Merge tag 'qemu-macppc-20230206' of https://github.com/mcayland/qemu into staging
[qemu.git] / accel / kvm / kvm-all.c
blob9b2658265561ff0e9a2d5ea25941b78ba0726944
1 /*
2 * QEMU KVM support
4 * Copyright IBM, Corp. 2008
5 * Red Hat, Inc. 2008
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
9 * Glauber Costa <gcosta@redhat.com>
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
16 #include "qemu/osdep.h"
17 #include <sys/ioctl.h>
18 #include <poll.h>
20 #include <linux/kvm.h>
22 #include "qemu/atomic.h"
23 #include "qemu/option.h"
24 #include "qemu/config-file.h"
25 #include "qemu/error-report.h"
26 #include "qapi/error.h"
27 #include "hw/pci/msi.h"
28 #include "hw/pci/msix.h"
29 #include "hw/s390x/adapter.h"
30 #include "exec/gdbstub.h"
31 #include "sysemu/kvm_int.h"
32 #include "sysemu/runstate.h"
33 #include "sysemu/cpus.h"
34 #include "sysemu/accel-blocker.h"
35 #include "qemu/bswap.h"
36 #include "exec/memory.h"
37 #include "exec/ram_addr.h"
38 #include "qemu/event_notifier.h"
39 #include "qemu/main-loop.h"
40 #include "trace.h"
41 #include "hw/irq.h"
42 #include "qapi/visitor.h"
43 #include "qapi/qapi-types-common.h"
44 #include "qapi/qapi-visit-common.h"
45 #include "sysemu/reset.h"
46 #include "qemu/guest-random.h"
47 #include "sysemu/hw_accel.h"
48 #include "kvm-cpus.h"
49 #include "sysemu/dirtylimit.h"
50 #include "qemu/range.h"
52 #include "hw/boards.h"
53 #include "sysemu/stats.h"
55 /* This check must be after config-host.h is included */
56 #ifdef CONFIG_EVENTFD
57 #include <sys/eventfd.h>
58 #endif
60 /* KVM uses PAGE_SIZE in its definition of KVM_COALESCED_MMIO_MAX. We
61 * need to use the real host PAGE_SIZE, as that's what KVM will use.
63 #ifdef PAGE_SIZE
64 #undef PAGE_SIZE
65 #endif
66 #define PAGE_SIZE qemu_real_host_page_size()
68 #ifndef KVM_GUESTDBG_BLOCKIRQ
69 #define KVM_GUESTDBG_BLOCKIRQ 0
70 #endif
72 //#define DEBUG_KVM
74 #ifdef DEBUG_KVM
75 #define DPRINTF(fmt, ...) \
76 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
77 #else
78 #define DPRINTF(fmt, ...) \
79 do { } while (0)
80 #endif
82 struct KVMParkedVcpu {
83 unsigned long vcpu_id;
84 int kvm_fd;
85 QLIST_ENTRY(KVMParkedVcpu) node;
88 KVMState *kvm_state;
89 bool kvm_kernel_irqchip;
90 bool kvm_split_irqchip;
91 bool kvm_async_interrupts_allowed;
92 bool kvm_halt_in_kernel_allowed;
93 bool kvm_eventfds_allowed;
94 bool kvm_irqfds_allowed;
95 bool kvm_resamplefds_allowed;
96 bool kvm_msi_via_irqfd_allowed;
97 bool kvm_gsi_routing_allowed;
98 bool kvm_gsi_direct_mapping;
99 bool kvm_allowed;
100 bool kvm_readonly_mem_allowed;
101 bool kvm_vm_attributes_allowed;
102 bool kvm_direct_msi_allowed;
103 bool kvm_ioeventfd_any_length_allowed;
104 bool kvm_msi_use_devid;
105 bool kvm_has_guest_debug;
106 static int kvm_sstep_flags;
107 static bool kvm_immediate_exit;
108 static hwaddr kvm_max_slot_size = ~0;
110 static const KVMCapabilityInfo kvm_required_capabilites[] = {
111 KVM_CAP_INFO(USER_MEMORY),
112 KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS),
113 KVM_CAP_INFO(JOIN_MEMORY_REGIONS_WORKS),
114 KVM_CAP_LAST_INFO
117 static NotifierList kvm_irqchip_change_notifiers =
118 NOTIFIER_LIST_INITIALIZER(kvm_irqchip_change_notifiers);
120 struct KVMResampleFd {
121 int gsi;
122 EventNotifier *resample_event;
123 QLIST_ENTRY(KVMResampleFd) node;
125 typedef struct KVMResampleFd KVMResampleFd;
128 * Only used with split irqchip where we need to do the resample fd
129 * kick for the kernel from userspace.
131 static QLIST_HEAD(, KVMResampleFd) kvm_resample_fd_list =
132 QLIST_HEAD_INITIALIZER(kvm_resample_fd_list);
134 static QemuMutex kml_slots_lock;
136 #define kvm_slots_lock() qemu_mutex_lock(&kml_slots_lock)
137 #define kvm_slots_unlock() qemu_mutex_unlock(&kml_slots_lock)
139 static void kvm_slot_init_dirty_bitmap(KVMSlot *mem);
141 static inline void kvm_resample_fd_remove(int gsi)
143 KVMResampleFd *rfd;
145 QLIST_FOREACH(rfd, &kvm_resample_fd_list, node) {
146 if (rfd->gsi == gsi) {
147 QLIST_REMOVE(rfd, node);
148 g_free(rfd);
149 break;
154 static inline void kvm_resample_fd_insert(int gsi, EventNotifier *event)
156 KVMResampleFd *rfd = g_new0(KVMResampleFd, 1);
158 rfd->gsi = gsi;
159 rfd->resample_event = event;
161 QLIST_INSERT_HEAD(&kvm_resample_fd_list, rfd, node);
164 void kvm_resample_fd_notify(int gsi)
166 KVMResampleFd *rfd;
168 QLIST_FOREACH(rfd, &kvm_resample_fd_list, node) {
169 if (rfd->gsi == gsi) {
170 event_notifier_set(rfd->resample_event);
171 trace_kvm_resample_fd_notify(gsi);
172 return;
177 int kvm_get_max_memslots(void)
179 KVMState *s = KVM_STATE(current_accel());
181 return s->nr_slots;
184 /* Called with KVMMemoryListener.slots_lock held */
185 static KVMSlot *kvm_get_free_slot(KVMMemoryListener *kml)
187 KVMState *s = kvm_state;
188 int i;
190 for (i = 0; i < s->nr_slots; i++) {
191 if (kml->slots[i].memory_size == 0) {
192 return &kml->slots[i];
196 return NULL;
199 bool kvm_has_free_slot(MachineState *ms)
201 KVMState *s = KVM_STATE(ms->accelerator);
202 bool result;
203 KVMMemoryListener *kml = &s->memory_listener;
205 kvm_slots_lock();
206 result = !!kvm_get_free_slot(kml);
207 kvm_slots_unlock();
209 return result;
212 /* Called with KVMMemoryListener.slots_lock held */
213 static KVMSlot *kvm_alloc_slot(KVMMemoryListener *kml)
215 KVMSlot *slot = kvm_get_free_slot(kml);
217 if (slot) {
218 return slot;
221 fprintf(stderr, "%s: no free slot available\n", __func__);
222 abort();
225 static KVMSlot *kvm_lookup_matching_slot(KVMMemoryListener *kml,
226 hwaddr start_addr,
227 hwaddr size)
229 KVMState *s = kvm_state;
230 int i;
232 for (i = 0; i < s->nr_slots; i++) {
233 KVMSlot *mem = &kml->slots[i];
235 if (start_addr == mem->start_addr && size == mem->memory_size) {
236 return mem;
240 return NULL;
244 * Calculate and align the start address and the size of the section.
245 * Return the size. If the size is 0, the aligned section is empty.
247 static hwaddr kvm_align_section(MemoryRegionSection *section,
248 hwaddr *start)
250 hwaddr size = int128_get64(section->size);
251 hwaddr delta, aligned;
253 /* kvm works in page size chunks, but the function may be called
254 with sub-page size and unaligned start address. Pad the start
255 address to next and truncate size to previous page boundary. */
256 aligned = ROUND_UP(section->offset_within_address_space,
257 qemu_real_host_page_size());
258 delta = aligned - section->offset_within_address_space;
259 *start = aligned;
260 if (delta > size) {
261 return 0;
264 return (size - delta) & qemu_real_host_page_mask();
267 int kvm_physical_memory_addr_from_host(KVMState *s, void *ram,
268 hwaddr *phys_addr)
270 KVMMemoryListener *kml = &s->memory_listener;
271 int i, ret = 0;
273 kvm_slots_lock();
274 for (i = 0; i < s->nr_slots; i++) {
275 KVMSlot *mem = &kml->slots[i];
277 if (ram >= mem->ram && ram < mem->ram + mem->memory_size) {
278 *phys_addr = mem->start_addr + (ram - mem->ram);
279 ret = 1;
280 break;
283 kvm_slots_unlock();
285 return ret;
288 static int kvm_set_user_memory_region(KVMMemoryListener *kml, KVMSlot *slot, bool new)
290 KVMState *s = kvm_state;
291 struct kvm_userspace_memory_region mem;
292 int ret;
294 mem.slot = slot->slot | (kml->as_id << 16);
295 mem.guest_phys_addr = slot->start_addr;
296 mem.userspace_addr = (unsigned long)slot->ram;
297 mem.flags = slot->flags;
299 if (slot->memory_size && !new && (mem.flags ^ slot->old_flags) & KVM_MEM_READONLY) {
300 /* Set the slot size to 0 before setting the slot to the desired
301 * value. This is needed based on KVM commit 75d61fbc. */
302 mem.memory_size = 0;
303 ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
304 if (ret < 0) {
305 goto err;
308 mem.memory_size = slot->memory_size;
309 ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
310 slot->old_flags = mem.flags;
311 err:
312 trace_kvm_set_user_memory(mem.slot, mem.flags, mem.guest_phys_addr,
313 mem.memory_size, mem.userspace_addr, ret);
314 if (ret < 0) {
315 error_report("%s: KVM_SET_USER_MEMORY_REGION failed, slot=%d,"
316 " start=0x%" PRIx64 ", size=0x%" PRIx64 ": %s",
317 __func__, mem.slot, slot->start_addr,
318 (uint64_t)mem.memory_size, strerror(errno));
320 return ret;
323 static int do_kvm_destroy_vcpu(CPUState *cpu)
325 KVMState *s = kvm_state;
326 long mmap_size;
327 struct KVMParkedVcpu *vcpu = NULL;
328 int ret = 0;
330 DPRINTF("kvm_destroy_vcpu\n");
332 ret = kvm_arch_destroy_vcpu(cpu);
333 if (ret < 0) {
334 goto err;
337 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
338 if (mmap_size < 0) {
339 ret = mmap_size;
340 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
341 goto err;
344 ret = munmap(cpu->kvm_run, mmap_size);
345 if (ret < 0) {
346 goto err;
349 if (cpu->kvm_dirty_gfns) {
350 ret = munmap(cpu->kvm_dirty_gfns, s->kvm_dirty_ring_bytes);
351 if (ret < 0) {
352 goto err;
356 vcpu = g_malloc0(sizeof(*vcpu));
357 vcpu->vcpu_id = kvm_arch_vcpu_id(cpu);
358 vcpu->kvm_fd = cpu->kvm_fd;
359 QLIST_INSERT_HEAD(&kvm_state->kvm_parked_vcpus, vcpu, node);
360 err:
361 return ret;
364 void kvm_destroy_vcpu(CPUState *cpu)
366 if (do_kvm_destroy_vcpu(cpu) < 0) {
367 error_report("kvm_destroy_vcpu failed");
368 exit(EXIT_FAILURE);
372 static int kvm_get_vcpu(KVMState *s, unsigned long vcpu_id)
374 struct KVMParkedVcpu *cpu;
376 QLIST_FOREACH(cpu, &s->kvm_parked_vcpus, node) {
377 if (cpu->vcpu_id == vcpu_id) {
378 int kvm_fd;
380 QLIST_REMOVE(cpu, node);
381 kvm_fd = cpu->kvm_fd;
382 g_free(cpu);
383 return kvm_fd;
387 return kvm_vm_ioctl(s, KVM_CREATE_VCPU, (void *)vcpu_id);
390 int kvm_init_vcpu(CPUState *cpu, Error **errp)
392 KVMState *s = kvm_state;
393 long mmap_size;
394 int ret;
396 trace_kvm_init_vcpu(cpu->cpu_index, kvm_arch_vcpu_id(cpu));
398 ret = kvm_get_vcpu(s, kvm_arch_vcpu_id(cpu));
399 if (ret < 0) {
400 error_setg_errno(errp, -ret, "kvm_init_vcpu: kvm_get_vcpu failed (%lu)",
401 kvm_arch_vcpu_id(cpu));
402 goto err;
405 cpu->kvm_fd = ret;
406 cpu->kvm_state = s;
407 cpu->vcpu_dirty = true;
408 cpu->dirty_pages = 0;
409 cpu->throttle_us_per_full = 0;
411 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
412 if (mmap_size < 0) {
413 ret = mmap_size;
414 error_setg_errno(errp, -mmap_size,
415 "kvm_init_vcpu: KVM_GET_VCPU_MMAP_SIZE failed");
416 goto err;
419 cpu->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
420 cpu->kvm_fd, 0);
421 if (cpu->kvm_run == MAP_FAILED) {
422 ret = -errno;
423 error_setg_errno(errp, ret,
424 "kvm_init_vcpu: mmap'ing vcpu state failed (%lu)",
425 kvm_arch_vcpu_id(cpu));
426 goto err;
429 if (s->coalesced_mmio && !s->coalesced_mmio_ring) {
430 s->coalesced_mmio_ring =
431 (void *)cpu->kvm_run + s->coalesced_mmio * PAGE_SIZE;
434 if (s->kvm_dirty_ring_size) {
435 /* Use MAP_SHARED to share pages with the kernel */
436 cpu->kvm_dirty_gfns = mmap(NULL, s->kvm_dirty_ring_bytes,
437 PROT_READ | PROT_WRITE, MAP_SHARED,
438 cpu->kvm_fd,
439 PAGE_SIZE * KVM_DIRTY_LOG_PAGE_OFFSET);
440 if (cpu->kvm_dirty_gfns == MAP_FAILED) {
441 ret = -errno;
442 DPRINTF("mmap'ing vcpu dirty gfns failed: %d\n", ret);
443 goto err;
447 ret = kvm_arch_init_vcpu(cpu);
448 if (ret < 0) {
449 error_setg_errno(errp, -ret,
450 "kvm_init_vcpu: kvm_arch_init_vcpu failed (%lu)",
451 kvm_arch_vcpu_id(cpu));
453 err:
454 return ret;
458 * dirty pages logging control
461 static int kvm_mem_flags(MemoryRegion *mr)
463 bool readonly = mr->readonly || memory_region_is_romd(mr);
464 int flags = 0;
466 if (memory_region_get_dirty_log_mask(mr) != 0) {
467 flags |= KVM_MEM_LOG_DIRTY_PAGES;
469 if (readonly && kvm_readonly_mem_allowed) {
470 flags |= KVM_MEM_READONLY;
472 return flags;
475 /* Called with KVMMemoryListener.slots_lock held */
476 static int kvm_slot_update_flags(KVMMemoryListener *kml, KVMSlot *mem,
477 MemoryRegion *mr)
479 mem->flags = kvm_mem_flags(mr);
481 /* If nothing changed effectively, no need to issue ioctl */
482 if (mem->flags == mem->old_flags) {
483 return 0;
486 kvm_slot_init_dirty_bitmap(mem);
487 return kvm_set_user_memory_region(kml, mem, false);
490 static int kvm_section_update_flags(KVMMemoryListener *kml,
491 MemoryRegionSection *section)
493 hwaddr start_addr, size, slot_size;
494 KVMSlot *mem;
495 int ret = 0;
497 size = kvm_align_section(section, &start_addr);
498 if (!size) {
499 return 0;
502 kvm_slots_lock();
504 while (size && !ret) {
505 slot_size = MIN(kvm_max_slot_size, size);
506 mem = kvm_lookup_matching_slot(kml, start_addr, slot_size);
507 if (!mem) {
508 /* We don't have a slot if we want to trap every access. */
509 goto out;
512 ret = kvm_slot_update_flags(kml, mem, section->mr);
513 start_addr += slot_size;
514 size -= slot_size;
517 out:
518 kvm_slots_unlock();
519 return ret;
522 static void kvm_log_start(MemoryListener *listener,
523 MemoryRegionSection *section,
524 int old, int new)
526 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
527 int r;
529 if (old != 0) {
530 return;
533 r = kvm_section_update_flags(kml, section);
534 if (r < 0) {
535 abort();
539 static void kvm_log_stop(MemoryListener *listener,
540 MemoryRegionSection *section,
541 int old, int new)
543 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
544 int r;
546 if (new != 0) {
547 return;
550 r = kvm_section_update_flags(kml, section);
551 if (r < 0) {
552 abort();
556 /* get kvm's dirty pages bitmap and update qemu's */
557 static void kvm_slot_sync_dirty_pages(KVMSlot *slot)
559 ram_addr_t start = slot->ram_start_offset;
560 ram_addr_t pages = slot->memory_size / qemu_real_host_page_size();
562 cpu_physical_memory_set_dirty_lebitmap(slot->dirty_bmap, start, pages);
565 static void kvm_slot_reset_dirty_pages(KVMSlot *slot)
567 memset(slot->dirty_bmap, 0, slot->dirty_bmap_size);
570 #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1))
572 /* Allocate the dirty bitmap for a slot */
573 static void kvm_slot_init_dirty_bitmap(KVMSlot *mem)
575 if (!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) || mem->dirty_bmap) {
576 return;
580 * XXX bad kernel interface alert
581 * For dirty bitmap, kernel allocates array of size aligned to
582 * bits-per-long. But for case when the kernel is 64bits and
583 * the userspace is 32bits, userspace can't align to the same
584 * bits-per-long, since sizeof(long) is different between kernel
585 * and user space. This way, userspace will provide buffer which
586 * may be 4 bytes less than the kernel will use, resulting in
587 * userspace memory corruption (which is not detectable by valgrind
588 * too, in most cases).
589 * So for now, let's align to 64 instead of HOST_LONG_BITS here, in
590 * a hope that sizeof(long) won't become >8 any time soon.
592 * Note: the granule of kvm dirty log is qemu_real_host_page_size.
593 * And mem->memory_size is aligned to it (otherwise this mem can't
594 * be registered to KVM).
596 hwaddr bitmap_size = ALIGN(mem->memory_size / qemu_real_host_page_size(),
597 /*HOST_LONG_BITS*/ 64) / 8;
598 mem->dirty_bmap = g_malloc0(bitmap_size);
599 mem->dirty_bmap_size = bitmap_size;
603 * Sync dirty bitmap from kernel to KVMSlot.dirty_bmap, return true if
604 * succeeded, false otherwise
606 static bool kvm_slot_get_dirty_log(KVMState *s, KVMSlot *slot)
608 struct kvm_dirty_log d = {};
609 int ret;
611 d.dirty_bitmap = slot->dirty_bmap;
612 d.slot = slot->slot | (slot->as_id << 16);
613 ret = kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d);
615 if (ret == -ENOENT) {
616 /* kernel does not have dirty bitmap in this slot */
617 ret = 0;
619 if (ret) {
620 error_report_once("%s: KVM_GET_DIRTY_LOG failed with %d",
621 __func__, ret);
623 return ret == 0;
626 /* Should be with all slots_lock held for the address spaces. */
627 static void kvm_dirty_ring_mark_page(KVMState *s, uint32_t as_id,
628 uint32_t slot_id, uint64_t offset)
630 KVMMemoryListener *kml;
631 KVMSlot *mem;
633 if (as_id >= s->nr_as) {
634 return;
637 kml = s->as[as_id].ml;
638 mem = &kml->slots[slot_id];
640 if (!mem->memory_size || offset >=
641 (mem->memory_size / qemu_real_host_page_size())) {
642 return;
645 set_bit(offset, mem->dirty_bmap);
648 static bool dirty_gfn_is_dirtied(struct kvm_dirty_gfn *gfn)
651 * Read the flags before the value. Pairs with barrier in
652 * KVM's kvm_dirty_ring_push() function.
654 return qatomic_load_acquire(&gfn->flags) == KVM_DIRTY_GFN_F_DIRTY;
657 static void dirty_gfn_set_collected(struct kvm_dirty_gfn *gfn)
660 * Use a store-release so that the CPU that executes KVM_RESET_DIRTY_RINGS
661 * sees the full content of the ring:
663 * CPU0 CPU1 CPU2
664 * ------------------------------------------------------------------------------
665 * fill gfn0
666 * store-rel flags for gfn0
667 * load-acq flags for gfn0
668 * store-rel RESET for gfn0
669 * ioctl(RESET_RINGS)
670 * load-acq flags for gfn0
671 * check if flags have RESET
673 * The synchronization goes from CPU2 to CPU0 to CPU1.
675 qatomic_store_release(&gfn->flags, KVM_DIRTY_GFN_F_RESET);
679 * Should be with all slots_lock held for the address spaces. It returns the
680 * dirty page we've collected on this dirty ring.
682 static uint32_t kvm_dirty_ring_reap_one(KVMState *s, CPUState *cpu)
684 struct kvm_dirty_gfn *dirty_gfns = cpu->kvm_dirty_gfns, *cur;
685 uint32_t ring_size = s->kvm_dirty_ring_size;
686 uint32_t count = 0, fetch = cpu->kvm_fetch_index;
688 assert(dirty_gfns && ring_size);
689 trace_kvm_dirty_ring_reap_vcpu(cpu->cpu_index);
691 while (true) {
692 cur = &dirty_gfns[fetch % ring_size];
693 if (!dirty_gfn_is_dirtied(cur)) {
694 break;
696 kvm_dirty_ring_mark_page(s, cur->slot >> 16, cur->slot & 0xffff,
697 cur->offset);
698 dirty_gfn_set_collected(cur);
699 trace_kvm_dirty_ring_page(cpu->cpu_index, fetch, cur->offset);
700 fetch++;
701 count++;
703 cpu->kvm_fetch_index = fetch;
704 cpu->dirty_pages += count;
706 return count;
709 /* Must be with slots_lock held */
710 static uint64_t kvm_dirty_ring_reap_locked(KVMState *s, CPUState* cpu)
712 int ret;
713 uint64_t total = 0;
714 int64_t stamp;
716 stamp = get_clock();
718 if (cpu) {
719 total = kvm_dirty_ring_reap_one(s, cpu);
720 } else {
721 CPU_FOREACH(cpu) {
722 total += kvm_dirty_ring_reap_one(s, cpu);
726 if (total) {
727 ret = kvm_vm_ioctl(s, KVM_RESET_DIRTY_RINGS);
728 assert(ret == total);
731 stamp = get_clock() - stamp;
733 if (total) {
734 trace_kvm_dirty_ring_reap(total, stamp / 1000);
737 return total;
741 * Currently for simplicity, we must hold BQL before calling this. We can
742 * consider to drop the BQL if we're clear with all the race conditions.
744 static uint64_t kvm_dirty_ring_reap(KVMState *s, CPUState *cpu)
746 uint64_t total;
749 * We need to lock all kvm slots for all address spaces here,
750 * because:
752 * (1) We need to mark dirty for dirty bitmaps in multiple slots
753 * and for tons of pages, so it's better to take the lock here
754 * once rather than once per page. And more importantly,
756 * (2) We must _NOT_ publish dirty bits to the other threads
757 * (e.g., the migration thread) via the kvm memory slot dirty
758 * bitmaps before correctly re-protect those dirtied pages.
759 * Otherwise we can have potential risk of data corruption if
760 * the page data is read in the other thread before we do
761 * reset below.
763 kvm_slots_lock();
764 total = kvm_dirty_ring_reap_locked(s, cpu);
765 kvm_slots_unlock();
767 return total;
770 static void do_kvm_cpu_synchronize_kick(CPUState *cpu, run_on_cpu_data arg)
772 /* No need to do anything */
776 * Kick all vcpus out in a synchronized way. When returned, we
777 * guarantee that every vcpu has been kicked and at least returned to
778 * userspace once.
780 static void kvm_cpu_synchronize_kick_all(void)
782 CPUState *cpu;
784 CPU_FOREACH(cpu) {
785 run_on_cpu(cpu, do_kvm_cpu_synchronize_kick, RUN_ON_CPU_NULL);
790 * Flush all the existing dirty pages to the KVM slot buffers. When
791 * this call returns, we guarantee that all the touched dirty pages
792 * before calling this function have been put into the per-kvmslot
793 * dirty bitmap.
795 * This function must be called with BQL held.
797 static void kvm_dirty_ring_flush(void)
799 trace_kvm_dirty_ring_flush(0);
801 * The function needs to be serialized. Since this function
802 * should always be with BQL held, serialization is guaranteed.
803 * However, let's be sure of it.
805 assert(qemu_mutex_iothread_locked());
807 * First make sure to flush the hardware buffers by kicking all
808 * vcpus out in a synchronous way.
810 kvm_cpu_synchronize_kick_all();
811 kvm_dirty_ring_reap(kvm_state, NULL);
812 trace_kvm_dirty_ring_flush(1);
816 * kvm_physical_sync_dirty_bitmap - Sync dirty bitmap from kernel space
818 * This function will first try to fetch dirty bitmap from the kernel,
819 * and then updates qemu's dirty bitmap.
821 * NOTE: caller must be with kml->slots_lock held.
823 * @kml: the KVM memory listener object
824 * @section: the memory section to sync the dirty bitmap with
826 static void kvm_physical_sync_dirty_bitmap(KVMMemoryListener *kml,
827 MemoryRegionSection *section)
829 KVMState *s = kvm_state;
830 KVMSlot *mem;
831 hwaddr start_addr, size;
832 hwaddr slot_size;
834 size = kvm_align_section(section, &start_addr);
835 while (size) {
836 slot_size = MIN(kvm_max_slot_size, size);
837 mem = kvm_lookup_matching_slot(kml, start_addr, slot_size);
838 if (!mem) {
839 /* We don't have a slot if we want to trap every access. */
840 return;
842 if (kvm_slot_get_dirty_log(s, mem)) {
843 kvm_slot_sync_dirty_pages(mem);
845 start_addr += slot_size;
846 size -= slot_size;
850 /* Alignment requirement for KVM_CLEAR_DIRTY_LOG - 64 pages */
851 #define KVM_CLEAR_LOG_SHIFT 6
852 #define KVM_CLEAR_LOG_ALIGN (qemu_real_host_page_size() << KVM_CLEAR_LOG_SHIFT)
853 #define KVM_CLEAR_LOG_MASK (-KVM_CLEAR_LOG_ALIGN)
855 static int kvm_log_clear_one_slot(KVMSlot *mem, int as_id, uint64_t start,
856 uint64_t size)
858 KVMState *s = kvm_state;
859 uint64_t end, bmap_start, start_delta, bmap_npages;
860 struct kvm_clear_dirty_log d;
861 unsigned long *bmap_clear = NULL, psize = qemu_real_host_page_size();
862 int ret;
865 * We need to extend either the start or the size or both to
866 * satisfy the KVM interface requirement. Firstly, do the start
867 * page alignment on 64 host pages
869 bmap_start = start & KVM_CLEAR_LOG_MASK;
870 start_delta = start - bmap_start;
871 bmap_start /= psize;
874 * The kernel interface has restriction on the size too, that either:
876 * (1) the size is 64 host pages aligned (just like the start), or
877 * (2) the size fills up until the end of the KVM memslot.
879 bmap_npages = DIV_ROUND_UP(size + start_delta, KVM_CLEAR_LOG_ALIGN)
880 << KVM_CLEAR_LOG_SHIFT;
881 end = mem->memory_size / psize;
882 if (bmap_npages > end - bmap_start) {
883 bmap_npages = end - bmap_start;
885 start_delta /= psize;
888 * Prepare the bitmap to clear dirty bits. Here we must guarantee
889 * that we won't clear any unknown dirty bits otherwise we might
890 * accidentally clear some set bits which are not yet synced from
891 * the kernel into QEMU's bitmap, then we'll lose track of the
892 * guest modifications upon those pages (which can directly lead
893 * to guest data loss or panic after migration).
895 * Layout of the KVMSlot.dirty_bmap:
897 * |<-------- bmap_npages -----------..>|
898 * [1]
899 * start_delta size
900 * |----------------|-------------|------------------|------------|
901 * ^ ^ ^ ^
902 * | | | |
903 * start bmap_start (start) end
904 * of memslot of memslot
906 * [1] bmap_npages can be aligned to either 64 pages or the end of slot
909 assert(bmap_start % BITS_PER_LONG == 0);
910 /* We should never do log_clear before log_sync */
911 assert(mem->dirty_bmap);
912 if (start_delta || bmap_npages - size / psize) {
913 /* Slow path - we need to manipulate a temp bitmap */
914 bmap_clear = bitmap_new(bmap_npages);
915 bitmap_copy_with_src_offset(bmap_clear, mem->dirty_bmap,
916 bmap_start, start_delta + size / psize);
918 * We need to fill the holes at start because that was not
919 * specified by the caller and we extended the bitmap only for
920 * 64 pages alignment
922 bitmap_clear(bmap_clear, 0, start_delta);
923 d.dirty_bitmap = bmap_clear;
924 } else {
926 * Fast path - both start and size align well with BITS_PER_LONG
927 * (or the end of memory slot)
929 d.dirty_bitmap = mem->dirty_bmap + BIT_WORD(bmap_start);
932 d.first_page = bmap_start;
933 /* It should never overflow. If it happens, say something */
934 assert(bmap_npages <= UINT32_MAX);
935 d.num_pages = bmap_npages;
936 d.slot = mem->slot | (as_id << 16);
938 ret = kvm_vm_ioctl(s, KVM_CLEAR_DIRTY_LOG, &d);
939 if (ret < 0 && ret != -ENOENT) {
940 error_report("%s: KVM_CLEAR_DIRTY_LOG failed, slot=%d, "
941 "start=0x%"PRIx64", size=0x%"PRIx32", errno=%d",
942 __func__, d.slot, (uint64_t)d.first_page,
943 (uint32_t)d.num_pages, ret);
944 } else {
945 ret = 0;
946 trace_kvm_clear_dirty_log(d.slot, d.first_page, d.num_pages);
950 * After we have updated the remote dirty bitmap, we update the
951 * cached bitmap as well for the memslot, then if another user
952 * clears the same region we know we shouldn't clear it again on
953 * the remote otherwise it's data loss as well.
955 bitmap_clear(mem->dirty_bmap, bmap_start + start_delta,
956 size / psize);
957 /* This handles the NULL case well */
958 g_free(bmap_clear);
959 return ret;
964 * kvm_physical_log_clear - Clear the kernel's dirty bitmap for range
966 * NOTE: this will be a no-op if we haven't enabled manual dirty log
967 * protection in the host kernel because in that case this operation
968 * will be done within log_sync().
970 * @kml: the kvm memory listener
971 * @section: the memory range to clear dirty bitmap
973 static int kvm_physical_log_clear(KVMMemoryListener *kml,
974 MemoryRegionSection *section)
976 KVMState *s = kvm_state;
977 uint64_t start, size, offset, count;
978 KVMSlot *mem;
979 int ret = 0, i;
981 if (!s->manual_dirty_log_protect) {
982 /* No need to do explicit clear */
983 return ret;
986 start = section->offset_within_address_space;
987 size = int128_get64(section->size);
989 if (!size) {
990 /* Nothing more we can do... */
991 return ret;
994 kvm_slots_lock();
996 for (i = 0; i < s->nr_slots; i++) {
997 mem = &kml->slots[i];
998 /* Discard slots that are empty or do not overlap the section */
999 if (!mem->memory_size ||
1000 mem->start_addr > start + size - 1 ||
1001 start > mem->start_addr + mem->memory_size - 1) {
1002 continue;
1005 if (start >= mem->start_addr) {
1006 /* The slot starts before section or is aligned to it. */
1007 offset = start - mem->start_addr;
1008 count = MIN(mem->memory_size - offset, size);
1009 } else {
1010 /* The slot starts after section. */
1011 offset = 0;
1012 count = MIN(mem->memory_size, size - (mem->start_addr - start));
1014 ret = kvm_log_clear_one_slot(mem, kml->as_id, offset, count);
1015 if (ret < 0) {
1016 break;
1020 kvm_slots_unlock();
1022 return ret;
1025 static void kvm_coalesce_mmio_region(MemoryListener *listener,
1026 MemoryRegionSection *secion,
1027 hwaddr start, hwaddr size)
1029 KVMState *s = kvm_state;
1031 if (s->coalesced_mmio) {
1032 struct kvm_coalesced_mmio_zone zone;
1034 zone.addr = start;
1035 zone.size = size;
1036 zone.pad = 0;
1038 (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
1042 static void kvm_uncoalesce_mmio_region(MemoryListener *listener,
1043 MemoryRegionSection *secion,
1044 hwaddr start, hwaddr size)
1046 KVMState *s = kvm_state;
1048 if (s->coalesced_mmio) {
1049 struct kvm_coalesced_mmio_zone zone;
1051 zone.addr = start;
1052 zone.size = size;
1053 zone.pad = 0;
1055 (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
1059 static void kvm_coalesce_pio_add(MemoryListener *listener,
1060 MemoryRegionSection *section,
1061 hwaddr start, hwaddr size)
1063 KVMState *s = kvm_state;
1065 if (s->coalesced_pio) {
1066 struct kvm_coalesced_mmio_zone zone;
1068 zone.addr = start;
1069 zone.size = size;
1070 zone.pio = 1;
1072 (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
1076 static void kvm_coalesce_pio_del(MemoryListener *listener,
1077 MemoryRegionSection *section,
1078 hwaddr start, hwaddr size)
1080 KVMState *s = kvm_state;
1082 if (s->coalesced_pio) {
1083 struct kvm_coalesced_mmio_zone zone;
1085 zone.addr = start;
1086 zone.size = size;
1087 zone.pio = 1;
1089 (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
1093 static MemoryListener kvm_coalesced_pio_listener = {
1094 .name = "kvm-coalesced-pio",
1095 .coalesced_io_add = kvm_coalesce_pio_add,
1096 .coalesced_io_del = kvm_coalesce_pio_del,
1099 int kvm_check_extension(KVMState *s, unsigned int extension)
1101 int ret;
1103 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
1104 if (ret < 0) {
1105 ret = 0;
1108 return ret;
1111 int kvm_vm_check_extension(KVMState *s, unsigned int extension)
1113 int ret;
1115 ret = kvm_vm_ioctl(s, KVM_CHECK_EXTENSION, extension);
1116 if (ret < 0) {
1117 /* VM wide version not implemented, use global one instead */
1118 ret = kvm_check_extension(s, extension);
1121 return ret;
1124 typedef struct HWPoisonPage {
1125 ram_addr_t ram_addr;
1126 QLIST_ENTRY(HWPoisonPage) list;
1127 } HWPoisonPage;
1129 static QLIST_HEAD(, HWPoisonPage) hwpoison_page_list =
1130 QLIST_HEAD_INITIALIZER(hwpoison_page_list);
1132 static void kvm_unpoison_all(void *param)
1134 HWPoisonPage *page, *next_page;
1136 QLIST_FOREACH_SAFE(page, &hwpoison_page_list, list, next_page) {
1137 QLIST_REMOVE(page, list);
1138 qemu_ram_remap(page->ram_addr, TARGET_PAGE_SIZE);
1139 g_free(page);
1143 void kvm_hwpoison_page_add(ram_addr_t ram_addr)
1145 HWPoisonPage *page;
1147 QLIST_FOREACH(page, &hwpoison_page_list, list) {
1148 if (page->ram_addr == ram_addr) {
1149 return;
1152 page = g_new(HWPoisonPage, 1);
1153 page->ram_addr = ram_addr;
1154 QLIST_INSERT_HEAD(&hwpoison_page_list, page, list);
1157 static uint32_t adjust_ioeventfd_endianness(uint32_t val, uint32_t size)
1159 #if HOST_BIG_ENDIAN != TARGET_BIG_ENDIAN
1160 /* The kernel expects ioeventfd values in HOST_BIG_ENDIAN
1161 * endianness, but the memory core hands them in target endianness.
1162 * For example, PPC is always treated as big-endian even if running
1163 * on KVM and on PPC64LE. Correct here.
1165 switch (size) {
1166 case 2:
1167 val = bswap16(val);
1168 break;
1169 case 4:
1170 val = bswap32(val);
1171 break;
1173 #endif
1174 return val;
1177 static int kvm_set_ioeventfd_mmio(int fd, hwaddr addr, uint32_t val,
1178 bool assign, uint32_t size, bool datamatch)
1180 int ret;
1181 struct kvm_ioeventfd iofd = {
1182 .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0,
1183 .addr = addr,
1184 .len = size,
1185 .flags = 0,
1186 .fd = fd,
1189 trace_kvm_set_ioeventfd_mmio(fd, (uint64_t)addr, val, assign, size,
1190 datamatch);
1191 if (!kvm_enabled()) {
1192 return -ENOSYS;
1195 if (datamatch) {
1196 iofd.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
1198 if (!assign) {
1199 iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1202 ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd);
1204 if (ret < 0) {
1205 return -errno;
1208 return 0;
1211 static int kvm_set_ioeventfd_pio(int fd, uint16_t addr, uint16_t val,
1212 bool assign, uint32_t size, bool datamatch)
1214 struct kvm_ioeventfd kick = {
1215 .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0,
1216 .addr = addr,
1217 .flags = KVM_IOEVENTFD_FLAG_PIO,
1218 .len = size,
1219 .fd = fd,
1221 int r;
1222 trace_kvm_set_ioeventfd_pio(fd, addr, val, assign, size, datamatch);
1223 if (!kvm_enabled()) {
1224 return -ENOSYS;
1226 if (datamatch) {
1227 kick.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
1229 if (!assign) {
1230 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1232 r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
1233 if (r < 0) {
1234 return r;
1236 return 0;
1240 static int kvm_check_many_ioeventfds(void)
1242 /* Userspace can use ioeventfd for io notification. This requires a host
1243 * that supports eventfd(2) and an I/O thread; since eventfd does not
1244 * support SIGIO it cannot interrupt the vcpu.
1246 * Older kernels have a 6 device limit on the KVM io bus. Find out so we
1247 * can avoid creating too many ioeventfds.
1249 #if defined(CONFIG_EVENTFD)
1250 int ioeventfds[7];
1251 int i, ret = 0;
1252 for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) {
1253 ioeventfds[i] = eventfd(0, EFD_CLOEXEC);
1254 if (ioeventfds[i] < 0) {
1255 break;
1257 ret = kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, true, 2, true);
1258 if (ret < 0) {
1259 close(ioeventfds[i]);
1260 break;
1264 /* Decide whether many devices are supported or not */
1265 ret = i == ARRAY_SIZE(ioeventfds);
1267 while (i-- > 0) {
1268 kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, false, 2, true);
1269 close(ioeventfds[i]);
1271 return ret;
1272 #else
1273 return 0;
1274 #endif
1277 static const KVMCapabilityInfo *
1278 kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list)
1280 while (list->name) {
1281 if (!kvm_check_extension(s, list->value)) {
1282 return list;
1284 list++;
1286 return NULL;
1289 void kvm_set_max_memslot_size(hwaddr max_slot_size)
1291 g_assert(
1292 ROUND_UP(max_slot_size, qemu_real_host_page_size()) == max_slot_size
1294 kvm_max_slot_size = max_slot_size;
1297 /* Called with KVMMemoryListener.slots_lock held */
1298 static void kvm_set_phys_mem(KVMMemoryListener *kml,
1299 MemoryRegionSection *section, bool add)
1301 KVMSlot *mem;
1302 int err;
1303 MemoryRegion *mr = section->mr;
1304 bool writable = !mr->readonly && !mr->rom_device;
1305 hwaddr start_addr, size, slot_size, mr_offset;
1306 ram_addr_t ram_start_offset;
1307 void *ram;
1309 if (!memory_region_is_ram(mr)) {
1310 if (writable || !kvm_readonly_mem_allowed) {
1311 return;
1312 } else if (!mr->romd_mode) {
1313 /* If the memory device is not in romd_mode, then we actually want
1314 * to remove the kvm memory slot so all accesses will trap. */
1315 add = false;
1319 size = kvm_align_section(section, &start_addr);
1320 if (!size) {
1321 return;
1324 /* The offset of the kvmslot within the memory region */
1325 mr_offset = section->offset_within_region + start_addr -
1326 section->offset_within_address_space;
1328 /* use aligned delta to align the ram address and offset */
1329 ram = memory_region_get_ram_ptr(mr) + mr_offset;
1330 ram_start_offset = memory_region_get_ram_addr(mr) + mr_offset;
1332 if (!add) {
1333 do {
1334 slot_size = MIN(kvm_max_slot_size, size);
1335 mem = kvm_lookup_matching_slot(kml, start_addr, slot_size);
1336 if (!mem) {
1337 return;
1339 if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
1341 * NOTE: We should be aware of the fact that here we're only
1342 * doing a best effort to sync dirty bits. No matter whether
1343 * we're using dirty log or dirty ring, we ignored two facts:
1345 * (1) dirty bits can reside in hardware buffers (PML)
1347 * (2) after we collected dirty bits here, pages can be dirtied
1348 * again before we do the final KVM_SET_USER_MEMORY_REGION to
1349 * remove the slot.
1351 * Not easy. Let's cross the fingers until it's fixed.
1353 if (kvm_state->kvm_dirty_ring_size) {
1354 kvm_dirty_ring_reap_locked(kvm_state, NULL);
1355 } else {
1356 kvm_slot_get_dirty_log(kvm_state, mem);
1358 kvm_slot_sync_dirty_pages(mem);
1361 /* unregister the slot */
1362 g_free(mem->dirty_bmap);
1363 mem->dirty_bmap = NULL;
1364 mem->memory_size = 0;
1365 mem->flags = 0;
1366 err = kvm_set_user_memory_region(kml, mem, false);
1367 if (err) {
1368 fprintf(stderr, "%s: error unregistering slot: %s\n",
1369 __func__, strerror(-err));
1370 abort();
1372 start_addr += slot_size;
1373 size -= slot_size;
1374 } while (size);
1375 return;
1378 /* register the new slot */
1379 do {
1380 slot_size = MIN(kvm_max_slot_size, size);
1381 mem = kvm_alloc_slot(kml);
1382 mem->as_id = kml->as_id;
1383 mem->memory_size = slot_size;
1384 mem->start_addr = start_addr;
1385 mem->ram_start_offset = ram_start_offset;
1386 mem->ram = ram;
1387 mem->flags = kvm_mem_flags(mr);
1388 kvm_slot_init_dirty_bitmap(mem);
1389 err = kvm_set_user_memory_region(kml, mem, true);
1390 if (err) {
1391 fprintf(stderr, "%s: error registering slot: %s\n", __func__,
1392 strerror(-err));
1393 abort();
1395 start_addr += slot_size;
1396 ram_start_offset += slot_size;
1397 ram += slot_size;
1398 size -= slot_size;
1399 } while (size);
1402 static void *kvm_dirty_ring_reaper_thread(void *data)
1404 KVMState *s = data;
1405 struct KVMDirtyRingReaper *r = &s->reaper;
1407 rcu_register_thread();
1409 trace_kvm_dirty_ring_reaper("init");
1411 while (true) {
1412 r->reaper_state = KVM_DIRTY_RING_REAPER_WAIT;
1413 trace_kvm_dirty_ring_reaper("wait");
1415 * TODO: provide a smarter timeout rather than a constant?
1417 sleep(1);
1419 /* keep sleeping so that dirtylimit not be interfered by reaper */
1420 if (dirtylimit_in_service()) {
1421 continue;
1424 trace_kvm_dirty_ring_reaper("wakeup");
1425 r->reaper_state = KVM_DIRTY_RING_REAPER_REAPING;
1427 qemu_mutex_lock_iothread();
1428 kvm_dirty_ring_reap(s, NULL);
1429 qemu_mutex_unlock_iothread();
1431 r->reaper_iteration++;
1434 trace_kvm_dirty_ring_reaper("exit");
1436 rcu_unregister_thread();
1438 return NULL;
1441 static int kvm_dirty_ring_reaper_init(KVMState *s)
1443 struct KVMDirtyRingReaper *r = &s->reaper;
1445 qemu_thread_create(&r->reaper_thr, "kvm-reaper",
1446 kvm_dirty_ring_reaper_thread,
1447 s, QEMU_THREAD_JOINABLE);
1449 return 0;
1452 static void kvm_region_add(MemoryListener *listener,
1453 MemoryRegionSection *section)
1455 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
1456 KVMMemoryUpdate *update;
1458 update = g_new0(KVMMemoryUpdate, 1);
1459 update->section = *section;
1461 QSIMPLEQ_INSERT_TAIL(&kml->transaction_add, update, next);
1464 static void kvm_region_del(MemoryListener *listener,
1465 MemoryRegionSection *section)
1467 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
1468 KVMMemoryUpdate *update;
1470 update = g_new0(KVMMemoryUpdate, 1);
1471 update->section = *section;
1473 QSIMPLEQ_INSERT_TAIL(&kml->transaction_del, update, next);
1476 static void kvm_region_commit(MemoryListener *listener)
1478 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener,
1479 listener);
1480 KVMMemoryUpdate *u1, *u2;
1481 bool need_inhibit = false;
1483 if (QSIMPLEQ_EMPTY(&kml->transaction_add) &&
1484 QSIMPLEQ_EMPTY(&kml->transaction_del)) {
1485 return;
1489 * We have to be careful when regions to add overlap with ranges to remove.
1490 * We have to simulate atomic KVM memslot updates by making sure no ioctl()
1491 * is currently active.
1493 * The lists are order by addresses, so it's easy to find overlaps.
1495 u1 = QSIMPLEQ_FIRST(&kml->transaction_del);
1496 u2 = QSIMPLEQ_FIRST(&kml->transaction_add);
1497 while (u1 && u2) {
1498 Range r1, r2;
1500 range_init_nofail(&r1, u1->section.offset_within_address_space,
1501 int128_get64(u1->section.size));
1502 range_init_nofail(&r2, u2->section.offset_within_address_space,
1503 int128_get64(u2->section.size));
1505 if (range_overlaps_range(&r1, &r2)) {
1506 need_inhibit = true;
1507 break;
1509 if (range_lob(&r1) < range_lob(&r2)) {
1510 u1 = QSIMPLEQ_NEXT(u1, next);
1511 } else {
1512 u2 = QSIMPLEQ_NEXT(u2, next);
1516 kvm_slots_lock();
1517 if (need_inhibit) {
1518 accel_ioctl_inhibit_begin();
1521 /* Remove all memslots before adding the new ones. */
1522 while (!QSIMPLEQ_EMPTY(&kml->transaction_del)) {
1523 u1 = QSIMPLEQ_FIRST(&kml->transaction_del);
1524 QSIMPLEQ_REMOVE_HEAD(&kml->transaction_del, next);
1526 kvm_set_phys_mem(kml, &u1->section, false);
1527 memory_region_unref(u1->section.mr);
1529 g_free(u1);
1531 while (!QSIMPLEQ_EMPTY(&kml->transaction_add)) {
1532 u1 = QSIMPLEQ_FIRST(&kml->transaction_add);
1533 QSIMPLEQ_REMOVE_HEAD(&kml->transaction_add, next);
1535 memory_region_ref(u1->section.mr);
1536 kvm_set_phys_mem(kml, &u1->section, true);
1538 g_free(u1);
1541 if (need_inhibit) {
1542 accel_ioctl_inhibit_end();
1544 kvm_slots_unlock();
1547 static void kvm_log_sync(MemoryListener *listener,
1548 MemoryRegionSection *section)
1550 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
1552 kvm_slots_lock();
1553 kvm_physical_sync_dirty_bitmap(kml, section);
1554 kvm_slots_unlock();
1557 static void kvm_log_sync_global(MemoryListener *l)
1559 KVMMemoryListener *kml = container_of(l, KVMMemoryListener, listener);
1560 KVMState *s = kvm_state;
1561 KVMSlot *mem;
1562 int i;
1564 /* Flush all kernel dirty addresses into KVMSlot dirty bitmap */
1565 kvm_dirty_ring_flush();
1568 * TODO: make this faster when nr_slots is big while there are
1569 * only a few used slots (small VMs).
1571 kvm_slots_lock();
1572 for (i = 0; i < s->nr_slots; i++) {
1573 mem = &kml->slots[i];
1574 if (mem->memory_size && mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
1575 kvm_slot_sync_dirty_pages(mem);
1577 * This is not needed by KVM_GET_DIRTY_LOG because the
1578 * ioctl will unconditionally overwrite the whole region.
1579 * However kvm dirty ring has no such side effect.
1581 kvm_slot_reset_dirty_pages(mem);
1584 kvm_slots_unlock();
1587 static void kvm_log_clear(MemoryListener *listener,
1588 MemoryRegionSection *section)
1590 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
1591 int r;
1593 r = kvm_physical_log_clear(kml, section);
1594 if (r < 0) {
1595 error_report_once("%s: kvm log clear failed: mr=%s "
1596 "offset=%"HWADDR_PRIx" size=%"PRIx64, __func__,
1597 section->mr->name, section->offset_within_region,
1598 int128_get64(section->size));
1599 abort();
1603 static void kvm_mem_ioeventfd_add(MemoryListener *listener,
1604 MemoryRegionSection *section,
1605 bool match_data, uint64_t data,
1606 EventNotifier *e)
1608 int fd = event_notifier_get_fd(e);
1609 int r;
1611 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
1612 data, true, int128_get64(section->size),
1613 match_data);
1614 if (r < 0) {
1615 fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n",
1616 __func__, strerror(-r), -r);
1617 abort();
1621 static void kvm_mem_ioeventfd_del(MemoryListener *listener,
1622 MemoryRegionSection *section,
1623 bool match_data, uint64_t data,
1624 EventNotifier *e)
1626 int fd = event_notifier_get_fd(e);
1627 int r;
1629 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
1630 data, false, int128_get64(section->size),
1631 match_data);
1632 if (r < 0) {
1633 fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n",
1634 __func__, strerror(-r), -r);
1635 abort();
1639 static void kvm_io_ioeventfd_add(MemoryListener *listener,
1640 MemoryRegionSection *section,
1641 bool match_data, uint64_t data,
1642 EventNotifier *e)
1644 int fd = event_notifier_get_fd(e);
1645 int r;
1647 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
1648 data, true, int128_get64(section->size),
1649 match_data);
1650 if (r < 0) {
1651 fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n",
1652 __func__, strerror(-r), -r);
1653 abort();
1657 static void kvm_io_ioeventfd_del(MemoryListener *listener,
1658 MemoryRegionSection *section,
1659 bool match_data, uint64_t data,
1660 EventNotifier *e)
1663 int fd = event_notifier_get_fd(e);
1664 int r;
1666 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
1667 data, false, int128_get64(section->size),
1668 match_data);
1669 if (r < 0) {
1670 fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n",
1671 __func__, strerror(-r), -r);
1672 abort();
1676 void kvm_memory_listener_register(KVMState *s, KVMMemoryListener *kml,
1677 AddressSpace *as, int as_id, const char *name)
1679 int i;
1681 kml->slots = g_new0(KVMSlot, s->nr_slots);
1682 kml->as_id = as_id;
1684 for (i = 0; i < s->nr_slots; i++) {
1685 kml->slots[i].slot = i;
1688 QSIMPLEQ_INIT(&kml->transaction_add);
1689 QSIMPLEQ_INIT(&kml->transaction_del);
1691 kml->listener.region_add = kvm_region_add;
1692 kml->listener.region_del = kvm_region_del;
1693 kml->listener.commit = kvm_region_commit;
1694 kml->listener.log_start = kvm_log_start;
1695 kml->listener.log_stop = kvm_log_stop;
1696 kml->listener.priority = 10;
1697 kml->listener.name = name;
1699 if (s->kvm_dirty_ring_size) {
1700 kml->listener.log_sync_global = kvm_log_sync_global;
1701 } else {
1702 kml->listener.log_sync = kvm_log_sync;
1703 kml->listener.log_clear = kvm_log_clear;
1706 memory_listener_register(&kml->listener, as);
1708 for (i = 0; i < s->nr_as; ++i) {
1709 if (!s->as[i].as) {
1710 s->as[i].as = as;
1711 s->as[i].ml = kml;
1712 break;
1717 static MemoryListener kvm_io_listener = {
1718 .name = "kvm-io",
1719 .eventfd_add = kvm_io_ioeventfd_add,
1720 .eventfd_del = kvm_io_ioeventfd_del,
1721 .priority = 10,
1724 int kvm_set_irq(KVMState *s, int irq, int level)
1726 struct kvm_irq_level event;
1727 int ret;
1729 assert(kvm_async_interrupts_enabled());
1731 event.level = level;
1732 event.irq = irq;
1733 ret = kvm_vm_ioctl(s, s->irq_set_ioctl, &event);
1734 if (ret < 0) {
1735 perror("kvm_set_irq");
1736 abort();
1739 return (s->irq_set_ioctl == KVM_IRQ_LINE) ? 1 : event.status;
1742 #ifdef KVM_CAP_IRQ_ROUTING
1743 typedef struct KVMMSIRoute {
1744 struct kvm_irq_routing_entry kroute;
1745 QTAILQ_ENTRY(KVMMSIRoute) entry;
1746 } KVMMSIRoute;
1748 static void set_gsi(KVMState *s, unsigned int gsi)
1750 set_bit(gsi, s->used_gsi_bitmap);
1753 static void clear_gsi(KVMState *s, unsigned int gsi)
1755 clear_bit(gsi, s->used_gsi_bitmap);
1758 void kvm_init_irq_routing(KVMState *s)
1760 int gsi_count, i;
1762 gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING) - 1;
1763 if (gsi_count > 0) {
1764 /* Round up so we can search ints using ffs */
1765 s->used_gsi_bitmap = bitmap_new(gsi_count);
1766 s->gsi_count = gsi_count;
1769 s->irq_routes = g_malloc0(sizeof(*s->irq_routes));
1770 s->nr_allocated_irq_routes = 0;
1772 if (!kvm_direct_msi_allowed) {
1773 for (i = 0; i < KVM_MSI_HASHTAB_SIZE; i++) {
1774 QTAILQ_INIT(&s->msi_hashtab[i]);
1778 kvm_arch_init_irq_routing(s);
1781 void kvm_irqchip_commit_routes(KVMState *s)
1783 int ret;
1785 if (kvm_gsi_direct_mapping()) {
1786 return;
1789 if (!kvm_gsi_routing_enabled()) {
1790 return;
1793 s->irq_routes->flags = 0;
1794 trace_kvm_irqchip_commit_routes();
1795 ret = kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes);
1796 assert(ret == 0);
1799 static void kvm_add_routing_entry(KVMState *s,
1800 struct kvm_irq_routing_entry *entry)
1802 struct kvm_irq_routing_entry *new;
1803 int n, size;
1805 if (s->irq_routes->nr == s->nr_allocated_irq_routes) {
1806 n = s->nr_allocated_irq_routes * 2;
1807 if (n < 64) {
1808 n = 64;
1810 size = sizeof(struct kvm_irq_routing);
1811 size += n * sizeof(*new);
1812 s->irq_routes = g_realloc(s->irq_routes, size);
1813 s->nr_allocated_irq_routes = n;
1815 n = s->irq_routes->nr++;
1816 new = &s->irq_routes->entries[n];
1818 *new = *entry;
1820 set_gsi(s, entry->gsi);
1823 static int kvm_update_routing_entry(KVMState *s,
1824 struct kvm_irq_routing_entry *new_entry)
1826 struct kvm_irq_routing_entry *entry;
1827 int n;
1829 for (n = 0; n < s->irq_routes->nr; n++) {
1830 entry = &s->irq_routes->entries[n];
1831 if (entry->gsi != new_entry->gsi) {
1832 continue;
1835 if(!memcmp(entry, new_entry, sizeof *entry)) {
1836 return 0;
1839 *entry = *new_entry;
1841 return 0;
1844 return -ESRCH;
1847 void kvm_irqchip_add_irq_route(KVMState *s, int irq, int irqchip, int pin)
1849 struct kvm_irq_routing_entry e = {};
1851 assert(pin < s->gsi_count);
1853 e.gsi = irq;
1854 e.type = KVM_IRQ_ROUTING_IRQCHIP;
1855 e.flags = 0;
1856 e.u.irqchip.irqchip = irqchip;
1857 e.u.irqchip.pin = pin;
1858 kvm_add_routing_entry(s, &e);
1861 void kvm_irqchip_release_virq(KVMState *s, int virq)
1863 struct kvm_irq_routing_entry *e;
1864 int i;
1866 if (kvm_gsi_direct_mapping()) {
1867 return;
1870 for (i = 0; i < s->irq_routes->nr; i++) {
1871 e = &s->irq_routes->entries[i];
1872 if (e->gsi == virq) {
1873 s->irq_routes->nr--;
1874 *e = s->irq_routes->entries[s->irq_routes->nr];
1877 clear_gsi(s, virq);
1878 kvm_arch_release_virq_post(virq);
1879 trace_kvm_irqchip_release_virq(virq);
1882 void kvm_irqchip_add_change_notifier(Notifier *n)
1884 notifier_list_add(&kvm_irqchip_change_notifiers, n);
1887 void kvm_irqchip_remove_change_notifier(Notifier *n)
1889 notifier_remove(n);
1892 void kvm_irqchip_change_notify(void)
1894 notifier_list_notify(&kvm_irqchip_change_notifiers, NULL);
1897 static unsigned int kvm_hash_msi(uint32_t data)
1899 /* This is optimized for IA32 MSI layout. However, no other arch shall
1900 * repeat the mistake of not providing a direct MSI injection API. */
1901 return data & 0xff;
1904 static void kvm_flush_dynamic_msi_routes(KVMState *s)
1906 KVMMSIRoute *route, *next;
1907 unsigned int hash;
1909 for (hash = 0; hash < KVM_MSI_HASHTAB_SIZE; hash++) {
1910 QTAILQ_FOREACH_SAFE(route, &s->msi_hashtab[hash], entry, next) {
1911 kvm_irqchip_release_virq(s, route->kroute.gsi);
1912 QTAILQ_REMOVE(&s->msi_hashtab[hash], route, entry);
1913 g_free(route);
1918 static int kvm_irqchip_get_virq(KVMState *s)
1920 int next_virq;
1923 * PIC and IOAPIC share the first 16 GSI numbers, thus the available
1924 * GSI numbers are more than the number of IRQ route. Allocating a GSI
1925 * number can succeed even though a new route entry cannot be added.
1926 * When this happens, flush dynamic MSI entries to free IRQ route entries.
1928 if (!kvm_direct_msi_allowed && s->irq_routes->nr == s->gsi_count) {
1929 kvm_flush_dynamic_msi_routes(s);
1932 /* Return the lowest unused GSI in the bitmap */
1933 next_virq = find_first_zero_bit(s->used_gsi_bitmap, s->gsi_count);
1934 if (next_virq >= s->gsi_count) {
1935 return -ENOSPC;
1936 } else {
1937 return next_virq;
1941 static KVMMSIRoute *kvm_lookup_msi_route(KVMState *s, MSIMessage msg)
1943 unsigned int hash = kvm_hash_msi(msg.data);
1944 KVMMSIRoute *route;
1946 QTAILQ_FOREACH(route, &s->msi_hashtab[hash], entry) {
1947 if (route->kroute.u.msi.address_lo == (uint32_t)msg.address &&
1948 route->kroute.u.msi.address_hi == (msg.address >> 32) &&
1949 route->kroute.u.msi.data == le32_to_cpu(msg.data)) {
1950 return route;
1953 return NULL;
1956 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
1958 struct kvm_msi msi;
1959 KVMMSIRoute *route;
1961 if (kvm_direct_msi_allowed) {
1962 msi.address_lo = (uint32_t)msg.address;
1963 msi.address_hi = msg.address >> 32;
1964 msi.data = le32_to_cpu(msg.data);
1965 msi.flags = 0;
1966 memset(msi.pad, 0, sizeof(msi.pad));
1968 return kvm_vm_ioctl(s, KVM_SIGNAL_MSI, &msi);
1971 route = kvm_lookup_msi_route(s, msg);
1972 if (!route) {
1973 int virq;
1975 virq = kvm_irqchip_get_virq(s);
1976 if (virq < 0) {
1977 return virq;
1980 route = g_new0(KVMMSIRoute, 1);
1981 route->kroute.gsi = virq;
1982 route->kroute.type = KVM_IRQ_ROUTING_MSI;
1983 route->kroute.flags = 0;
1984 route->kroute.u.msi.address_lo = (uint32_t)msg.address;
1985 route->kroute.u.msi.address_hi = msg.address >> 32;
1986 route->kroute.u.msi.data = le32_to_cpu(msg.data);
1988 kvm_add_routing_entry(s, &route->kroute);
1989 kvm_irqchip_commit_routes(s);
1991 QTAILQ_INSERT_TAIL(&s->msi_hashtab[kvm_hash_msi(msg.data)], route,
1992 entry);
1995 assert(route->kroute.type == KVM_IRQ_ROUTING_MSI);
1997 return kvm_set_irq(s, route->kroute.gsi, 1);
2000 int kvm_irqchip_add_msi_route(KVMRouteChange *c, int vector, PCIDevice *dev)
2002 struct kvm_irq_routing_entry kroute = {};
2003 int virq;
2004 KVMState *s = c->s;
2005 MSIMessage msg = {0, 0};
2007 if (pci_available && dev) {
2008 msg = pci_get_msi_message(dev, vector);
2011 if (kvm_gsi_direct_mapping()) {
2012 return kvm_arch_msi_data_to_gsi(msg.data);
2015 if (!kvm_gsi_routing_enabled()) {
2016 return -ENOSYS;
2019 virq = kvm_irqchip_get_virq(s);
2020 if (virq < 0) {
2021 return virq;
2024 kroute.gsi = virq;
2025 kroute.type = KVM_IRQ_ROUTING_MSI;
2026 kroute.flags = 0;
2027 kroute.u.msi.address_lo = (uint32_t)msg.address;
2028 kroute.u.msi.address_hi = msg.address >> 32;
2029 kroute.u.msi.data = le32_to_cpu(msg.data);
2030 if (pci_available && kvm_msi_devid_required()) {
2031 kroute.flags = KVM_MSI_VALID_DEVID;
2032 kroute.u.msi.devid = pci_requester_id(dev);
2034 if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) {
2035 kvm_irqchip_release_virq(s, virq);
2036 return -EINVAL;
2039 trace_kvm_irqchip_add_msi_route(dev ? dev->name : (char *)"N/A",
2040 vector, virq);
2042 kvm_add_routing_entry(s, &kroute);
2043 kvm_arch_add_msi_route_post(&kroute, vector, dev);
2044 c->changes++;
2046 return virq;
2049 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg,
2050 PCIDevice *dev)
2052 struct kvm_irq_routing_entry kroute = {};
2054 if (kvm_gsi_direct_mapping()) {
2055 return 0;
2058 if (!kvm_irqchip_in_kernel()) {
2059 return -ENOSYS;
2062 kroute.gsi = virq;
2063 kroute.type = KVM_IRQ_ROUTING_MSI;
2064 kroute.flags = 0;
2065 kroute.u.msi.address_lo = (uint32_t)msg.address;
2066 kroute.u.msi.address_hi = msg.address >> 32;
2067 kroute.u.msi.data = le32_to_cpu(msg.data);
2068 if (pci_available && kvm_msi_devid_required()) {
2069 kroute.flags = KVM_MSI_VALID_DEVID;
2070 kroute.u.msi.devid = pci_requester_id(dev);
2072 if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) {
2073 return -EINVAL;
2076 trace_kvm_irqchip_update_msi_route(virq);
2078 return kvm_update_routing_entry(s, &kroute);
2081 static int kvm_irqchip_assign_irqfd(KVMState *s, EventNotifier *event,
2082 EventNotifier *resample, int virq,
2083 bool assign)
2085 int fd = event_notifier_get_fd(event);
2086 int rfd = resample ? event_notifier_get_fd(resample) : -1;
2088 struct kvm_irqfd irqfd = {
2089 .fd = fd,
2090 .gsi = virq,
2091 .flags = assign ? 0 : KVM_IRQFD_FLAG_DEASSIGN,
2094 if (rfd != -1) {
2095 assert(assign);
2096 if (kvm_irqchip_is_split()) {
2098 * When the slow irqchip (e.g. IOAPIC) is in the
2099 * userspace, KVM kernel resamplefd will not work because
2100 * the EOI of the interrupt will be delivered to userspace
2101 * instead, so the KVM kernel resamplefd kick will be
2102 * skipped. The userspace here mimics what the kernel
2103 * provides with resamplefd, remember the resamplefd and
2104 * kick it when we receive EOI of this IRQ.
2106 * This is hackery because IOAPIC is mostly bypassed
2107 * (except EOI broadcasts) when irqfd is used. However
2108 * this can bring much performance back for split irqchip
2109 * with INTx IRQs (for VFIO, this gives 93% perf of the
2110 * full fast path, which is 46% perf boost comparing to
2111 * the INTx slow path).
2113 kvm_resample_fd_insert(virq, resample);
2114 } else {
2115 irqfd.flags |= KVM_IRQFD_FLAG_RESAMPLE;
2116 irqfd.resamplefd = rfd;
2118 } else if (!assign) {
2119 if (kvm_irqchip_is_split()) {
2120 kvm_resample_fd_remove(virq);
2124 if (!kvm_irqfds_enabled()) {
2125 return -ENOSYS;
2128 return kvm_vm_ioctl(s, KVM_IRQFD, &irqfd);
2131 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter)
2133 struct kvm_irq_routing_entry kroute = {};
2134 int virq;
2136 if (!kvm_gsi_routing_enabled()) {
2137 return -ENOSYS;
2140 virq = kvm_irqchip_get_virq(s);
2141 if (virq < 0) {
2142 return virq;
2145 kroute.gsi = virq;
2146 kroute.type = KVM_IRQ_ROUTING_S390_ADAPTER;
2147 kroute.flags = 0;
2148 kroute.u.adapter.summary_addr = adapter->summary_addr;
2149 kroute.u.adapter.ind_addr = adapter->ind_addr;
2150 kroute.u.adapter.summary_offset = adapter->summary_offset;
2151 kroute.u.adapter.ind_offset = adapter->ind_offset;
2152 kroute.u.adapter.adapter_id = adapter->adapter_id;
2154 kvm_add_routing_entry(s, &kroute);
2156 return virq;
2159 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint)
2161 struct kvm_irq_routing_entry kroute = {};
2162 int virq;
2164 if (!kvm_gsi_routing_enabled()) {
2165 return -ENOSYS;
2167 if (!kvm_check_extension(s, KVM_CAP_HYPERV_SYNIC)) {
2168 return -ENOSYS;
2170 virq = kvm_irqchip_get_virq(s);
2171 if (virq < 0) {
2172 return virq;
2175 kroute.gsi = virq;
2176 kroute.type = KVM_IRQ_ROUTING_HV_SINT;
2177 kroute.flags = 0;
2178 kroute.u.hv_sint.vcpu = vcpu;
2179 kroute.u.hv_sint.sint = sint;
2181 kvm_add_routing_entry(s, &kroute);
2182 kvm_irqchip_commit_routes(s);
2184 return virq;
2187 #else /* !KVM_CAP_IRQ_ROUTING */
2189 void kvm_init_irq_routing(KVMState *s)
2193 void kvm_irqchip_release_virq(KVMState *s, int virq)
2197 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
2199 abort();
2202 int kvm_irqchip_add_msi_route(KVMRouteChange *c, int vector, PCIDevice *dev)
2204 return -ENOSYS;
2207 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter)
2209 return -ENOSYS;
2212 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint)
2214 return -ENOSYS;
2217 static int kvm_irqchip_assign_irqfd(KVMState *s, EventNotifier *event,
2218 EventNotifier *resample, int virq,
2219 bool assign)
2221 abort();
2224 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg)
2226 return -ENOSYS;
2228 #endif /* !KVM_CAP_IRQ_ROUTING */
2230 int kvm_irqchip_add_irqfd_notifier_gsi(KVMState *s, EventNotifier *n,
2231 EventNotifier *rn, int virq)
2233 return kvm_irqchip_assign_irqfd(s, n, rn, virq, true);
2236 int kvm_irqchip_remove_irqfd_notifier_gsi(KVMState *s, EventNotifier *n,
2237 int virq)
2239 return kvm_irqchip_assign_irqfd(s, n, NULL, virq, false);
2242 int kvm_irqchip_add_irqfd_notifier(KVMState *s, EventNotifier *n,
2243 EventNotifier *rn, qemu_irq irq)
2245 gpointer key, gsi;
2246 gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi);
2248 if (!found) {
2249 return -ENXIO;
2251 return kvm_irqchip_add_irqfd_notifier_gsi(s, n, rn, GPOINTER_TO_INT(gsi));
2254 int kvm_irqchip_remove_irqfd_notifier(KVMState *s, EventNotifier *n,
2255 qemu_irq irq)
2257 gpointer key, gsi;
2258 gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi);
2260 if (!found) {
2261 return -ENXIO;
2263 return kvm_irqchip_remove_irqfd_notifier_gsi(s, n, GPOINTER_TO_INT(gsi));
2266 void kvm_irqchip_set_qemuirq_gsi(KVMState *s, qemu_irq irq, int gsi)
2268 g_hash_table_insert(s->gsimap, irq, GINT_TO_POINTER(gsi));
2271 static void kvm_irqchip_create(KVMState *s)
2273 int ret;
2275 assert(s->kernel_irqchip_split != ON_OFF_AUTO_AUTO);
2276 if (kvm_check_extension(s, KVM_CAP_IRQCHIP)) {
2278 } else if (kvm_check_extension(s, KVM_CAP_S390_IRQCHIP)) {
2279 ret = kvm_vm_enable_cap(s, KVM_CAP_S390_IRQCHIP, 0);
2280 if (ret < 0) {
2281 fprintf(stderr, "Enable kernel irqchip failed: %s\n", strerror(-ret));
2282 exit(1);
2284 } else {
2285 return;
2288 /* First probe and see if there's a arch-specific hook to create the
2289 * in-kernel irqchip for us */
2290 ret = kvm_arch_irqchip_create(s);
2291 if (ret == 0) {
2292 if (s->kernel_irqchip_split == ON_OFF_AUTO_ON) {
2293 error_report("Split IRQ chip mode not supported.");
2294 exit(1);
2295 } else {
2296 ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP);
2299 if (ret < 0) {
2300 fprintf(stderr, "Create kernel irqchip failed: %s\n", strerror(-ret));
2301 exit(1);
2304 kvm_kernel_irqchip = true;
2305 /* If we have an in-kernel IRQ chip then we must have asynchronous
2306 * interrupt delivery (though the reverse is not necessarily true)
2308 kvm_async_interrupts_allowed = true;
2309 kvm_halt_in_kernel_allowed = true;
2311 kvm_init_irq_routing(s);
2313 s->gsimap = g_hash_table_new(g_direct_hash, g_direct_equal);
2316 /* Find number of supported CPUs using the recommended
2317 * procedure from the kernel API documentation to cope with
2318 * older kernels that may be missing capabilities.
2320 static int kvm_recommended_vcpus(KVMState *s)
2322 int ret = kvm_vm_check_extension(s, KVM_CAP_NR_VCPUS);
2323 return (ret) ? ret : 4;
2326 static int kvm_max_vcpus(KVMState *s)
2328 int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPUS);
2329 return (ret) ? ret : kvm_recommended_vcpus(s);
2332 static int kvm_max_vcpu_id(KVMState *s)
2334 int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPU_ID);
2335 return (ret) ? ret : kvm_max_vcpus(s);
2338 bool kvm_vcpu_id_is_valid(int vcpu_id)
2340 KVMState *s = KVM_STATE(current_accel());
2341 return vcpu_id >= 0 && vcpu_id < kvm_max_vcpu_id(s);
2344 bool kvm_dirty_ring_enabled(void)
2346 return kvm_state->kvm_dirty_ring_size ? true : false;
2349 static void query_stats_cb(StatsResultList **result, StatsTarget target,
2350 strList *names, strList *targets, Error **errp);
2351 static void query_stats_schemas_cb(StatsSchemaList **result, Error **errp);
2353 uint32_t kvm_dirty_ring_size(void)
2355 return kvm_state->kvm_dirty_ring_size;
2358 static int kvm_init(MachineState *ms)
2360 MachineClass *mc = MACHINE_GET_CLASS(ms);
2361 static const char upgrade_note[] =
2362 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
2363 "(see http://sourceforge.net/projects/kvm).\n";
2364 struct {
2365 const char *name;
2366 int num;
2367 } num_cpus[] = {
2368 { "SMP", ms->smp.cpus },
2369 { "hotpluggable", ms->smp.max_cpus },
2370 { NULL, }
2371 }, *nc = num_cpus;
2372 int soft_vcpus_limit, hard_vcpus_limit;
2373 KVMState *s;
2374 const KVMCapabilityInfo *missing_cap;
2375 int ret;
2376 int type = 0;
2377 uint64_t dirty_log_manual_caps;
2379 qemu_mutex_init(&kml_slots_lock);
2381 s = KVM_STATE(ms->accelerator);
2384 * On systems where the kernel can support different base page
2385 * sizes, host page size may be different from TARGET_PAGE_SIZE,
2386 * even with KVM. TARGET_PAGE_SIZE is assumed to be the minimum
2387 * page size for the system though.
2389 assert(TARGET_PAGE_SIZE <= qemu_real_host_page_size());
2391 s->sigmask_len = 8;
2392 accel_blocker_init();
2394 #ifdef KVM_CAP_SET_GUEST_DEBUG
2395 QTAILQ_INIT(&s->kvm_sw_breakpoints);
2396 #endif
2397 QLIST_INIT(&s->kvm_parked_vcpus);
2398 s->fd = qemu_open_old("/dev/kvm", O_RDWR);
2399 if (s->fd == -1) {
2400 fprintf(stderr, "Could not access KVM kernel module: %m\n");
2401 ret = -errno;
2402 goto err;
2405 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
2406 if (ret < KVM_API_VERSION) {
2407 if (ret >= 0) {
2408 ret = -EINVAL;
2410 fprintf(stderr, "kvm version too old\n");
2411 goto err;
2414 if (ret > KVM_API_VERSION) {
2415 ret = -EINVAL;
2416 fprintf(stderr, "kvm version not supported\n");
2417 goto err;
2420 kvm_immediate_exit = kvm_check_extension(s, KVM_CAP_IMMEDIATE_EXIT);
2421 s->nr_slots = kvm_check_extension(s, KVM_CAP_NR_MEMSLOTS);
2423 /* If unspecified, use the default value */
2424 if (!s->nr_slots) {
2425 s->nr_slots = 32;
2428 s->nr_as = kvm_check_extension(s, KVM_CAP_MULTI_ADDRESS_SPACE);
2429 if (s->nr_as <= 1) {
2430 s->nr_as = 1;
2432 s->as = g_new0(struct KVMAs, s->nr_as);
2434 if (object_property_find(OBJECT(current_machine), "kvm-type")) {
2435 g_autofree char *kvm_type = object_property_get_str(OBJECT(current_machine),
2436 "kvm-type",
2437 &error_abort);
2438 type = mc->kvm_type(ms, kvm_type);
2439 } else if (mc->kvm_type) {
2440 type = mc->kvm_type(ms, NULL);
2443 do {
2444 ret = kvm_ioctl(s, KVM_CREATE_VM, type);
2445 } while (ret == -EINTR);
2447 if (ret < 0) {
2448 fprintf(stderr, "ioctl(KVM_CREATE_VM) failed: %d %s\n", -ret,
2449 strerror(-ret));
2451 #ifdef TARGET_S390X
2452 if (ret == -EINVAL) {
2453 fprintf(stderr,
2454 "Host kernel setup problem detected. Please verify:\n");
2455 fprintf(stderr, "- for kernels supporting the switch_amode or"
2456 " user_mode parameters, whether\n");
2457 fprintf(stderr,
2458 " user space is running in primary address space\n");
2459 fprintf(stderr,
2460 "- for kernels supporting the vm.allocate_pgste sysctl, "
2461 "whether it is enabled\n");
2463 #elif defined(TARGET_PPC)
2464 if (ret == -EINVAL) {
2465 fprintf(stderr,
2466 "PPC KVM module is not loaded. Try modprobe kvm_%s.\n",
2467 (type == 2) ? "pr" : "hv");
2469 #endif
2470 goto err;
2473 s->vmfd = ret;
2475 /* check the vcpu limits */
2476 soft_vcpus_limit = kvm_recommended_vcpus(s);
2477 hard_vcpus_limit = kvm_max_vcpus(s);
2479 while (nc->name) {
2480 if (nc->num > soft_vcpus_limit) {
2481 warn_report("Number of %s cpus requested (%d) exceeds "
2482 "the recommended cpus supported by KVM (%d)",
2483 nc->name, nc->num, soft_vcpus_limit);
2485 if (nc->num > hard_vcpus_limit) {
2486 fprintf(stderr, "Number of %s cpus requested (%d) exceeds "
2487 "the maximum cpus supported by KVM (%d)\n",
2488 nc->name, nc->num, hard_vcpus_limit);
2489 exit(1);
2492 nc++;
2495 missing_cap = kvm_check_extension_list(s, kvm_required_capabilites);
2496 if (!missing_cap) {
2497 missing_cap =
2498 kvm_check_extension_list(s, kvm_arch_required_capabilities);
2500 if (missing_cap) {
2501 ret = -EINVAL;
2502 fprintf(stderr, "kvm does not support %s\n%s",
2503 missing_cap->name, upgrade_note);
2504 goto err;
2507 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
2508 s->coalesced_pio = s->coalesced_mmio &&
2509 kvm_check_extension(s, KVM_CAP_COALESCED_PIO);
2512 * Enable KVM dirty ring if supported, otherwise fall back to
2513 * dirty logging mode
2515 if (s->kvm_dirty_ring_size > 0) {
2516 uint64_t ring_bytes;
2518 ring_bytes = s->kvm_dirty_ring_size * sizeof(struct kvm_dirty_gfn);
2520 /* Read the max supported pages */
2521 ret = kvm_vm_check_extension(s, KVM_CAP_DIRTY_LOG_RING);
2522 if (ret > 0) {
2523 if (ring_bytes > ret) {
2524 error_report("KVM dirty ring size %" PRIu32 " too big "
2525 "(maximum is %ld). Please use a smaller value.",
2526 s->kvm_dirty_ring_size,
2527 (long)ret / sizeof(struct kvm_dirty_gfn));
2528 ret = -EINVAL;
2529 goto err;
2532 ret = kvm_vm_enable_cap(s, KVM_CAP_DIRTY_LOG_RING, 0, ring_bytes);
2533 if (ret) {
2534 error_report("Enabling of KVM dirty ring failed: %s. "
2535 "Suggested minimum value is 1024.", strerror(-ret));
2536 goto err;
2539 s->kvm_dirty_ring_bytes = ring_bytes;
2540 } else {
2541 warn_report("KVM dirty ring not available, using bitmap method");
2542 s->kvm_dirty_ring_size = 0;
2547 * KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 is not needed when dirty ring is
2548 * enabled. More importantly, KVM_DIRTY_LOG_INITIALLY_SET will assume no
2549 * page is wr-protected initially, which is against how kvm dirty ring is
2550 * usage - kvm dirty ring requires all pages are wr-protected at the very
2551 * beginning. Enabling this feature for dirty ring causes data corruption.
2553 * TODO: Without KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 and kvm clear dirty log,
2554 * we may expect a higher stall time when starting the migration. In the
2555 * future we can enable KVM_CLEAR_DIRTY_LOG to work with dirty ring too:
2556 * instead of clearing dirty bit, it can be a way to explicitly wr-protect
2557 * guest pages.
2559 if (!s->kvm_dirty_ring_size) {
2560 dirty_log_manual_caps =
2561 kvm_check_extension(s, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2);
2562 dirty_log_manual_caps &= (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE |
2563 KVM_DIRTY_LOG_INITIALLY_SET);
2564 s->manual_dirty_log_protect = dirty_log_manual_caps;
2565 if (dirty_log_manual_caps) {
2566 ret = kvm_vm_enable_cap(s, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2, 0,
2567 dirty_log_manual_caps);
2568 if (ret) {
2569 warn_report("Trying to enable capability %"PRIu64" of "
2570 "KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 but failed. "
2571 "Falling back to the legacy mode. ",
2572 dirty_log_manual_caps);
2573 s->manual_dirty_log_protect = 0;
2578 #ifdef KVM_CAP_VCPU_EVENTS
2579 s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS);
2580 #endif
2582 s->robust_singlestep =
2583 kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP);
2585 #ifdef KVM_CAP_DEBUGREGS
2586 s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS);
2587 #endif
2589 s->max_nested_state_len = kvm_check_extension(s, KVM_CAP_NESTED_STATE);
2591 #ifdef KVM_CAP_IRQ_ROUTING
2592 kvm_direct_msi_allowed = (kvm_check_extension(s, KVM_CAP_SIGNAL_MSI) > 0);
2593 #endif
2595 s->intx_set_mask = kvm_check_extension(s, KVM_CAP_PCI_2_3);
2597 s->irq_set_ioctl = KVM_IRQ_LINE;
2598 if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) {
2599 s->irq_set_ioctl = KVM_IRQ_LINE_STATUS;
2602 kvm_readonly_mem_allowed =
2603 (kvm_check_extension(s, KVM_CAP_READONLY_MEM) > 0);
2605 kvm_eventfds_allowed =
2606 (kvm_check_extension(s, KVM_CAP_IOEVENTFD) > 0);
2608 kvm_irqfds_allowed =
2609 (kvm_check_extension(s, KVM_CAP_IRQFD) > 0);
2611 kvm_resamplefds_allowed =
2612 (kvm_check_extension(s, KVM_CAP_IRQFD_RESAMPLE) > 0);
2614 kvm_vm_attributes_allowed =
2615 (kvm_check_extension(s, KVM_CAP_VM_ATTRIBUTES) > 0);
2617 kvm_ioeventfd_any_length_allowed =
2618 (kvm_check_extension(s, KVM_CAP_IOEVENTFD_ANY_LENGTH) > 0);
2620 #ifdef KVM_CAP_SET_GUEST_DEBUG
2621 kvm_has_guest_debug =
2622 (kvm_check_extension(s, KVM_CAP_SET_GUEST_DEBUG) > 0);
2623 #endif
2625 kvm_sstep_flags = 0;
2626 if (kvm_has_guest_debug) {
2627 kvm_sstep_flags = SSTEP_ENABLE;
2629 #if defined KVM_CAP_SET_GUEST_DEBUG2
2630 int guest_debug_flags =
2631 kvm_check_extension(s, KVM_CAP_SET_GUEST_DEBUG2);
2633 if (guest_debug_flags & KVM_GUESTDBG_BLOCKIRQ) {
2634 kvm_sstep_flags |= SSTEP_NOIRQ;
2636 #endif
2639 kvm_state = s;
2641 ret = kvm_arch_init(ms, s);
2642 if (ret < 0) {
2643 goto err;
2646 if (s->kernel_irqchip_split == ON_OFF_AUTO_AUTO) {
2647 s->kernel_irqchip_split = mc->default_kernel_irqchip_split ? ON_OFF_AUTO_ON : ON_OFF_AUTO_OFF;
2650 qemu_register_reset(kvm_unpoison_all, NULL);
2652 if (s->kernel_irqchip_allowed) {
2653 kvm_irqchip_create(s);
2656 if (kvm_eventfds_allowed) {
2657 s->memory_listener.listener.eventfd_add = kvm_mem_ioeventfd_add;
2658 s->memory_listener.listener.eventfd_del = kvm_mem_ioeventfd_del;
2660 s->memory_listener.listener.coalesced_io_add = kvm_coalesce_mmio_region;
2661 s->memory_listener.listener.coalesced_io_del = kvm_uncoalesce_mmio_region;
2663 kvm_memory_listener_register(s, &s->memory_listener,
2664 &address_space_memory, 0, "kvm-memory");
2665 if (kvm_eventfds_allowed) {
2666 memory_listener_register(&kvm_io_listener,
2667 &address_space_io);
2669 memory_listener_register(&kvm_coalesced_pio_listener,
2670 &address_space_io);
2672 s->many_ioeventfds = kvm_check_many_ioeventfds();
2674 s->sync_mmu = !!kvm_vm_check_extension(kvm_state, KVM_CAP_SYNC_MMU);
2675 if (!s->sync_mmu) {
2676 ret = ram_block_discard_disable(true);
2677 assert(!ret);
2680 if (s->kvm_dirty_ring_size) {
2681 ret = kvm_dirty_ring_reaper_init(s);
2682 if (ret) {
2683 goto err;
2687 if (kvm_check_extension(kvm_state, KVM_CAP_BINARY_STATS_FD)) {
2688 add_stats_callbacks(STATS_PROVIDER_KVM, query_stats_cb,
2689 query_stats_schemas_cb);
2692 return 0;
2694 err:
2695 assert(ret < 0);
2696 if (s->vmfd >= 0) {
2697 close(s->vmfd);
2699 if (s->fd != -1) {
2700 close(s->fd);
2702 g_free(s->memory_listener.slots);
2704 return ret;
2707 void kvm_set_sigmask_len(KVMState *s, unsigned int sigmask_len)
2709 s->sigmask_len = sigmask_len;
2712 static void kvm_handle_io(uint16_t port, MemTxAttrs attrs, void *data, int direction,
2713 int size, uint32_t count)
2715 int i;
2716 uint8_t *ptr = data;
2718 for (i = 0; i < count; i++) {
2719 address_space_rw(&address_space_io, port, attrs,
2720 ptr, size,
2721 direction == KVM_EXIT_IO_OUT);
2722 ptr += size;
2726 static int kvm_handle_internal_error(CPUState *cpu, struct kvm_run *run)
2728 fprintf(stderr, "KVM internal error. Suberror: %d\n",
2729 run->internal.suberror);
2731 if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) {
2732 int i;
2734 for (i = 0; i < run->internal.ndata; ++i) {
2735 fprintf(stderr, "extra data[%d]: 0x%016"PRIx64"\n",
2736 i, (uint64_t)run->internal.data[i]);
2739 if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) {
2740 fprintf(stderr, "emulation failure\n");
2741 if (!kvm_arch_stop_on_emulation_error(cpu)) {
2742 cpu_dump_state(cpu, stderr, CPU_DUMP_CODE);
2743 return EXCP_INTERRUPT;
2746 /* FIXME: Should trigger a qmp message to let management know
2747 * something went wrong.
2749 return -1;
2752 void kvm_flush_coalesced_mmio_buffer(void)
2754 KVMState *s = kvm_state;
2756 if (s->coalesced_flush_in_progress) {
2757 return;
2760 s->coalesced_flush_in_progress = true;
2762 if (s->coalesced_mmio_ring) {
2763 struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring;
2764 while (ring->first != ring->last) {
2765 struct kvm_coalesced_mmio *ent;
2767 ent = &ring->coalesced_mmio[ring->first];
2769 if (ent->pio == 1) {
2770 address_space_write(&address_space_io, ent->phys_addr,
2771 MEMTXATTRS_UNSPECIFIED, ent->data,
2772 ent->len);
2773 } else {
2774 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
2776 smp_wmb();
2777 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
2781 s->coalesced_flush_in_progress = false;
2784 bool kvm_cpu_check_are_resettable(void)
2786 return kvm_arch_cpu_check_are_resettable();
2789 static void do_kvm_cpu_synchronize_state(CPUState *cpu, run_on_cpu_data arg)
2791 if (!cpu->vcpu_dirty) {
2792 kvm_arch_get_registers(cpu);
2793 cpu->vcpu_dirty = true;
2797 void kvm_cpu_synchronize_state(CPUState *cpu)
2799 if (!cpu->vcpu_dirty) {
2800 run_on_cpu(cpu, do_kvm_cpu_synchronize_state, RUN_ON_CPU_NULL);
2804 static void do_kvm_cpu_synchronize_post_reset(CPUState *cpu, run_on_cpu_data arg)
2806 kvm_arch_put_registers(cpu, KVM_PUT_RESET_STATE);
2807 cpu->vcpu_dirty = false;
2810 void kvm_cpu_synchronize_post_reset(CPUState *cpu)
2812 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_reset, RUN_ON_CPU_NULL);
2815 static void do_kvm_cpu_synchronize_post_init(CPUState *cpu, run_on_cpu_data arg)
2817 kvm_arch_put_registers(cpu, KVM_PUT_FULL_STATE);
2818 cpu->vcpu_dirty = false;
2821 void kvm_cpu_synchronize_post_init(CPUState *cpu)
2823 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_init, RUN_ON_CPU_NULL);
2826 static void do_kvm_cpu_synchronize_pre_loadvm(CPUState *cpu, run_on_cpu_data arg)
2828 cpu->vcpu_dirty = true;
2831 void kvm_cpu_synchronize_pre_loadvm(CPUState *cpu)
2833 run_on_cpu(cpu, do_kvm_cpu_synchronize_pre_loadvm, RUN_ON_CPU_NULL);
2836 #ifdef KVM_HAVE_MCE_INJECTION
2837 static __thread void *pending_sigbus_addr;
2838 static __thread int pending_sigbus_code;
2839 static __thread bool have_sigbus_pending;
2840 #endif
2842 static void kvm_cpu_kick(CPUState *cpu)
2844 qatomic_set(&cpu->kvm_run->immediate_exit, 1);
2847 static void kvm_cpu_kick_self(void)
2849 if (kvm_immediate_exit) {
2850 kvm_cpu_kick(current_cpu);
2851 } else {
2852 qemu_cpu_kick_self();
2856 static void kvm_eat_signals(CPUState *cpu)
2858 struct timespec ts = { 0, 0 };
2859 siginfo_t siginfo;
2860 sigset_t waitset;
2861 sigset_t chkset;
2862 int r;
2864 if (kvm_immediate_exit) {
2865 qatomic_set(&cpu->kvm_run->immediate_exit, 0);
2866 /* Write kvm_run->immediate_exit before the cpu->exit_request
2867 * write in kvm_cpu_exec.
2869 smp_wmb();
2870 return;
2873 sigemptyset(&waitset);
2874 sigaddset(&waitset, SIG_IPI);
2876 do {
2877 r = sigtimedwait(&waitset, &siginfo, &ts);
2878 if (r == -1 && !(errno == EAGAIN || errno == EINTR)) {
2879 perror("sigtimedwait");
2880 exit(1);
2883 r = sigpending(&chkset);
2884 if (r == -1) {
2885 perror("sigpending");
2886 exit(1);
2888 } while (sigismember(&chkset, SIG_IPI));
2891 int kvm_cpu_exec(CPUState *cpu)
2893 struct kvm_run *run = cpu->kvm_run;
2894 int ret, run_ret;
2896 DPRINTF("kvm_cpu_exec()\n");
2898 if (kvm_arch_process_async_events(cpu)) {
2899 qatomic_set(&cpu->exit_request, 0);
2900 return EXCP_HLT;
2903 qemu_mutex_unlock_iothread();
2904 cpu_exec_start(cpu);
2906 do {
2907 MemTxAttrs attrs;
2909 if (cpu->vcpu_dirty) {
2910 kvm_arch_put_registers(cpu, KVM_PUT_RUNTIME_STATE);
2911 cpu->vcpu_dirty = false;
2914 kvm_arch_pre_run(cpu, run);
2915 if (qatomic_read(&cpu->exit_request)) {
2916 DPRINTF("interrupt exit requested\n");
2918 * KVM requires us to reenter the kernel after IO exits to complete
2919 * instruction emulation. This self-signal will ensure that we
2920 * leave ASAP again.
2922 kvm_cpu_kick_self();
2925 /* Read cpu->exit_request before KVM_RUN reads run->immediate_exit.
2926 * Matching barrier in kvm_eat_signals.
2928 smp_rmb();
2930 run_ret = kvm_vcpu_ioctl(cpu, KVM_RUN, 0);
2932 attrs = kvm_arch_post_run(cpu, run);
2934 #ifdef KVM_HAVE_MCE_INJECTION
2935 if (unlikely(have_sigbus_pending)) {
2936 qemu_mutex_lock_iothread();
2937 kvm_arch_on_sigbus_vcpu(cpu, pending_sigbus_code,
2938 pending_sigbus_addr);
2939 have_sigbus_pending = false;
2940 qemu_mutex_unlock_iothread();
2942 #endif
2944 if (run_ret < 0) {
2945 if (run_ret == -EINTR || run_ret == -EAGAIN) {
2946 DPRINTF("io window exit\n");
2947 kvm_eat_signals(cpu);
2948 ret = EXCP_INTERRUPT;
2949 break;
2951 fprintf(stderr, "error: kvm run failed %s\n",
2952 strerror(-run_ret));
2953 #ifdef TARGET_PPC
2954 if (run_ret == -EBUSY) {
2955 fprintf(stderr,
2956 "This is probably because your SMT is enabled.\n"
2957 "VCPU can only run on primary threads with all "
2958 "secondary threads offline.\n");
2960 #endif
2961 ret = -1;
2962 break;
2965 trace_kvm_run_exit(cpu->cpu_index, run->exit_reason);
2966 switch (run->exit_reason) {
2967 case KVM_EXIT_IO:
2968 DPRINTF("handle_io\n");
2969 /* Called outside BQL */
2970 kvm_handle_io(run->io.port, attrs,
2971 (uint8_t *)run + run->io.data_offset,
2972 run->io.direction,
2973 run->io.size,
2974 run->io.count);
2975 ret = 0;
2976 break;
2977 case KVM_EXIT_MMIO:
2978 DPRINTF("handle_mmio\n");
2979 /* Called outside BQL */
2980 address_space_rw(&address_space_memory,
2981 run->mmio.phys_addr, attrs,
2982 run->mmio.data,
2983 run->mmio.len,
2984 run->mmio.is_write);
2985 ret = 0;
2986 break;
2987 case KVM_EXIT_IRQ_WINDOW_OPEN:
2988 DPRINTF("irq_window_open\n");
2989 ret = EXCP_INTERRUPT;
2990 break;
2991 case KVM_EXIT_SHUTDOWN:
2992 DPRINTF("shutdown\n");
2993 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
2994 ret = EXCP_INTERRUPT;
2995 break;
2996 case KVM_EXIT_UNKNOWN:
2997 fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n",
2998 (uint64_t)run->hw.hardware_exit_reason);
2999 ret = -1;
3000 break;
3001 case KVM_EXIT_INTERNAL_ERROR:
3002 ret = kvm_handle_internal_error(cpu, run);
3003 break;
3004 case KVM_EXIT_DIRTY_RING_FULL:
3006 * We shouldn't continue if the dirty ring of this vcpu is
3007 * still full. Got kicked by KVM_RESET_DIRTY_RINGS.
3009 trace_kvm_dirty_ring_full(cpu->cpu_index);
3010 qemu_mutex_lock_iothread();
3012 * We throttle vCPU by making it sleep once it exit from kernel
3013 * due to dirty ring full. In the dirtylimit scenario, reaping
3014 * all vCPUs after a single vCPU dirty ring get full result in
3015 * the miss of sleep, so just reap the ring-fulled vCPU.
3017 if (dirtylimit_in_service()) {
3018 kvm_dirty_ring_reap(kvm_state, cpu);
3019 } else {
3020 kvm_dirty_ring_reap(kvm_state, NULL);
3022 qemu_mutex_unlock_iothread();
3023 dirtylimit_vcpu_execute(cpu);
3024 ret = 0;
3025 break;
3026 case KVM_EXIT_SYSTEM_EVENT:
3027 switch (run->system_event.type) {
3028 case KVM_SYSTEM_EVENT_SHUTDOWN:
3029 qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN);
3030 ret = EXCP_INTERRUPT;
3031 break;
3032 case KVM_SYSTEM_EVENT_RESET:
3033 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
3034 ret = EXCP_INTERRUPT;
3035 break;
3036 case KVM_SYSTEM_EVENT_CRASH:
3037 kvm_cpu_synchronize_state(cpu);
3038 qemu_mutex_lock_iothread();
3039 qemu_system_guest_panicked(cpu_get_crash_info(cpu));
3040 qemu_mutex_unlock_iothread();
3041 ret = 0;
3042 break;
3043 default:
3044 DPRINTF("kvm_arch_handle_exit\n");
3045 ret = kvm_arch_handle_exit(cpu, run);
3046 break;
3048 break;
3049 default:
3050 DPRINTF("kvm_arch_handle_exit\n");
3051 ret = kvm_arch_handle_exit(cpu, run);
3052 break;
3054 } while (ret == 0);
3056 cpu_exec_end(cpu);
3057 qemu_mutex_lock_iothread();
3059 if (ret < 0) {
3060 cpu_dump_state(cpu, stderr, CPU_DUMP_CODE);
3061 vm_stop(RUN_STATE_INTERNAL_ERROR);
3064 qatomic_set(&cpu->exit_request, 0);
3065 return ret;
3068 int kvm_ioctl(KVMState *s, int type, ...)
3070 int ret;
3071 void *arg;
3072 va_list ap;
3074 va_start(ap, type);
3075 arg = va_arg(ap, void *);
3076 va_end(ap);
3078 trace_kvm_ioctl(type, arg);
3079 ret = ioctl(s->fd, type, arg);
3080 if (ret == -1) {
3081 ret = -errno;
3083 return ret;
3086 int kvm_vm_ioctl(KVMState *s, int type, ...)
3088 int ret;
3089 void *arg;
3090 va_list ap;
3092 va_start(ap, type);
3093 arg = va_arg(ap, void *);
3094 va_end(ap);
3096 trace_kvm_vm_ioctl(type, arg);
3097 accel_ioctl_begin();
3098 ret = ioctl(s->vmfd, type, arg);
3099 accel_ioctl_end();
3100 if (ret == -1) {
3101 ret = -errno;
3103 return ret;
3106 int kvm_vcpu_ioctl(CPUState *cpu, int type, ...)
3108 int ret;
3109 void *arg;
3110 va_list ap;
3112 va_start(ap, type);
3113 arg = va_arg(ap, void *);
3114 va_end(ap);
3116 trace_kvm_vcpu_ioctl(cpu->cpu_index, type, arg);
3117 accel_cpu_ioctl_begin(cpu);
3118 ret = ioctl(cpu->kvm_fd, type, arg);
3119 accel_cpu_ioctl_end(cpu);
3120 if (ret == -1) {
3121 ret = -errno;
3123 return ret;
3126 int kvm_device_ioctl(int fd, int type, ...)
3128 int ret;
3129 void *arg;
3130 va_list ap;
3132 va_start(ap, type);
3133 arg = va_arg(ap, void *);
3134 va_end(ap);
3136 trace_kvm_device_ioctl(fd, type, arg);
3137 accel_ioctl_begin();
3138 ret = ioctl(fd, type, arg);
3139 accel_ioctl_end();
3140 if (ret == -1) {
3141 ret = -errno;
3143 return ret;
3146 int kvm_vm_check_attr(KVMState *s, uint32_t group, uint64_t attr)
3148 int ret;
3149 struct kvm_device_attr attribute = {
3150 .group = group,
3151 .attr = attr,
3154 if (!kvm_vm_attributes_allowed) {
3155 return 0;
3158 ret = kvm_vm_ioctl(s, KVM_HAS_DEVICE_ATTR, &attribute);
3159 /* kvm returns 0 on success for HAS_DEVICE_ATTR */
3160 return ret ? 0 : 1;
3163 int kvm_device_check_attr(int dev_fd, uint32_t group, uint64_t attr)
3165 struct kvm_device_attr attribute = {
3166 .group = group,
3167 .attr = attr,
3168 .flags = 0,
3171 return kvm_device_ioctl(dev_fd, KVM_HAS_DEVICE_ATTR, &attribute) ? 0 : 1;
3174 int kvm_device_access(int fd, int group, uint64_t attr,
3175 void *val, bool write, Error **errp)
3177 struct kvm_device_attr kvmattr;
3178 int err;
3180 kvmattr.flags = 0;
3181 kvmattr.group = group;
3182 kvmattr.attr = attr;
3183 kvmattr.addr = (uintptr_t)val;
3185 err = kvm_device_ioctl(fd,
3186 write ? KVM_SET_DEVICE_ATTR : KVM_GET_DEVICE_ATTR,
3187 &kvmattr);
3188 if (err < 0) {
3189 error_setg_errno(errp, -err,
3190 "KVM_%s_DEVICE_ATTR failed: Group %d "
3191 "attr 0x%016" PRIx64,
3192 write ? "SET" : "GET", group, attr);
3194 return err;
3197 bool kvm_has_sync_mmu(void)
3199 return kvm_state->sync_mmu;
3202 int kvm_has_vcpu_events(void)
3204 return kvm_state->vcpu_events;
3207 int kvm_has_robust_singlestep(void)
3209 return kvm_state->robust_singlestep;
3212 int kvm_has_debugregs(void)
3214 return kvm_state->debugregs;
3217 int kvm_max_nested_state_length(void)
3219 return kvm_state->max_nested_state_len;
3222 int kvm_has_many_ioeventfds(void)
3224 if (!kvm_enabled()) {
3225 return 0;
3227 return kvm_state->many_ioeventfds;
3230 int kvm_has_gsi_routing(void)
3232 #ifdef KVM_CAP_IRQ_ROUTING
3233 return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING);
3234 #else
3235 return false;
3236 #endif
3239 int kvm_has_intx_set_mask(void)
3241 return kvm_state->intx_set_mask;
3244 bool kvm_arm_supports_user_irq(void)
3246 return kvm_check_extension(kvm_state, KVM_CAP_ARM_USER_IRQ);
3249 #ifdef KVM_CAP_SET_GUEST_DEBUG
3250 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *cpu,
3251 target_ulong pc)
3253 struct kvm_sw_breakpoint *bp;
3255 QTAILQ_FOREACH(bp, &cpu->kvm_state->kvm_sw_breakpoints, entry) {
3256 if (bp->pc == pc) {
3257 return bp;
3260 return NULL;
3263 int kvm_sw_breakpoints_active(CPUState *cpu)
3265 return !QTAILQ_EMPTY(&cpu->kvm_state->kvm_sw_breakpoints);
3268 struct kvm_set_guest_debug_data {
3269 struct kvm_guest_debug dbg;
3270 int err;
3273 static void kvm_invoke_set_guest_debug(CPUState *cpu, run_on_cpu_data data)
3275 struct kvm_set_guest_debug_data *dbg_data =
3276 (struct kvm_set_guest_debug_data *) data.host_ptr;
3278 dbg_data->err = kvm_vcpu_ioctl(cpu, KVM_SET_GUEST_DEBUG,
3279 &dbg_data->dbg);
3282 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap)
3284 struct kvm_set_guest_debug_data data;
3286 data.dbg.control = reinject_trap;
3288 if (cpu->singlestep_enabled) {
3289 data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
3291 if (cpu->singlestep_enabled & SSTEP_NOIRQ) {
3292 data.dbg.control |= KVM_GUESTDBG_BLOCKIRQ;
3295 kvm_arch_update_guest_debug(cpu, &data.dbg);
3297 run_on_cpu(cpu, kvm_invoke_set_guest_debug,
3298 RUN_ON_CPU_HOST_PTR(&data));
3299 return data.err;
3302 bool kvm_supports_guest_debug(void)
3304 /* probed during kvm_init() */
3305 return kvm_has_guest_debug;
3308 int kvm_insert_breakpoint(CPUState *cpu, int type, hwaddr addr, hwaddr len)
3310 struct kvm_sw_breakpoint *bp;
3311 int err;
3313 if (type == GDB_BREAKPOINT_SW) {
3314 bp = kvm_find_sw_breakpoint(cpu, addr);
3315 if (bp) {
3316 bp->use_count++;
3317 return 0;
3320 bp = g_new(struct kvm_sw_breakpoint, 1);
3321 bp->pc = addr;
3322 bp->use_count = 1;
3323 err = kvm_arch_insert_sw_breakpoint(cpu, bp);
3324 if (err) {
3325 g_free(bp);
3326 return err;
3329 QTAILQ_INSERT_HEAD(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
3330 } else {
3331 err = kvm_arch_insert_hw_breakpoint(addr, len, type);
3332 if (err) {
3333 return err;
3337 CPU_FOREACH(cpu) {
3338 err = kvm_update_guest_debug(cpu, 0);
3339 if (err) {
3340 return err;
3343 return 0;
3346 int kvm_remove_breakpoint(CPUState *cpu, int type, hwaddr addr, hwaddr len)
3348 struct kvm_sw_breakpoint *bp;
3349 int err;
3351 if (type == GDB_BREAKPOINT_SW) {
3352 bp = kvm_find_sw_breakpoint(cpu, addr);
3353 if (!bp) {
3354 return -ENOENT;
3357 if (bp->use_count > 1) {
3358 bp->use_count--;
3359 return 0;
3362 err = kvm_arch_remove_sw_breakpoint(cpu, bp);
3363 if (err) {
3364 return err;
3367 QTAILQ_REMOVE(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
3368 g_free(bp);
3369 } else {
3370 err = kvm_arch_remove_hw_breakpoint(addr, len, type);
3371 if (err) {
3372 return err;
3376 CPU_FOREACH(cpu) {
3377 err = kvm_update_guest_debug(cpu, 0);
3378 if (err) {
3379 return err;
3382 return 0;
3385 void kvm_remove_all_breakpoints(CPUState *cpu)
3387 struct kvm_sw_breakpoint *bp, *next;
3388 KVMState *s = cpu->kvm_state;
3389 CPUState *tmpcpu;
3391 QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
3392 if (kvm_arch_remove_sw_breakpoint(cpu, bp) != 0) {
3393 /* Try harder to find a CPU that currently sees the breakpoint. */
3394 CPU_FOREACH(tmpcpu) {
3395 if (kvm_arch_remove_sw_breakpoint(tmpcpu, bp) == 0) {
3396 break;
3400 QTAILQ_REMOVE(&s->kvm_sw_breakpoints, bp, entry);
3401 g_free(bp);
3403 kvm_arch_remove_all_hw_breakpoints();
3405 CPU_FOREACH(cpu) {
3406 kvm_update_guest_debug(cpu, 0);
3410 #endif /* !KVM_CAP_SET_GUEST_DEBUG */
3412 static int kvm_set_signal_mask(CPUState *cpu, const sigset_t *sigset)
3414 KVMState *s = kvm_state;
3415 struct kvm_signal_mask *sigmask;
3416 int r;
3418 sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset));
3420 sigmask->len = s->sigmask_len;
3421 memcpy(sigmask->sigset, sigset, sizeof(*sigset));
3422 r = kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, sigmask);
3423 g_free(sigmask);
3425 return r;
3428 static void kvm_ipi_signal(int sig)
3430 if (current_cpu) {
3431 assert(kvm_immediate_exit);
3432 kvm_cpu_kick(current_cpu);
3436 void kvm_init_cpu_signals(CPUState *cpu)
3438 int r;
3439 sigset_t set;
3440 struct sigaction sigact;
3442 memset(&sigact, 0, sizeof(sigact));
3443 sigact.sa_handler = kvm_ipi_signal;
3444 sigaction(SIG_IPI, &sigact, NULL);
3446 pthread_sigmask(SIG_BLOCK, NULL, &set);
3447 #if defined KVM_HAVE_MCE_INJECTION
3448 sigdelset(&set, SIGBUS);
3449 pthread_sigmask(SIG_SETMASK, &set, NULL);
3450 #endif
3451 sigdelset(&set, SIG_IPI);
3452 if (kvm_immediate_exit) {
3453 r = pthread_sigmask(SIG_SETMASK, &set, NULL);
3454 } else {
3455 r = kvm_set_signal_mask(cpu, &set);
3457 if (r) {
3458 fprintf(stderr, "kvm_set_signal_mask: %s\n", strerror(-r));
3459 exit(1);
3463 /* Called asynchronously in VCPU thread. */
3464 int kvm_on_sigbus_vcpu(CPUState *cpu, int code, void *addr)
3466 #ifdef KVM_HAVE_MCE_INJECTION
3467 if (have_sigbus_pending) {
3468 return 1;
3470 have_sigbus_pending = true;
3471 pending_sigbus_addr = addr;
3472 pending_sigbus_code = code;
3473 qatomic_set(&cpu->exit_request, 1);
3474 return 0;
3475 #else
3476 return 1;
3477 #endif
3480 /* Called synchronously (via signalfd) in main thread. */
3481 int kvm_on_sigbus(int code, void *addr)
3483 #ifdef KVM_HAVE_MCE_INJECTION
3484 /* Action required MCE kills the process if SIGBUS is blocked. Because
3485 * that's what happens in the I/O thread, where we handle MCE via signalfd,
3486 * we can only get action optional here.
3488 assert(code != BUS_MCEERR_AR);
3489 kvm_arch_on_sigbus_vcpu(first_cpu, code, addr);
3490 return 0;
3491 #else
3492 return 1;
3493 #endif
3496 int kvm_create_device(KVMState *s, uint64_t type, bool test)
3498 int ret;
3499 struct kvm_create_device create_dev;
3501 create_dev.type = type;
3502 create_dev.fd = -1;
3503 create_dev.flags = test ? KVM_CREATE_DEVICE_TEST : 0;
3505 if (!kvm_check_extension(s, KVM_CAP_DEVICE_CTRL)) {
3506 return -ENOTSUP;
3509 ret = kvm_vm_ioctl(s, KVM_CREATE_DEVICE, &create_dev);
3510 if (ret) {
3511 return ret;
3514 return test ? 0 : create_dev.fd;
3517 bool kvm_device_supported(int vmfd, uint64_t type)
3519 struct kvm_create_device create_dev = {
3520 .type = type,
3521 .fd = -1,
3522 .flags = KVM_CREATE_DEVICE_TEST,
3525 if (ioctl(vmfd, KVM_CHECK_EXTENSION, KVM_CAP_DEVICE_CTRL) <= 0) {
3526 return false;
3529 return (ioctl(vmfd, KVM_CREATE_DEVICE, &create_dev) >= 0);
3532 int kvm_set_one_reg(CPUState *cs, uint64_t id, void *source)
3534 struct kvm_one_reg reg;
3535 int r;
3537 reg.id = id;
3538 reg.addr = (uintptr_t) source;
3539 r = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
3540 if (r) {
3541 trace_kvm_failed_reg_set(id, strerror(-r));
3543 return r;
3546 int kvm_get_one_reg(CPUState *cs, uint64_t id, void *target)
3548 struct kvm_one_reg reg;
3549 int r;
3551 reg.id = id;
3552 reg.addr = (uintptr_t) target;
3553 r = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
3554 if (r) {
3555 trace_kvm_failed_reg_get(id, strerror(-r));
3557 return r;
3560 static bool kvm_accel_has_memory(MachineState *ms, AddressSpace *as,
3561 hwaddr start_addr, hwaddr size)
3563 KVMState *kvm = KVM_STATE(ms->accelerator);
3564 int i;
3566 for (i = 0; i < kvm->nr_as; ++i) {
3567 if (kvm->as[i].as == as && kvm->as[i].ml) {
3568 size = MIN(kvm_max_slot_size, size);
3569 return NULL != kvm_lookup_matching_slot(kvm->as[i].ml,
3570 start_addr, size);
3574 return false;
3577 static void kvm_get_kvm_shadow_mem(Object *obj, Visitor *v,
3578 const char *name, void *opaque,
3579 Error **errp)
3581 KVMState *s = KVM_STATE(obj);
3582 int64_t value = s->kvm_shadow_mem;
3584 visit_type_int(v, name, &value, errp);
3587 static void kvm_set_kvm_shadow_mem(Object *obj, Visitor *v,
3588 const char *name, void *opaque,
3589 Error **errp)
3591 KVMState *s = KVM_STATE(obj);
3592 int64_t value;
3594 if (s->fd != -1) {
3595 error_setg(errp, "Cannot set properties after the accelerator has been initialized");
3596 return;
3599 if (!visit_type_int(v, name, &value, errp)) {
3600 return;
3603 s->kvm_shadow_mem = value;
3606 static void kvm_set_kernel_irqchip(Object *obj, Visitor *v,
3607 const char *name, void *opaque,
3608 Error **errp)
3610 KVMState *s = KVM_STATE(obj);
3611 OnOffSplit mode;
3613 if (s->fd != -1) {
3614 error_setg(errp, "Cannot set properties after the accelerator has been initialized");
3615 return;
3618 if (!visit_type_OnOffSplit(v, name, &mode, errp)) {
3619 return;
3621 switch (mode) {
3622 case ON_OFF_SPLIT_ON:
3623 s->kernel_irqchip_allowed = true;
3624 s->kernel_irqchip_required = true;
3625 s->kernel_irqchip_split = ON_OFF_AUTO_OFF;
3626 break;
3627 case ON_OFF_SPLIT_OFF:
3628 s->kernel_irqchip_allowed = false;
3629 s->kernel_irqchip_required = false;
3630 s->kernel_irqchip_split = ON_OFF_AUTO_OFF;
3631 break;
3632 case ON_OFF_SPLIT_SPLIT:
3633 s->kernel_irqchip_allowed = true;
3634 s->kernel_irqchip_required = true;
3635 s->kernel_irqchip_split = ON_OFF_AUTO_ON;
3636 break;
3637 default:
3638 /* The value was checked in visit_type_OnOffSplit() above. If
3639 * we get here, then something is wrong in QEMU.
3641 abort();
3645 bool kvm_kernel_irqchip_allowed(void)
3647 return kvm_state->kernel_irqchip_allowed;
3650 bool kvm_kernel_irqchip_required(void)
3652 return kvm_state->kernel_irqchip_required;
3655 bool kvm_kernel_irqchip_split(void)
3657 return kvm_state->kernel_irqchip_split == ON_OFF_AUTO_ON;
3660 static void kvm_get_dirty_ring_size(Object *obj, Visitor *v,
3661 const char *name, void *opaque,
3662 Error **errp)
3664 KVMState *s = KVM_STATE(obj);
3665 uint32_t value = s->kvm_dirty_ring_size;
3667 visit_type_uint32(v, name, &value, errp);
3670 static void kvm_set_dirty_ring_size(Object *obj, Visitor *v,
3671 const char *name, void *opaque,
3672 Error **errp)
3674 KVMState *s = KVM_STATE(obj);
3675 uint32_t value;
3677 if (s->fd != -1) {
3678 error_setg(errp, "Cannot set properties after the accelerator has been initialized");
3679 return;
3682 if (!visit_type_uint32(v, name, &value, errp)) {
3683 return;
3685 if (value & (value - 1)) {
3686 error_setg(errp, "dirty-ring-size must be a power of two.");
3687 return;
3690 s->kvm_dirty_ring_size = value;
3693 static void kvm_accel_instance_init(Object *obj)
3695 KVMState *s = KVM_STATE(obj);
3697 s->fd = -1;
3698 s->vmfd = -1;
3699 s->kvm_shadow_mem = -1;
3700 s->kernel_irqchip_allowed = true;
3701 s->kernel_irqchip_split = ON_OFF_AUTO_AUTO;
3702 /* KVM dirty ring is by default off */
3703 s->kvm_dirty_ring_size = 0;
3704 s->notify_vmexit = NOTIFY_VMEXIT_OPTION_RUN;
3705 s->notify_window = 0;
3709 * kvm_gdbstub_sstep_flags():
3711 * Returns: SSTEP_* flags that KVM supports for guest debug. The
3712 * support is probed during kvm_init()
3714 static int kvm_gdbstub_sstep_flags(void)
3716 return kvm_sstep_flags;
3719 static void kvm_accel_class_init(ObjectClass *oc, void *data)
3721 AccelClass *ac = ACCEL_CLASS(oc);
3722 ac->name = "KVM";
3723 ac->init_machine = kvm_init;
3724 ac->has_memory = kvm_accel_has_memory;
3725 ac->allowed = &kvm_allowed;
3726 ac->gdbstub_supported_sstep_flags = kvm_gdbstub_sstep_flags;
3728 object_class_property_add(oc, "kernel-irqchip", "on|off|split",
3729 NULL, kvm_set_kernel_irqchip,
3730 NULL, NULL);
3731 object_class_property_set_description(oc, "kernel-irqchip",
3732 "Configure KVM in-kernel irqchip");
3734 object_class_property_add(oc, "kvm-shadow-mem", "int",
3735 kvm_get_kvm_shadow_mem, kvm_set_kvm_shadow_mem,
3736 NULL, NULL);
3737 object_class_property_set_description(oc, "kvm-shadow-mem",
3738 "KVM shadow MMU size");
3740 object_class_property_add(oc, "dirty-ring-size", "uint32",
3741 kvm_get_dirty_ring_size, kvm_set_dirty_ring_size,
3742 NULL, NULL);
3743 object_class_property_set_description(oc, "dirty-ring-size",
3744 "Size of KVM dirty page ring buffer (default: 0, i.e. use bitmap)");
3746 kvm_arch_accel_class_init(oc);
3749 static const TypeInfo kvm_accel_type = {
3750 .name = TYPE_KVM_ACCEL,
3751 .parent = TYPE_ACCEL,
3752 .instance_init = kvm_accel_instance_init,
3753 .class_init = kvm_accel_class_init,
3754 .instance_size = sizeof(KVMState),
3757 static void kvm_type_init(void)
3759 type_register_static(&kvm_accel_type);
3762 type_init(kvm_type_init);
3764 typedef struct StatsArgs {
3765 union StatsResultsType {
3766 StatsResultList **stats;
3767 StatsSchemaList **schema;
3768 } result;
3769 strList *names;
3770 Error **errp;
3771 } StatsArgs;
3773 static StatsList *add_kvmstat_entry(struct kvm_stats_desc *pdesc,
3774 uint64_t *stats_data,
3775 StatsList *stats_list,
3776 Error **errp)
3779 Stats *stats;
3780 uint64List *val_list = NULL;
3782 /* Only add stats that we understand. */
3783 switch (pdesc->flags & KVM_STATS_TYPE_MASK) {
3784 case KVM_STATS_TYPE_CUMULATIVE:
3785 case KVM_STATS_TYPE_INSTANT:
3786 case KVM_STATS_TYPE_PEAK:
3787 case KVM_STATS_TYPE_LINEAR_HIST:
3788 case KVM_STATS_TYPE_LOG_HIST:
3789 break;
3790 default:
3791 return stats_list;
3794 switch (pdesc->flags & KVM_STATS_UNIT_MASK) {
3795 case KVM_STATS_UNIT_NONE:
3796 case KVM_STATS_UNIT_BYTES:
3797 case KVM_STATS_UNIT_CYCLES:
3798 case KVM_STATS_UNIT_SECONDS:
3799 case KVM_STATS_UNIT_BOOLEAN:
3800 break;
3801 default:
3802 return stats_list;
3805 switch (pdesc->flags & KVM_STATS_BASE_MASK) {
3806 case KVM_STATS_BASE_POW10:
3807 case KVM_STATS_BASE_POW2:
3808 break;
3809 default:
3810 return stats_list;
3813 /* Alloc and populate data list */
3814 stats = g_new0(Stats, 1);
3815 stats->name = g_strdup(pdesc->name);
3816 stats->value = g_new0(StatsValue, 1);;
3818 if ((pdesc->flags & KVM_STATS_UNIT_MASK) == KVM_STATS_UNIT_BOOLEAN) {
3819 stats->value->u.boolean = *stats_data;
3820 stats->value->type = QTYPE_QBOOL;
3821 } else if (pdesc->size == 1) {
3822 stats->value->u.scalar = *stats_data;
3823 stats->value->type = QTYPE_QNUM;
3824 } else {
3825 int i;
3826 for (i = 0; i < pdesc->size; i++) {
3827 QAPI_LIST_PREPEND(val_list, stats_data[i]);
3829 stats->value->u.list = val_list;
3830 stats->value->type = QTYPE_QLIST;
3833 QAPI_LIST_PREPEND(stats_list, stats);
3834 return stats_list;
3837 static StatsSchemaValueList *add_kvmschema_entry(struct kvm_stats_desc *pdesc,
3838 StatsSchemaValueList *list,
3839 Error **errp)
3841 StatsSchemaValueList *schema_entry = g_new0(StatsSchemaValueList, 1);
3842 schema_entry->value = g_new0(StatsSchemaValue, 1);
3844 switch (pdesc->flags & KVM_STATS_TYPE_MASK) {
3845 case KVM_STATS_TYPE_CUMULATIVE:
3846 schema_entry->value->type = STATS_TYPE_CUMULATIVE;
3847 break;
3848 case KVM_STATS_TYPE_INSTANT:
3849 schema_entry->value->type = STATS_TYPE_INSTANT;
3850 break;
3851 case KVM_STATS_TYPE_PEAK:
3852 schema_entry->value->type = STATS_TYPE_PEAK;
3853 break;
3854 case KVM_STATS_TYPE_LINEAR_HIST:
3855 schema_entry->value->type = STATS_TYPE_LINEAR_HISTOGRAM;
3856 schema_entry->value->bucket_size = pdesc->bucket_size;
3857 schema_entry->value->has_bucket_size = true;
3858 break;
3859 case KVM_STATS_TYPE_LOG_HIST:
3860 schema_entry->value->type = STATS_TYPE_LOG2_HISTOGRAM;
3861 break;
3862 default:
3863 goto exit;
3866 switch (pdesc->flags & KVM_STATS_UNIT_MASK) {
3867 case KVM_STATS_UNIT_NONE:
3868 break;
3869 case KVM_STATS_UNIT_BOOLEAN:
3870 schema_entry->value->has_unit = true;
3871 schema_entry->value->unit = STATS_UNIT_BOOLEAN;
3872 break;
3873 case KVM_STATS_UNIT_BYTES:
3874 schema_entry->value->has_unit = true;
3875 schema_entry->value->unit = STATS_UNIT_BYTES;
3876 break;
3877 case KVM_STATS_UNIT_CYCLES:
3878 schema_entry->value->has_unit = true;
3879 schema_entry->value->unit = STATS_UNIT_CYCLES;
3880 break;
3881 case KVM_STATS_UNIT_SECONDS:
3882 schema_entry->value->has_unit = true;
3883 schema_entry->value->unit = STATS_UNIT_SECONDS;
3884 break;
3885 default:
3886 goto exit;
3889 schema_entry->value->exponent = pdesc->exponent;
3890 if (pdesc->exponent) {
3891 switch (pdesc->flags & KVM_STATS_BASE_MASK) {
3892 case KVM_STATS_BASE_POW10:
3893 schema_entry->value->has_base = true;
3894 schema_entry->value->base = 10;
3895 break;
3896 case KVM_STATS_BASE_POW2:
3897 schema_entry->value->has_base = true;
3898 schema_entry->value->base = 2;
3899 break;
3900 default:
3901 goto exit;
3905 schema_entry->value->name = g_strdup(pdesc->name);
3906 schema_entry->next = list;
3907 return schema_entry;
3908 exit:
3909 g_free(schema_entry->value);
3910 g_free(schema_entry);
3911 return list;
3914 /* Cached stats descriptors */
3915 typedef struct StatsDescriptors {
3916 const char *ident; /* cache key, currently the StatsTarget */
3917 struct kvm_stats_desc *kvm_stats_desc;
3918 struct kvm_stats_header kvm_stats_header;
3919 QTAILQ_ENTRY(StatsDescriptors) next;
3920 } StatsDescriptors;
3922 static QTAILQ_HEAD(, StatsDescriptors) stats_descriptors =
3923 QTAILQ_HEAD_INITIALIZER(stats_descriptors);
3926 * Return the descriptors for 'target', that either have already been read
3927 * or are retrieved from 'stats_fd'.
3929 static StatsDescriptors *find_stats_descriptors(StatsTarget target, int stats_fd,
3930 Error **errp)
3932 StatsDescriptors *descriptors;
3933 const char *ident;
3934 struct kvm_stats_desc *kvm_stats_desc;
3935 struct kvm_stats_header *kvm_stats_header;
3936 size_t size_desc;
3937 ssize_t ret;
3939 ident = StatsTarget_str(target);
3940 QTAILQ_FOREACH(descriptors, &stats_descriptors, next) {
3941 if (g_str_equal(descriptors->ident, ident)) {
3942 return descriptors;
3946 descriptors = g_new0(StatsDescriptors, 1);
3948 /* Read stats header */
3949 kvm_stats_header = &descriptors->kvm_stats_header;
3950 ret = read(stats_fd, kvm_stats_header, sizeof(*kvm_stats_header));
3951 if (ret != sizeof(*kvm_stats_header)) {
3952 error_setg(errp, "KVM stats: failed to read stats header: "
3953 "expected %zu actual %zu",
3954 sizeof(*kvm_stats_header), ret);
3955 g_free(descriptors);
3956 return NULL;
3958 size_desc = sizeof(*kvm_stats_desc) + kvm_stats_header->name_size;
3960 /* Read stats descriptors */
3961 kvm_stats_desc = g_malloc0_n(kvm_stats_header->num_desc, size_desc);
3962 ret = pread(stats_fd, kvm_stats_desc,
3963 size_desc * kvm_stats_header->num_desc,
3964 kvm_stats_header->desc_offset);
3966 if (ret != size_desc * kvm_stats_header->num_desc) {
3967 error_setg(errp, "KVM stats: failed to read stats descriptors: "
3968 "expected %zu actual %zu",
3969 size_desc * kvm_stats_header->num_desc, ret);
3970 g_free(descriptors);
3971 g_free(kvm_stats_desc);
3972 return NULL;
3974 descriptors->kvm_stats_desc = kvm_stats_desc;
3975 descriptors->ident = ident;
3976 QTAILQ_INSERT_TAIL(&stats_descriptors, descriptors, next);
3977 return descriptors;
3980 static void query_stats(StatsResultList **result, StatsTarget target,
3981 strList *names, int stats_fd, Error **errp)
3983 struct kvm_stats_desc *kvm_stats_desc;
3984 struct kvm_stats_header *kvm_stats_header;
3985 StatsDescriptors *descriptors;
3986 g_autofree uint64_t *stats_data = NULL;
3987 struct kvm_stats_desc *pdesc;
3988 StatsList *stats_list = NULL;
3989 size_t size_desc, size_data = 0;
3990 ssize_t ret;
3991 int i;
3993 descriptors = find_stats_descriptors(target, stats_fd, errp);
3994 if (!descriptors) {
3995 return;
3998 kvm_stats_header = &descriptors->kvm_stats_header;
3999 kvm_stats_desc = descriptors->kvm_stats_desc;
4000 size_desc = sizeof(*kvm_stats_desc) + kvm_stats_header->name_size;
4002 /* Tally the total data size; read schema data */
4003 for (i = 0; i < kvm_stats_header->num_desc; ++i) {
4004 pdesc = (void *)kvm_stats_desc + i * size_desc;
4005 size_data += pdesc->size * sizeof(*stats_data);
4008 stats_data = g_malloc0(size_data);
4009 ret = pread(stats_fd, stats_data, size_data, kvm_stats_header->data_offset);
4011 if (ret != size_data) {
4012 error_setg(errp, "KVM stats: failed to read data: "
4013 "expected %zu actual %zu", size_data, ret);
4014 return;
4017 for (i = 0; i < kvm_stats_header->num_desc; ++i) {
4018 uint64_t *stats;
4019 pdesc = (void *)kvm_stats_desc + i * size_desc;
4021 /* Add entry to the list */
4022 stats = (void *)stats_data + pdesc->offset;
4023 if (!apply_str_list_filter(pdesc->name, names)) {
4024 continue;
4026 stats_list = add_kvmstat_entry(pdesc, stats, stats_list, errp);
4029 if (!stats_list) {
4030 return;
4033 switch (target) {
4034 case STATS_TARGET_VM:
4035 add_stats_entry(result, STATS_PROVIDER_KVM, NULL, stats_list);
4036 break;
4037 case STATS_TARGET_VCPU:
4038 add_stats_entry(result, STATS_PROVIDER_KVM,
4039 current_cpu->parent_obj.canonical_path,
4040 stats_list);
4041 break;
4042 default:
4043 g_assert_not_reached();
4047 static void query_stats_schema(StatsSchemaList **result, StatsTarget target,
4048 int stats_fd, Error **errp)
4050 struct kvm_stats_desc *kvm_stats_desc;
4051 struct kvm_stats_header *kvm_stats_header;
4052 StatsDescriptors *descriptors;
4053 struct kvm_stats_desc *pdesc;
4054 StatsSchemaValueList *stats_list = NULL;
4055 size_t size_desc;
4056 int i;
4058 descriptors = find_stats_descriptors(target, stats_fd, errp);
4059 if (!descriptors) {
4060 return;
4063 kvm_stats_header = &descriptors->kvm_stats_header;
4064 kvm_stats_desc = descriptors->kvm_stats_desc;
4065 size_desc = sizeof(*kvm_stats_desc) + kvm_stats_header->name_size;
4067 /* Tally the total data size; read schema data */
4068 for (i = 0; i < kvm_stats_header->num_desc; ++i) {
4069 pdesc = (void *)kvm_stats_desc + i * size_desc;
4070 stats_list = add_kvmschema_entry(pdesc, stats_list, errp);
4073 add_stats_schema(result, STATS_PROVIDER_KVM, target, stats_list);
4076 static void query_stats_vcpu(CPUState *cpu, run_on_cpu_data data)
4078 StatsArgs *kvm_stats_args = (StatsArgs *) data.host_ptr;
4079 int stats_fd = kvm_vcpu_ioctl(cpu, KVM_GET_STATS_FD, NULL);
4080 Error *local_err = NULL;
4082 if (stats_fd == -1) {
4083 error_setg_errno(&local_err, errno, "KVM stats: ioctl failed");
4084 error_propagate(kvm_stats_args->errp, local_err);
4085 return;
4087 query_stats(kvm_stats_args->result.stats, STATS_TARGET_VCPU,
4088 kvm_stats_args->names, stats_fd, kvm_stats_args->errp);
4089 close(stats_fd);
4092 static void query_stats_schema_vcpu(CPUState *cpu, run_on_cpu_data data)
4094 StatsArgs *kvm_stats_args = (StatsArgs *) data.host_ptr;
4095 int stats_fd = kvm_vcpu_ioctl(cpu, KVM_GET_STATS_FD, NULL);
4096 Error *local_err = NULL;
4098 if (stats_fd == -1) {
4099 error_setg_errno(&local_err, errno, "KVM stats: ioctl failed");
4100 error_propagate(kvm_stats_args->errp, local_err);
4101 return;
4103 query_stats_schema(kvm_stats_args->result.schema, STATS_TARGET_VCPU, stats_fd,
4104 kvm_stats_args->errp);
4105 close(stats_fd);
4108 static void query_stats_cb(StatsResultList **result, StatsTarget target,
4109 strList *names, strList *targets, Error **errp)
4111 KVMState *s = kvm_state;
4112 CPUState *cpu;
4113 int stats_fd;
4115 switch (target) {
4116 case STATS_TARGET_VM:
4118 stats_fd = kvm_vm_ioctl(s, KVM_GET_STATS_FD, NULL);
4119 if (stats_fd == -1) {
4120 error_setg_errno(errp, errno, "KVM stats: ioctl failed");
4121 return;
4123 query_stats(result, target, names, stats_fd, errp);
4124 close(stats_fd);
4125 break;
4127 case STATS_TARGET_VCPU:
4129 StatsArgs stats_args;
4130 stats_args.result.stats = result;
4131 stats_args.names = names;
4132 stats_args.errp = errp;
4133 CPU_FOREACH(cpu) {
4134 if (!apply_str_list_filter(cpu->parent_obj.canonical_path, targets)) {
4135 continue;
4137 run_on_cpu(cpu, query_stats_vcpu, RUN_ON_CPU_HOST_PTR(&stats_args));
4139 break;
4141 default:
4142 break;
4146 void query_stats_schemas_cb(StatsSchemaList **result, Error **errp)
4148 StatsArgs stats_args;
4149 KVMState *s = kvm_state;
4150 int stats_fd;
4152 stats_fd = kvm_vm_ioctl(s, KVM_GET_STATS_FD, NULL);
4153 if (stats_fd == -1) {
4154 error_setg_errno(errp, errno, "KVM stats: ioctl failed");
4155 return;
4157 query_stats_schema(result, STATS_TARGET_VM, stats_fd, errp);
4158 close(stats_fd);
4160 if (first_cpu) {
4161 stats_args.result.schema = result;
4162 stats_args.errp = errp;
4163 run_on_cpu(first_cpu, query_stats_schema_vcpu, RUN_ON_CPU_HOST_PTR(&stats_args));