iotests/129: Do not check @busy
[qemu.git] / linux-user / qemu.h
blob17aa99216575485d5d705b0567cd00d2c0baeeeb
1 #ifndef QEMU_H
2 #define QEMU_H
4 #include "hostdep.h"
5 #include "cpu.h"
6 #include "exec/exec-all.h"
7 #include "exec/cpu_ldst.h"
9 #undef DEBUG_REMAP
10 #ifdef DEBUG_REMAP
11 #endif /* DEBUG_REMAP */
13 #include "exec/user/abitypes.h"
15 #include "exec/user/thunk.h"
16 #include "syscall_defs.h"
17 #include "target_syscall.h"
18 #include "exec/gdbstub.h"
20 /* This is the size of the host kernel's sigset_t, needed where we make
21 * direct system calls that take a sigset_t pointer and a size.
23 #define SIGSET_T_SIZE (_NSIG / 8)
25 /* This struct is used to hold certain information about the image.
26 * Basically, it replicates in user space what would be certain
27 * task_struct fields in the kernel
29 struct image_info {
30 abi_ulong load_bias;
31 abi_ulong load_addr;
32 abi_ulong start_code;
33 abi_ulong end_code;
34 abi_ulong start_data;
35 abi_ulong end_data;
36 abi_ulong start_brk;
37 abi_ulong brk;
38 abi_ulong reserve_brk;
39 abi_ulong start_mmap;
40 abi_ulong start_stack;
41 abi_ulong stack_limit;
42 abi_ulong entry;
43 abi_ulong code_offset;
44 abi_ulong data_offset;
45 abi_ulong saved_auxv;
46 abi_ulong auxv_len;
47 abi_ulong arg_start;
48 abi_ulong arg_end;
49 abi_ulong arg_strings;
50 abi_ulong env_strings;
51 abi_ulong file_string;
52 uint32_t elf_flags;
53 int personality;
54 abi_ulong alignment;
56 /* The fields below are used in FDPIC mode. */
57 abi_ulong loadmap_addr;
58 uint16_t nsegs;
59 void *loadsegs;
60 abi_ulong pt_dynamic_addr;
61 abi_ulong interpreter_loadmap_addr;
62 abi_ulong interpreter_pt_dynamic_addr;
63 struct image_info *other_info;
65 /* For target-specific processing of NT_GNU_PROPERTY_TYPE_0. */
66 uint32_t note_flags;
68 #ifdef TARGET_MIPS
69 int fp_abi;
70 int interp_fp_abi;
71 #endif
74 #ifdef TARGET_I386
75 /* Information about the current linux thread */
76 struct vm86_saved_state {
77 uint32_t eax; /* return code */
78 uint32_t ebx;
79 uint32_t ecx;
80 uint32_t edx;
81 uint32_t esi;
82 uint32_t edi;
83 uint32_t ebp;
84 uint32_t esp;
85 uint32_t eflags;
86 uint32_t eip;
87 uint16_t cs, ss, ds, es, fs, gs;
89 #endif
91 #if defined(TARGET_ARM) && defined(TARGET_ABI32)
92 /* FPU emulator */
93 #include "nwfpe/fpa11.h"
94 #endif
96 #define MAX_SIGQUEUE_SIZE 1024
98 struct emulated_sigtable {
99 int pending; /* true if signal is pending */
100 target_siginfo_t info;
103 /* NOTE: we force a big alignment so that the stack stored after is
104 aligned too */
105 typedef struct TaskState {
106 pid_t ts_tid; /* tid (or pid) of this task */
107 #ifdef TARGET_ARM
108 # ifdef TARGET_ABI32
109 /* FPA state */
110 FPA11 fpa;
111 # endif
112 #endif
113 #if defined(TARGET_ARM) || defined(TARGET_RISCV)
114 int swi_errno;
115 #endif
116 #if defined(TARGET_I386) && !defined(TARGET_X86_64)
117 abi_ulong target_v86;
118 struct vm86_saved_state vm86_saved_regs;
119 struct target_vm86plus_struct vm86plus;
120 uint32_t v86flags;
121 uint32_t v86mask;
122 #endif
123 abi_ulong child_tidptr;
124 #ifdef TARGET_M68K
125 abi_ulong tp_value;
126 #endif
127 #if defined(TARGET_ARM) || defined(TARGET_M68K) || defined(TARGET_RISCV)
128 /* Extra fields for semihosted binaries. */
129 abi_ulong heap_base;
130 abi_ulong heap_limit;
131 #endif
132 abi_ulong stack_base;
133 int used; /* non zero if used */
134 struct image_info *info;
135 struct linux_binprm *bprm;
137 struct emulated_sigtable sync_signal;
138 struct emulated_sigtable sigtab[TARGET_NSIG];
139 /* This thread's signal mask, as requested by the guest program.
140 * The actual signal mask of this thread may differ:
141 * + we don't let SIGSEGV and SIGBUS be blocked while running guest code
142 * + sometimes we block all signals to avoid races
144 sigset_t signal_mask;
145 /* The signal mask imposed by a guest sigsuspend syscall, if we are
146 * currently in the middle of such a syscall
148 sigset_t sigsuspend_mask;
149 /* Nonzero if we're leaving a sigsuspend and sigsuspend_mask is valid. */
150 int in_sigsuspend;
152 /* Nonzero if process_pending_signals() needs to do something (either
153 * handle a pending signal or unblock signals).
154 * This flag is written from a signal handler so should be accessed via
155 * the qatomic_read() and qatomic_set() functions. (It is not accessed
156 * from multiple threads.)
158 int signal_pending;
160 /* This thread's sigaltstack, if it has one */
161 struct target_sigaltstack sigaltstack_used;
162 } __attribute__((aligned(16))) TaskState;
164 extern char *exec_path;
165 void init_task_state(TaskState *ts);
166 void task_settid(TaskState *);
167 void stop_all_tasks(void);
168 extern const char *qemu_uname_release;
169 extern unsigned long mmap_min_addr;
171 /* ??? See if we can avoid exposing so much of the loader internals. */
173 /* Read a good amount of data initially, to hopefully get all the
174 program headers loaded. */
175 #define BPRM_BUF_SIZE 1024
178 * This structure is used to hold the arguments that are
179 * used when loading binaries.
181 struct linux_binprm {
182 char buf[BPRM_BUF_SIZE] __attribute__((aligned));
183 abi_ulong p;
184 int fd;
185 int e_uid, e_gid;
186 int argc, envc;
187 char **argv;
188 char **envp;
189 char * filename; /* Name of binary */
190 int (*core_dump)(int, const CPUArchState *); /* coredump routine */
193 typedef struct IOCTLEntry IOCTLEntry;
195 typedef abi_long do_ioctl_fn(const IOCTLEntry *ie, uint8_t *buf_temp,
196 int fd, int cmd, abi_long arg);
198 struct IOCTLEntry {
199 int target_cmd;
200 unsigned int host_cmd;
201 const char *name;
202 int access;
203 do_ioctl_fn *do_ioctl;
204 const argtype arg_type[5];
207 extern IOCTLEntry ioctl_entries[];
209 #define IOC_R 0x0001
210 #define IOC_W 0x0002
211 #define IOC_RW (IOC_R | IOC_W)
213 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop);
214 abi_ulong loader_build_argptr(int envc, int argc, abi_ulong sp,
215 abi_ulong stringp, int push_ptr);
216 int loader_exec(int fdexec, const char *filename, char **argv, char **envp,
217 struct target_pt_regs * regs, struct image_info *infop,
218 struct linux_binprm *);
220 /* Returns true if the image uses the FDPIC ABI. If this is the case,
221 * we have to provide some information (loadmap, pt_dynamic_info) such
222 * that the program can be relocated adequately. This is also useful
223 * when handling signals.
225 int info_is_fdpic(struct image_info *info);
227 uint32_t get_elf_eflags(int fd);
228 int load_elf_binary(struct linux_binprm *bprm, struct image_info *info);
229 int load_flt_binary(struct linux_binprm *bprm, struct image_info *info);
231 abi_long memcpy_to_target(abi_ulong dest, const void *src,
232 unsigned long len);
233 void target_set_brk(abi_ulong new_brk);
234 abi_long do_brk(abi_ulong new_brk);
235 void syscall_init(void);
236 abi_long do_syscall(void *cpu_env, int num, abi_long arg1,
237 abi_long arg2, abi_long arg3, abi_long arg4,
238 abi_long arg5, abi_long arg6, abi_long arg7,
239 abi_long arg8);
240 extern __thread CPUState *thread_cpu;
241 void cpu_loop(CPUArchState *env);
242 const char *target_strerror(int err);
243 int get_osversion(void);
244 void init_qemu_uname_release(void);
245 void fork_start(void);
246 void fork_end(int child);
249 * probe_guest_base:
250 * @image_name: the executable being loaded
251 * @loaddr: the lowest fixed address in the executable
252 * @hiaddr: the highest fixed address in the executable
254 * Creates the initial guest address space in the host memory space.
256 * If @loaddr == 0, then no address in the executable is fixed,
257 * i.e. it is fully relocatable. In that case @hiaddr is the size
258 * of the executable.
260 * This function will not return if a valid value for guest_base
261 * cannot be chosen. On return, the executable loader can expect
263 * target_mmap(loaddr, hiaddr - loaddr, ...)
265 * to succeed.
267 void probe_guest_base(const char *image_name,
268 abi_ulong loaddr, abi_ulong hiaddr);
270 #include "qemu/log.h"
272 /* safe_syscall.S */
275 * safe_syscall:
276 * @int number: number of system call to make
277 * ...: arguments to the system call
279 * Call a system call if guest signal not pending.
280 * This has the same API as the libc syscall() function, except that it
281 * may return -1 with errno == TARGET_ERESTARTSYS if a signal was pending.
283 * Returns: the system call result, or -1 with an error code in errno
284 * (Errnos are host errnos; we rely on TARGET_ERESTARTSYS not clashing
285 * with any of the host errno values.)
288 /* A guide to using safe_syscall() to handle interactions between guest
289 * syscalls and guest signals:
291 * Guest syscalls come in two flavours:
293 * (1) Non-interruptible syscalls
295 * These are guest syscalls that never get interrupted by signals and
296 * so never return EINTR. They can be implemented straightforwardly in
297 * QEMU: just make sure that if the implementation code has to make any
298 * blocking calls that those calls are retried if they return EINTR.
299 * It's also OK to implement these with safe_syscall, though it will be
300 * a little less efficient if a signal is delivered at the 'wrong' moment.
302 * Some non-interruptible syscalls need to be handled using block_signals()
303 * to block signals for the duration of the syscall. This mainly applies
304 * to code which needs to modify the data structures used by the
305 * host_signal_handler() function and the functions it calls, including
306 * all syscalls which change the thread's signal mask.
308 * (2) Interruptible syscalls
310 * These are guest syscalls that can be interrupted by signals and
311 * for which we need to either return EINTR or arrange for the guest
312 * syscall to be restarted. This category includes both syscalls which
313 * always restart (and in the kernel return -ERESTARTNOINTR), ones
314 * which only restart if there is no handler (kernel returns -ERESTARTNOHAND
315 * or -ERESTART_RESTARTBLOCK), and the most common kind which restart
316 * if the handler was registered with SA_RESTART (kernel returns
317 * -ERESTARTSYS). System calls which are only interruptible in some
318 * situations (like 'open') also need to be handled this way.
320 * Here it is important that the host syscall is made
321 * via this safe_syscall() function, and *not* via the host libc.
322 * If the host libc is used then the implementation will appear to work
323 * most of the time, but there will be a race condition where a
324 * signal could arrive just before we make the host syscall inside libc,
325 * and then then guest syscall will not correctly be interrupted.
326 * Instead the implementation of the guest syscall can use the safe_syscall
327 * function but otherwise just return the result or errno in the usual
328 * way; the main loop code will take care of restarting the syscall
329 * if appropriate.
331 * (If the implementation needs to make multiple host syscalls this is
332 * OK; any which might really block must be via safe_syscall(); for those
333 * which are only technically blocking (ie which we know in practice won't
334 * stay in the host kernel indefinitely) it's OK to use libc if necessary.
335 * You must be able to cope with backing out correctly if some safe_syscall
336 * you make in the implementation returns either -TARGET_ERESTARTSYS or
337 * EINTR though.)
339 * block_signals() cannot be used for interruptible syscalls.
342 * How and why the safe_syscall implementation works:
344 * The basic setup is that we make the host syscall via a known
345 * section of host native assembly. If a signal occurs, our signal
346 * handler checks the interrupted host PC against the addresse of that
347 * known section. If the PC is before or at the address of the syscall
348 * instruction then we change the PC to point at a "return
349 * -TARGET_ERESTARTSYS" code path instead, and then exit the signal handler
350 * (causing the safe_syscall() call to immediately return that value).
351 * Then in the main.c loop if we see this magic return value we adjust
352 * the guest PC to wind it back to before the system call, and invoke
353 * the guest signal handler as usual.
355 * This winding-back will happen in two cases:
356 * (1) signal came in just before we took the host syscall (a race);
357 * in this case we'll take the guest signal and have another go
358 * at the syscall afterwards, and this is indistinguishable for the
359 * guest from the timing having been different such that the guest
360 * signal really did win the race
361 * (2) signal came in while the host syscall was blocking, and the
362 * host kernel decided the syscall should be restarted;
363 * in this case we want to restart the guest syscall also, and so
364 * rewinding is the right thing. (Note that "restart" semantics mean
365 * "first call the signal handler, then reattempt the syscall".)
366 * The other situation to consider is when a signal came in while the
367 * host syscall was blocking, and the host kernel decided that the syscall
368 * should not be restarted; in this case QEMU's host signal handler will
369 * be invoked with the PC pointing just after the syscall instruction,
370 * with registers indicating an EINTR return; the special code in the
371 * handler will not kick in, and we will return EINTR to the guest as
372 * we should.
374 * Notice that we can leave the host kernel to make the decision for
375 * us about whether to do a restart of the syscall or not; we do not
376 * need to check SA_RESTART flags in QEMU or distinguish the various
377 * kinds of restartability.
379 #ifdef HAVE_SAFE_SYSCALL
380 /* The core part of this function is implemented in assembly */
381 extern long safe_syscall_base(int *pending, long number, ...);
383 #define safe_syscall(...) \
384 ({ \
385 long ret_; \
386 int *psp_ = &((TaskState *)thread_cpu->opaque)->signal_pending; \
387 ret_ = safe_syscall_base(psp_, __VA_ARGS__); \
388 if (is_error(ret_)) { \
389 errno = -ret_; \
390 ret_ = -1; \
392 ret_; \
395 #else
397 /* Fallback for architectures which don't yet provide a safe-syscall assembly
398 * fragment; note that this is racy!
399 * This should go away when all host architectures have been updated.
401 #define safe_syscall syscall
403 #endif
405 /* syscall.c */
406 int host_to_target_waitstatus(int status);
408 /* strace.c */
409 void print_syscall(void *cpu_env, int num,
410 abi_long arg1, abi_long arg2, abi_long arg3,
411 abi_long arg4, abi_long arg5, abi_long arg6);
412 void print_syscall_ret(void *cpu_env, int num, abi_long ret,
413 abi_long arg1, abi_long arg2, abi_long arg3,
414 abi_long arg4, abi_long arg5, abi_long arg6);
416 * print_taken_signal:
417 * @target_signum: target signal being taken
418 * @tinfo: target_siginfo_t which will be passed to the guest for the signal
420 * Print strace output indicating that this signal is being taken by the guest,
421 * in a format similar to:
422 * --- SIGSEGV {si_signo=SIGSEGV, si_code=SI_KERNEL, si_addr=0} ---
424 void print_taken_signal(int target_signum, const target_siginfo_t *tinfo);
426 /* signal.c */
427 void process_pending_signals(CPUArchState *cpu_env);
428 void signal_init(void);
429 int queue_signal(CPUArchState *env, int sig, int si_type,
430 target_siginfo_t *info);
431 void host_to_target_siginfo(target_siginfo_t *tinfo, const siginfo_t *info);
432 void target_to_host_siginfo(siginfo_t *info, const target_siginfo_t *tinfo);
433 int target_to_host_signal(int sig);
434 int host_to_target_signal(int sig);
435 long do_sigreturn(CPUArchState *env);
436 long do_rt_sigreturn(CPUArchState *env);
437 abi_long do_sigaltstack(abi_ulong uss_addr, abi_ulong uoss_addr, abi_ulong sp);
438 int do_sigprocmask(int how, const sigset_t *set, sigset_t *oldset);
439 abi_long do_swapcontext(CPUArchState *env, abi_ulong uold_ctx,
440 abi_ulong unew_ctx, abi_long ctx_size);
442 * block_signals: block all signals while handling this guest syscall
444 * Block all signals, and arrange that the signal mask is returned to
445 * its correct value for the guest before we resume execution of guest code.
446 * If this function returns non-zero, then the caller should immediately
447 * return -TARGET_ERESTARTSYS to the main loop, which will take the pending
448 * signal and restart execution of the syscall.
449 * If block_signals() returns zero, then the caller can continue with
450 * emulation of the system call knowing that no signals can be taken
451 * (and therefore that no race conditions will result).
452 * This should only be called once, because if it is called a second time
453 * it will always return non-zero. (Think of it like a mutex that can't
454 * be recursively locked.)
455 * Signals will be unblocked again by process_pending_signals().
457 * Return value: non-zero if there was a pending signal, zero if not.
459 int block_signals(void); /* Returns non zero if signal pending */
461 #ifdef TARGET_I386
462 /* vm86.c */
463 void save_v86_state(CPUX86State *env);
464 void handle_vm86_trap(CPUX86State *env, int trapno);
465 void handle_vm86_fault(CPUX86State *env);
466 int do_vm86(CPUX86State *env, long subfunction, abi_ulong v86_addr);
467 #elif defined(TARGET_SPARC64)
468 void sparc64_set_context(CPUSPARCState *env);
469 void sparc64_get_context(CPUSPARCState *env);
470 #endif
472 /* mmap.c */
473 int target_mprotect(abi_ulong start, abi_ulong len, int prot);
474 abi_long target_mmap(abi_ulong start, abi_ulong len, int prot,
475 int flags, int fd, abi_ulong offset);
476 int target_munmap(abi_ulong start, abi_ulong len);
477 abi_long target_mremap(abi_ulong old_addr, abi_ulong old_size,
478 abi_ulong new_size, unsigned long flags,
479 abi_ulong new_addr);
480 extern unsigned long last_brk;
481 extern abi_ulong mmap_next_start;
482 abi_ulong mmap_find_vma(abi_ulong, abi_ulong, abi_ulong);
483 void mmap_fork_start(void);
484 void mmap_fork_end(int child);
486 /* main.c */
487 extern unsigned long guest_stack_size;
489 /* user access */
491 #define VERIFY_READ 0
492 #define VERIFY_WRITE 1 /* implies read access */
494 static inline int access_ok(int type, abi_ulong addr, abi_ulong size)
496 return guest_addr_valid(addr) &&
497 (size == 0 || guest_addr_valid(addr + size - 1)) &&
498 page_check_range((target_ulong)addr, size,
499 (type == VERIFY_READ) ? PAGE_READ : (PAGE_READ | PAGE_WRITE)) == 0;
502 /* NOTE __get_user and __put_user use host pointers and don't check access.
503 These are usually used to access struct data members once the struct has
504 been locked - usually with lock_user_struct. */
507 * Tricky points:
508 * - Use __builtin_choose_expr to avoid type promotion from ?:,
509 * - Invalid sizes result in a compile time error stemming from
510 * the fact that abort has no parameters.
511 * - It's easier to use the endian-specific unaligned load/store
512 * functions than host-endian unaligned load/store plus tswapN.
513 * - The pragmas are necessary only to silence a clang false-positive
514 * warning: see https://bugs.llvm.org/show_bug.cgi?id=39113 .
515 * - gcc has bugs in its _Pragma() support in some versions, eg
516 * https://gcc.gnu.org/bugzilla/show_bug.cgi?id=83256 -- so we only
517 * include the warning-suppression pragmas for clang
519 #if defined(__clang__) && __has_warning("-Waddress-of-packed-member")
520 #define PRAGMA_DISABLE_PACKED_WARNING \
521 _Pragma("GCC diagnostic push"); \
522 _Pragma("GCC diagnostic ignored \"-Waddress-of-packed-member\"")
524 #define PRAGMA_REENABLE_PACKED_WARNING \
525 _Pragma("GCC diagnostic pop")
527 #else
528 #define PRAGMA_DISABLE_PACKED_WARNING
529 #define PRAGMA_REENABLE_PACKED_WARNING
530 #endif
532 #define __put_user_e(x, hptr, e) \
533 do { \
534 PRAGMA_DISABLE_PACKED_WARNING; \
535 (__builtin_choose_expr(sizeof(*(hptr)) == 1, stb_p, \
536 __builtin_choose_expr(sizeof(*(hptr)) == 2, stw_##e##_p, \
537 __builtin_choose_expr(sizeof(*(hptr)) == 4, stl_##e##_p, \
538 __builtin_choose_expr(sizeof(*(hptr)) == 8, stq_##e##_p, abort)))) \
539 ((hptr), (x)), (void)0); \
540 PRAGMA_REENABLE_PACKED_WARNING; \
541 } while (0)
543 #define __get_user_e(x, hptr, e) \
544 do { \
545 PRAGMA_DISABLE_PACKED_WARNING; \
546 ((x) = (typeof(*hptr))( \
547 __builtin_choose_expr(sizeof(*(hptr)) == 1, ldub_p, \
548 __builtin_choose_expr(sizeof(*(hptr)) == 2, lduw_##e##_p, \
549 __builtin_choose_expr(sizeof(*(hptr)) == 4, ldl_##e##_p, \
550 __builtin_choose_expr(sizeof(*(hptr)) == 8, ldq_##e##_p, abort)))) \
551 (hptr)), (void)0); \
552 PRAGMA_REENABLE_PACKED_WARNING; \
553 } while (0)
556 #ifdef TARGET_WORDS_BIGENDIAN
557 # define __put_user(x, hptr) __put_user_e(x, hptr, be)
558 # define __get_user(x, hptr) __get_user_e(x, hptr, be)
559 #else
560 # define __put_user(x, hptr) __put_user_e(x, hptr, le)
561 # define __get_user(x, hptr) __get_user_e(x, hptr, le)
562 #endif
564 /* put_user()/get_user() take a guest address and check access */
565 /* These are usually used to access an atomic data type, such as an int,
566 * that has been passed by address. These internally perform locking
567 * and unlocking on the data type.
569 #define put_user(x, gaddr, target_type) \
570 ({ \
571 abi_ulong __gaddr = (gaddr); \
572 target_type *__hptr; \
573 abi_long __ret = 0; \
574 if ((__hptr = lock_user(VERIFY_WRITE, __gaddr, sizeof(target_type), 0))) { \
575 __put_user((x), __hptr); \
576 unlock_user(__hptr, __gaddr, sizeof(target_type)); \
577 } else \
578 __ret = -TARGET_EFAULT; \
579 __ret; \
582 #define get_user(x, gaddr, target_type) \
583 ({ \
584 abi_ulong __gaddr = (gaddr); \
585 target_type *__hptr; \
586 abi_long __ret = 0; \
587 if ((__hptr = lock_user(VERIFY_READ, __gaddr, sizeof(target_type), 1))) { \
588 __get_user((x), __hptr); \
589 unlock_user(__hptr, __gaddr, 0); \
590 } else { \
591 /* avoid warning */ \
592 (x) = 0; \
593 __ret = -TARGET_EFAULT; \
595 __ret; \
598 #define put_user_ual(x, gaddr) put_user((x), (gaddr), abi_ulong)
599 #define put_user_sal(x, gaddr) put_user((x), (gaddr), abi_long)
600 #define put_user_u64(x, gaddr) put_user((x), (gaddr), uint64_t)
601 #define put_user_s64(x, gaddr) put_user((x), (gaddr), int64_t)
602 #define put_user_u32(x, gaddr) put_user((x), (gaddr), uint32_t)
603 #define put_user_s32(x, gaddr) put_user((x), (gaddr), int32_t)
604 #define put_user_u16(x, gaddr) put_user((x), (gaddr), uint16_t)
605 #define put_user_s16(x, gaddr) put_user((x), (gaddr), int16_t)
606 #define put_user_u8(x, gaddr) put_user((x), (gaddr), uint8_t)
607 #define put_user_s8(x, gaddr) put_user((x), (gaddr), int8_t)
609 #define get_user_ual(x, gaddr) get_user((x), (gaddr), abi_ulong)
610 #define get_user_sal(x, gaddr) get_user((x), (gaddr), abi_long)
611 #define get_user_u64(x, gaddr) get_user((x), (gaddr), uint64_t)
612 #define get_user_s64(x, gaddr) get_user((x), (gaddr), int64_t)
613 #define get_user_u32(x, gaddr) get_user((x), (gaddr), uint32_t)
614 #define get_user_s32(x, gaddr) get_user((x), (gaddr), int32_t)
615 #define get_user_u16(x, gaddr) get_user((x), (gaddr), uint16_t)
616 #define get_user_s16(x, gaddr) get_user((x), (gaddr), int16_t)
617 #define get_user_u8(x, gaddr) get_user((x), (gaddr), uint8_t)
618 #define get_user_s8(x, gaddr) get_user((x), (gaddr), int8_t)
620 /* copy_from_user() and copy_to_user() are usually used to copy data
621 * buffers between the target and host. These internally perform
622 * locking/unlocking of the memory.
624 abi_long copy_from_user(void *hptr, abi_ulong gaddr, size_t len);
625 abi_long copy_to_user(abi_ulong gaddr, void *hptr, size_t len);
627 /* Functions for accessing guest memory. The tget and tput functions
628 read/write single values, byteswapping as necessary. The lock_user function
629 gets a pointer to a contiguous area of guest memory, but does not perform
630 any byteswapping. lock_user may return either a pointer to the guest
631 memory, or a temporary buffer. */
633 /* Lock an area of guest memory into the host. If copy is true then the
634 host area will have the same contents as the guest. */
635 static inline void *lock_user(int type, abi_ulong guest_addr, long len, int copy)
637 if (!access_ok(type, guest_addr, len))
638 return NULL;
639 #ifdef DEBUG_REMAP
641 void *addr;
642 addr = g_malloc(len);
643 if (copy)
644 memcpy(addr, g2h(guest_addr), len);
645 else
646 memset(addr, 0, len);
647 return addr;
649 #else
650 return g2h(guest_addr);
651 #endif
654 /* Unlock an area of guest memory. The first LEN bytes must be
655 flushed back to guest memory. host_ptr = NULL is explicitly
656 allowed and does nothing. */
657 static inline void unlock_user(void *host_ptr, abi_ulong guest_addr,
658 long len)
661 #ifdef DEBUG_REMAP
662 if (!host_ptr)
663 return;
664 if (host_ptr == g2h(guest_addr))
665 return;
666 if (len > 0)
667 memcpy(g2h(guest_addr), host_ptr, len);
668 g_free(host_ptr);
669 #endif
672 /* Return the length of a string in target memory or -TARGET_EFAULT if
673 access error. */
674 abi_long target_strlen(abi_ulong gaddr);
676 /* Like lock_user but for null terminated strings. */
677 static inline void *lock_user_string(abi_ulong guest_addr)
679 abi_long len;
680 len = target_strlen(guest_addr);
681 if (len < 0)
682 return NULL;
683 return lock_user(VERIFY_READ, guest_addr, (long)(len + 1), 1);
686 /* Helper macros for locking/unlocking a target struct. */
687 #define lock_user_struct(type, host_ptr, guest_addr, copy) \
688 (host_ptr = lock_user(type, guest_addr, sizeof(*host_ptr), copy))
689 #define unlock_user_struct(host_ptr, guest_addr, copy) \
690 unlock_user(host_ptr, guest_addr, (copy) ? sizeof(*host_ptr) : 0)
692 #include <pthread.h>
694 static inline int is_error(abi_long ret)
696 return (abi_ulong)ret >= (abi_ulong)(-4096);
699 #if TARGET_ABI_BITS == 32
700 static inline uint64_t target_offset64(uint32_t word0, uint32_t word1)
702 #ifdef TARGET_WORDS_BIGENDIAN
703 return ((uint64_t)word0 << 32) | word1;
704 #else
705 return ((uint64_t)word1 << 32) | word0;
706 #endif
708 #else /* TARGET_ABI_BITS == 32 */
709 static inline uint64_t target_offset64(uint64_t word0, uint64_t word1)
711 return word0;
713 #endif /* TARGET_ABI_BITS != 32 */
715 void print_termios(void *arg);
717 /* ARM EABI and MIPS expect 64bit types aligned even on pairs or registers */
718 #ifdef TARGET_ARM
719 static inline int regpairs_aligned(void *cpu_env, int num)
721 return ((((CPUARMState *)cpu_env)->eabi) == 1) ;
723 #elif defined(TARGET_MIPS) && (TARGET_ABI_BITS == 32)
724 static inline int regpairs_aligned(void *cpu_env, int num) { return 1; }
725 #elif defined(TARGET_PPC) && !defined(TARGET_PPC64)
727 * SysV AVI for PPC32 expects 64bit parameters to be passed on odd/even pairs
728 * of registers which translates to the same as ARM/MIPS, because we start with
729 * r3 as arg1
731 static inline int regpairs_aligned(void *cpu_env, int num) { return 1; }
732 #elif defined(TARGET_SH4)
733 /* SH4 doesn't align register pairs, except for p{read,write}64 */
734 static inline int regpairs_aligned(void *cpu_env, int num)
736 switch (num) {
737 case TARGET_NR_pread64:
738 case TARGET_NR_pwrite64:
739 return 1;
741 default:
742 return 0;
745 #elif defined(TARGET_XTENSA)
746 static inline int regpairs_aligned(void *cpu_env, int num) { return 1; }
747 #else
748 static inline int regpairs_aligned(void *cpu_env, int num) { return 0; }
749 #endif
752 * preexit_cleanup: housekeeping before the guest exits
754 * env: the CPU state
755 * code: the exit code
757 void preexit_cleanup(CPUArchState *env, int code);
759 /* Include target-specific struct and function definitions;
760 * they may need access to the target-independent structures
761 * above, so include them last.
763 #include "target_cpu.h"
764 #include "target_structs.h"
766 #endif /* QEMU_H */