6 #include "exec/exec-all.h"
7 #include "exec/cpu_ldst.h"
11 #endif /* DEBUG_REMAP */
13 #include "exec/user/abitypes.h"
15 #include "exec/user/thunk.h"
16 #include "syscall_defs.h"
17 #include "target_syscall.h"
18 #include "exec/gdbstub.h"
20 /* This is the size of the host kernel's sigset_t, needed where we make
21 * direct system calls that take a sigset_t pointer and a size.
23 #define SIGSET_T_SIZE (_NSIG / 8)
25 /* This struct is used to hold certain information about the image.
26 * Basically, it replicates in user space what would be certain
27 * task_struct fields in the kernel
38 abi_ulong reserve_brk
;
40 abi_ulong start_stack
;
41 abi_ulong stack_limit
;
43 abi_ulong code_offset
;
44 abi_ulong data_offset
;
49 abi_ulong arg_strings
;
50 abi_ulong env_strings
;
51 abi_ulong file_string
;
56 /* The fields below are used in FDPIC mode. */
57 abi_ulong loadmap_addr
;
60 abi_ulong pt_dynamic_addr
;
61 abi_ulong interpreter_loadmap_addr
;
62 abi_ulong interpreter_pt_dynamic_addr
;
63 struct image_info
*other_info
;
65 /* For target-specific processing of NT_GNU_PROPERTY_TYPE_0. */
75 /* Information about the current linux thread */
76 struct vm86_saved_state
{
77 uint32_t eax
; /* return code */
87 uint16_t cs
, ss
, ds
, es
, fs
, gs
;
91 #if defined(TARGET_ARM) && defined(TARGET_ABI32)
93 #include "nwfpe/fpa11.h"
96 #define MAX_SIGQUEUE_SIZE 1024
98 struct emulated_sigtable
{
99 int pending
; /* true if signal is pending */
100 target_siginfo_t info
;
103 /* NOTE: we force a big alignment so that the stack stored after is
105 typedef struct TaskState
{
106 pid_t ts_tid
; /* tid (or pid) of this task */
113 #if defined(TARGET_ARM) || defined(TARGET_RISCV)
116 #if defined(TARGET_I386) && !defined(TARGET_X86_64)
117 abi_ulong target_v86
;
118 struct vm86_saved_state vm86_saved_regs
;
119 struct target_vm86plus_struct vm86plus
;
123 abi_ulong child_tidptr
;
127 #if defined(TARGET_ARM) || defined(TARGET_M68K) || defined(TARGET_RISCV)
128 /* Extra fields for semihosted binaries. */
130 abi_ulong heap_limit
;
132 abi_ulong stack_base
;
133 int used
; /* non zero if used */
134 struct image_info
*info
;
135 struct linux_binprm
*bprm
;
137 struct emulated_sigtable sync_signal
;
138 struct emulated_sigtable sigtab
[TARGET_NSIG
];
139 /* This thread's signal mask, as requested by the guest program.
140 * The actual signal mask of this thread may differ:
141 * + we don't let SIGSEGV and SIGBUS be blocked while running guest code
142 * + sometimes we block all signals to avoid races
144 sigset_t signal_mask
;
145 /* The signal mask imposed by a guest sigsuspend syscall, if we are
146 * currently in the middle of such a syscall
148 sigset_t sigsuspend_mask
;
149 /* Nonzero if we're leaving a sigsuspend and sigsuspend_mask is valid. */
152 /* Nonzero if process_pending_signals() needs to do something (either
153 * handle a pending signal or unblock signals).
154 * This flag is written from a signal handler so should be accessed via
155 * the qatomic_read() and qatomic_set() functions. (It is not accessed
156 * from multiple threads.)
160 /* This thread's sigaltstack, if it has one */
161 struct target_sigaltstack sigaltstack_used
;
162 } __attribute__((aligned(16))) TaskState
;
164 extern char *exec_path
;
165 void init_task_state(TaskState
*ts
);
166 void task_settid(TaskState
*);
167 void stop_all_tasks(void);
168 extern const char *qemu_uname_release
;
169 extern unsigned long mmap_min_addr
;
171 /* ??? See if we can avoid exposing so much of the loader internals. */
173 /* Read a good amount of data initially, to hopefully get all the
174 program headers loaded. */
175 #define BPRM_BUF_SIZE 1024
178 * This structure is used to hold the arguments that are
179 * used when loading binaries.
181 struct linux_binprm
{
182 char buf
[BPRM_BUF_SIZE
] __attribute__((aligned
));
189 char * filename
; /* Name of binary */
190 int (*core_dump
)(int, const CPUArchState
*); /* coredump routine */
193 typedef struct IOCTLEntry IOCTLEntry
;
195 typedef abi_long
do_ioctl_fn(const IOCTLEntry
*ie
, uint8_t *buf_temp
,
196 int fd
, int cmd
, abi_long arg
);
200 unsigned int host_cmd
;
203 do_ioctl_fn
*do_ioctl
;
204 const argtype arg_type
[5];
207 extern IOCTLEntry ioctl_entries
[];
211 #define IOC_RW (IOC_R | IOC_W)
213 void do_init_thread(struct target_pt_regs
*regs
, struct image_info
*infop
);
214 abi_ulong
loader_build_argptr(int envc
, int argc
, abi_ulong sp
,
215 abi_ulong stringp
, int push_ptr
);
216 int loader_exec(int fdexec
, const char *filename
, char **argv
, char **envp
,
217 struct target_pt_regs
* regs
, struct image_info
*infop
,
218 struct linux_binprm
*);
220 /* Returns true if the image uses the FDPIC ABI. If this is the case,
221 * we have to provide some information (loadmap, pt_dynamic_info) such
222 * that the program can be relocated adequately. This is also useful
223 * when handling signals.
225 int info_is_fdpic(struct image_info
*info
);
227 uint32_t get_elf_eflags(int fd
);
228 int load_elf_binary(struct linux_binprm
*bprm
, struct image_info
*info
);
229 int load_flt_binary(struct linux_binprm
*bprm
, struct image_info
*info
);
231 abi_long
memcpy_to_target(abi_ulong dest
, const void *src
,
233 void target_set_brk(abi_ulong new_brk
);
234 abi_long
do_brk(abi_ulong new_brk
);
235 void syscall_init(void);
236 abi_long
do_syscall(void *cpu_env
, int num
, abi_long arg1
,
237 abi_long arg2
, abi_long arg3
, abi_long arg4
,
238 abi_long arg5
, abi_long arg6
, abi_long arg7
,
240 extern __thread CPUState
*thread_cpu
;
241 void cpu_loop(CPUArchState
*env
);
242 const char *target_strerror(int err
);
243 int get_osversion(void);
244 void init_qemu_uname_release(void);
245 void fork_start(void);
246 void fork_end(int child
);
250 * @image_name: the executable being loaded
251 * @loaddr: the lowest fixed address in the executable
252 * @hiaddr: the highest fixed address in the executable
254 * Creates the initial guest address space in the host memory space.
256 * If @loaddr == 0, then no address in the executable is fixed,
257 * i.e. it is fully relocatable. In that case @hiaddr is the size
260 * This function will not return if a valid value for guest_base
261 * cannot be chosen. On return, the executable loader can expect
263 * target_mmap(loaddr, hiaddr - loaddr, ...)
267 void probe_guest_base(const char *image_name
,
268 abi_ulong loaddr
, abi_ulong hiaddr
);
270 #include "qemu/log.h"
276 * @int number: number of system call to make
277 * ...: arguments to the system call
279 * Call a system call if guest signal not pending.
280 * This has the same API as the libc syscall() function, except that it
281 * may return -1 with errno == TARGET_ERESTARTSYS if a signal was pending.
283 * Returns: the system call result, or -1 with an error code in errno
284 * (Errnos are host errnos; we rely on TARGET_ERESTARTSYS not clashing
285 * with any of the host errno values.)
288 /* A guide to using safe_syscall() to handle interactions between guest
289 * syscalls and guest signals:
291 * Guest syscalls come in two flavours:
293 * (1) Non-interruptible syscalls
295 * These are guest syscalls that never get interrupted by signals and
296 * so never return EINTR. They can be implemented straightforwardly in
297 * QEMU: just make sure that if the implementation code has to make any
298 * blocking calls that those calls are retried if they return EINTR.
299 * It's also OK to implement these with safe_syscall, though it will be
300 * a little less efficient if a signal is delivered at the 'wrong' moment.
302 * Some non-interruptible syscalls need to be handled using block_signals()
303 * to block signals for the duration of the syscall. This mainly applies
304 * to code which needs to modify the data structures used by the
305 * host_signal_handler() function and the functions it calls, including
306 * all syscalls which change the thread's signal mask.
308 * (2) Interruptible syscalls
310 * These are guest syscalls that can be interrupted by signals and
311 * for which we need to either return EINTR or arrange for the guest
312 * syscall to be restarted. This category includes both syscalls which
313 * always restart (and in the kernel return -ERESTARTNOINTR), ones
314 * which only restart if there is no handler (kernel returns -ERESTARTNOHAND
315 * or -ERESTART_RESTARTBLOCK), and the most common kind which restart
316 * if the handler was registered with SA_RESTART (kernel returns
317 * -ERESTARTSYS). System calls which are only interruptible in some
318 * situations (like 'open') also need to be handled this way.
320 * Here it is important that the host syscall is made
321 * via this safe_syscall() function, and *not* via the host libc.
322 * If the host libc is used then the implementation will appear to work
323 * most of the time, but there will be a race condition where a
324 * signal could arrive just before we make the host syscall inside libc,
325 * and then then guest syscall will not correctly be interrupted.
326 * Instead the implementation of the guest syscall can use the safe_syscall
327 * function but otherwise just return the result or errno in the usual
328 * way; the main loop code will take care of restarting the syscall
331 * (If the implementation needs to make multiple host syscalls this is
332 * OK; any which might really block must be via safe_syscall(); for those
333 * which are only technically blocking (ie which we know in practice won't
334 * stay in the host kernel indefinitely) it's OK to use libc if necessary.
335 * You must be able to cope with backing out correctly if some safe_syscall
336 * you make in the implementation returns either -TARGET_ERESTARTSYS or
339 * block_signals() cannot be used for interruptible syscalls.
342 * How and why the safe_syscall implementation works:
344 * The basic setup is that we make the host syscall via a known
345 * section of host native assembly. If a signal occurs, our signal
346 * handler checks the interrupted host PC against the addresse of that
347 * known section. If the PC is before or at the address of the syscall
348 * instruction then we change the PC to point at a "return
349 * -TARGET_ERESTARTSYS" code path instead, and then exit the signal handler
350 * (causing the safe_syscall() call to immediately return that value).
351 * Then in the main.c loop if we see this magic return value we adjust
352 * the guest PC to wind it back to before the system call, and invoke
353 * the guest signal handler as usual.
355 * This winding-back will happen in two cases:
356 * (1) signal came in just before we took the host syscall (a race);
357 * in this case we'll take the guest signal and have another go
358 * at the syscall afterwards, and this is indistinguishable for the
359 * guest from the timing having been different such that the guest
360 * signal really did win the race
361 * (2) signal came in while the host syscall was blocking, and the
362 * host kernel decided the syscall should be restarted;
363 * in this case we want to restart the guest syscall also, and so
364 * rewinding is the right thing. (Note that "restart" semantics mean
365 * "first call the signal handler, then reattempt the syscall".)
366 * The other situation to consider is when a signal came in while the
367 * host syscall was blocking, and the host kernel decided that the syscall
368 * should not be restarted; in this case QEMU's host signal handler will
369 * be invoked with the PC pointing just after the syscall instruction,
370 * with registers indicating an EINTR return; the special code in the
371 * handler will not kick in, and we will return EINTR to the guest as
374 * Notice that we can leave the host kernel to make the decision for
375 * us about whether to do a restart of the syscall or not; we do not
376 * need to check SA_RESTART flags in QEMU or distinguish the various
377 * kinds of restartability.
379 #ifdef HAVE_SAFE_SYSCALL
380 /* The core part of this function is implemented in assembly */
381 extern long safe_syscall_base(int *pending
, long number
, ...);
383 #define safe_syscall(...) \
386 int *psp_ = &((TaskState *)thread_cpu->opaque)->signal_pending; \
387 ret_ = safe_syscall_base(psp_, __VA_ARGS__); \
388 if (is_error(ret_)) { \
397 /* Fallback for architectures which don't yet provide a safe-syscall assembly
398 * fragment; note that this is racy!
399 * This should go away when all host architectures have been updated.
401 #define safe_syscall syscall
406 int host_to_target_waitstatus(int status
);
409 void print_syscall(void *cpu_env
, int num
,
410 abi_long arg1
, abi_long arg2
, abi_long arg3
,
411 abi_long arg4
, abi_long arg5
, abi_long arg6
);
412 void print_syscall_ret(void *cpu_env
, int num
, abi_long ret
,
413 abi_long arg1
, abi_long arg2
, abi_long arg3
,
414 abi_long arg4
, abi_long arg5
, abi_long arg6
);
416 * print_taken_signal:
417 * @target_signum: target signal being taken
418 * @tinfo: target_siginfo_t which will be passed to the guest for the signal
420 * Print strace output indicating that this signal is being taken by the guest,
421 * in a format similar to:
422 * --- SIGSEGV {si_signo=SIGSEGV, si_code=SI_KERNEL, si_addr=0} ---
424 void print_taken_signal(int target_signum
, const target_siginfo_t
*tinfo
);
427 void process_pending_signals(CPUArchState
*cpu_env
);
428 void signal_init(void);
429 int queue_signal(CPUArchState
*env
, int sig
, int si_type
,
430 target_siginfo_t
*info
);
431 void host_to_target_siginfo(target_siginfo_t
*tinfo
, const siginfo_t
*info
);
432 void target_to_host_siginfo(siginfo_t
*info
, const target_siginfo_t
*tinfo
);
433 int target_to_host_signal(int sig
);
434 int host_to_target_signal(int sig
);
435 long do_sigreturn(CPUArchState
*env
);
436 long do_rt_sigreturn(CPUArchState
*env
);
437 abi_long
do_sigaltstack(abi_ulong uss_addr
, abi_ulong uoss_addr
, abi_ulong sp
);
438 int do_sigprocmask(int how
, const sigset_t
*set
, sigset_t
*oldset
);
439 abi_long
do_swapcontext(CPUArchState
*env
, abi_ulong uold_ctx
,
440 abi_ulong unew_ctx
, abi_long ctx_size
);
442 * block_signals: block all signals while handling this guest syscall
444 * Block all signals, and arrange that the signal mask is returned to
445 * its correct value for the guest before we resume execution of guest code.
446 * If this function returns non-zero, then the caller should immediately
447 * return -TARGET_ERESTARTSYS to the main loop, which will take the pending
448 * signal and restart execution of the syscall.
449 * If block_signals() returns zero, then the caller can continue with
450 * emulation of the system call knowing that no signals can be taken
451 * (and therefore that no race conditions will result).
452 * This should only be called once, because if it is called a second time
453 * it will always return non-zero. (Think of it like a mutex that can't
454 * be recursively locked.)
455 * Signals will be unblocked again by process_pending_signals().
457 * Return value: non-zero if there was a pending signal, zero if not.
459 int block_signals(void); /* Returns non zero if signal pending */
463 void save_v86_state(CPUX86State
*env
);
464 void handle_vm86_trap(CPUX86State
*env
, int trapno
);
465 void handle_vm86_fault(CPUX86State
*env
);
466 int do_vm86(CPUX86State
*env
, long subfunction
, abi_ulong v86_addr
);
467 #elif defined(TARGET_SPARC64)
468 void sparc64_set_context(CPUSPARCState
*env
);
469 void sparc64_get_context(CPUSPARCState
*env
);
473 int target_mprotect(abi_ulong start
, abi_ulong len
, int prot
);
474 abi_long
target_mmap(abi_ulong start
, abi_ulong len
, int prot
,
475 int flags
, int fd
, abi_ulong offset
);
476 int target_munmap(abi_ulong start
, abi_ulong len
);
477 abi_long
target_mremap(abi_ulong old_addr
, abi_ulong old_size
,
478 abi_ulong new_size
, unsigned long flags
,
480 extern unsigned long last_brk
;
481 extern abi_ulong mmap_next_start
;
482 abi_ulong
mmap_find_vma(abi_ulong
, abi_ulong
, abi_ulong
);
483 void mmap_fork_start(void);
484 void mmap_fork_end(int child
);
487 extern unsigned long guest_stack_size
;
491 #define VERIFY_READ 0
492 #define VERIFY_WRITE 1 /* implies read access */
494 static inline int access_ok(int type
, abi_ulong addr
, abi_ulong size
)
496 return guest_addr_valid(addr
) &&
497 (size
== 0 || guest_addr_valid(addr
+ size
- 1)) &&
498 page_check_range((target_ulong
)addr
, size
,
499 (type
== VERIFY_READ
) ? PAGE_READ
: (PAGE_READ
| PAGE_WRITE
)) == 0;
502 /* NOTE __get_user and __put_user use host pointers and don't check access.
503 These are usually used to access struct data members once the struct has
504 been locked - usually with lock_user_struct. */
508 * - Use __builtin_choose_expr to avoid type promotion from ?:,
509 * - Invalid sizes result in a compile time error stemming from
510 * the fact that abort has no parameters.
511 * - It's easier to use the endian-specific unaligned load/store
512 * functions than host-endian unaligned load/store plus tswapN.
513 * - The pragmas are necessary only to silence a clang false-positive
514 * warning: see https://bugs.llvm.org/show_bug.cgi?id=39113 .
515 * - gcc has bugs in its _Pragma() support in some versions, eg
516 * https://gcc.gnu.org/bugzilla/show_bug.cgi?id=83256 -- so we only
517 * include the warning-suppression pragmas for clang
519 #if defined(__clang__) && __has_warning("-Waddress-of-packed-member")
520 #define PRAGMA_DISABLE_PACKED_WARNING \
521 _Pragma("GCC diagnostic push"); \
522 _Pragma("GCC diagnostic ignored \"-Waddress-of-packed-member\"")
524 #define PRAGMA_REENABLE_PACKED_WARNING \
525 _Pragma("GCC diagnostic pop")
528 #define PRAGMA_DISABLE_PACKED_WARNING
529 #define PRAGMA_REENABLE_PACKED_WARNING
532 #define __put_user_e(x, hptr, e) \
534 PRAGMA_DISABLE_PACKED_WARNING; \
535 (__builtin_choose_expr(sizeof(*(hptr)) == 1, stb_p, \
536 __builtin_choose_expr(sizeof(*(hptr)) == 2, stw_##e##_p, \
537 __builtin_choose_expr(sizeof(*(hptr)) == 4, stl_##e##_p, \
538 __builtin_choose_expr(sizeof(*(hptr)) == 8, stq_##e##_p, abort)))) \
539 ((hptr), (x)), (void)0); \
540 PRAGMA_REENABLE_PACKED_WARNING; \
543 #define __get_user_e(x, hptr, e) \
545 PRAGMA_DISABLE_PACKED_WARNING; \
546 ((x) = (typeof(*hptr))( \
547 __builtin_choose_expr(sizeof(*(hptr)) == 1, ldub_p, \
548 __builtin_choose_expr(sizeof(*(hptr)) == 2, lduw_##e##_p, \
549 __builtin_choose_expr(sizeof(*(hptr)) == 4, ldl_##e##_p, \
550 __builtin_choose_expr(sizeof(*(hptr)) == 8, ldq_##e##_p, abort)))) \
552 PRAGMA_REENABLE_PACKED_WARNING; \
556 #ifdef TARGET_WORDS_BIGENDIAN
557 # define __put_user(x, hptr) __put_user_e(x, hptr, be)
558 # define __get_user(x, hptr) __get_user_e(x, hptr, be)
560 # define __put_user(x, hptr) __put_user_e(x, hptr, le)
561 # define __get_user(x, hptr) __get_user_e(x, hptr, le)
564 /* put_user()/get_user() take a guest address and check access */
565 /* These are usually used to access an atomic data type, such as an int,
566 * that has been passed by address. These internally perform locking
567 * and unlocking on the data type.
569 #define put_user(x, gaddr, target_type) \
571 abi_ulong __gaddr = (gaddr); \
572 target_type *__hptr; \
573 abi_long __ret = 0; \
574 if ((__hptr = lock_user(VERIFY_WRITE, __gaddr, sizeof(target_type), 0))) { \
575 __put_user((x), __hptr); \
576 unlock_user(__hptr, __gaddr, sizeof(target_type)); \
578 __ret = -TARGET_EFAULT; \
582 #define get_user(x, gaddr, target_type) \
584 abi_ulong __gaddr = (gaddr); \
585 target_type *__hptr; \
586 abi_long __ret = 0; \
587 if ((__hptr = lock_user(VERIFY_READ, __gaddr, sizeof(target_type), 1))) { \
588 __get_user((x), __hptr); \
589 unlock_user(__hptr, __gaddr, 0); \
591 /* avoid warning */ \
593 __ret = -TARGET_EFAULT; \
598 #define put_user_ual(x, gaddr) put_user((x), (gaddr), abi_ulong)
599 #define put_user_sal(x, gaddr) put_user((x), (gaddr), abi_long)
600 #define put_user_u64(x, gaddr) put_user((x), (gaddr), uint64_t)
601 #define put_user_s64(x, gaddr) put_user((x), (gaddr), int64_t)
602 #define put_user_u32(x, gaddr) put_user((x), (gaddr), uint32_t)
603 #define put_user_s32(x, gaddr) put_user((x), (gaddr), int32_t)
604 #define put_user_u16(x, gaddr) put_user((x), (gaddr), uint16_t)
605 #define put_user_s16(x, gaddr) put_user((x), (gaddr), int16_t)
606 #define put_user_u8(x, gaddr) put_user((x), (gaddr), uint8_t)
607 #define put_user_s8(x, gaddr) put_user((x), (gaddr), int8_t)
609 #define get_user_ual(x, gaddr) get_user((x), (gaddr), abi_ulong)
610 #define get_user_sal(x, gaddr) get_user((x), (gaddr), abi_long)
611 #define get_user_u64(x, gaddr) get_user((x), (gaddr), uint64_t)
612 #define get_user_s64(x, gaddr) get_user((x), (gaddr), int64_t)
613 #define get_user_u32(x, gaddr) get_user((x), (gaddr), uint32_t)
614 #define get_user_s32(x, gaddr) get_user((x), (gaddr), int32_t)
615 #define get_user_u16(x, gaddr) get_user((x), (gaddr), uint16_t)
616 #define get_user_s16(x, gaddr) get_user((x), (gaddr), int16_t)
617 #define get_user_u8(x, gaddr) get_user((x), (gaddr), uint8_t)
618 #define get_user_s8(x, gaddr) get_user((x), (gaddr), int8_t)
620 /* copy_from_user() and copy_to_user() are usually used to copy data
621 * buffers between the target and host. These internally perform
622 * locking/unlocking of the memory.
624 abi_long
copy_from_user(void *hptr
, abi_ulong gaddr
, size_t len
);
625 abi_long
copy_to_user(abi_ulong gaddr
, void *hptr
, size_t len
);
627 /* Functions for accessing guest memory. The tget and tput functions
628 read/write single values, byteswapping as necessary. The lock_user function
629 gets a pointer to a contiguous area of guest memory, but does not perform
630 any byteswapping. lock_user may return either a pointer to the guest
631 memory, or a temporary buffer. */
633 /* Lock an area of guest memory into the host. If copy is true then the
634 host area will have the same contents as the guest. */
635 static inline void *lock_user(int type
, abi_ulong guest_addr
, long len
, int copy
)
637 if (!access_ok(type
, guest_addr
, len
))
642 addr
= g_malloc(len
);
644 memcpy(addr
, g2h(guest_addr
), len
);
646 memset(addr
, 0, len
);
650 return g2h(guest_addr
);
654 /* Unlock an area of guest memory. The first LEN bytes must be
655 flushed back to guest memory. host_ptr = NULL is explicitly
656 allowed and does nothing. */
657 static inline void unlock_user(void *host_ptr
, abi_ulong guest_addr
,
664 if (host_ptr
== g2h(guest_addr
))
667 memcpy(g2h(guest_addr
), host_ptr
, len
);
672 /* Return the length of a string in target memory or -TARGET_EFAULT if
674 abi_long
target_strlen(abi_ulong gaddr
);
676 /* Like lock_user but for null terminated strings. */
677 static inline void *lock_user_string(abi_ulong guest_addr
)
680 len
= target_strlen(guest_addr
);
683 return lock_user(VERIFY_READ
, guest_addr
, (long)(len
+ 1), 1);
686 /* Helper macros for locking/unlocking a target struct. */
687 #define lock_user_struct(type, host_ptr, guest_addr, copy) \
688 (host_ptr = lock_user(type, guest_addr, sizeof(*host_ptr), copy))
689 #define unlock_user_struct(host_ptr, guest_addr, copy) \
690 unlock_user(host_ptr, guest_addr, (copy) ? sizeof(*host_ptr) : 0)
694 static inline int is_error(abi_long ret
)
696 return (abi_ulong
)ret
>= (abi_ulong
)(-4096);
699 #if TARGET_ABI_BITS == 32
700 static inline uint64_t target_offset64(uint32_t word0
, uint32_t word1
)
702 #ifdef TARGET_WORDS_BIGENDIAN
703 return ((uint64_t)word0
<< 32) | word1
;
705 return ((uint64_t)word1
<< 32) | word0
;
708 #else /* TARGET_ABI_BITS == 32 */
709 static inline uint64_t target_offset64(uint64_t word0
, uint64_t word1
)
713 #endif /* TARGET_ABI_BITS != 32 */
715 void print_termios(void *arg
);
717 /* ARM EABI and MIPS expect 64bit types aligned even on pairs or registers */
719 static inline int regpairs_aligned(void *cpu_env
, int num
)
721 return ((((CPUARMState
*)cpu_env
)->eabi
) == 1) ;
723 #elif defined(TARGET_MIPS) && (TARGET_ABI_BITS == 32)
724 static inline int regpairs_aligned(void *cpu_env
, int num
) { return 1; }
725 #elif defined(TARGET_PPC) && !defined(TARGET_PPC64)
727 * SysV AVI for PPC32 expects 64bit parameters to be passed on odd/even pairs
728 * of registers which translates to the same as ARM/MIPS, because we start with
731 static inline int regpairs_aligned(void *cpu_env
, int num
) { return 1; }
732 #elif defined(TARGET_SH4)
733 /* SH4 doesn't align register pairs, except for p{read,write}64 */
734 static inline int regpairs_aligned(void *cpu_env
, int num
)
737 case TARGET_NR_pread64
:
738 case TARGET_NR_pwrite64
:
745 #elif defined(TARGET_XTENSA)
746 static inline int regpairs_aligned(void *cpu_env
, int num
) { return 1; }
748 static inline int regpairs_aligned(void *cpu_env
, int num
) { return 0; }
752 * preexit_cleanup: housekeeping before the guest exits
755 * code: the exit code
757 void preexit_cleanup(CPUArchState
*env
, int code
);
759 /* Include target-specific struct and function definitions;
760 * they may need access to the target-independent structures
761 * above, so include them last.
763 #include "target_cpu.h"
764 #include "target_structs.h"