hw/rdma: Implementation of generic rdma device layers
[qemu.git] / accel / kvm / kvm-all.c
blobb91fcb7160d327897bea03c2c84b65a0d6248d1f
1 /*
2 * QEMU KVM support
4 * Copyright IBM, Corp. 2008
5 * Red Hat, Inc. 2008
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
9 * Glauber Costa <gcosta@redhat.com>
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
16 #include "qemu/osdep.h"
17 #include <sys/ioctl.h>
19 #include <linux/kvm.h>
21 #include "qemu-common.h"
22 #include "qemu/atomic.h"
23 #include "qemu/option.h"
24 #include "qemu/config-file.h"
25 #include "qemu/error-report.h"
26 #include "qapi/error.h"
27 #include "hw/hw.h"
28 #include "hw/pci/msi.h"
29 #include "hw/pci/msix.h"
30 #include "hw/s390x/adapter.h"
31 #include "exec/gdbstub.h"
32 #include "sysemu/kvm_int.h"
33 #include "sysemu/cpus.h"
34 #include "qemu/bswap.h"
35 #include "exec/memory.h"
36 #include "exec/ram_addr.h"
37 #include "exec/address-spaces.h"
38 #include "qemu/event_notifier.h"
39 #include "trace.h"
40 #include "hw/irq.h"
42 #include "hw/boards.h"
44 /* This check must be after config-host.h is included */
45 #ifdef CONFIG_EVENTFD
46 #include <sys/eventfd.h>
47 #endif
49 /* KVM uses PAGE_SIZE in its definition of KVM_COALESCED_MMIO_MAX. We
50 * need to use the real host PAGE_SIZE, as that's what KVM will use.
52 #define PAGE_SIZE getpagesize()
54 //#define DEBUG_KVM
56 #ifdef DEBUG_KVM
57 #define DPRINTF(fmt, ...) \
58 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
59 #else
60 #define DPRINTF(fmt, ...) \
61 do { } while (0)
62 #endif
64 #define KVM_MSI_HASHTAB_SIZE 256
66 struct KVMParkedVcpu {
67 unsigned long vcpu_id;
68 int kvm_fd;
69 QLIST_ENTRY(KVMParkedVcpu) node;
72 struct KVMState
74 AccelState parent_obj;
76 int nr_slots;
77 int fd;
78 int vmfd;
79 int coalesced_mmio;
80 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
81 bool coalesced_flush_in_progress;
82 int vcpu_events;
83 int robust_singlestep;
84 int debugregs;
85 #ifdef KVM_CAP_SET_GUEST_DEBUG
86 struct kvm_sw_breakpoint_head kvm_sw_breakpoints;
87 #endif
88 int many_ioeventfds;
89 int intx_set_mask;
90 bool sync_mmu;
91 /* The man page (and posix) say ioctl numbers are signed int, but
92 * they're not. Linux, glibc and *BSD all treat ioctl numbers as
93 * unsigned, and treating them as signed here can break things */
94 unsigned irq_set_ioctl;
95 unsigned int sigmask_len;
96 GHashTable *gsimap;
97 #ifdef KVM_CAP_IRQ_ROUTING
98 struct kvm_irq_routing *irq_routes;
99 int nr_allocated_irq_routes;
100 unsigned long *used_gsi_bitmap;
101 unsigned int gsi_count;
102 QTAILQ_HEAD(msi_hashtab, KVMMSIRoute) msi_hashtab[KVM_MSI_HASHTAB_SIZE];
103 #endif
104 KVMMemoryListener memory_listener;
105 QLIST_HEAD(, KVMParkedVcpu) kvm_parked_vcpus;
108 KVMState *kvm_state;
109 bool kvm_kernel_irqchip;
110 bool kvm_split_irqchip;
111 bool kvm_async_interrupts_allowed;
112 bool kvm_halt_in_kernel_allowed;
113 bool kvm_eventfds_allowed;
114 bool kvm_irqfds_allowed;
115 bool kvm_resamplefds_allowed;
116 bool kvm_msi_via_irqfd_allowed;
117 bool kvm_gsi_routing_allowed;
118 bool kvm_gsi_direct_mapping;
119 bool kvm_allowed;
120 bool kvm_readonly_mem_allowed;
121 bool kvm_vm_attributes_allowed;
122 bool kvm_direct_msi_allowed;
123 bool kvm_ioeventfd_any_length_allowed;
124 bool kvm_msi_use_devid;
125 static bool kvm_immediate_exit;
127 static const KVMCapabilityInfo kvm_required_capabilites[] = {
128 KVM_CAP_INFO(USER_MEMORY),
129 KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS),
130 KVM_CAP_INFO(JOIN_MEMORY_REGIONS_WORKS),
131 KVM_CAP_LAST_INFO
134 int kvm_get_max_memslots(void)
136 KVMState *s = KVM_STATE(current_machine->accelerator);
138 return s->nr_slots;
141 static KVMSlot *kvm_get_free_slot(KVMMemoryListener *kml)
143 KVMState *s = kvm_state;
144 int i;
146 for (i = 0; i < s->nr_slots; i++) {
147 if (kml->slots[i].memory_size == 0) {
148 return &kml->slots[i];
152 return NULL;
155 bool kvm_has_free_slot(MachineState *ms)
157 KVMState *s = KVM_STATE(ms->accelerator);
159 return kvm_get_free_slot(&s->memory_listener);
162 static KVMSlot *kvm_alloc_slot(KVMMemoryListener *kml)
164 KVMSlot *slot = kvm_get_free_slot(kml);
166 if (slot) {
167 return slot;
170 fprintf(stderr, "%s: no free slot available\n", __func__);
171 abort();
174 static KVMSlot *kvm_lookup_matching_slot(KVMMemoryListener *kml,
175 hwaddr start_addr,
176 hwaddr size)
178 KVMState *s = kvm_state;
179 int i;
181 for (i = 0; i < s->nr_slots; i++) {
182 KVMSlot *mem = &kml->slots[i];
184 if (start_addr == mem->start_addr && size == mem->memory_size) {
185 return mem;
189 return NULL;
193 * Calculate and align the start address and the size of the section.
194 * Return the size. If the size is 0, the aligned section is empty.
196 static hwaddr kvm_align_section(MemoryRegionSection *section,
197 hwaddr *start)
199 hwaddr size = int128_get64(section->size);
200 hwaddr delta, aligned;
202 /* kvm works in page size chunks, but the function may be called
203 with sub-page size and unaligned start address. Pad the start
204 address to next and truncate size to previous page boundary. */
205 aligned = ROUND_UP(section->offset_within_address_space,
206 qemu_real_host_page_size);
207 delta = aligned - section->offset_within_address_space;
208 *start = aligned;
209 if (delta > size) {
210 return 0;
213 return (size - delta) & qemu_real_host_page_mask;
216 int kvm_physical_memory_addr_from_host(KVMState *s, void *ram,
217 hwaddr *phys_addr)
219 KVMMemoryListener *kml = &s->memory_listener;
220 int i;
222 for (i = 0; i < s->nr_slots; i++) {
223 KVMSlot *mem = &kml->slots[i];
225 if (ram >= mem->ram && ram < mem->ram + mem->memory_size) {
226 *phys_addr = mem->start_addr + (ram - mem->ram);
227 return 1;
231 return 0;
234 static int kvm_set_user_memory_region(KVMMemoryListener *kml, KVMSlot *slot)
236 KVMState *s = kvm_state;
237 struct kvm_userspace_memory_region mem;
238 int ret;
240 mem.slot = slot->slot | (kml->as_id << 16);
241 mem.guest_phys_addr = slot->start_addr;
242 mem.userspace_addr = (unsigned long)slot->ram;
243 mem.flags = slot->flags;
245 if (slot->memory_size && mem.flags & KVM_MEM_READONLY) {
246 /* Set the slot size to 0 before setting the slot to the desired
247 * value. This is needed based on KVM commit 75d61fbc. */
248 mem.memory_size = 0;
249 kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
251 mem.memory_size = slot->memory_size;
252 ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
253 trace_kvm_set_user_memory(mem.slot, mem.flags, mem.guest_phys_addr,
254 mem.memory_size, mem.userspace_addr, ret);
255 return ret;
258 int kvm_destroy_vcpu(CPUState *cpu)
260 KVMState *s = kvm_state;
261 long mmap_size;
262 struct KVMParkedVcpu *vcpu = NULL;
263 int ret = 0;
265 DPRINTF("kvm_destroy_vcpu\n");
267 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
268 if (mmap_size < 0) {
269 ret = mmap_size;
270 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
271 goto err;
274 ret = munmap(cpu->kvm_run, mmap_size);
275 if (ret < 0) {
276 goto err;
279 vcpu = g_malloc0(sizeof(*vcpu));
280 vcpu->vcpu_id = kvm_arch_vcpu_id(cpu);
281 vcpu->kvm_fd = cpu->kvm_fd;
282 QLIST_INSERT_HEAD(&kvm_state->kvm_parked_vcpus, vcpu, node);
283 err:
284 return ret;
287 static int kvm_get_vcpu(KVMState *s, unsigned long vcpu_id)
289 struct KVMParkedVcpu *cpu;
291 QLIST_FOREACH(cpu, &s->kvm_parked_vcpus, node) {
292 if (cpu->vcpu_id == vcpu_id) {
293 int kvm_fd;
295 QLIST_REMOVE(cpu, node);
296 kvm_fd = cpu->kvm_fd;
297 g_free(cpu);
298 return kvm_fd;
302 return kvm_vm_ioctl(s, KVM_CREATE_VCPU, (void *)vcpu_id);
305 int kvm_init_vcpu(CPUState *cpu)
307 KVMState *s = kvm_state;
308 long mmap_size;
309 int ret;
311 DPRINTF("kvm_init_vcpu\n");
313 ret = kvm_get_vcpu(s, kvm_arch_vcpu_id(cpu));
314 if (ret < 0) {
315 DPRINTF("kvm_create_vcpu failed\n");
316 goto err;
319 cpu->kvm_fd = ret;
320 cpu->kvm_state = s;
321 cpu->vcpu_dirty = true;
323 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
324 if (mmap_size < 0) {
325 ret = mmap_size;
326 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
327 goto err;
330 cpu->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
331 cpu->kvm_fd, 0);
332 if (cpu->kvm_run == MAP_FAILED) {
333 ret = -errno;
334 DPRINTF("mmap'ing vcpu state failed\n");
335 goto err;
338 if (s->coalesced_mmio && !s->coalesced_mmio_ring) {
339 s->coalesced_mmio_ring =
340 (void *)cpu->kvm_run + s->coalesced_mmio * PAGE_SIZE;
343 ret = kvm_arch_init_vcpu(cpu);
344 err:
345 return ret;
349 * dirty pages logging control
352 static int kvm_mem_flags(MemoryRegion *mr)
354 bool readonly = mr->readonly || memory_region_is_romd(mr);
355 int flags = 0;
357 if (memory_region_get_dirty_log_mask(mr) != 0) {
358 flags |= KVM_MEM_LOG_DIRTY_PAGES;
360 if (readonly && kvm_readonly_mem_allowed) {
361 flags |= KVM_MEM_READONLY;
363 return flags;
366 static int kvm_slot_update_flags(KVMMemoryListener *kml, KVMSlot *mem,
367 MemoryRegion *mr)
369 int old_flags;
371 old_flags = mem->flags;
372 mem->flags = kvm_mem_flags(mr);
374 /* If nothing changed effectively, no need to issue ioctl */
375 if (mem->flags == old_flags) {
376 return 0;
379 return kvm_set_user_memory_region(kml, mem);
382 static int kvm_section_update_flags(KVMMemoryListener *kml,
383 MemoryRegionSection *section)
385 hwaddr start_addr, size;
386 KVMSlot *mem;
388 size = kvm_align_section(section, &start_addr);
389 if (!size) {
390 return 0;
393 mem = kvm_lookup_matching_slot(kml, start_addr, size);
394 if (!mem) {
395 /* We don't have a slot if we want to trap every access. */
396 return 0;
399 return kvm_slot_update_flags(kml, mem, section->mr);
402 static void kvm_log_start(MemoryListener *listener,
403 MemoryRegionSection *section,
404 int old, int new)
406 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
407 int r;
409 if (old != 0) {
410 return;
413 r = kvm_section_update_flags(kml, section);
414 if (r < 0) {
415 abort();
419 static void kvm_log_stop(MemoryListener *listener,
420 MemoryRegionSection *section,
421 int old, int new)
423 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
424 int r;
426 if (new != 0) {
427 return;
430 r = kvm_section_update_flags(kml, section);
431 if (r < 0) {
432 abort();
436 /* get kvm's dirty pages bitmap and update qemu's */
437 static int kvm_get_dirty_pages_log_range(MemoryRegionSection *section,
438 unsigned long *bitmap)
440 ram_addr_t start = section->offset_within_region +
441 memory_region_get_ram_addr(section->mr);
442 ram_addr_t pages = int128_get64(section->size) / getpagesize();
444 cpu_physical_memory_set_dirty_lebitmap(bitmap, start, pages);
445 return 0;
448 #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1))
451 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
452 * This function updates qemu's dirty bitmap using
453 * memory_region_set_dirty(). This means all bits are set
454 * to dirty.
456 * @start_add: start of logged region.
457 * @end_addr: end of logged region.
459 static int kvm_physical_sync_dirty_bitmap(KVMMemoryListener *kml,
460 MemoryRegionSection *section)
462 KVMState *s = kvm_state;
463 struct kvm_dirty_log d = {};
464 KVMSlot *mem;
465 hwaddr start_addr, size;
467 size = kvm_align_section(section, &start_addr);
468 if (size) {
469 mem = kvm_lookup_matching_slot(kml, start_addr, size);
470 if (!mem) {
471 /* We don't have a slot if we want to trap every access. */
472 return 0;
475 /* XXX bad kernel interface alert
476 * For dirty bitmap, kernel allocates array of size aligned to
477 * bits-per-long. But for case when the kernel is 64bits and
478 * the userspace is 32bits, userspace can't align to the same
479 * bits-per-long, since sizeof(long) is different between kernel
480 * and user space. This way, userspace will provide buffer which
481 * may be 4 bytes less than the kernel will use, resulting in
482 * userspace memory corruption (which is not detectable by valgrind
483 * too, in most cases).
484 * So for now, let's align to 64 instead of HOST_LONG_BITS here, in
485 * a hope that sizeof(long) won't become >8 any time soon.
487 size = ALIGN(((mem->memory_size) >> TARGET_PAGE_BITS),
488 /*HOST_LONG_BITS*/ 64) / 8;
489 d.dirty_bitmap = g_malloc0(size);
491 d.slot = mem->slot | (kml->as_id << 16);
492 if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) {
493 DPRINTF("ioctl failed %d\n", errno);
494 g_free(d.dirty_bitmap);
495 return -1;
498 kvm_get_dirty_pages_log_range(section, d.dirty_bitmap);
499 g_free(d.dirty_bitmap);
502 return 0;
505 static void kvm_coalesce_mmio_region(MemoryListener *listener,
506 MemoryRegionSection *secion,
507 hwaddr start, hwaddr size)
509 KVMState *s = kvm_state;
511 if (s->coalesced_mmio) {
512 struct kvm_coalesced_mmio_zone zone;
514 zone.addr = start;
515 zone.size = size;
516 zone.pad = 0;
518 (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
522 static void kvm_uncoalesce_mmio_region(MemoryListener *listener,
523 MemoryRegionSection *secion,
524 hwaddr start, hwaddr size)
526 KVMState *s = kvm_state;
528 if (s->coalesced_mmio) {
529 struct kvm_coalesced_mmio_zone zone;
531 zone.addr = start;
532 zone.size = size;
533 zone.pad = 0;
535 (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
539 int kvm_check_extension(KVMState *s, unsigned int extension)
541 int ret;
543 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
544 if (ret < 0) {
545 ret = 0;
548 return ret;
551 int kvm_vm_check_extension(KVMState *s, unsigned int extension)
553 int ret;
555 ret = kvm_vm_ioctl(s, KVM_CHECK_EXTENSION, extension);
556 if (ret < 0) {
557 /* VM wide version not implemented, use global one instead */
558 ret = kvm_check_extension(s, extension);
561 return ret;
564 static uint32_t adjust_ioeventfd_endianness(uint32_t val, uint32_t size)
566 #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
567 /* The kernel expects ioeventfd values in HOST_WORDS_BIGENDIAN
568 * endianness, but the memory core hands them in target endianness.
569 * For example, PPC is always treated as big-endian even if running
570 * on KVM and on PPC64LE. Correct here.
572 switch (size) {
573 case 2:
574 val = bswap16(val);
575 break;
576 case 4:
577 val = bswap32(val);
578 break;
580 #endif
581 return val;
584 static int kvm_set_ioeventfd_mmio(int fd, hwaddr addr, uint32_t val,
585 bool assign, uint32_t size, bool datamatch)
587 int ret;
588 struct kvm_ioeventfd iofd = {
589 .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0,
590 .addr = addr,
591 .len = size,
592 .flags = 0,
593 .fd = fd,
596 if (!kvm_enabled()) {
597 return -ENOSYS;
600 if (datamatch) {
601 iofd.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
603 if (!assign) {
604 iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
607 ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd);
609 if (ret < 0) {
610 return -errno;
613 return 0;
616 static int kvm_set_ioeventfd_pio(int fd, uint16_t addr, uint16_t val,
617 bool assign, uint32_t size, bool datamatch)
619 struct kvm_ioeventfd kick = {
620 .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0,
621 .addr = addr,
622 .flags = KVM_IOEVENTFD_FLAG_PIO,
623 .len = size,
624 .fd = fd,
626 int r;
627 if (!kvm_enabled()) {
628 return -ENOSYS;
630 if (datamatch) {
631 kick.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
633 if (!assign) {
634 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
636 r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
637 if (r < 0) {
638 return r;
640 return 0;
644 static int kvm_check_many_ioeventfds(void)
646 /* Userspace can use ioeventfd for io notification. This requires a host
647 * that supports eventfd(2) and an I/O thread; since eventfd does not
648 * support SIGIO it cannot interrupt the vcpu.
650 * Older kernels have a 6 device limit on the KVM io bus. Find out so we
651 * can avoid creating too many ioeventfds.
653 #if defined(CONFIG_EVENTFD)
654 int ioeventfds[7];
655 int i, ret = 0;
656 for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) {
657 ioeventfds[i] = eventfd(0, EFD_CLOEXEC);
658 if (ioeventfds[i] < 0) {
659 break;
661 ret = kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, true, 2, true);
662 if (ret < 0) {
663 close(ioeventfds[i]);
664 break;
668 /* Decide whether many devices are supported or not */
669 ret = i == ARRAY_SIZE(ioeventfds);
671 while (i-- > 0) {
672 kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, false, 2, true);
673 close(ioeventfds[i]);
675 return ret;
676 #else
677 return 0;
678 #endif
681 static const KVMCapabilityInfo *
682 kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list)
684 while (list->name) {
685 if (!kvm_check_extension(s, list->value)) {
686 return list;
688 list++;
690 return NULL;
693 static void kvm_set_phys_mem(KVMMemoryListener *kml,
694 MemoryRegionSection *section, bool add)
696 KVMSlot *mem;
697 int err;
698 MemoryRegion *mr = section->mr;
699 bool writeable = !mr->readonly && !mr->rom_device;
700 hwaddr start_addr, size;
701 void *ram;
703 if (!memory_region_is_ram(mr)) {
704 if (writeable || !kvm_readonly_mem_allowed) {
705 return;
706 } else if (!mr->romd_mode) {
707 /* If the memory device is not in romd_mode, then we actually want
708 * to remove the kvm memory slot so all accesses will trap. */
709 add = false;
713 size = kvm_align_section(section, &start_addr);
714 if (!size) {
715 return;
718 /* use aligned delta to align the ram address */
719 ram = memory_region_get_ram_ptr(mr) + section->offset_within_region +
720 (start_addr - section->offset_within_address_space);
722 if (!add) {
723 mem = kvm_lookup_matching_slot(kml, start_addr, size);
724 if (!mem) {
725 return;
727 if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
728 kvm_physical_sync_dirty_bitmap(kml, section);
731 /* unregister the slot */
732 mem->memory_size = 0;
733 err = kvm_set_user_memory_region(kml, mem);
734 if (err) {
735 fprintf(stderr, "%s: error unregistering slot: %s\n",
736 __func__, strerror(-err));
737 abort();
739 return;
742 /* register the new slot */
743 mem = kvm_alloc_slot(kml);
744 mem->memory_size = size;
745 mem->start_addr = start_addr;
746 mem->ram = ram;
747 mem->flags = kvm_mem_flags(mr);
749 err = kvm_set_user_memory_region(kml, mem);
750 if (err) {
751 fprintf(stderr, "%s: error registering slot: %s\n", __func__,
752 strerror(-err));
753 abort();
757 static void kvm_region_add(MemoryListener *listener,
758 MemoryRegionSection *section)
760 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
762 memory_region_ref(section->mr);
763 kvm_set_phys_mem(kml, section, true);
766 static void kvm_region_del(MemoryListener *listener,
767 MemoryRegionSection *section)
769 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
771 kvm_set_phys_mem(kml, section, false);
772 memory_region_unref(section->mr);
775 static void kvm_log_sync(MemoryListener *listener,
776 MemoryRegionSection *section)
778 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
779 int r;
781 r = kvm_physical_sync_dirty_bitmap(kml, section);
782 if (r < 0) {
783 abort();
787 static void kvm_mem_ioeventfd_add(MemoryListener *listener,
788 MemoryRegionSection *section,
789 bool match_data, uint64_t data,
790 EventNotifier *e)
792 int fd = event_notifier_get_fd(e);
793 int r;
795 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
796 data, true, int128_get64(section->size),
797 match_data);
798 if (r < 0) {
799 fprintf(stderr, "%s: error adding ioeventfd: %s\n",
800 __func__, strerror(-r));
801 abort();
805 static void kvm_mem_ioeventfd_del(MemoryListener *listener,
806 MemoryRegionSection *section,
807 bool match_data, uint64_t data,
808 EventNotifier *e)
810 int fd = event_notifier_get_fd(e);
811 int r;
813 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
814 data, false, int128_get64(section->size),
815 match_data);
816 if (r < 0) {
817 abort();
821 static void kvm_io_ioeventfd_add(MemoryListener *listener,
822 MemoryRegionSection *section,
823 bool match_data, uint64_t data,
824 EventNotifier *e)
826 int fd = event_notifier_get_fd(e);
827 int r;
829 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
830 data, true, int128_get64(section->size),
831 match_data);
832 if (r < 0) {
833 fprintf(stderr, "%s: error adding ioeventfd: %s\n",
834 __func__, strerror(-r));
835 abort();
839 static void kvm_io_ioeventfd_del(MemoryListener *listener,
840 MemoryRegionSection *section,
841 bool match_data, uint64_t data,
842 EventNotifier *e)
845 int fd = event_notifier_get_fd(e);
846 int r;
848 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
849 data, false, int128_get64(section->size),
850 match_data);
851 if (r < 0) {
852 abort();
856 void kvm_memory_listener_register(KVMState *s, KVMMemoryListener *kml,
857 AddressSpace *as, int as_id)
859 int i;
861 kml->slots = g_malloc0(s->nr_slots * sizeof(KVMSlot));
862 kml->as_id = as_id;
864 for (i = 0; i < s->nr_slots; i++) {
865 kml->slots[i].slot = i;
868 kml->listener.region_add = kvm_region_add;
869 kml->listener.region_del = kvm_region_del;
870 kml->listener.log_start = kvm_log_start;
871 kml->listener.log_stop = kvm_log_stop;
872 kml->listener.log_sync = kvm_log_sync;
873 kml->listener.priority = 10;
875 memory_listener_register(&kml->listener, as);
878 static MemoryListener kvm_io_listener = {
879 .eventfd_add = kvm_io_ioeventfd_add,
880 .eventfd_del = kvm_io_ioeventfd_del,
881 .priority = 10,
884 int kvm_set_irq(KVMState *s, int irq, int level)
886 struct kvm_irq_level event;
887 int ret;
889 assert(kvm_async_interrupts_enabled());
891 event.level = level;
892 event.irq = irq;
893 ret = kvm_vm_ioctl(s, s->irq_set_ioctl, &event);
894 if (ret < 0) {
895 perror("kvm_set_irq");
896 abort();
899 return (s->irq_set_ioctl == KVM_IRQ_LINE) ? 1 : event.status;
902 #ifdef KVM_CAP_IRQ_ROUTING
903 typedef struct KVMMSIRoute {
904 struct kvm_irq_routing_entry kroute;
905 QTAILQ_ENTRY(KVMMSIRoute) entry;
906 } KVMMSIRoute;
908 static void set_gsi(KVMState *s, unsigned int gsi)
910 set_bit(gsi, s->used_gsi_bitmap);
913 static void clear_gsi(KVMState *s, unsigned int gsi)
915 clear_bit(gsi, s->used_gsi_bitmap);
918 void kvm_init_irq_routing(KVMState *s)
920 int gsi_count, i;
922 gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING) - 1;
923 if (gsi_count > 0) {
924 /* Round up so we can search ints using ffs */
925 s->used_gsi_bitmap = bitmap_new(gsi_count);
926 s->gsi_count = gsi_count;
929 s->irq_routes = g_malloc0(sizeof(*s->irq_routes));
930 s->nr_allocated_irq_routes = 0;
932 if (!kvm_direct_msi_allowed) {
933 for (i = 0; i < KVM_MSI_HASHTAB_SIZE; i++) {
934 QTAILQ_INIT(&s->msi_hashtab[i]);
938 kvm_arch_init_irq_routing(s);
941 void kvm_irqchip_commit_routes(KVMState *s)
943 int ret;
945 if (kvm_gsi_direct_mapping()) {
946 return;
949 if (!kvm_gsi_routing_enabled()) {
950 return;
953 s->irq_routes->flags = 0;
954 trace_kvm_irqchip_commit_routes();
955 ret = kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes);
956 assert(ret == 0);
959 static void kvm_add_routing_entry(KVMState *s,
960 struct kvm_irq_routing_entry *entry)
962 struct kvm_irq_routing_entry *new;
963 int n, size;
965 if (s->irq_routes->nr == s->nr_allocated_irq_routes) {
966 n = s->nr_allocated_irq_routes * 2;
967 if (n < 64) {
968 n = 64;
970 size = sizeof(struct kvm_irq_routing);
971 size += n * sizeof(*new);
972 s->irq_routes = g_realloc(s->irq_routes, size);
973 s->nr_allocated_irq_routes = n;
975 n = s->irq_routes->nr++;
976 new = &s->irq_routes->entries[n];
978 *new = *entry;
980 set_gsi(s, entry->gsi);
983 static int kvm_update_routing_entry(KVMState *s,
984 struct kvm_irq_routing_entry *new_entry)
986 struct kvm_irq_routing_entry *entry;
987 int n;
989 for (n = 0; n < s->irq_routes->nr; n++) {
990 entry = &s->irq_routes->entries[n];
991 if (entry->gsi != new_entry->gsi) {
992 continue;
995 if(!memcmp(entry, new_entry, sizeof *entry)) {
996 return 0;
999 *entry = *new_entry;
1001 return 0;
1004 return -ESRCH;
1007 void kvm_irqchip_add_irq_route(KVMState *s, int irq, int irqchip, int pin)
1009 struct kvm_irq_routing_entry e = {};
1011 assert(pin < s->gsi_count);
1013 e.gsi = irq;
1014 e.type = KVM_IRQ_ROUTING_IRQCHIP;
1015 e.flags = 0;
1016 e.u.irqchip.irqchip = irqchip;
1017 e.u.irqchip.pin = pin;
1018 kvm_add_routing_entry(s, &e);
1021 void kvm_irqchip_release_virq(KVMState *s, int virq)
1023 struct kvm_irq_routing_entry *e;
1024 int i;
1026 if (kvm_gsi_direct_mapping()) {
1027 return;
1030 for (i = 0; i < s->irq_routes->nr; i++) {
1031 e = &s->irq_routes->entries[i];
1032 if (e->gsi == virq) {
1033 s->irq_routes->nr--;
1034 *e = s->irq_routes->entries[s->irq_routes->nr];
1037 clear_gsi(s, virq);
1038 kvm_arch_release_virq_post(virq);
1039 trace_kvm_irqchip_release_virq(virq);
1042 static unsigned int kvm_hash_msi(uint32_t data)
1044 /* This is optimized for IA32 MSI layout. However, no other arch shall
1045 * repeat the mistake of not providing a direct MSI injection API. */
1046 return data & 0xff;
1049 static void kvm_flush_dynamic_msi_routes(KVMState *s)
1051 KVMMSIRoute *route, *next;
1052 unsigned int hash;
1054 for (hash = 0; hash < KVM_MSI_HASHTAB_SIZE; hash++) {
1055 QTAILQ_FOREACH_SAFE(route, &s->msi_hashtab[hash], entry, next) {
1056 kvm_irqchip_release_virq(s, route->kroute.gsi);
1057 QTAILQ_REMOVE(&s->msi_hashtab[hash], route, entry);
1058 g_free(route);
1063 static int kvm_irqchip_get_virq(KVMState *s)
1065 int next_virq;
1068 * PIC and IOAPIC share the first 16 GSI numbers, thus the available
1069 * GSI numbers are more than the number of IRQ route. Allocating a GSI
1070 * number can succeed even though a new route entry cannot be added.
1071 * When this happens, flush dynamic MSI entries to free IRQ route entries.
1073 if (!kvm_direct_msi_allowed && s->irq_routes->nr == s->gsi_count) {
1074 kvm_flush_dynamic_msi_routes(s);
1077 /* Return the lowest unused GSI in the bitmap */
1078 next_virq = find_first_zero_bit(s->used_gsi_bitmap, s->gsi_count);
1079 if (next_virq >= s->gsi_count) {
1080 return -ENOSPC;
1081 } else {
1082 return next_virq;
1086 static KVMMSIRoute *kvm_lookup_msi_route(KVMState *s, MSIMessage msg)
1088 unsigned int hash = kvm_hash_msi(msg.data);
1089 KVMMSIRoute *route;
1091 QTAILQ_FOREACH(route, &s->msi_hashtab[hash], entry) {
1092 if (route->kroute.u.msi.address_lo == (uint32_t)msg.address &&
1093 route->kroute.u.msi.address_hi == (msg.address >> 32) &&
1094 route->kroute.u.msi.data == le32_to_cpu(msg.data)) {
1095 return route;
1098 return NULL;
1101 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
1103 struct kvm_msi msi;
1104 KVMMSIRoute *route;
1106 if (kvm_direct_msi_allowed) {
1107 msi.address_lo = (uint32_t)msg.address;
1108 msi.address_hi = msg.address >> 32;
1109 msi.data = le32_to_cpu(msg.data);
1110 msi.flags = 0;
1111 memset(msi.pad, 0, sizeof(msi.pad));
1113 return kvm_vm_ioctl(s, KVM_SIGNAL_MSI, &msi);
1116 route = kvm_lookup_msi_route(s, msg);
1117 if (!route) {
1118 int virq;
1120 virq = kvm_irqchip_get_virq(s);
1121 if (virq < 0) {
1122 return virq;
1125 route = g_malloc0(sizeof(KVMMSIRoute));
1126 route->kroute.gsi = virq;
1127 route->kroute.type = KVM_IRQ_ROUTING_MSI;
1128 route->kroute.flags = 0;
1129 route->kroute.u.msi.address_lo = (uint32_t)msg.address;
1130 route->kroute.u.msi.address_hi = msg.address >> 32;
1131 route->kroute.u.msi.data = le32_to_cpu(msg.data);
1133 kvm_add_routing_entry(s, &route->kroute);
1134 kvm_irqchip_commit_routes(s);
1136 QTAILQ_INSERT_TAIL(&s->msi_hashtab[kvm_hash_msi(msg.data)], route,
1137 entry);
1140 assert(route->kroute.type == KVM_IRQ_ROUTING_MSI);
1142 return kvm_set_irq(s, route->kroute.gsi, 1);
1145 int kvm_irqchip_add_msi_route(KVMState *s, int vector, PCIDevice *dev)
1147 struct kvm_irq_routing_entry kroute = {};
1148 int virq;
1149 MSIMessage msg = {0, 0};
1151 if (pci_available && dev) {
1152 msg = pci_get_msi_message(dev, vector);
1155 if (kvm_gsi_direct_mapping()) {
1156 return kvm_arch_msi_data_to_gsi(msg.data);
1159 if (!kvm_gsi_routing_enabled()) {
1160 return -ENOSYS;
1163 virq = kvm_irqchip_get_virq(s);
1164 if (virq < 0) {
1165 return virq;
1168 kroute.gsi = virq;
1169 kroute.type = KVM_IRQ_ROUTING_MSI;
1170 kroute.flags = 0;
1171 kroute.u.msi.address_lo = (uint32_t)msg.address;
1172 kroute.u.msi.address_hi = msg.address >> 32;
1173 kroute.u.msi.data = le32_to_cpu(msg.data);
1174 if (pci_available && kvm_msi_devid_required()) {
1175 kroute.flags = KVM_MSI_VALID_DEVID;
1176 kroute.u.msi.devid = pci_requester_id(dev);
1178 if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) {
1179 kvm_irqchip_release_virq(s, virq);
1180 return -EINVAL;
1183 trace_kvm_irqchip_add_msi_route(dev ? dev->name : (char *)"N/A",
1184 vector, virq);
1186 kvm_add_routing_entry(s, &kroute);
1187 kvm_arch_add_msi_route_post(&kroute, vector, dev);
1188 kvm_irqchip_commit_routes(s);
1190 return virq;
1193 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg,
1194 PCIDevice *dev)
1196 struct kvm_irq_routing_entry kroute = {};
1198 if (kvm_gsi_direct_mapping()) {
1199 return 0;
1202 if (!kvm_irqchip_in_kernel()) {
1203 return -ENOSYS;
1206 kroute.gsi = virq;
1207 kroute.type = KVM_IRQ_ROUTING_MSI;
1208 kroute.flags = 0;
1209 kroute.u.msi.address_lo = (uint32_t)msg.address;
1210 kroute.u.msi.address_hi = msg.address >> 32;
1211 kroute.u.msi.data = le32_to_cpu(msg.data);
1212 if (pci_available && kvm_msi_devid_required()) {
1213 kroute.flags = KVM_MSI_VALID_DEVID;
1214 kroute.u.msi.devid = pci_requester_id(dev);
1216 if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) {
1217 return -EINVAL;
1220 trace_kvm_irqchip_update_msi_route(virq);
1222 return kvm_update_routing_entry(s, &kroute);
1225 static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int rfd, int virq,
1226 bool assign)
1228 struct kvm_irqfd irqfd = {
1229 .fd = fd,
1230 .gsi = virq,
1231 .flags = assign ? 0 : KVM_IRQFD_FLAG_DEASSIGN,
1234 if (rfd != -1) {
1235 irqfd.flags |= KVM_IRQFD_FLAG_RESAMPLE;
1236 irqfd.resamplefd = rfd;
1239 if (!kvm_irqfds_enabled()) {
1240 return -ENOSYS;
1243 return kvm_vm_ioctl(s, KVM_IRQFD, &irqfd);
1246 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter)
1248 struct kvm_irq_routing_entry kroute = {};
1249 int virq;
1251 if (!kvm_gsi_routing_enabled()) {
1252 return -ENOSYS;
1255 virq = kvm_irqchip_get_virq(s);
1256 if (virq < 0) {
1257 return virq;
1260 kroute.gsi = virq;
1261 kroute.type = KVM_IRQ_ROUTING_S390_ADAPTER;
1262 kroute.flags = 0;
1263 kroute.u.adapter.summary_addr = adapter->summary_addr;
1264 kroute.u.adapter.ind_addr = adapter->ind_addr;
1265 kroute.u.adapter.summary_offset = adapter->summary_offset;
1266 kroute.u.adapter.ind_offset = adapter->ind_offset;
1267 kroute.u.adapter.adapter_id = adapter->adapter_id;
1269 kvm_add_routing_entry(s, &kroute);
1271 return virq;
1274 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint)
1276 struct kvm_irq_routing_entry kroute = {};
1277 int virq;
1279 if (!kvm_gsi_routing_enabled()) {
1280 return -ENOSYS;
1282 if (!kvm_check_extension(s, KVM_CAP_HYPERV_SYNIC)) {
1283 return -ENOSYS;
1285 virq = kvm_irqchip_get_virq(s);
1286 if (virq < 0) {
1287 return virq;
1290 kroute.gsi = virq;
1291 kroute.type = KVM_IRQ_ROUTING_HV_SINT;
1292 kroute.flags = 0;
1293 kroute.u.hv_sint.vcpu = vcpu;
1294 kroute.u.hv_sint.sint = sint;
1296 kvm_add_routing_entry(s, &kroute);
1297 kvm_irqchip_commit_routes(s);
1299 return virq;
1302 #else /* !KVM_CAP_IRQ_ROUTING */
1304 void kvm_init_irq_routing(KVMState *s)
1308 void kvm_irqchip_release_virq(KVMState *s, int virq)
1312 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
1314 abort();
1317 int kvm_irqchip_add_msi_route(KVMState *s, int vector, PCIDevice *dev)
1319 return -ENOSYS;
1322 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter)
1324 return -ENOSYS;
1327 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint)
1329 return -ENOSYS;
1332 static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int virq, bool assign)
1334 abort();
1337 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg)
1339 return -ENOSYS;
1341 #endif /* !KVM_CAP_IRQ_ROUTING */
1343 int kvm_irqchip_add_irqfd_notifier_gsi(KVMState *s, EventNotifier *n,
1344 EventNotifier *rn, int virq)
1346 return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n),
1347 rn ? event_notifier_get_fd(rn) : -1, virq, true);
1350 int kvm_irqchip_remove_irqfd_notifier_gsi(KVMState *s, EventNotifier *n,
1351 int virq)
1353 return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n), -1, virq,
1354 false);
1357 int kvm_irqchip_add_irqfd_notifier(KVMState *s, EventNotifier *n,
1358 EventNotifier *rn, qemu_irq irq)
1360 gpointer key, gsi;
1361 gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi);
1363 if (!found) {
1364 return -ENXIO;
1366 return kvm_irqchip_add_irqfd_notifier_gsi(s, n, rn, GPOINTER_TO_INT(gsi));
1369 int kvm_irqchip_remove_irqfd_notifier(KVMState *s, EventNotifier *n,
1370 qemu_irq irq)
1372 gpointer key, gsi;
1373 gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi);
1375 if (!found) {
1376 return -ENXIO;
1378 return kvm_irqchip_remove_irqfd_notifier_gsi(s, n, GPOINTER_TO_INT(gsi));
1381 void kvm_irqchip_set_qemuirq_gsi(KVMState *s, qemu_irq irq, int gsi)
1383 g_hash_table_insert(s->gsimap, irq, GINT_TO_POINTER(gsi));
1386 static void kvm_irqchip_create(MachineState *machine, KVMState *s)
1388 int ret;
1390 if (kvm_check_extension(s, KVM_CAP_IRQCHIP)) {
1392 } else if (kvm_check_extension(s, KVM_CAP_S390_IRQCHIP)) {
1393 ret = kvm_vm_enable_cap(s, KVM_CAP_S390_IRQCHIP, 0);
1394 if (ret < 0) {
1395 fprintf(stderr, "Enable kernel irqchip failed: %s\n", strerror(-ret));
1396 exit(1);
1398 } else {
1399 return;
1402 /* First probe and see if there's a arch-specific hook to create the
1403 * in-kernel irqchip for us */
1404 ret = kvm_arch_irqchip_create(machine, s);
1405 if (ret == 0) {
1406 if (machine_kernel_irqchip_split(machine)) {
1407 perror("Split IRQ chip mode not supported.");
1408 exit(1);
1409 } else {
1410 ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP);
1413 if (ret < 0) {
1414 fprintf(stderr, "Create kernel irqchip failed: %s\n", strerror(-ret));
1415 exit(1);
1418 kvm_kernel_irqchip = true;
1419 /* If we have an in-kernel IRQ chip then we must have asynchronous
1420 * interrupt delivery (though the reverse is not necessarily true)
1422 kvm_async_interrupts_allowed = true;
1423 kvm_halt_in_kernel_allowed = true;
1425 kvm_init_irq_routing(s);
1427 s->gsimap = g_hash_table_new(g_direct_hash, g_direct_equal);
1430 /* Find number of supported CPUs using the recommended
1431 * procedure from the kernel API documentation to cope with
1432 * older kernels that may be missing capabilities.
1434 static int kvm_recommended_vcpus(KVMState *s)
1436 int ret = kvm_vm_check_extension(s, KVM_CAP_NR_VCPUS);
1437 return (ret) ? ret : 4;
1440 static int kvm_max_vcpus(KVMState *s)
1442 int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPUS);
1443 return (ret) ? ret : kvm_recommended_vcpus(s);
1446 static int kvm_max_vcpu_id(KVMState *s)
1448 int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPU_ID);
1449 return (ret) ? ret : kvm_max_vcpus(s);
1452 bool kvm_vcpu_id_is_valid(int vcpu_id)
1454 KVMState *s = KVM_STATE(current_machine->accelerator);
1455 return vcpu_id >= 0 && vcpu_id < kvm_max_vcpu_id(s);
1458 static int kvm_init(MachineState *ms)
1460 MachineClass *mc = MACHINE_GET_CLASS(ms);
1461 static const char upgrade_note[] =
1462 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
1463 "(see http://sourceforge.net/projects/kvm).\n";
1464 struct {
1465 const char *name;
1466 int num;
1467 } num_cpus[] = {
1468 { "SMP", smp_cpus },
1469 { "hotpluggable", max_cpus },
1470 { NULL, }
1471 }, *nc = num_cpus;
1472 int soft_vcpus_limit, hard_vcpus_limit;
1473 KVMState *s;
1474 const KVMCapabilityInfo *missing_cap;
1475 int ret;
1476 int type = 0;
1477 const char *kvm_type;
1479 s = KVM_STATE(ms->accelerator);
1482 * On systems where the kernel can support different base page
1483 * sizes, host page size may be different from TARGET_PAGE_SIZE,
1484 * even with KVM. TARGET_PAGE_SIZE is assumed to be the minimum
1485 * page size for the system though.
1487 assert(TARGET_PAGE_SIZE <= getpagesize());
1489 s->sigmask_len = 8;
1491 #ifdef KVM_CAP_SET_GUEST_DEBUG
1492 QTAILQ_INIT(&s->kvm_sw_breakpoints);
1493 #endif
1494 QLIST_INIT(&s->kvm_parked_vcpus);
1495 s->vmfd = -1;
1496 s->fd = qemu_open("/dev/kvm", O_RDWR);
1497 if (s->fd == -1) {
1498 fprintf(stderr, "Could not access KVM kernel module: %m\n");
1499 ret = -errno;
1500 goto err;
1503 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
1504 if (ret < KVM_API_VERSION) {
1505 if (ret >= 0) {
1506 ret = -EINVAL;
1508 fprintf(stderr, "kvm version too old\n");
1509 goto err;
1512 if (ret > KVM_API_VERSION) {
1513 ret = -EINVAL;
1514 fprintf(stderr, "kvm version not supported\n");
1515 goto err;
1518 kvm_immediate_exit = kvm_check_extension(s, KVM_CAP_IMMEDIATE_EXIT);
1519 s->nr_slots = kvm_check_extension(s, KVM_CAP_NR_MEMSLOTS);
1521 /* If unspecified, use the default value */
1522 if (!s->nr_slots) {
1523 s->nr_slots = 32;
1526 kvm_type = qemu_opt_get(qemu_get_machine_opts(), "kvm-type");
1527 if (mc->kvm_type) {
1528 type = mc->kvm_type(kvm_type);
1529 } else if (kvm_type) {
1530 ret = -EINVAL;
1531 fprintf(stderr, "Invalid argument kvm-type=%s\n", kvm_type);
1532 goto err;
1535 do {
1536 ret = kvm_ioctl(s, KVM_CREATE_VM, type);
1537 } while (ret == -EINTR);
1539 if (ret < 0) {
1540 fprintf(stderr, "ioctl(KVM_CREATE_VM) failed: %d %s\n", -ret,
1541 strerror(-ret));
1543 #ifdef TARGET_S390X
1544 if (ret == -EINVAL) {
1545 fprintf(stderr,
1546 "Host kernel setup problem detected. Please verify:\n");
1547 fprintf(stderr, "- for kernels supporting the switch_amode or"
1548 " user_mode parameters, whether\n");
1549 fprintf(stderr,
1550 " user space is running in primary address space\n");
1551 fprintf(stderr,
1552 "- for kernels supporting the vm.allocate_pgste sysctl, "
1553 "whether it is enabled\n");
1555 #endif
1556 goto err;
1559 s->vmfd = ret;
1561 /* check the vcpu limits */
1562 soft_vcpus_limit = kvm_recommended_vcpus(s);
1563 hard_vcpus_limit = kvm_max_vcpus(s);
1565 while (nc->name) {
1566 if (nc->num > soft_vcpus_limit) {
1567 warn_report("Number of %s cpus requested (%d) exceeds "
1568 "the recommended cpus supported by KVM (%d)",
1569 nc->name, nc->num, soft_vcpus_limit);
1571 if (nc->num > hard_vcpus_limit) {
1572 fprintf(stderr, "Number of %s cpus requested (%d) exceeds "
1573 "the maximum cpus supported by KVM (%d)\n",
1574 nc->name, nc->num, hard_vcpus_limit);
1575 exit(1);
1578 nc++;
1581 missing_cap = kvm_check_extension_list(s, kvm_required_capabilites);
1582 if (!missing_cap) {
1583 missing_cap =
1584 kvm_check_extension_list(s, kvm_arch_required_capabilities);
1586 if (missing_cap) {
1587 ret = -EINVAL;
1588 fprintf(stderr, "kvm does not support %s\n%s",
1589 missing_cap->name, upgrade_note);
1590 goto err;
1593 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
1595 #ifdef KVM_CAP_VCPU_EVENTS
1596 s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS);
1597 #endif
1599 s->robust_singlestep =
1600 kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP);
1602 #ifdef KVM_CAP_DEBUGREGS
1603 s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS);
1604 #endif
1606 #ifdef KVM_CAP_IRQ_ROUTING
1607 kvm_direct_msi_allowed = (kvm_check_extension(s, KVM_CAP_SIGNAL_MSI) > 0);
1608 #endif
1610 s->intx_set_mask = kvm_check_extension(s, KVM_CAP_PCI_2_3);
1612 s->irq_set_ioctl = KVM_IRQ_LINE;
1613 if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) {
1614 s->irq_set_ioctl = KVM_IRQ_LINE_STATUS;
1617 #ifdef KVM_CAP_READONLY_MEM
1618 kvm_readonly_mem_allowed =
1619 (kvm_check_extension(s, KVM_CAP_READONLY_MEM) > 0);
1620 #endif
1622 kvm_eventfds_allowed =
1623 (kvm_check_extension(s, KVM_CAP_IOEVENTFD) > 0);
1625 kvm_irqfds_allowed =
1626 (kvm_check_extension(s, KVM_CAP_IRQFD) > 0);
1628 kvm_resamplefds_allowed =
1629 (kvm_check_extension(s, KVM_CAP_IRQFD_RESAMPLE) > 0);
1631 kvm_vm_attributes_allowed =
1632 (kvm_check_extension(s, KVM_CAP_VM_ATTRIBUTES) > 0);
1634 kvm_ioeventfd_any_length_allowed =
1635 (kvm_check_extension(s, KVM_CAP_IOEVENTFD_ANY_LENGTH) > 0);
1637 kvm_state = s;
1639 ret = kvm_arch_init(ms, s);
1640 if (ret < 0) {
1641 goto err;
1644 if (machine_kernel_irqchip_allowed(ms)) {
1645 kvm_irqchip_create(ms, s);
1648 if (kvm_eventfds_allowed) {
1649 s->memory_listener.listener.eventfd_add = kvm_mem_ioeventfd_add;
1650 s->memory_listener.listener.eventfd_del = kvm_mem_ioeventfd_del;
1652 s->memory_listener.listener.coalesced_mmio_add = kvm_coalesce_mmio_region;
1653 s->memory_listener.listener.coalesced_mmio_del = kvm_uncoalesce_mmio_region;
1655 kvm_memory_listener_register(s, &s->memory_listener,
1656 &address_space_memory, 0);
1657 memory_listener_register(&kvm_io_listener,
1658 &address_space_io);
1660 s->many_ioeventfds = kvm_check_many_ioeventfds();
1662 s->sync_mmu = !!kvm_vm_check_extension(kvm_state, KVM_CAP_SYNC_MMU);
1664 return 0;
1666 err:
1667 assert(ret < 0);
1668 if (s->vmfd >= 0) {
1669 close(s->vmfd);
1671 if (s->fd != -1) {
1672 close(s->fd);
1674 g_free(s->memory_listener.slots);
1676 return ret;
1679 void kvm_set_sigmask_len(KVMState *s, unsigned int sigmask_len)
1681 s->sigmask_len = sigmask_len;
1684 static void kvm_handle_io(uint16_t port, MemTxAttrs attrs, void *data, int direction,
1685 int size, uint32_t count)
1687 int i;
1688 uint8_t *ptr = data;
1690 for (i = 0; i < count; i++) {
1691 address_space_rw(&address_space_io, port, attrs,
1692 ptr, size,
1693 direction == KVM_EXIT_IO_OUT);
1694 ptr += size;
1698 static int kvm_handle_internal_error(CPUState *cpu, struct kvm_run *run)
1700 fprintf(stderr, "KVM internal error. Suberror: %d\n",
1701 run->internal.suberror);
1703 if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) {
1704 int i;
1706 for (i = 0; i < run->internal.ndata; ++i) {
1707 fprintf(stderr, "extra data[%d]: %"PRIx64"\n",
1708 i, (uint64_t)run->internal.data[i]);
1711 if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) {
1712 fprintf(stderr, "emulation failure\n");
1713 if (!kvm_arch_stop_on_emulation_error(cpu)) {
1714 cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_CODE);
1715 return EXCP_INTERRUPT;
1718 /* FIXME: Should trigger a qmp message to let management know
1719 * something went wrong.
1721 return -1;
1724 void kvm_flush_coalesced_mmio_buffer(void)
1726 KVMState *s = kvm_state;
1728 if (s->coalesced_flush_in_progress) {
1729 return;
1732 s->coalesced_flush_in_progress = true;
1734 if (s->coalesced_mmio_ring) {
1735 struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring;
1736 while (ring->first != ring->last) {
1737 struct kvm_coalesced_mmio *ent;
1739 ent = &ring->coalesced_mmio[ring->first];
1741 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
1742 smp_wmb();
1743 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
1747 s->coalesced_flush_in_progress = false;
1750 static void do_kvm_cpu_synchronize_state(CPUState *cpu, run_on_cpu_data arg)
1752 if (!cpu->vcpu_dirty) {
1753 kvm_arch_get_registers(cpu);
1754 cpu->vcpu_dirty = true;
1758 void kvm_cpu_synchronize_state(CPUState *cpu)
1760 if (!cpu->vcpu_dirty) {
1761 run_on_cpu(cpu, do_kvm_cpu_synchronize_state, RUN_ON_CPU_NULL);
1765 static void do_kvm_cpu_synchronize_post_reset(CPUState *cpu, run_on_cpu_data arg)
1767 kvm_arch_put_registers(cpu, KVM_PUT_RESET_STATE);
1768 cpu->vcpu_dirty = false;
1771 void kvm_cpu_synchronize_post_reset(CPUState *cpu)
1773 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_reset, RUN_ON_CPU_NULL);
1776 static void do_kvm_cpu_synchronize_post_init(CPUState *cpu, run_on_cpu_data arg)
1778 kvm_arch_put_registers(cpu, KVM_PUT_FULL_STATE);
1779 cpu->vcpu_dirty = false;
1782 void kvm_cpu_synchronize_post_init(CPUState *cpu)
1784 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_init, RUN_ON_CPU_NULL);
1787 static void do_kvm_cpu_synchronize_pre_loadvm(CPUState *cpu, run_on_cpu_data arg)
1789 cpu->vcpu_dirty = true;
1792 void kvm_cpu_synchronize_pre_loadvm(CPUState *cpu)
1794 run_on_cpu(cpu, do_kvm_cpu_synchronize_pre_loadvm, RUN_ON_CPU_NULL);
1797 #ifdef KVM_HAVE_MCE_INJECTION
1798 static __thread void *pending_sigbus_addr;
1799 static __thread int pending_sigbus_code;
1800 static __thread bool have_sigbus_pending;
1801 #endif
1803 static void kvm_cpu_kick(CPUState *cpu)
1805 atomic_set(&cpu->kvm_run->immediate_exit, 1);
1808 static void kvm_cpu_kick_self(void)
1810 if (kvm_immediate_exit) {
1811 kvm_cpu_kick(current_cpu);
1812 } else {
1813 qemu_cpu_kick_self();
1817 static void kvm_eat_signals(CPUState *cpu)
1819 struct timespec ts = { 0, 0 };
1820 siginfo_t siginfo;
1821 sigset_t waitset;
1822 sigset_t chkset;
1823 int r;
1825 if (kvm_immediate_exit) {
1826 atomic_set(&cpu->kvm_run->immediate_exit, 0);
1827 /* Write kvm_run->immediate_exit before the cpu->exit_request
1828 * write in kvm_cpu_exec.
1830 smp_wmb();
1831 return;
1834 sigemptyset(&waitset);
1835 sigaddset(&waitset, SIG_IPI);
1837 do {
1838 r = sigtimedwait(&waitset, &siginfo, &ts);
1839 if (r == -1 && !(errno == EAGAIN || errno == EINTR)) {
1840 perror("sigtimedwait");
1841 exit(1);
1844 r = sigpending(&chkset);
1845 if (r == -1) {
1846 perror("sigpending");
1847 exit(1);
1849 } while (sigismember(&chkset, SIG_IPI));
1852 int kvm_cpu_exec(CPUState *cpu)
1854 struct kvm_run *run = cpu->kvm_run;
1855 int ret, run_ret;
1857 DPRINTF("kvm_cpu_exec()\n");
1859 if (kvm_arch_process_async_events(cpu)) {
1860 atomic_set(&cpu->exit_request, 0);
1861 return EXCP_HLT;
1864 qemu_mutex_unlock_iothread();
1865 cpu_exec_start(cpu);
1867 do {
1868 MemTxAttrs attrs;
1870 if (cpu->vcpu_dirty) {
1871 kvm_arch_put_registers(cpu, KVM_PUT_RUNTIME_STATE);
1872 cpu->vcpu_dirty = false;
1875 kvm_arch_pre_run(cpu, run);
1876 if (atomic_read(&cpu->exit_request)) {
1877 DPRINTF("interrupt exit requested\n");
1879 * KVM requires us to reenter the kernel after IO exits to complete
1880 * instruction emulation. This self-signal will ensure that we
1881 * leave ASAP again.
1883 kvm_cpu_kick_self();
1886 /* Read cpu->exit_request before KVM_RUN reads run->immediate_exit.
1887 * Matching barrier in kvm_eat_signals.
1889 smp_rmb();
1891 run_ret = kvm_vcpu_ioctl(cpu, KVM_RUN, 0);
1893 attrs = kvm_arch_post_run(cpu, run);
1895 #ifdef KVM_HAVE_MCE_INJECTION
1896 if (unlikely(have_sigbus_pending)) {
1897 qemu_mutex_lock_iothread();
1898 kvm_arch_on_sigbus_vcpu(cpu, pending_sigbus_code,
1899 pending_sigbus_addr);
1900 have_sigbus_pending = false;
1901 qemu_mutex_unlock_iothread();
1903 #endif
1905 if (run_ret < 0) {
1906 if (run_ret == -EINTR || run_ret == -EAGAIN) {
1907 DPRINTF("io window exit\n");
1908 kvm_eat_signals(cpu);
1909 ret = EXCP_INTERRUPT;
1910 break;
1912 fprintf(stderr, "error: kvm run failed %s\n",
1913 strerror(-run_ret));
1914 #ifdef TARGET_PPC
1915 if (run_ret == -EBUSY) {
1916 fprintf(stderr,
1917 "This is probably because your SMT is enabled.\n"
1918 "VCPU can only run on primary threads with all "
1919 "secondary threads offline.\n");
1921 #endif
1922 ret = -1;
1923 break;
1926 trace_kvm_run_exit(cpu->cpu_index, run->exit_reason);
1927 switch (run->exit_reason) {
1928 case KVM_EXIT_IO:
1929 DPRINTF("handle_io\n");
1930 /* Called outside BQL */
1931 kvm_handle_io(run->io.port, attrs,
1932 (uint8_t *)run + run->io.data_offset,
1933 run->io.direction,
1934 run->io.size,
1935 run->io.count);
1936 ret = 0;
1937 break;
1938 case KVM_EXIT_MMIO:
1939 DPRINTF("handle_mmio\n");
1940 /* Called outside BQL */
1941 address_space_rw(&address_space_memory,
1942 run->mmio.phys_addr, attrs,
1943 run->mmio.data,
1944 run->mmio.len,
1945 run->mmio.is_write);
1946 ret = 0;
1947 break;
1948 case KVM_EXIT_IRQ_WINDOW_OPEN:
1949 DPRINTF("irq_window_open\n");
1950 ret = EXCP_INTERRUPT;
1951 break;
1952 case KVM_EXIT_SHUTDOWN:
1953 DPRINTF("shutdown\n");
1954 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
1955 ret = EXCP_INTERRUPT;
1956 break;
1957 case KVM_EXIT_UNKNOWN:
1958 fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n",
1959 (uint64_t)run->hw.hardware_exit_reason);
1960 ret = -1;
1961 break;
1962 case KVM_EXIT_INTERNAL_ERROR:
1963 ret = kvm_handle_internal_error(cpu, run);
1964 break;
1965 case KVM_EXIT_SYSTEM_EVENT:
1966 switch (run->system_event.type) {
1967 case KVM_SYSTEM_EVENT_SHUTDOWN:
1968 qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN);
1969 ret = EXCP_INTERRUPT;
1970 break;
1971 case KVM_SYSTEM_EVENT_RESET:
1972 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
1973 ret = EXCP_INTERRUPT;
1974 break;
1975 case KVM_SYSTEM_EVENT_CRASH:
1976 kvm_cpu_synchronize_state(cpu);
1977 qemu_mutex_lock_iothread();
1978 qemu_system_guest_panicked(cpu_get_crash_info(cpu));
1979 qemu_mutex_unlock_iothread();
1980 ret = 0;
1981 break;
1982 default:
1983 DPRINTF("kvm_arch_handle_exit\n");
1984 ret = kvm_arch_handle_exit(cpu, run);
1985 break;
1987 break;
1988 default:
1989 DPRINTF("kvm_arch_handle_exit\n");
1990 ret = kvm_arch_handle_exit(cpu, run);
1991 break;
1993 } while (ret == 0);
1995 cpu_exec_end(cpu);
1996 qemu_mutex_lock_iothread();
1998 if (ret < 0) {
1999 cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_CODE);
2000 vm_stop(RUN_STATE_INTERNAL_ERROR);
2003 atomic_set(&cpu->exit_request, 0);
2004 return ret;
2007 int kvm_ioctl(KVMState *s, int type, ...)
2009 int ret;
2010 void *arg;
2011 va_list ap;
2013 va_start(ap, type);
2014 arg = va_arg(ap, void *);
2015 va_end(ap);
2017 trace_kvm_ioctl(type, arg);
2018 ret = ioctl(s->fd, type, arg);
2019 if (ret == -1) {
2020 ret = -errno;
2022 return ret;
2025 int kvm_vm_ioctl(KVMState *s, int type, ...)
2027 int ret;
2028 void *arg;
2029 va_list ap;
2031 va_start(ap, type);
2032 arg = va_arg(ap, void *);
2033 va_end(ap);
2035 trace_kvm_vm_ioctl(type, arg);
2036 ret = ioctl(s->vmfd, type, arg);
2037 if (ret == -1) {
2038 ret = -errno;
2040 return ret;
2043 int kvm_vcpu_ioctl(CPUState *cpu, int type, ...)
2045 int ret;
2046 void *arg;
2047 va_list ap;
2049 va_start(ap, type);
2050 arg = va_arg(ap, void *);
2051 va_end(ap);
2053 trace_kvm_vcpu_ioctl(cpu->cpu_index, type, arg);
2054 ret = ioctl(cpu->kvm_fd, type, arg);
2055 if (ret == -1) {
2056 ret = -errno;
2058 return ret;
2061 int kvm_device_ioctl(int fd, int type, ...)
2063 int ret;
2064 void *arg;
2065 va_list ap;
2067 va_start(ap, type);
2068 arg = va_arg(ap, void *);
2069 va_end(ap);
2071 trace_kvm_device_ioctl(fd, type, arg);
2072 ret = ioctl(fd, type, arg);
2073 if (ret == -1) {
2074 ret = -errno;
2076 return ret;
2079 int kvm_vm_check_attr(KVMState *s, uint32_t group, uint64_t attr)
2081 int ret;
2082 struct kvm_device_attr attribute = {
2083 .group = group,
2084 .attr = attr,
2087 if (!kvm_vm_attributes_allowed) {
2088 return 0;
2091 ret = kvm_vm_ioctl(s, KVM_HAS_DEVICE_ATTR, &attribute);
2092 /* kvm returns 0 on success for HAS_DEVICE_ATTR */
2093 return ret ? 0 : 1;
2096 int kvm_device_check_attr(int dev_fd, uint32_t group, uint64_t attr)
2098 struct kvm_device_attr attribute = {
2099 .group = group,
2100 .attr = attr,
2101 .flags = 0,
2104 return kvm_device_ioctl(dev_fd, KVM_HAS_DEVICE_ATTR, &attribute) ? 0 : 1;
2107 int kvm_device_access(int fd, int group, uint64_t attr,
2108 void *val, bool write, Error **errp)
2110 struct kvm_device_attr kvmattr;
2111 int err;
2113 kvmattr.flags = 0;
2114 kvmattr.group = group;
2115 kvmattr.attr = attr;
2116 kvmattr.addr = (uintptr_t)val;
2118 err = kvm_device_ioctl(fd,
2119 write ? KVM_SET_DEVICE_ATTR : KVM_GET_DEVICE_ATTR,
2120 &kvmattr);
2121 if (err < 0) {
2122 error_setg_errno(errp, -err,
2123 "KVM_%s_DEVICE_ATTR failed: Group %d "
2124 "attr 0x%016" PRIx64,
2125 write ? "SET" : "GET", group, attr);
2127 return err;
2130 bool kvm_has_sync_mmu(void)
2132 return kvm_state->sync_mmu;
2135 int kvm_has_vcpu_events(void)
2137 return kvm_state->vcpu_events;
2140 int kvm_has_robust_singlestep(void)
2142 return kvm_state->robust_singlestep;
2145 int kvm_has_debugregs(void)
2147 return kvm_state->debugregs;
2150 int kvm_has_many_ioeventfds(void)
2152 if (!kvm_enabled()) {
2153 return 0;
2155 return kvm_state->many_ioeventfds;
2158 int kvm_has_gsi_routing(void)
2160 #ifdef KVM_CAP_IRQ_ROUTING
2161 return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING);
2162 #else
2163 return false;
2164 #endif
2167 int kvm_has_intx_set_mask(void)
2169 return kvm_state->intx_set_mask;
2172 bool kvm_arm_supports_user_irq(void)
2174 return kvm_check_extension(kvm_state, KVM_CAP_ARM_USER_IRQ);
2177 #ifdef KVM_CAP_SET_GUEST_DEBUG
2178 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *cpu,
2179 target_ulong pc)
2181 struct kvm_sw_breakpoint *bp;
2183 QTAILQ_FOREACH(bp, &cpu->kvm_state->kvm_sw_breakpoints, entry) {
2184 if (bp->pc == pc) {
2185 return bp;
2188 return NULL;
2191 int kvm_sw_breakpoints_active(CPUState *cpu)
2193 return !QTAILQ_EMPTY(&cpu->kvm_state->kvm_sw_breakpoints);
2196 struct kvm_set_guest_debug_data {
2197 struct kvm_guest_debug dbg;
2198 int err;
2201 static void kvm_invoke_set_guest_debug(CPUState *cpu, run_on_cpu_data data)
2203 struct kvm_set_guest_debug_data *dbg_data =
2204 (struct kvm_set_guest_debug_data *) data.host_ptr;
2206 dbg_data->err = kvm_vcpu_ioctl(cpu, KVM_SET_GUEST_DEBUG,
2207 &dbg_data->dbg);
2210 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap)
2212 struct kvm_set_guest_debug_data data;
2214 data.dbg.control = reinject_trap;
2216 if (cpu->singlestep_enabled) {
2217 data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
2219 kvm_arch_update_guest_debug(cpu, &data.dbg);
2221 run_on_cpu(cpu, kvm_invoke_set_guest_debug,
2222 RUN_ON_CPU_HOST_PTR(&data));
2223 return data.err;
2226 int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr,
2227 target_ulong len, int type)
2229 struct kvm_sw_breakpoint *bp;
2230 int err;
2232 if (type == GDB_BREAKPOINT_SW) {
2233 bp = kvm_find_sw_breakpoint(cpu, addr);
2234 if (bp) {
2235 bp->use_count++;
2236 return 0;
2239 bp = g_malloc(sizeof(struct kvm_sw_breakpoint));
2240 bp->pc = addr;
2241 bp->use_count = 1;
2242 err = kvm_arch_insert_sw_breakpoint(cpu, bp);
2243 if (err) {
2244 g_free(bp);
2245 return err;
2248 QTAILQ_INSERT_HEAD(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
2249 } else {
2250 err = kvm_arch_insert_hw_breakpoint(addr, len, type);
2251 if (err) {
2252 return err;
2256 CPU_FOREACH(cpu) {
2257 err = kvm_update_guest_debug(cpu, 0);
2258 if (err) {
2259 return err;
2262 return 0;
2265 int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr,
2266 target_ulong len, int type)
2268 struct kvm_sw_breakpoint *bp;
2269 int err;
2271 if (type == GDB_BREAKPOINT_SW) {
2272 bp = kvm_find_sw_breakpoint(cpu, addr);
2273 if (!bp) {
2274 return -ENOENT;
2277 if (bp->use_count > 1) {
2278 bp->use_count--;
2279 return 0;
2282 err = kvm_arch_remove_sw_breakpoint(cpu, bp);
2283 if (err) {
2284 return err;
2287 QTAILQ_REMOVE(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
2288 g_free(bp);
2289 } else {
2290 err = kvm_arch_remove_hw_breakpoint(addr, len, type);
2291 if (err) {
2292 return err;
2296 CPU_FOREACH(cpu) {
2297 err = kvm_update_guest_debug(cpu, 0);
2298 if (err) {
2299 return err;
2302 return 0;
2305 void kvm_remove_all_breakpoints(CPUState *cpu)
2307 struct kvm_sw_breakpoint *bp, *next;
2308 KVMState *s = cpu->kvm_state;
2309 CPUState *tmpcpu;
2311 QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
2312 if (kvm_arch_remove_sw_breakpoint(cpu, bp) != 0) {
2313 /* Try harder to find a CPU that currently sees the breakpoint. */
2314 CPU_FOREACH(tmpcpu) {
2315 if (kvm_arch_remove_sw_breakpoint(tmpcpu, bp) == 0) {
2316 break;
2320 QTAILQ_REMOVE(&s->kvm_sw_breakpoints, bp, entry);
2321 g_free(bp);
2323 kvm_arch_remove_all_hw_breakpoints();
2325 CPU_FOREACH(cpu) {
2326 kvm_update_guest_debug(cpu, 0);
2330 #else /* !KVM_CAP_SET_GUEST_DEBUG */
2332 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap)
2334 return -EINVAL;
2337 int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr,
2338 target_ulong len, int type)
2340 return -EINVAL;
2343 int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr,
2344 target_ulong len, int type)
2346 return -EINVAL;
2349 void kvm_remove_all_breakpoints(CPUState *cpu)
2352 #endif /* !KVM_CAP_SET_GUEST_DEBUG */
2354 static int kvm_set_signal_mask(CPUState *cpu, const sigset_t *sigset)
2356 KVMState *s = kvm_state;
2357 struct kvm_signal_mask *sigmask;
2358 int r;
2360 sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset));
2362 sigmask->len = s->sigmask_len;
2363 memcpy(sigmask->sigset, sigset, sizeof(*sigset));
2364 r = kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, sigmask);
2365 g_free(sigmask);
2367 return r;
2370 static void kvm_ipi_signal(int sig)
2372 if (current_cpu) {
2373 assert(kvm_immediate_exit);
2374 kvm_cpu_kick(current_cpu);
2378 void kvm_init_cpu_signals(CPUState *cpu)
2380 int r;
2381 sigset_t set;
2382 struct sigaction sigact;
2384 memset(&sigact, 0, sizeof(sigact));
2385 sigact.sa_handler = kvm_ipi_signal;
2386 sigaction(SIG_IPI, &sigact, NULL);
2388 pthread_sigmask(SIG_BLOCK, NULL, &set);
2389 #if defined KVM_HAVE_MCE_INJECTION
2390 sigdelset(&set, SIGBUS);
2391 pthread_sigmask(SIG_SETMASK, &set, NULL);
2392 #endif
2393 sigdelset(&set, SIG_IPI);
2394 if (kvm_immediate_exit) {
2395 r = pthread_sigmask(SIG_SETMASK, &set, NULL);
2396 } else {
2397 r = kvm_set_signal_mask(cpu, &set);
2399 if (r) {
2400 fprintf(stderr, "kvm_set_signal_mask: %s\n", strerror(-r));
2401 exit(1);
2405 /* Called asynchronously in VCPU thread. */
2406 int kvm_on_sigbus_vcpu(CPUState *cpu, int code, void *addr)
2408 #ifdef KVM_HAVE_MCE_INJECTION
2409 if (have_sigbus_pending) {
2410 return 1;
2412 have_sigbus_pending = true;
2413 pending_sigbus_addr = addr;
2414 pending_sigbus_code = code;
2415 atomic_set(&cpu->exit_request, 1);
2416 return 0;
2417 #else
2418 return 1;
2419 #endif
2422 /* Called synchronously (via signalfd) in main thread. */
2423 int kvm_on_sigbus(int code, void *addr)
2425 #ifdef KVM_HAVE_MCE_INJECTION
2426 /* Action required MCE kills the process if SIGBUS is blocked. Because
2427 * that's what happens in the I/O thread, where we handle MCE via signalfd,
2428 * we can only get action optional here.
2430 assert(code != BUS_MCEERR_AR);
2431 kvm_arch_on_sigbus_vcpu(first_cpu, code, addr);
2432 return 0;
2433 #else
2434 return 1;
2435 #endif
2438 int kvm_create_device(KVMState *s, uint64_t type, bool test)
2440 int ret;
2441 struct kvm_create_device create_dev;
2443 create_dev.type = type;
2444 create_dev.fd = -1;
2445 create_dev.flags = test ? KVM_CREATE_DEVICE_TEST : 0;
2447 if (!kvm_check_extension(s, KVM_CAP_DEVICE_CTRL)) {
2448 return -ENOTSUP;
2451 ret = kvm_vm_ioctl(s, KVM_CREATE_DEVICE, &create_dev);
2452 if (ret) {
2453 return ret;
2456 return test ? 0 : create_dev.fd;
2459 bool kvm_device_supported(int vmfd, uint64_t type)
2461 struct kvm_create_device create_dev = {
2462 .type = type,
2463 .fd = -1,
2464 .flags = KVM_CREATE_DEVICE_TEST,
2467 if (ioctl(vmfd, KVM_CHECK_EXTENSION, KVM_CAP_DEVICE_CTRL) <= 0) {
2468 return false;
2471 return (ioctl(vmfd, KVM_CREATE_DEVICE, &create_dev) >= 0);
2474 int kvm_set_one_reg(CPUState *cs, uint64_t id, void *source)
2476 struct kvm_one_reg reg;
2477 int r;
2479 reg.id = id;
2480 reg.addr = (uintptr_t) source;
2481 r = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
2482 if (r) {
2483 trace_kvm_failed_reg_set(id, strerror(-r));
2485 return r;
2488 int kvm_get_one_reg(CPUState *cs, uint64_t id, void *target)
2490 struct kvm_one_reg reg;
2491 int r;
2493 reg.id = id;
2494 reg.addr = (uintptr_t) target;
2495 r = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
2496 if (r) {
2497 trace_kvm_failed_reg_get(id, strerror(-r));
2499 return r;
2502 static void kvm_accel_class_init(ObjectClass *oc, void *data)
2504 AccelClass *ac = ACCEL_CLASS(oc);
2505 ac->name = "KVM";
2506 ac->init_machine = kvm_init;
2507 ac->allowed = &kvm_allowed;
2510 static const TypeInfo kvm_accel_type = {
2511 .name = TYPE_KVM_ACCEL,
2512 .parent = TYPE_ACCEL,
2513 .class_init = kvm_accel_class_init,
2514 .instance_size = sizeof(KVMState),
2517 static void kvm_type_init(void)
2519 type_register_static(&kvm_accel_type);
2522 type_init(kvm_type_init);