 !!(val & E1000_CTRL_ASDE),
2650 (val & E1000_CTRL_SPD_SEL) >> E1000_CTRL_SPD_SHIFT,
2651 !!(val & E1000_CTRL_FRCSPD),
2652 !!(val & E1000_CTRL_FRCDPX),
2653 !!(val & E1000_CTRL_RFCE),
2654 !!(val & E1000_CTRL_TFCE));
2656 return val;
2659 static uint32_t
2660 e1000e_get_status(E1000ECore *core, int index)
2662 uint32_t res = core->mac[STATUS];
2664 if (!(core->mac[CTRL] & E1000_CTRL_GIO_MASTER_DISABLE)) {
2665 res |= E1000_STATUS_GIO_MASTER_ENABLE;
2668 if (core->mac[CTRL] & E1000_CTRL_FRCDPX) {
2669 res |= (core->mac[CTRL] & E1000_CTRL_FD) ? E1000_STATUS_FD : 0;
2670 } else {
2671 res |= E1000_STATUS_FD;
2674 if ((core->mac[CTRL] & E1000_CTRL_FRCSPD) ||
2675 (core->mac[CTRL_EXT] & E1000_CTRL_EXT_SPD_BYPS)) {
2676 switch (core->mac[CTRL] & E1000_CTRL_SPD_SEL) {
2677 case E1000_CTRL_SPD_10:
2678 res |= E1000_STATUS_SPEED_10;
2679 break;
2680 case E1000_CTRL_SPD_100:
2681 res |= E1000_STATUS_SPEED_100;
2682 break;
2683 case E1000_CTRL_SPD_1000:
2684 default:
2685 res |= E1000_STATUS_SPEED_1000;
2686 break;
2688 } else {
2689 res |= E1000_STATUS_SPEED_1000;
2692 trace_e1000e_link_status(
2693 !!(res & E1000_STATUS_LU),
2694 !!(res & E1000_STATUS_FD),
2695 (res & E1000_STATUS_SPEED_MASK) >> E1000_STATUS_SPEED_SHIFT,
2696 (res & E1000_STATUS_ASDV) >> E1000_STATUS_ASDV_SHIFT);
2698 return res;
2701 static uint32_t
2702 e1000e_get_tarc(E1000ECore *core, int index)
2704 return core->mac[index] & ((BIT(11) - 1) |
2705 BIT(27) |
2706 BIT(28) |
2707 BIT(29) |
2708 BIT(30));
2711 static void
2712 e1000e_mac_writereg(E1000ECore *core, int index, uint32_t val)
2714 core->mac[index] = val;
2717 static void
2718 e1000e_mac_setmacaddr(E1000ECore *core, int index, uint32_t val)
2720 uint32_t macaddr[2];
2722 core->mac[index] = val;
2724 macaddr[0] = cpu_to_le32(core->mac[RA]);
2725 macaddr[1] = cpu_to_le32(core->mac[RA + 1]);
2726 qemu_format_nic_info_str(qemu_get_queue(core->owner_nic),
2727 (uint8_t *) macaddr);
2729 trace_e1000e_mac_set_sw(MAC_ARG(macaddr));
2732 static void
2733 e1000e_set_eecd(E1000ECore *core, int index, uint32_t val)
2735 static const uint32_t ro_bits = E1000_EECD_PRES |
2736 E1000_EECD_AUTO_RD |
2737 E1000_EECD_SIZE_EX_MASK;
2739 core->mac[EECD] = (core->mac[EECD] & ro_bits) | (val & ~ro_bits);
2742 static void
2743 e1000e_set_eerd(E1000ECore *core, int index, uint32_t val)
2745 uint32_t addr = (val >> E1000_EERW_ADDR_SHIFT) & E1000_EERW_ADDR_MASK;
2746 uint32_t flags = 0;
2747 uint32_t data = 0;
2749 if ((addr < E1000E_EEPROM_SIZE) && (val & E1000_EERW_START)) {
2750 data = core->eeprom[addr];
2751 flags = E1000_EERW_DONE;
2754 core->mac[EERD] = flags |
2755 (addr << E1000_EERW_ADDR_SHIFT) |
2756 (data << E1000_EERW_DATA_SHIFT);
2759 static void
2760 e1000e_set_eewr(E1000ECore *core, int index, uint32_t val)
2762 uint32_t addr = (val >> E1000_EERW_ADDR_SHIFT) & E1000_EERW_ADDR_MASK;
2763 uint32_t data = (val >> E1000_EERW_DATA_SHIFT) & E1000_EERW_DATA_MASK;
2764 uint32_t flags = 0;
2766 if ((addr < E1000E_EEPROM_SIZE) && (val & E1000_EERW_START)) {
2767 core->eeprom[addr] = data;
2768 flags = E1000_EERW_DONE;
2771 core->mac[EERD] = flags |
2772 (addr << E1000_EERW_ADDR_SHIFT) |
2773 (data << E1000_EERW_DATA_SHIFT);
2776 static void
2777 e1000e_set_rxdctl(E1000ECore *core, int index, uint32_t val)
2779 core->mac[RXDCTL] = core->mac[RXDCTL1] = val;
2782 static void
2783 e1000e_set_itr(E1000ECore *core, int index, uint32_t val)
2785 uint32_t interval = val & 0xffff;
2787 trace_e1000e_irq_itr_set(val);
2789 core->itr_guest_value = interval;
2790 core->mac[index] = MAX(interval, E1000E_MIN_XITR);
2793 static void
2794 e1000e_set_eitr(E1000ECore *core, int index, uint32_t val)
2796 uint32_t interval = val & 0xffff;
2797 uint32_t eitr_num = index - EITR;
2799 trace_e1000e_irq_eitr_set(eitr_num, val);
2801 core->eitr_guest_value[eitr_num] = interval;
2802 core->mac[index] = MAX(interval, E1000E_MIN_XITR);
2805 static void
2806 e1000e_set_psrctl(E1000ECore *core, int index, uint32_t val)
2808 if ((val & E1000_PSRCTL_BSIZE0_MASK) == 0) {
2809 hw_error("e1000e: PSRCTL.BSIZE0 cannot be zero");
2812 if ((val & E1000_PSRCTL_BSIZE1_MASK) == 0) {
2813 hw_error("e1000e: PSRCTL.BSIZE1 cannot be zero");
2816 core->mac[PSRCTL] = val;
2819 static void
2820 e1000e_update_rx_offloads(E1000ECore *core)
2822 int cso_state = e1000e_rx_l4_cso_enabled(core);
2824 trace_e1000e_rx_set_cso(cso_state);
2826 if (core->has_vnet) {
2827 qemu_set_offload(qemu_get_queue(core->owner_nic)->peer,
2828 cso_state, 0, 0, 0, 0);
2832 static void
2833 e1000e_set_rxcsum(E1000ECore *core, int index, uint32_t val)
2835 core->mac[RXCSUM] = val;
2836 e1000e_update_rx_offloads(core);
2839 static void
2840 e1000e_set_gcr(E1000ECore *core, int index, uint32_t val)
2842 uint32_t ro_bits = core->mac[GCR] & E1000_GCR_RO_BITS;
2843 core->mac[GCR] = (val & ~E1000_GCR_RO_BITS) | ro_bits;
2846 #define e1000e_getreg(x) [x] = e1000e_mac_readreg
2847 static uint32_t (*e1000e_macreg_readops[])(E1000ECore *, int) = {
2848 e1000e_getreg(PBA),
2849 e1000e_getreg(WUFC),
2850 e1000e_getreg(MANC),
2851 e1000e_getreg(TOTL),
2852 e1000e_getreg(RDT0),
2853 e1000e_getreg(RDBAH0),
2854 e1000e_getreg(TDBAL1),
2855 e1000e_getreg(RDLEN0),
2856 e1000e_getreg(RDH1),
2857 e1000e_getreg(LATECOL),
2858 e1000e_getreg(SEQEC),
2859 e1000e_getreg(XONTXC),
2860 e1000e_getreg(WUS),
2861 e1000e_getreg(GORCL),
2862 e1000e_getreg(MGTPRC),
2863 e1000e_getreg(EERD),
2864 e1000e_getreg(EIAC),
2865 e1000e_getreg(PSRCTL),
2866 e1000e_getreg(MANC2H),
2867 e1000e_getreg(RXCSUM),
2868 e1000e_getreg(GSCL_3),
2869 e1000e_getreg(GSCN_2),
2870 e1000e_getreg(RSRPD),
2871 e1000e_getreg(RDBAL1),
2872 e1000e_getreg(FCAH),
2873 e1000e_getreg(FCRTH),
2874 e1000e_getreg(FLOP),
2875 e1000e_getreg(FLASHT),
2876 e1000e_getreg(RXSTMPH),
2877 e1000e_getreg(TXSTMPL),
2878 e1000e_getreg(TIMADJL),
2879 e1000e_getreg(TXDCTL),
2880 e1000e_getreg(RDH0),
2881 e1000e_getreg(TDT1),
2882 e1000e_getreg(TNCRS),
2883 e1000e_getreg(RJC),
2884 e1000e_getreg(IAM),
2885 e1000e_getreg(GSCL_2),
2886 e1000e_getreg(RDBAH1),
2887 e1000e_getreg(FLSWDATA),
2888 e1000e_getreg(RXSATRH),
2889 e1000e_getreg(TIPG),
2890 e1000e_getreg(FLMNGCTL),
2891 e1000e_getreg(FLMNGCNT),
2892 e1000e_getreg(TSYNCTXCTL),
2893 e1000e_getreg(EXTCNF_SIZE),
2894 e1000e_getreg(EXTCNF_CTRL),
2895 e1000e_getreg(EEMNGDATA),
2896 e1000e_getreg(CTRL_EXT),
2897 e1000e_getreg(SYSTIMH),
2898 e1000e_getreg(EEMNGCTL),
2899 e1000e_getreg(FLMNGDATA),
2900 e1000e_getreg(TSYNCRXCTL),
2901 e1000e_getreg(TDH),
2902 e1000e_getreg(LEDCTL),
2903 e1000e_getreg(STATUS),
2904 e1000e_getreg(TCTL),
2905 e1000e_getreg(TDBAL),
2906 e1000e_getreg(TDLEN),
2907 e1000e_getreg(TDH1),
2908 e1000e_getreg(RADV),
2909 e1000e_getreg(ECOL),
2910 e1000e_getreg(DC),
2911 e1000e_getreg(RLEC),
2912 e1000e_getreg(XOFFTXC),
2913 e1000e_getreg(RFC),
2914 e1000e_getreg(RNBC),
2915 e1000e_getreg(MGTPTC),
2916 e1000e_getreg(TIMINCA),
2917 e1000e_getreg(RXCFGL),
2918 e1000e_getreg(MFUTP01),
2919 e1000e_getreg(FACTPS),
2920 e1000e_getreg(GSCL_1),
2921 e1000e_getreg(GSCN_0),
2922 e1000e_getreg(GCR2),
2923 e1000e_getreg(RDT1),
2924 e1000e_getreg(PBACLR),
2925 e1000e_getreg(FCTTV),
2926 e1000e_getreg(EEWR),
2927 e1000e_getreg(FLSWCTL),
2928 e1000e_getreg(RXDCTL1),
2929 e1000e_getreg(RXSATRL),
2930 e1000e_getreg(SYSTIML),
2931 e1000e_getreg(RXUDP),
2932 e1000e_getreg(TORL),
2933 e1000e_getreg(TDLEN1),
2934 e1000e_getreg(MCC),
2935 e1000e_getreg(WUC),
2936 e1000e_getreg(EECD),
2937 e1000e_getreg(MFUTP23),
2938 e1000e_getreg(RAID),
2939 e1000e_getreg(FCRTV),
2940 e1000e_getreg(TXDCTL1),
2941 e1000e_getreg(RCTL),
2942 e1000e_getreg(TDT),
2943 e1000e_getreg(MDIC),
2944 e1000e_getreg(FCRUC),
2945 e1000e_getreg(VET),
2946 e1000e_getreg(RDBAL0),
2947 e1000e_getreg(TDBAH1),
2948 e1000e_getreg(RDTR),
2949 e1000e_getreg(SCC),
2950 e1000e_getreg(COLC),
2951 e1000e_getreg(CEXTERR),
2952 e1000e_getreg(XOFFRXC),
2953 e1000e_getreg(IPAV),
2954 e1000e_getreg(GOTCL),
2955 e1000e_getreg(MGTPDC),
2956 e1000e_getreg(GCR),
2957 e1000e_getreg(IVAR),
2958 e1000e_getreg(POEMB),
2959 e1000e_getreg(MFVAL),
2960 e1000e_getreg(FUNCTAG),
2961 e1000e_getreg(GSCL_4),
2962 e1000e_getreg(GSCN_3),
2963 e1000e_getreg(MRQC),
2964 e1000e_getreg(RDLEN1),
2965 e1000e_getreg(FCT),
2966 e1000e_getreg(FLA),
2967 e1000e_getreg(FLOL),
2968 e1000e_getreg(RXDCTL),
2969 e1000e_getreg(RXSTMPL),
2970 e1000e_getreg(TXSTMPH),
2971 e1000e_getreg(TIMADJH),
2972 e1000e_getreg(FCRTL),
2973 e1000e_getreg(TDBAH),
2974 e1000e_getreg(TADV),
2975 e1000e_getreg(XONRXC),
2976 e1000e_getreg(TSCTFC),
2977 e1000e_getreg(RFCTL),
2978 e1000e_getreg(GSCN_1),
2979 e1000e_getreg(FCAL),
2980 e1000e_getreg(FLSWCNT),
2982 [TOTH] = e1000e_mac_read_clr8,
2983 [GOTCH] = e1000e_mac_read_clr8,
2984 [PRC64] = e1000e_mac_read_clr4,
2985 [PRC255] = e1000e_mac_read_clr4,
2986 [PRC1023] = e1000e_mac_read_clr4,
2987 [PTC64] = e1000e_mac_read_clr4,
2988 [PTC255] = e1000e_mac_read_clr4,
2989 [PTC1023] = e1000e_mac_read_clr4,
2990 [GPRC] = e1000e_mac_read_clr4,
2991 [TPT] = e1000e_mac_read_clr4,
2992 [RUC] = e1000e_mac_read_clr4,
2993 [BPRC] = e1000e_mac_read_clr4,
2994 [MPTC] = e1000e_mac_read_clr4,
2995 [IAC] = e1000e_mac_read_clr4,
2996 [ICR] = e1000e_mac_icr_read,
2997 [RDFH] = E1000E_LOW_BITS_READ(13),
2998 [RDFHS] = E1000E_LOW_BITS_READ(13),
2999 [RDFPC] = E1000E_LOW_BITS_READ(13),
3000 [TDFH] = E1000E_LOW_BITS_READ(13),
3001 [TDFHS] = E1000E_LOW_BITS_READ(13),
3002 [STATUS] = e1000e_get_status,
3003 [TARC0] = e1000e_get_tarc,
3004 [PBS] = E1000E_LOW_BITS_READ(6),
3005 [ICS] = e1000e_mac_ics_read,
3006 [AIT] = E1000E_LOW_BITS_READ(16),
3007 [TORH] = e1000e_mac_read_clr8,
3008 [GORCH] = e1000e_mac_read_clr8,
3009 [PRC127] = e1000e_mac_read_clr4,
3010 [PRC511] = e1000e_mac_read_clr4,
3011 [PRC1522] = e1000e_mac_read_clr4,
3012 [PTC127] = e1000e_mac_read_clr4,
3013 [PTC511] = e1000e_mac_read_clr4,
3014 [PTC1522] = e1000e_mac_read_clr4,
3015 [GPTC] = e1000e_mac_read_clr4,
3016 [TPR] = e1000e_mac_read_clr4,
3017 [ROC] = e1000e_mac_read_clr4,
3018 [MPRC] = e1000e_mac_read_clr4,
3019 [BPTC] = e1000e_mac_read_clr4,
3020 [TSCTC] = e1000e_mac_read_clr4,
3021 [ITR] = e1000e_mac_itr_read,
3022 [RDFT] = E1000E_LOW_BITS_READ(13),
3023 [RDFTS] = E1000E_LOW_BITS_READ(13),
3024 [TDFPC] = E1000E_LOW_BITS_READ(13),
3025 [TDFT] = E1000E_LOW_BITS_READ(13),
3026 [TDFTS] = E1000E_LOW_BITS_READ(13),
3027 [CTRL] = e1000e_get_ctrl,
3028 [TARC1] = e1000e_get_tarc,
3029 [SWSM] = e1000e_mac_swsm_read,
3030 [IMS] = e1000e_mac_ims_read,
3032 [CRCERRS ... MPC] = e1000e_mac_readreg,
3033 [IP6AT ... IP6AT + 3] = e1000e_mac_readreg,
3034 [IP4AT ... IP4AT + 6] = e1000e_mac_readreg,
3035 [RA ... RA + 31] = e1000e_mac_readreg,
3036 [WUPM ... WUPM + 31] = e1000e_mac_readreg,
3037 [MTA ... MTA + 127] = e1000e_mac_readreg,
3038 [VFTA ... VFTA + 127] = e1000e_mac_readreg,
3039 [FFMT ... FFMT + 254] = E1000E_LOW_BITS_READ(4),
3040 [FFVT ... FFVT + 254] = e1000e_mac_readreg,
3041 [MDEF ... MDEF + 7] = e1000e_mac_readreg,
3042 [FFLT ... FFLT + 10] = E1000E_LOW_BITS_READ(11),
3043 [FTFT ... FTFT + 254] = e1000e_mac_readreg,
3044 [PBM ... PBM + 10239] = e1000e_mac_readreg,
3045 [RETA ... RETA + 31] = e1000e_mac_readreg,
3046 [RSSRK ... RSSRK + 31] = e1000e_mac_readreg,
3047 [MAVTV0 ... MAVTV3] = e1000e_mac_readreg,
3048 [EITR...EITR + E1000E_MSIX_VEC_NUM - 1] = e1000e_mac_eitr_read
3050 enum { E1000E_NREADOPS = ARRAY_SIZE(e1000e_macreg_readops) };
3052 #define e1000e_putreg(x) [x] = e1000e_mac_writereg
3053 static void (*e1000e_macreg_writeops[])(E1000ECore *, int, uint32_t) = {
3054 e1000e_putreg(PBA),
3055 e1000e_putreg(SWSM),
3056 e1000e_putreg(WUFC),
3057 e1000e_putreg(RDBAH1),
3058 e1000e_putreg(TDBAH),
3059 e1000e_putreg(TXDCTL),
3060 e1000e_putreg(RDBAH0),
3061 e1000e_putreg(LEDCTL),
3062 e1000e_putreg(FCAL),
3063 e1000e_putreg(FCRUC),
3064 e1000e_putreg(AIT),
3065 e1000e_putreg(TDFH),
3066 e1000e_putreg(TDFT),
3067 e1000e_putreg(TDFHS),
3068 e1000e_putreg(TDFTS),
3069 e1000e_putreg(TDFPC),
3070 e1000e_putreg(WUC),
3071 e1000e_putreg(WUS),
3072 e1000e_putreg(RDFH),
3073 e1000e_putreg(RDFT),
3074 e1000e_putreg(RDFHS),
3075 e1000e_putreg(RDFTS),
3076 e1000e_putreg(RDFPC),
3077 e1000e_putreg(IPAV),
3078 e1000e_putreg(TDBAH1),
3079 e1000e_putreg(TIMINCA),
3080 e1000e_putreg(IAM),
3081 e1000e_putreg(EIAC),
3082 e1000e_putreg(IVAR),
3083 e1000e_putreg(TARC0),
3084 e1000e_putreg(TARC1),
3085 e1000e_putreg(FLSWDATA),
3086 e1000e_putreg(POEMB),
3087 e1000e_putreg(PBS),
3088 e1000e_putreg(MFUTP01),
3089 e1000e_putreg(MFUTP23),
3090 e1000e_putreg(MANC),
3091 e1000e_putreg(MANC2H),
3092 e1000e_putreg(MFVAL),
3093 e1000e_putreg(EXTCNF_CTRL),
3094 e1000e_putreg(FACTPS),
3095 e1000e_putreg(FUNCTAG),
3096 e1000e_putreg(GSCL_1),
3097 e1000e_putreg(GSCL_2),
3098 e1000e_putreg(GSCL_3),
3099 e1000e_putreg(GSCL_4),
3100 e1000e_putreg(GSCN_0),
3101 e1000e_putreg(GSCN_1),
3102 e1000e_putreg(GSCN_2),
3103 e1000e_putreg(GSCN_3),
3104 e1000e_putreg(GCR2),
3105 e1000e_putreg(MRQC),
3106 e1000e_putreg(FLOP),
3107 e1000e_putreg(FLOL),
3108 e1000e_putreg(FLSWCTL),
3109 e1000e_putreg(FLSWCNT),
3110 e1000e_putreg(FLA),
3111 e1000e_putreg(RXDCTL1),
3112 e1000e_putreg(TXDCTL1),
3113 e1000e_putreg(TIPG),
3114 e1000e_putreg(RXSTMPH),
3115 e1000e_putreg(RXSTMPL),
3116 e1000e_putreg(RXSATRL),
3117 e1000e_putreg(RXSATRH),
3118 e1000e_putreg(TXSTMPL),
3119 e1000e_putreg(TXSTMPH),
3120 e1000e_putreg(SYSTIML),
3121 e1000e_putreg(SYSTIMH),
3122 e1000e_putreg(TIMADJL),
3123 e1000e_putreg(TIMADJH),
3124 e1000e_putreg(RXUDP),
3125 e1000e_putreg(RXCFGL),
3126 e1000e_putreg(TSYNCRXCTL),
3127 e1000e_putreg(TSYNCTXCTL),
3128 e1000e_putreg(FLSWDATA),
3129 e1000e_putreg(EXTCNF_SIZE),
3130 e1000e_putreg(EEMNGCTL),
3131 e1000e_putreg(RA),
3133 [TDH1] = e1000e_set_16bit,
3134 [TDT1] = e1000e_set_tdt,
3135 [TCTL] = e1000e_set_tctl,
3136 [TDT] = e1000e_set_tdt,
3137 [MDIC] = e1000e_set_mdic,
3138 [ICS] = e1000e_set_ics,
3139 [TDH] = e1000e_set_16bit,
3140 [RDH0] = e1000e_set_16bit,
3141 [RDT0] = e1000e_set_rdt,
3142 [IMC] = e1000e_set_imc,
3143 [IMS] = e1000e_set_ims,
3144 [ICR] = e1000e_set_icr,
3145 [EECD] = e1000e_set_eecd,
3146 [RCTL] = e1000e_set_rx_control,
3147 [CTRL] = e1000e_set_ctrl,
3148 [RDTR] = e1000e_set_rdtr,
3149 [RADV] = e1000e_set_16bit,
3150 [TADV] = e1000e_set_16bit,
3151 [ITR] = e1000e_set_itr,
3152 [EERD] = e1000e_set_eerd,
3153 [GCR] = e1000e_set_gcr,
3154 [PSRCTL] = e1000e_set_psrctl,
3155 [RXCSUM] = e1000e_set_rxcsum,
3156 [RAID] = e1000e_set_16bit,
3157 [RSRPD] = e1000e_set_12bit,
3158 [TIDV] = e1000e_set_tidv,
3159 [TDLEN1] = e1000e_set_dlen,
3160 [TDLEN] = e1000e_set_dlen,
3161 [RDLEN0] = e1000e_set_dlen,
3162 [RDLEN1] = e1000e_set_dlen,
3163 [TDBAL] = e1000e_set_dbal,
3164 [TDBAL1] = e1000e_set_dbal,
3165 [RDBAL0] = e1000e_set_dbal,
3166 [RDBAL1] = e1000e_set_dbal,
3167 [RDH1] = e1000e_set_16bit,
3168 [RDT1] = e1000e_set_rdt,
3169 [STATUS] = e1000e_set_status,
3170 [PBACLR] = e1000e_set_pbaclr,
3171 [CTRL_EXT] = e1000e_set_ctrlext,
3172 [FCAH] = e1000e_set_16bit,
3173 [FCT] = e1000e_set_16bit,
3174 [FCTTV] = e1000e_set_16bit,
3175 [FCRTV] = e1000e_set_16bit,
3176 [FCRTH] = e1000e_set_fcrth,
3177 [FCRTL] = e1000e_set_fcrtl,
3178 [VET] = e1000e_set_vet,
3179 [RXDCTL] = e1000e_set_rxdctl,
3180 [FLASHT] = e1000e_set_16bit,
3181 [EEWR] = e1000e_set_eewr,
3182 [CTRL_DUP] = e1000e_set_ctrl,
3183 [RFCTL] = e1000e_set_rfctl,
3184 [RA + 1] = e1000e_mac_setmacaddr,
3186 [IP6AT ... IP6AT + 3] = e1000e_mac_writereg,
3187 [IP4AT ... IP4AT + 6] = e1000e_mac_writereg,
3188 [RA + 2 ... RA + 31] = e1000e_mac_writereg,
3189 [WUPM ... WUPM + 31] = e1000e_mac_writereg,
3190 [MTA ... MTA + 127] = e1000e_mac_writereg,
3191 [VFTA ... VFTA + 127] = e1000e_mac_writereg,
3192 [FFMT ... FFMT + 254] = e1000e_mac_writereg,
3193 [FFVT ... FFVT + 254] = e1000e_mac_writereg,
3194 [PBM ... PBM + 10239] = e1000e_mac_writereg,
3195 [MDEF ... MDEF + 7] = e1000e_mac_writereg,
3196 [FFLT ... FFLT + 10] = e1000e_mac_writereg,
3197 [FTFT ... FTFT + 254] = e1000e_mac_writereg,
3198 [RETA ... RETA + 31] = e1000e_mac_writereg,
3199 [RSSRK ... RSSRK + 31] = e1000e_mac_writereg,
3200 [MAVTV0 ... MAVTV3] = e1000e_mac_writereg,
3201 [EITR...EITR + E1000E_MSIX_VEC_NUM - 1] = e1000e_set_eitr
3203 enum { E1000E_NWRITEOPS = ARRAY_SIZE(e1000e_macreg_writeops) };
3205 enum { MAC_ACCESS_PARTIAL = 1 };
3207 /* The array below combines alias offsets of the index values for the
3208 * MAC registers that have aliases, with the indication of not fully
3209 * implemented registers (lowest bit). This combination is possible
3210 * because all of the offsets are even. */
3211 static const uint16_t mac_reg_access[E1000E_MAC_SIZE] = {
3212 /* Alias index offsets */
3213 [FCRTL_A] = 0x07fe, [FCRTH_A] = 0x0802,
3214 [RDH0_A] = 0x09bc, [RDT0_A] = 0x09bc, [RDTR_A] = 0x09c6,
3215 [RDFH_A] = 0xe904, [RDFT_A] = 0xe904,
3216 [TDH_A] = 0x0cf8, [TDT_A] = 0x0cf8, [TIDV_A] = 0x0cf8,
3217 [TDFH_A] = 0xed00, [TDFT_A] = 0xed00,
3218 [RA_A ... RA_A + 31] = 0x14f0,
3219 [VFTA_A ... VFTA_A + 127] = 0x1400,
3220 [RDBAL0_A ... RDLEN0_A] = 0x09bc,
3221 [TDBAL_A ... TDLEN_A] = 0x0cf8,
3222 /* Access options */
3223 [RDFH] = MAC_ACCESS_PARTIAL, [RDFT] = MAC_ACCESS_PARTIAL,
3224 [RDFHS] = MAC_ACCESS_PARTIAL, [RDFTS] = MAC_ACCESS_PARTIAL,
3225 [RDFPC] = MAC_ACCESS_PARTIAL,
3226 [TDFH] = MAC_ACCESS_PARTIAL, [TDFT] = MAC_ACCESS_PARTIAL,
3227 [TDFHS] = MAC_ACCESS_PARTIAL, [TDFTS] = MAC_ACCESS_PARTIAL,
3228 [TDFPC] = MAC_ACCESS_PARTIAL, [EECD] = MAC_ACCESS_PARTIAL,
3229 [PBM] = MAC_ACCESS_PARTIAL, [FLA] = MAC_ACCESS_PARTIAL,
3230 [FCAL] = MAC_ACCESS_PARTIAL, [FCAH] = MAC_ACCESS_PARTIAL,
3231 [FCT] = MAC_ACCESS_PARTIAL, [FCTTV] = MAC_ACCESS_PARTIAL,
3232 [FCRTV] = MAC_ACCESS_PARTIAL, [FCRTL] = MAC_ACCESS_PARTIAL,
3233 [FCRTH] = MAC_ACCESS_PARTIAL, [TXDCTL] = MAC_ACCESS_PARTIAL,
3234 [TXDCTL1] = MAC_ACCESS_PARTIAL,
3235 [MAVTV0 ... MAVTV3] = MAC_ACCESS_PARTIAL
3238 void
3239 e1000e_core_write(E1000ECore *core, hwaddr addr, uint64_t val, unsigned size)
3241 uint16_t index = e1000e_get_reg_index_with_offset(mac_reg_access, addr);
3243 if (index < E1000E_NWRITEOPS && e1000e_macreg_writeops[index]) {
3244 if (mac_reg_access[index] & MAC_ACCESS_PARTIAL) {
3245 trace_e1000e_wrn_regs_write_trivial(index << 2);
3247 trace_e1000e_core_write(index << 2, size, val);
3248 e1000e_macreg_writeops[index](core, index, val);
3249 } else if (index < E1000E_NREADOPS && e1000e_macreg_readops[index]) {
3250 trace_e1000e_wrn_regs_write_ro(index << 2, size, val);
3251 } else {
3252 trace_e1000e_wrn_regs_write_unknown(index << 2, size, val);
3256 uint64_t
3257 e1000e_core_read(E1000ECore *core, hwaddr addr, unsigned size)
3259 uint64_t val;
3260 uint16_t index = e1000e_get_reg_index_with_offset(mac_reg_access, addr);
3262 if (index < E1000E_NREADOPS && e1000e_macreg_readops[index]) {
3263 if (mac_reg_access[index] & MAC_ACCESS_PARTIAL) {
3264 trace_e1000e_wrn_regs_read_trivial(index << 2);
3266 val = e1000e_macreg_readops[index](core, index);
3267 trace_e1000e_core_read(index << 2, size, val);
3268 return val;
3269 } else {
3270 trace_e1000e_wrn_regs_read_unknown(index << 2, size);
3272 return 0;
3275 static inline void
3276 e1000e_autoneg_pause(E1000ECore *core)
3278 timer_del(core->autoneg_timer);
3281 static void
3282 e1000e_autoneg_resume(E1000ECore *core)
3284 if (e1000e_have_autoneg(core) &&
3285 !(core->phy[0][PHY_STATUS] & MII_SR_AUTONEG_COMPLETE)) {
3286 qemu_get_queue(core->owner_nic)->link_down = false;
3287 timer_mod(core->autoneg_timer,
3288 qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) + 500);
3292 static void
3293 e1000e_vm_state_change(void *opaque, int running, RunState state)
3295 E1000ECore *core = opaque;
3297 if (running) {
3298 trace_e1000e_vm_state_running();
3299 e1000e_intrmgr_resume(core);
3300 e1000e_autoneg_resume(core);
3301 } else {
3302 trace_e1000e_vm_state_stopped();
3303 e1000e_autoneg_pause(core);
3304 e1000e_intrmgr_pause(core);
3308 void
3309 e1000e_core_pci_realize(E1000ECore *core,
3310 const uint16_t *eeprom_templ,
3311 uint32_t eeprom_size,
3312 const uint8_t *macaddr)
3314 int i;
3316 core->autoneg_timer = timer_new_ms(QEMU_CLOCK_VIRTUAL,
3317 e1000e_autoneg_timer, core);
3318 e1000e_intrmgr_pci_realize(core);
3320 core->vmstate =
3321 qemu_add_vm_change_state_handler(e1000e_vm_state_change, core);
3323 for (i = 0; i < E1000E_NUM_QUEUES; i++) {
3324 net_tx_pkt_init(&core->tx[i].tx_pkt, core->owner,
3325 E1000E_MAX_TX_FRAGS, core->has_vnet);
3328 net_rx_pkt_init(&core->rx_pkt, core->has_vnet);
3330 e1000x_core_prepare_eeprom(core->eeprom,
3331 eeprom_templ,
3332 eeprom_size,
3333 PCI_DEVICE_GET_CLASS(core->owner)->device_id,
3334 macaddr);
3335 e1000e_update_rx_offloads(core);
3338 void
3339 e1000e_core_pci_uninit(E1000ECore *core)
3341 int i;
3343 timer_del(core->autoneg_timer);
3344 timer_free(core->autoneg_timer);
3346 e1000e_intrmgr_pci_unint(core);
3348 qemu_del_vm_change_state_handler(core->vmstate);
3350 for (i = 0; i < E1000E_NUM_QUEUES; i++) {
3351 net_tx_pkt_reset(core->tx[i].tx_pkt);
3352 net_tx_pkt_uninit(core->tx[i].tx_pkt);
3355 net_rx_pkt_uninit(core->rx_pkt);
3358 static const uint16_t
3359 e1000e_phy_reg_init[E1000E_PHY_PAGES][E1000E_PHY_PAGE_SIZE] = {
3360 [0] = {
3361 [PHY_CTRL] = MII_CR_SPEED_SELECT_MSB |
3362 MII_CR_FULL_DUPLEX |
3363 MII_CR_AUTO_NEG_EN,
3365 [PHY_STATUS] = MII_SR_EXTENDED_CAPS |
3366 MII_SR_LINK_STATUS |
3367 MII_SR_AUTONEG_CAPS |
3368 MII_SR_PREAMBLE_SUPPRESS |
3369 MII_SR_EXTENDED_STATUS |
3370 MII_SR_10T_HD_CAPS |
3371 MII_SR_10T_FD_CAPS |
3372 MII_SR_100X_HD_CAPS |
3373 MII_SR_100X_FD_CAPS,
3375 [PHY_ID1] = 0x141,
3376 [PHY_ID2] = E1000_PHY_ID2_82574x,
3377 [PHY_AUTONEG_ADV] = 0xde1,
3378 [PHY_LP_ABILITY] = 0x7e0,
3379 [PHY_AUTONEG_EXP] = BIT(2),
3380 [PHY_NEXT_PAGE_TX] = BIT(0) | BIT(13),
3381 [PHY_1000T_CTRL] = BIT(8) | BIT(9) | BIT(10) | BIT(11),
3382 [PHY_1000T_STATUS] = 0x3c00,
3383 [PHY_EXT_STATUS] = BIT(12) | BIT(13),
3385 [PHY_COPPER_CTRL1] = BIT(5) | BIT(6) | BIT(8) | BIT(9) |
3386 BIT(12) | BIT(13),
3387 [PHY_COPPER_STAT1] = BIT(3) | BIT(10) | BIT(11) | BIT(13) | BIT(15)
3389 [2] = {
3390 [PHY_MAC_CTRL1] = BIT(3) | BIT(7),
3391 [PHY_MAC_CTRL2] = BIT(1) | BIT(2) | BIT(6) | BIT(12)
3393 [3] = {
3394 [PHY_LED_TIMER_CTRL] = BIT(0) | BIT(2) | BIT(14)
3398 static const uint32_t e1000e_mac_reg_init[] = {
3399 [PBA] = 0x00140014,
3400 [LEDCTL] = BIT(1) | BIT(8) | BIT(9) | BIT(15) | BIT(17) | BIT(18),
3401 [EXTCNF_CTRL] = BIT(3),
3402 [EEMNGCTL] = BIT(31),
3403 [FLASHT] = 0x2,
3404 [FLSWCTL] = BIT(30) | BIT(31),
3405 [FLOL] = BIT(0),
3406 [RXDCTL] = BIT(16),
3407 [RXDCTL1] = BIT(16),
3408 [TIPG] = 0x8 | (0x8 << 10) | (0x6 << 20),
3409 [RXCFGL] = 0x88F7,
3410 [RXUDP] = 0x319,
3411 [CTRL] = E1000_CTRL_FD | E1000_CTRL_SWDPIN2 | E1000_CTRL_SWDPIN0 |
3412 E1000_CTRL_SPD_1000 | E1000_CTRL_SLU |
3413 E1000_CTRL_ADVD3WUC,
3414 [STATUS] = E1000_STATUS_ASDV_1000 | E1000_STATUS_LU,
3415 [PSRCTL] = (2 << E1000_PSRCTL_BSIZE0_SHIFT) |
3416 (4 << E1000_PSRCTL_BSIZE1_SHIFT) |
3417 (4 << E1000_PSRCTL_BSIZE2_SHIFT),
3418 [TARC0] = 0x3 | E1000_TARC_ENABLE,
3419 [TARC1] = 0x3 | E1000_TARC_ENABLE,
3420 [EECD] = E1000_EECD_AUTO_RD | E1000_EECD_PRES,
3421 [EERD] = E1000_EERW_DONE,
3422 [EEWR] = E1000_EERW_DONE,
3423 [GCR] = E1000_L0S_ADJUST |
3424 E1000_L1_ENTRY_LATENCY_MSB |
3425 E1000_L1_ENTRY_LATENCY_LSB,
3426 [TDFH] = 0x600,
3427 [TDFT] = 0x600,
3428 [TDFHS] = 0x600,
3429 [TDFTS] = 0x600,
3430 [POEMB] = 0x30D,
3431 [PBS] = 0x028,
3432 [MANC] = E1000_MANC_DIS_IP_CHK_ARP,
3433 [FACTPS] = E1000_FACTPS_LAN0_ON | 0x20000000,
3434 [SWSM] = 1,
3435 [RXCSUM] = E1000_RXCSUM_IPOFLD | E1000_RXCSUM_TUOFLD,
3436 [ITR] = E1000E_MIN_XITR,
3437 [EITR...EITR + E1000E_MSIX_VEC_NUM - 1] = E1000E_MIN_XITR,
3440 void
3441 e1000e_core_reset(E1000ECore *core)
3443 int i;
3445 timer_del(core->autoneg_timer);
3447 e1000e_intrmgr_reset(core);
3449 memset(core->phy, 0, sizeof core->phy);
3450 memmove(core->phy, e1000e_phy_reg_init, sizeof e1000e_phy_reg_init);
3451 memset(core->mac, 0, sizeof core->mac);
3452 memmove(core->mac, e1000e_mac_reg_init, sizeof e1000e_mac_reg_init);
3454 core->rxbuf_min_shift = 1 + E1000_RING_DESC_LEN_SHIFT;
3456 if (qemu_get_queue(core->owner_nic)->link_down) {
3457 e1000e_link_down(core);
3460 e1000x_reset_mac_addr(core->owner_nic, core->mac, core->permanent_mac);
3462 for (i = 0; i < ARRAY_SIZE(core->tx); i++) {
3463 net_tx_pkt_reset(core->tx[i].tx_pkt);
3464 memset(&core->tx[i].props, 0, sizeof(core->tx[i].props));
3465 core->tx[i].skip_cp = false;
3469 void e1000e_core_pre_save(E1000ECore *core)
3471 int i;
3472 NetClientState *nc = qemu_get_queue(core->owner_nic);
3475 * If link is down and auto-negotiation is supported and ongoing,
3476 * complete auto-negotiation immediately. This allows us to look
3477 * at MII_SR_AUTONEG_COMPLETE to infer link status on load.
3479 if (nc->link_down && e1000e_have_autoneg(core)) {
3480 core->phy[0][PHY_STATUS] |= MII_SR_AUTONEG_COMPLETE;
3481 e1000e_update_flowctl_status(core);
3484 for (i = 0; i < ARRAY_SIZE(core->tx); i++) {
3485 if (net_tx_pkt_has_fragments(core->tx[i].tx_pkt)) {
3486 core->tx[i].skip_cp = true;
3492 e1000e_core_post_load(E1000ECore *core)
3494 NetClientState *nc = qemu_get_queue(core->owner_nic);
3496 /* nc.link_down can't be migrated, so infer link_down according
3497 * to link status bit in core.mac[STATUS].
3499 nc->link_down = (core->mac[STATUS] & E1000_STATUS_LU) == 0;
3501 return 0;