spice: Convert core to QEMU thread API
[qemu.git] / linux-user / qemu.h
blob55ad9d8586c0ac0b36ffa5160abff3526c97ef03
1 #ifndef QEMU_H
2 #define QEMU_H
4 #include <signal.h>
5 #include <string.h>
7 #include "cpu.h"
9 #undef DEBUG_REMAP
10 #ifdef DEBUG_REMAP
11 #include <stdlib.h>
12 #endif /* DEBUG_REMAP */
14 #include "qemu-types.h"
16 #include "thunk.h"
17 #include "syscall_defs.h"
18 #include "syscall.h"
19 #include "target_signal.h"
20 #include "gdbstub.h"
21 #include "qemu-queue.h"
23 #if defined(CONFIG_USE_NPTL)
24 #define THREAD __thread
25 #else
26 #define THREAD
27 #endif
29 /* This struct is used to hold certain information about the image.
30 * Basically, it replicates in user space what would be certain
31 * task_struct fields in the kernel
33 struct image_info {
34 abi_ulong load_bias;
35 abi_ulong load_addr;
36 abi_ulong start_code;
37 abi_ulong end_code;
38 abi_ulong start_data;
39 abi_ulong end_data;
40 abi_ulong start_brk;
41 abi_ulong brk;
42 abi_ulong start_mmap;
43 abi_ulong mmap;
44 abi_ulong rss;
45 abi_ulong start_stack;
46 abi_ulong stack_limit;
47 abi_ulong entry;
48 abi_ulong code_offset;
49 abi_ulong data_offset;
50 abi_ulong saved_auxv;
51 abi_ulong arg_start;
52 abi_ulong arg_end;
53 int personality;
54 #ifdef CONFIG_USE_FDPIC
55 abi_ulong loadmap_addr;
56 uint16_t nsegs;
57 void *loadsegs;
58 abi_ulong pt_dynamic_addr;
59 struct image_info *other_info;
60 #endif
63 #ifdef TARGET_I386
64 /* Information about the current linux thread */
65 struct vm86_saved_state {
66 uint32_t eax; /* return code */
67 uint32_t ebx;
68 uint32_t ecx;
69 uint32_t edx;
70 uint32_t esi;
71 uint32_t edi;
72 uint32_t ebp;
73 uint32_t esp;
74 uint32_t eflags;
75 uint32_t eip;
76 uint16_t cs, ss, ds, es, fs, gs;
78 #endif
80 #ifdef TARGET_ARM
81 /* FPU emulator */
82 #include "nwfpe/fpa11.h"
83 #endif
85 #define MAX_SIGQUEUE_SIZE 1024
87 struct sigqueue {
88 struct sigqueue *next;
89 target_siginfo_t info;
92 struct emulated_sigtable {
93 int pending; /* true if signal is pending */
94 struct sigqueue *first;
95 struct sigqueue info; /* in order to always have memory for the
96 first signal, we put it here */
99 /* NOTE: we force a big alignment so that the stack stored after is
100 aligned too */
101 typedef struct TaskState {
102 pid_t ts_tid; /* tid (or pid) of this task */
103 #ifdef TARGET_ARM
104 /* FPA state */
105 FPA11 fpa;
106 int swi_errno;
107 #endif
108 #ifdef TARGET_UNICORE32
109 int swi_errno;
110 #endif
111 #if defined(TARGET_I386) && !defined(TARGET_X86_64)
112 abi_ulong target_v86;
113 struct vm86_saved_state vm86_saved_regs;
114 struct target_vm86plus_struct vm86plus;
115 uint32_t v86flags;
116 uint32_t v86mask;
117 #endif
118 #ifdef CONFIG_USE_NPTL
119 abi_ulong child_tidptr;
120 #endif
121 #ifdef TARGET_M68K
122 int sim_syscalls;
123 #endif
124 #if defined(TARGET_ARM) || defined(TARGET_M68K) || defined(TARGET_UNICORE32)
125 /* Extra fields for semihosted binaries. */
126 uint32_t stack_base;
127 uint32_t heap_base;
128 uint32_t heap_limit;
129 #endif
130 int used; /* non zero if used */
131 struct image_info *info;
132 struct linux_binprm *bprm;
134 struct emulated_sigtable sigtab[TARGET_NSIG];
135 struct sigqueue sigqueue_table[MAX_SIGQUEUE_SIZE]; /* siginfo queue */
136 struct sigqueue *first_free; /* first free siginfo queue entry */
137 int signal_pending; /* non zero if a signal may be pending */
138 } __attribute__((aligned(16))) TaskState;
140 extern char *exec_path;
141 void init_task_state(TaskState *ts);
142 void task_settid(TaskState *);
143 void stop_all_tasks(void);
144 extern const char *qemu_uname_release;
145 extern unsigned long mmap_min_addr;
147 /* ??? See if we can avoid exposing so much of the loader internals. */
149 * MAX_ARG_PAGES defines the number of pages allocated for arguments
150 * and envelope for the new program. 32 should suffice, this gives
151 * a maximum env+arg of 128kB w/4KB pages!
153 #define MAX_ARG_PAGES 33
155 /* Read a good amount of data initially, to hopefully get all the
156 program headers loaded. */
157 #define BPRM_BUF_SIZE 1024
160 * This structure is used to hold the arguments that are
161 * used when loading binaries.
163 struct linux_binprm {
164 char buf[BPRM_BUF_SIZE] __attribute__((aligned));
165 void *page[MAX_ARG_PAGES];
166 abi_ulong p;
167 int fd;
168 int e_uid, e_gid;
169 int argc, envc;
170 char **argv;
171 char **envp;
172 char * filename; /* Name of binary */
173 int (*core_dump)(int, const CPUState *); /* coredump routine */
176 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop);
177 abi_ulong loader_build_argptr(int envc, int argc, abi_ulong sp,
178 abi_ulong stringp, int push_ptr);
179 int loader_exec(const char * filename, char ** argv, char ** envp,
180 struct target_pt_regs * regs, struct image_info *infop,
181 struct linux_binprm *);
183 int load_elf_binary(struct linux_binprm * bprm, struct target_pt_regs * regs,
184 struct image_info * info);
185 int load_flt_binary(struct linux_binprm * bprm, struct target_pt_regs * regs,
186 struct image_info * info);
188 abi_long memcpy_to_target(abi_ulong dest, const void *src,
189 unsigned long len);
190 void target_set_brk(abi_ulong new_brk);
191 abi_long do_brk(abi_ulong new_brk);
192 void syscall_init(void);
193 abi_long do_syscall(void *cpu_env, int num, abi_long arg1,
194 abi_long arg2, abi_long arg3, abi_long arg4,
195 abi_long arg5, abi_long arg6, abi_long arg7,
196 abi_long arg8);
197 void gemu_log(const char *fmt, ...) GCC_FMT_ATTR(1, 2);
198 extern THREAD CPUState *thread_env;
199 void cpu_loop(CPUState *env);
200 char *target_strerror(int err);
201 int get_osversion(void);
202 void fork_start(void);
203 void fork_end(int child);
205 /* Return true if the proposed guest_base is suitable for the guest.
206 * The guest code may leave a page mapped and populate it if the
207 * address is suitable.
209 bool guest_validate_base(unsigned long guest_base);
211 #include "qemu-log.h"
213 /* strace.c */
214 void print_syscall(int num,
215 abi_long arg1, abi_long arg2, abi_long arg3,
216 abi_long arg4, abi_long arg5, abi_long arg6);
217 void print_syscall_ret(int num, abi_long arg1);
218 extern int do_strace;
220 /* signal.c */
221 void process_pending_signals(CPUState *cpu_env);
222 void signal_init(void);
223 int queue_signal(CPUState *env, int sig, target_siginfo_t *info);
224 void host_to_target_siginfo(target_siginfo_t *tinfo, const siginfo_t *info);
225 void target_to_host_siginfo(siginfo_t *info, const target_siginfo_t *tinfo);
226 int target_to_host_signal(int sig);
227 int host_to_target_signal(int sig);
228 long do_sigreturn(CPUState *env);
229 long do_rt_sigreturn(CPUState *env);
230 abi_long do_sigaltstack(abi_ulong uss_addr, abi_ulong uoss_addr, abi_ulong sp);
232 #ifdef TARGET_I386
233 /* vm86.c */
234 void save_v86_state(CPUX86State *env);
235 void handle_vm86_trap(CPUX86State *env, int trapno);
236 void handle_vm86_fault(CPUX86State *env);
237 int do_vm86(CPUX86State *env, long subfunction, abi_ulong v86_addr);
238 #elif defined(TARGET_SPARC64)
239 void sparc64_set_context(CPUSPARCState *env);
240 void sparc64_get_context(CPUSPARCState *env);
241 #endif
243 /* mmap.c */
244 int target_mprotect(abi_ulong start, abi_ulong len, int prot);
245 abi_long target_mmap(abi_ulong start, abi_ulong len, int prot,
246 int flags, int fd, abi_ulong offset);
247 int target_munmap(abi_ulong start, abi_ulong len);
248 abi_long target_mremap(abi_ulong old_addr, abi_ulong old_size,
249 abi_ulong new_size, unsigned long flags,
250 abi_ulong new_addr);
251 int target_msync(abi_ulong start, abi_ulong len, int flags);
252 extern unsigned long last_brk;
253 void mmap_lock(void);
254 void mmap_unlock(void);
255 abi_ulong mmap_find_vma(abi_ulong, abi_ulong);
256 void cpu_list_lock(void);
257 void cpu_list_unlock(void);
258 #if defined(CONFIG_USE_NPTL)
259 void mmap_fork_start(void);
260 void mmap_fork_end(int child);
261 #endif
263 /* main.c */
264 extern unsigned long guest_stack_size;
266 /* user access */
268 #define VERIFY_READ 0
269 #define VERIFY_WRITE 1 /* implies read access */
271 static inline int access_ok(int type, abi_ulong addr, abi_ulong size)
273 return page_check_range((target_ulong)addr, size,
274 (type == VERIFY_READ) ? PAGE_READ : (PAGE_READ | PAGE_WRITE)) == 0;
277 /* NOTE __get_user and __put_user use host pointers and don't check access. */
278 /* These are usually used to access struct data members once the
279 * struct has been locked - usually with lock_user_struct().
281 #define __put_user(x, hptr)\
283 switch(sizeof(*hptr)) {\
284 case 1:\
285 *(uint8_t *)(hptr) = (uint8_t)(typeof(*hptr))(x);\
286 break;\
287 case 2:\
288 *(uint16_t *)(hptr) = tswap16((uint16_t)(typeof(*hptr))(x));\
289 break;\
290 case 4:\
291 *(uint32_t *)(hptr) = tswap32((uint32_t)(typeof(*hptr))(x));\
292 break;\
293 case 8:\
294 *(uint64_t *)(hptr) = tswap64((typeof(*hptr))(x));\
295 break;\
296 default:\
297 abort();\
302 #define __get_user(x, hptr) \
304 switch(sizeof(*hptr)) {\
305 case 1:\
306 x = (typeof(*hptr))*(uint8_t *)(hptr);\
307 break;\
308 case 2:\
309 x = (typeof(*hptr))tswap16(*(uint16_t *)(hptr));\
310 break;\
311 case 4:\
312 x = (typeof(*hptr))tswap32(*(uint32_t *)(hptr));\
313 break;\
314 case 8:\
315 x = (typeof(*hptr))tswap64(*(uint64_t *)(hptr));\
316 break;\
317 default:\
318 /* avoid warning */\
319 x = 0;\
320 abort();\
325 /* put_user()/get_user() take a guest address and check access */
326 /* These are usually used to access an atomic data type, such as an int,
327 * that has been passed by address. These internally perform locking
328 * and unlocking on the data type.
330 #define put_user(x, gaddr, target_type) \
331 ({ \
332 abi_ulong __gaddr = (gaddr); \
333 target_type *__hptr; \
334 abi_long __ret; \
335 if ((__hptr = lock_user(VERIFY_WRITE, __gaddr, sizeof(target_type), 0))) { \
336 __ret = __put_user((x), __hptr); \
337 unlock_user(__hptr, __gaddr, sizeof(target_type)); \
338 } else \
339 __ret = -TARGET_EFAULT; \
340 __ret; \
343 #define get_user(x, gaddr, target_type) \
344 ({ \
345 abi_ulong __gaddr = (gaddr); \
346 target_type *__hptr; \
347 abi_long __ret; \
348 if ((__hptr = lock_user(VERIFY_READ, __gaddr, sizeof(target_type), 1))) { \
349 __ret = __get_user((x), __hptr); \
350 unlock_user(__hptr, __gaddr, 0); \
351 } else { \
352 /* avoid warning */ \
353 (x) = 0; \
354 __ret = -TARGET_EFAULT; \
356 __ret; \
359 #define put_user_ual(x, gaddr) put_user((x), (gaddr), abi_ulong)
360 #define put_user_sal(x, gaddr) put_user((x), (gaddr), abi_long)
361 #define put_user_u64(x, gaddr) put_user((x), (gaddr), uint64_t)
362 #define put_user_s64(x, gaddr) put_user((x), (gaddr), int64_t)
363 #define put_user_u32(x, gaddr) put_user((x), (gaddr), uint32_t)
364 #define put_user_s32(x, gaddr) put_user((x), (gaddr), int32_t)
365 #define put_user_u16(x, gaddr) put_user((x), (gaddr), uint16_t)
366 #define put_user_s16(x, gaddr) put_user((x), (gaddr), int16_t)
367 #define put_user_u8(x, gaddr) put_user((x), (gaddr), uint8_t)
368 #define put_user_s8(x, gaddr) put_user((x), (gaddr), int8_t)
370 #define get_user_ual(x, gaddr) get_user((x), (gaddr), abi_ulong)
371 #define get_user_sal(x, gaddr) get_user((x), (gaddr), abi_long)
372 #define get_user_u64(x, gaddr) get_user((x), (gaddr), uint64_t)
373 #define get_user_s64(x, gaddr) get_user((x), (gaddr), int64_t)
374 #define get_user_u32(x, gaddr) get_user((x), (gaddr), uint32_t)
375 #define get_user_s32(x, gaddr) get_user((x), (gaddr), int32_t)
376 #define get_user_u16(x, gaddr) get_user((x), (gaddr), uint16_t)
377 #define get_user_s16(x, gaddr) get_user((x), (gaddr), int16_t)
378 #define get_user_u8(x, gaddr) get_user((x), (gaddr), uint8_t)
379 #define get_user_s8(x, gaddr) get_user((x), (gaddr), int8_t)
381 /* copy_from_user() and copy_to_user() are usually used to copy data
382 * buffers between the target and host. These internally perform
383 * locking/unlocking of the memory.
385 abi_long copy_from_user(void *hptr, abi_ulong gaddr, size_t len);
386 abi_long copy_to_user(abi_ulong gaddr, void *hptr, size_t len);
388 /* Functions for accessing guest memory. The tget and tput functions
389 read/write single values, byteswapping as necessary. The lock_user
390 gets a pointer to a contiguous area of guest memory, but does not perform
391 and byteswapping. lock_user may return either a pointer to the guest
392 memory, or a temporary buffer. */
394 /* Lock an area of guest memory into the host. If copy is true then the
395 host area will have the same contents as the guest. */
396 static inline void *lock_user(int type, abi_ulong guest_addr, long len, int copy)
398 if (!access_ok(type, guest_addr, len))
399 return NULL;
400 #ifdef DEBUG_REMAP
402 void *addr;
403 addr = malloc(len);
404 if (copy)
405 memcpy(addr, g2h(guest_addr), len);
406 else
407 memset(addr, 0, len);
408 return addr;
410 #else
411 return g2h(guest_addr);
412 #endif
415 /* Unlock an area of guest memory. The first LEN bytes must be
416 flushed back to guest memory. host_ptr = NULL is explicitly
417 allowed and does nothing. */
418 static inline void unlock_user(void *host_ptr, abi_ulong guest_addr,
419 long len)
422 #ifdef DEBUG_REMAP
423 if (!host_ptr)
424 return;
425 if (host_ptr == g2h(guest_addr))
426 return;
427 if (len > 0)
428 memcpy(g2h(guest_addr), host_ptr, len);
429 free(host_ptr);
430 #endif
433 /* Return the length of a string in target memory or -TARGET_EFAULT if
434 access error. */
435 abi_long target_strlen(abi_ulong gaddr);
437 /* Like lock_user but for null terminated strings. */
438 static inline void *lock_user_string(abi_ulong guest_addr)
440 abi_long len;
441 len = target_strlen(guest_addr);
442 if (len < 0)
443 return NULL;
444 return lock_user(VERIFY_READ, guest_addr, (long)(len + 1), 1);
447 /* Helper macros for locking/ulocking a target struct. */
448 #define lock_user_struct(type, host_ptr, guest_addr, copy) \
449 (host_ptr = lock_user(type, guest_addr, sizeof(*host_ptr), copy))
450 #define unlock_user_struct(host_ptr, guest_addr, copy) \
451 unlock_user(host_ptr, guest_addr, (copy) ? sizeof(*host_ptr) : 0)
453 #if defined(CONFIG_USE_NPTL)
454 #include <pthread.h>
455 #endif
457 #endif /* QEMU_H */